Continuous Graph Partitioning for Camera Network Surveillance

D. Borraa, F. Pasqualettib, F. Bullob

aDipartimento di Scienze Matematiche, Politecnico di Torino, Italy
bCenter for Control, Dynamical Systems, and Computation, University of California, Santa Barbara, USA

Abstract

In this work we design surveillance trajectories for a network of autonomous cameras to detect intruders in an environment. Intruders, which appear at arbitrary times and locations, are classified as static or dynamic. While static intruders remain stationary, dynamic intruders are aware of the cameras configuration and move to avoid detection, if possible. As performance criteria we consider the worst-case detection time of static and dynamic intruders. We model the environment and the camera network by means of a robotic roadmap. We show that optimal cameras trajectories against static intruders are obtained by solving a continuous graph partitioning problem. We design centralized and distributed algorithms to solve this continuous graph partitioning problem. Our centralized solution relies on tools from convex optimization. For the distributed case, we consider three distinct cameras communication models and propose a corresponding algorithm for each of the models. Regarding dynamic intruders, we identify necessary and sufficient conditions on the cameras locations to detect dynamic intruders in finite time. Additionally, we construct constant-factor optimal trajectories for the case of ring and tree roadmaps.

Key words: Graph partitioning, Convex constrained optimization, Camera network, Remote and distributed control.

1 Introduction

Remote surveillance of human activities for civil and military applications is receiving considerable attention from the research community. Public areas such as banks, art galleries, private houses, prisons, department stores, and parking lots, are now equipped with camera networks to detect important activities, [18, 22]. From a technological perspective, one of the main challenges consists of developing efficient algorithms for the cameras to autonomously and distributively complete tracking, surveillance, and recognition tasks.

In this work we focus on the problem of detecting intruders by means of a network of autonomous cameras. In particular, we consider Pan-Tilt-Zoom (PTZ) cameras installed at important locations. We assume the cameras to move their field of view (f.o.v.) to cooperatively surveil the whole environment. We develop algorithms for the cameras to self-organize and to detect intruders in the environment, that appear at arbitrary locations and times. We consider static intruders, which remain stationary, and dynamic intruders, which move to avoid detection, if possible. As performance criteria we consider the worst-case detection time, that is the longest time needed for the cameras to detect intruders.

Related work. Works related to our camera surveillance problem can be found in the mobile robotics and computer science literatures. In mobile robotics, the patrolling problem consists of scheduling the motion of a team of autonomous agents in order to detect intruders or important events, e.g., see [1, 4, 17, 20]. It should be observed

* This work was supported by NSF grants IIS-0904501 and CNS-1035917, and by ARO grant W911NF-11-1-0092.

Email addresses: domenica.borra@polito.it (D. Borra), fabiopas@engineering.ucsb.edu (F. Pasqualetti), bullo@engineering.ucsb.edu (F. Bullo).
In this work we design surveillance trajectories for a network of autonomous cameras to detect intruders in an environment. Intruders, which appear at arbitrary times and locations, are classified as static or dynamic. While static intruders remain stationary, dynamic intruders are aware of the cameras' configuration and move to avoid detection, if possible. As performance criteria we consider the worst-case detection time of static and dynamic intruders. We model the environment and the camera network by means of a robotic roadmap. We show that optimal cameras trajectories against static intruders are obtained by solving a continuous graph partitioning problem. We design centralized and distributed algorithms to solve this continuous graph partitioning problem. Our centralized solution relies on tools from convex optimization. For the distributed case we consider three distinct cameras communication models and propose a corresponding algorithm for each of the models. Regarding dynamic intruders, we identify necessary and sufficient conditions on the cameras' locations to detect dynamic intruders in finite time. Additionally, we construct constant-factor optimal trajectories for the case of ring and tree roadmaps.
that the patrolling problem and the problem considered in this paper significantly differ. Indeed, cameras are fixed at predetermined locations, and their f.o.v.s must lie within the cameras visibility constraints. On the other hand, robots are usually allowed to travel the whole environment, and are usually not subject to visibility constraints. Consequently, algorithms developed for teams of robots are, in general, not applicable in our setup. Similarly, algorithms for graph-clearing and graph-search do not extend to our scenario [13, 14, 19].

In the context of camera networks, the perimeter patrolling problem has recently been studied in [4, 8, 21]. In these works, distributed algorithms are proposed for the cameras to partition a one-dimensional environment, and to synchronize along a trajectory with minimum worst-case detection time of intruders. We improve the results along these directions by, for instance, developing cameras trajectories and partitioning methods for general environment topologies.

In this work we present algorithms for graph partitioning. It is worth noting that our graph partitioning problem differs from classical setups, e.g., see [2, 3, 11, 12]. Indeed, in these works the graph partitioning problem is usually combinatorial, and it consists of partitioning the vertices or the edges as to optimize a certain performance function. Instead, we formulate continuous graph partitioning problems, in which the graph is a physical entity, and the partition is obtained by splitting the edges. As it will be clear in the sequel, our results on graph partitioning are general and applicable to different problems. For instance, if each edge of the graph represents a task to be accomplished by the processors at its endpoints, then our algorithms can be used for dynamic load balancing for multiprocessor networks [9, 16].

A preliminary version of this work appeared in [6]. Extensions with this work include (i) the design of trajectories against static intruders for cyclic roadmaps, (ii) the design of trajectories against dynamic intruders, and (iii) a characterization of necessary and sufficient conditions for finite detection time of dynamic intruders.

Paper contributions. The main contributions of this work are as follows. First, we propose the continuous graph partitioning problem, in which a partition of a weighted graph is obtained by splitting the graph edges, and the cost of a partition equals the longest length of its parts (Section 2). We show that the continuous graph partitioning problem is convex and non-differentiable, and we characterize its solutions. Then, we derive an equivalent convex and differentiable partitioning problem, which is amenable to distributed implementation.

Second, we define the camera surveillance problem for the detection of static and dynamic intruders (Section 3). We model the environment and the camera network by means of a robotic roadmap, and we formalize the worst-case detection time of static and dynamic intruders.

Third, we exhaustively discuss the case of static intruders (Section 4). We show that, for tree and ring roadmaps, cameras trajectories with minimum worst-case detection time can be designed by solving a continuous graph partitioning problem. For general cyclic roadmaps, our trajectories based on continuous partitions are proved to be optimal up to a factor 2. However, we conjecture that optimality is achieved also in this case.

Fourth, for the case of dynamic intruders, we derive a necessary and sufficient condition on the cameras locations for the existence of a trajectory with finite detection time (Section 5). We focus on ring and tree roadmaps. In particular, for the case of ring roadmaps we design a trajectory with detection time within a factor $3/2$ of optimal. Instead, for tree roadmaps, the performance of our trajectory is within a factor 2 of optimal.

Fifth and finally, we consider three different communication models, and we propose distributed algorithms for the cameras for continuous graph partitioning in all these scenarios (Section 6). In particular: our first algorithm assumes a synchronous mode of operation of the cameras; our second algorithm assumes an asymmetric broadcast communication model and extends the class of block-coordinate descent algorithms to the constrained case; and our third algorithm only requires gossip communication. We prove convergence of all these algorithms, and we analyze their performance in a simulation study.

2 Continuous Partitions of Weighted Graphs

In this section we introduce the problem of continuous graph partitioning. A solution to this problem will be used to design optimal cameras trajectories.
Let $G = (V, E)$ be an undirected weighted graph, where V and E denote the vertex and edge sets, respectively. Let $\ell_{ij} \in \mathbb{R}_{>0}$ be the weight associated with the edge $\{v_i, v_j\} \in E$. For a subset of vertices $V_c \subseteq V$, define the i-th set of neighbors as $N_i = N_i^{in} \cup N_i^{out}$, where

\begin{align}
N_i^{in} &= \{v_j \in V_c : \{v_i, v_j\} \in E\}, \\
N_i^{out} &= \{v_j \in V \setminus V_c : \{v_i, v_j\} \in E\}.
\end{align}

A continuous partition of the weighted graph G is a set $P = \{P_1, \ldots, P_n\}$, where (see Fig. 1)

$$P_i = \bigcup_{v_j \in N_i} [v_i, v_{ij}],$$

and $v_{ij} \in [v_i, v_j]$ is defined by some $\alpha_{ij} \in [0, 1]$ as

$$v_{ij} = \begin{cases} v_i + \alpha_{ij}(v_j - v_i), & \text{if } j \in N_i^{in}, i < j, \\
v_i + (1 - \alpha_{ij})(v_j - v_i), & \text{if } j \in N_i^{in}, i > j, \\
v_j, & \text{if } j \in N_i^{out}. \end{cases} \tag{3}$$

The dimension of a continuous partition equals $L(P) = \max\{L_1, \ldots, L_n\}$, where L_i is the sum of the lengths of the segments in P_i, $i = 1, \ldots, n$. In other words

$$L_i = \sum_{v_j \in N_i^{in}, i < j} \alpha_{ij}\ell_{ij} + \sum_{v_j \in N_i^{in}, i > j} (1 - \alpha_{ij})\ell_{ij} + \sum_{v_j \in N_i^{out}} \ell_{ij}. \tag{4}$$

Let L and α be the vectors of L_i and α_{ij}, respectively. Notice that a continuous partition is entirely specified by a parameters vector α.

Let $G(V_c) = (V_c, E_c)$ be the subgraph of G induced by the vertices V_c, where $E_c = (V_c \times V_c) \cap E$. Define the weighted incidence matrix $A \in \mathbb{R}^{|V_c| \times |E_c|}$ as

\begin{align}
A_{i,e} = \begin{cases}
\ell_{ij}, & \text{if } e = \{v_i, v_j\} \in E_c, i < j, \\
-\ell_{ij}, & \text{if } e = \{v_i, v_j\} \in E_c, i < j, \\
0, & \text{otherwise},
\end{cases} \tag{5}
\end{align}

and the weighted incidence vector $b \in \mathbb{R}^{|V_c|}$ as

$$b_i = \sum_{v_j \in N_i^{in}, i > j} \ell_{ij} + \sum_{v_j \in N_i^{out}} \ell_{ij}. \tag{6}$$

Notice that $L = A\alpha + b$, and that for every $\alpha \in \mathbb{R}^{|E_c|}$ it holds

$$||A\alpha + b||_1 = \sum_{\{v_i, v_j\} \in E} \ell_{ij},$$

Let 0 and 1 be the vectors of all zeros and ones, respectively. We address the following minimization problem.

Problem 1 (Continuous min-max partition) Given a weighted graph $G = (V, E)$ and a subset of vertices $V_c \subseteq V$, let A and b be as in (5) and (6), respectively. Determine a continuous partition α^*_∞ satisfying

$$||A\alpha^*_\infty + b||_\infty = \min_{\alpha \geq 0, \alpha \neq 0} ||A\alpha + b||_\infty. \tag{7}$$

1 Given any two points $x_i, x_j \in \mathbb{R}^m$ for some $m \in \mathbb{N}$, we let $[x_i, x_j] = \{tx_i + (1-t)x_j : t \in [0,1]\}$.
for some constraints vectors \(\alpha, \overline{\alpha} \) with \(0 \leq \alpha \leq \overline{\alpha} \leq 1 \).

Notice that (7) is a convex minimization problem, for which efficient centralized solvers exist \([7]\). On the other hand, since (7) is not differentiable, distributing solvers may be difficult to implement. We next derive an equivalent differentiable minimization problem, which is instead amenable to distributed implementation.

Problem 2 (Continuous min partition) Given a weighted graph \(G = (V, E) \) and a subset of vertices \(V_c \subseteq V \), let \(A \) and \(b \) be as in (5) and (6), respectively. Determine a continuous partition \(\alpha^*_2 \) satisfying

\[
\|A\alpha^*_2 + b\|_2 = \min_{\alpha \leq \alpha^* \leq \overline{\alpha}} \|A\alpha + b\|_2.
\]

for some constraints vectors \(\alpha, \overline{\alpha} \) with \(0 \leq \alpha \leq \overline{\alpha} \leq 1 \).

Remark 3 (Uniqueness of partitions) Since the minimization problem (8) is strictly convex, the continuous min partitioning problem admits a unique minimum value, and the set of minimizers is a singleton if and only if the matrix \(A \) has a trivial null space. It can be shown that \(A \) has a trivial null space if and only if the induced graph \(G(V_c) \) is a tree. In particular, if the graph \(G(V_c) \) is connected, then the dimension of the null space of \(A \) equals \(|E_c| - |V_c| + 1 \).

Remark 4 (Unconstrained partitions) Consider the (unconstrained) partitioning problems (7) and (8) with \(\alpha, \overline{\alpha} \in \mathbb{R}^{\lvert E \rvert} \). It can be verified that \(\alpha^* \) is a minimizer of Problem (7) if and only if it is a minimizer of Problem (8). Moreover, every minimizer can be written as \(\alpha^* = A^1(v - b) + w \), where \(v = (\sum_{(v_i, v_j) \in E} \ell_{ij} / n) 1 \), \(A^1 \) is the pseudoinverse of \(A \), \(w \) satisfies \(Aw = 0 \) and \(0 \leq \alpha^* \leq 1 \).

We next show a relation between min-max partitions and min partitions.

Theorem 5 (Min-max and min partitions) Let \(\alpha^*_2 \) be a min partition solution to Problem 2. Then, \(\alpha^*_2 \) is also a solution to Problem 1, that is,

\[
\|A\alpha^*_2 + b\|_\infty = \min_{\alpha \leq \alpha^* \leq \overline{\alpha}} \|A\alpha + b\|_\infty.
\]

In order to prove Theorem 5, we introduce the following definitions and results. Given a partition \(P = \{P_1, \ldots, P_n\} \) defined by \(\alpha \), the maximal graph associated with \(\alpha \) is \(G^\text{max} = (V^\text{max}, E^\text{max}) \), where \(V^\text{max} = \{v_i \in V_c : L_i = \max\{L_1, \ldots, L_n\}\} \), and \(E^\text{max} = (V^\text{max} \times V^\text{max}) \setminus E \).

Lemma 6 (Maximal graph) Let \(\alpha^* \) be a min partition of the graph \(G = (V, E) \), and let \(G^\text{max} = (V^\text{max}, E^\text{max}) \) be the maximal graph associated with \(\alpha^* \). Then, for each \(v_i \in V^\text{max} \) with \(\{v_i, v_j\} \in E \), it holds \(\alpha^*_{ij} = \overline{\alpha}_{ij} \) if \(i < j \), and \(\alpha^*_{ij} = \overline{\alpha}_{ij} \) if \(i > j \).

PROOF. Let \(\alpha^* \) be a min partition, and let \(L^* = A\alpha^* + b \). By definition, \(V^\text{max} \) is the set of vertices \(v_i \) such that \(L^*_i = \| L^* \|_\infty \). Let \(v_i \in V^\text{max} \), and partition its neighbor set as \(N_i^1 = N_i^1 \cap N_i^2 \), where \(N_i^1 = N_i^1 \cap V_c^\text{max} \) and \(N_i^2 = N_i^2 \setminus N_i^2 \). Suppose by contradiction that \(\alpha^*_{ij} > \overline{\alpha}_{ij} \) for some \(v_j \in N_i^1 \) with \(i < j \). Define \(\hat{\alpha} \) from \(\alpha^* \) by modifying only the entry \(\hat{\alpha}_{ij} = \alpha^*_{ij} - \epsilon \), with \(\epsilon \in \mathbb{R}_{>0} \). Let \(\hat{L} = A\hat{\alpha} + b \), and let \(\epsilon \) be such that \(\hat{\alpha}_{ij} \geq \overline{\alpha}_{ij} \) and \(\hat{L}_i > \hat{L}_j \).

An equivalent condition for \(\hat{L} > L^* \) is \(c_1 - c_2 > \ell_{ij}(\alpha^*_{ij} - \overline{\alpha}_{ij} + 2\epsilon) \), where \(c_1 = L^*_i - \alpha^*_{ij} \ell_{ij} \), \(c_2 = L^*_j - \alpha^*_{ij} \ell_{ij} \), and \(\alpha^*_{ij} = 1 - \alpha_{ij} \). It follows that

\[
\|L^*\|^2_2 - \|\hat{L}\|^2_2 = (L^*_i)^2 - \hat{L}_i^2 + \|L^*_i\|^2 - \|\hat{L}_i\|^2 = 2\ell_{ij}(c_1 - c_2 + \epsilon) > 0,
\]

which contradicts our assumption of \(\alpha^* \) being a min partition. We conclude that \(\alpha_{ij} = \overline{\alpha}_{ij} \). The case of \(\alpha^*_{ij} = \overline{\alpha}_{ij} \) is treated analogously, and the theorem follows. \(\square \)
We are now ready to prove Theorem 5.

PROOF. Let α^* be a min partition. Recall from Lemma 6 that there exists a set of cameras V_c^{max} such that (i) $L^*_i = \|L^*_i\|_\infty$ for all $v_i \in V_c^{\text{max}}$, and (ii) $\alpha^*_{ij} = \alpha_{ij}$ (resp. $\alpha^*_{ij} = 0$) if $i < j$ (resp. $i > j$) for all $\{v_i, v_j\} \in E$ with $v_i \in V_c^{\text{max}}$ and $v_j \in V_c \setminus V_c^{\text{max}}$. Notice also that, because of the cameras constraints and property (ii), it holds
\[
\min_{\alpha \leq \bar{\alpha} \leq \alpha^*} \sum_{v_i \in V_c^{\text{max}}} (A\alpha + b)_i \geq \|V_c^{\text{max}}\|_\infty.
\]

Let $\hat{\alpha}$ be such that $\|\hat{L}\|_\infty < \|L^*_i\|_\infty$. Then $\hat{L}_i < L^*_i$ for all $v_i \in V_c^{\text{max}}$. It follows that
\[
\sum_{v_i \in V_c^{\text{max}}} (A\hat{\alpha} + b)_i < \|V_c^{\text{max}}\|_\infty,
\]
which contradicts our hypothesis. □

Distributed algorithms to compute continuous graphs partitions are presented in Section 6. In the next section we discuss the relationship between continuous graph partitions and the design of trajectories for camera network surveillance.

3 Setup for Camera Surveillance

In this section we describe our setup and we introduce some concepts which will be extensively used to state our results.

3.1 Problem Setup

We consider the problem of surveilling an environment of interest by means of a camera network. We represent the environment with an undirected weighted roadmap $G = (V, E)$, where V and E denote the vertex and the edge sets, respectively [15]. In particular, each vertex $v_i \in V$ corresponds to a location in the environment, and $\{v_i, v_j\} \in E$ if and only if the segment $[v_i, v_j]$ joining vertices v_i and v_j belongs to the environment (vertices v_i and v_j are within line of sight). Finally, the weight of the edge $\{v_i, v_j\} \in E$ equals the length $\ell_{ij} = \|v_i - v_j\|_2$, and $\ell^{\text{max}} = \max \{\ell_{ij} : \{v_i, v_j\} \in E\}$.

Cameras are placed at the locations $V_c \subseteq V$. Define the set of neighboring cameras N_i as in (1). The concept of neighboring cameras will be exploited in Section 6 to design distributed algorithms for the cameras.

Let $x_i(t)$ denote the position at time t of the f.o.v. of the i-th camera. We assume that each camera has a limited visibility range along each adjacent edge. In particular,

(A1) at all times t, the i-th f.o.v. is a point along the segment $[v_i, v_j]$ for some $v_j \in N_i$;
(A2) the speed of the i-th f.o.v. belongs to the set $\{0, 1\}$, that is, the f.o.v. of camera c_i either is stationary at some point or it moves at maximum (unitary) speed;
(A3) for each $v_j \in N_i$, a point $v_{ij} \in [v_i, v_j]$ is given such that $x_i(t) \in [v_i, v_{ij}]$ at all times t;
(A4) the cameras locations set V_c satisfies
\[
\bigcup_{v_i \in V_c} \{v_i, v_j\} \in E \land v_i \in V = E,
\]
so that the roadmap G is jointly visible by the cameras.

Our setup is illustrated in Fig. 1.
3.2 Cameras trajectory

A cameras trajectory is a set of n continuous functions $X = \{x_1, \ldots, x_n\}$, where $x_i : \mathbb{R}_{\geq 0} \rightarrow \mathcal{E}$ describes the position of the i-th f.o.v. along the roadmap \mathcal{G}. We focus on periodic cameras trajectories, for which there exists a finite time $T \in \mathbb{R}_{\geq 0}$ satisfying $X(t + T) = X(t)$ for all $t \in \mathbb{R}_{\geq 0}$. Define the image of the i-th camera as the set of points visited by the i-th f.o.v. in any period of length T, i.e.,

$$\text{Im}(x_i) = \bigcup_{t \in [0, T]} x_i(t),$$

and the cameras image set as $I^X = \{\text{Im}(x_1), \ldots, \text{Im}(x_n)\}$.

Trajectory 1 DF-Trajectory for i-th camera

Input: Parameters α_{ij} and set of neighbors \mathcal{N}_i;

Set $s_i(t) = (tv_i + (\alpha_{ij}\ell_{ij} - t)v_i)/\alpha_{ij}\ell_{ij}$, for $t \in [0, \alpha_{ij}\ell_{ij}]$;

Set $t_0 = 0$;

for $v_j \in \mathcal{N}_i$ do

Set v_{ij} as in Eq. (3);

$x_i(t) = s_i(t - t_0)$, for $t \in [t_0, t_0 + \alpha_{ij}\ell_{ij}]$;

$x_i(t) = s_i(2\alpha_{ij}\ell_{ij} - (t - t_0))$, for $t \in [t_0 + \alpha_{ij}\ell_{ij}, t_0 + 2\alpha_{ij}\ell_{ij}]$;

$t_0 = t_0 + 2\alpha_{ij}\ell_{ij}$;

end for

We now define a particular cameras trajectory associated with a continuous roadmap partition. The optimality properties of this trajectory will be shown in the subsequent sections. Let α^{df} define the continuous partition \mathcal{P}^{df} as in (2). The **DF-Trajectory** X^{df} with image set \mathcal{P}^{df} is obtained by letting each camera sweep its subroadmap in a depth-first order [10], and it is formally described in Trajectory 1. See Fig. 1 for a graphical illustration.

3.3 Performance criteria

In this work we design cameras trajectories to detect intruders along the roadmap. We consider both static, and dynamic intruders. The trajectory of an intruder is a continuous function $p : \mathbb{R}_{\geq 0} \rightarrow \mathcal{E}$. Let Π_d be the set of all possible intruder trajectories, and let Π_s the set of static intruder trajectories ($p(t) = p_0$ for all $t \geq t_0$ and for some $p_0 \in \mathcal{E}$).

An intruder is detected as soon as its position coincides with the f.o.v. of a camera. We define the worst-case detection time of a cameras trajectory as the longest time for the detection of an intruder. In particular, for an intruder appearing at time t_0 and moving with trajectory p, and a cameras trajectory X, let

$$t^*(t_0, p, X) = \min \{t - t_0 : t > t_0, p(t) \in X(t) \cup \{\infty\}\}.$$
We define the static worst-case detection time as
\[
WDT_s(X) := \sup_{p \in \Pi_s, t_0 \in [0,T]} t^*(t_0, p, X),
\]
and the dynamic worst-case detection time as
\[
WDT_d(X) := \sup_{p \in \Pi_d, t_0 \in [0,T]} t^*(t_0, p, X).
\]
For the ease of notation we define
\[
WDT^*_s = \inf_{X \in \Omega} WDT_s(X), \quad WDT^*_d = \inf_{X \in \Omega} WDT_d(X).
\]
We conclude this section by observing that \(WDT_s(X) \leq WDT_d(X)\) for any cameras trajectory \(X\), and that for any periodic cameras trajectory \(X\), \(WDT_s(X) < \infty\) if and only if the entire roadmap is persistently surveilled by the cameras, i.e., \(E \subseteq \text{Im}(X)\). Necessary and sufficient conditions for a trajectory to have finite dynamic detection time are discussed in Section 5.

4 Camera Trajectory for Static Intruders

This section contains our results for the detection of static intruders.

4.1 Main results for static intruders

Consider a roadmap \(G = (V, E)\) with cameras locations \(V_c\). Let \(\mathcal{P}^* = \{P^*_1, \ldots, P^*_n\}\) be a continuous partition of \(G\) of cardinality \(|V_c| = n\) with smallest dimension. Then, \(\max_{i \in \{1, \ldots, n\}} L^*_i = \min_{\mathcal{P}} \max_{i \in \{1, \ldots, n\}} L_i\),

where \(\mathcal{P} = \{P_1, \ldots, P_n\}\) is a continuous partition of \(G\). Let \(X^*\) be the DF-Trajectory associated with the partition \(\mathcal{P}^*\). Recall that the roadmap \(G\) with cameras locations \(V_c\) is a tree if the induced graph \(G(V_c)\) contains no cycles, and it is a ring if \(G(V_c)\) consists of a single cycle [10].

Theorem 7 (Static worst-case detection for DF-Trajectory) Consider a roadmap \(G = (V, E)\) with cameras locations \(V_c\) and \(|V_c| = n\). Let \(X^*\) be the DF-Trajectory associated with a continuous partition \(\mathcal{P}^*\) of \(G\) with smallest dimension. Then,

(i) \(WDT_s(X^*) = 2L(\mathcal{P}^*)\), and

(ii) \(WDT_s(X^*) \leq 2WDT^*_s\).

Moreover, if \(G\) is a tree or a ring, then \(WDT_s(X^*) = WDT^*_s\).

In Theorem 7 we show that cameras trajectories designed from a continuous roadmap partition achieve detection performance within a constant factor of optimal. Since optimality is guaranteed for tree and ring roadmaps, we state the following conjecture.

Conjecture 8 (Optimality for cyclic roadmaps) Motivated by our results in Theorem 7, we conjecture that \(WDT_s(X^*) = WDT^*_s\) also for cyclic roadmaps.
4.2 Proof of Theorem 7

In this section we derive a proof of Theorem 7. We start by introducing the necessary notation and some preliminary results. We define a relative order among the cameras as follows. Let \(\{c_1, \ldots, c_n\} \) be the set of cameras. For the neighboring cameras \(c_i \) and \(c_j \) let the time \(t \) be such that the \(i \)-th f.o.v. and the \(j \)-th f.o.v. lie on the edge \(\{v_i, v_j\} \). Then we say that \(c_i \leq c_j \) if \(||x_i(t) - v_i|| \leq ||x_j(t) - v_i|| \). If \(x_i(t) \) and \(x_j(t) \) lie on different edges at time \(t \), our convention is \(x_i(t) \leq x_j(t) \) for \(i < j \). A camera trajectory is order-invariant if the relative order of the cameras is preserved over time.

Theorem 9 (Order-invariant cameras trajectory) Given a roadmap \(G = (V, E) \) with cameras locations \(V_c \) and a cameras trajectory \(X \), there exists an order-invariant cameras trajectory \(\tilde{X} \) with \(\text{WDT}_s(X) = \text{WDT}_s(\tilde{X}) \).

PROOF. Let \(c_i \) and \(c_j \) be adjacent cameras, and assume the existence of \(t \geq 0 \) such that \(x_i(t) = x_j(t) \). Define \(t_{ij}^0 = \min\{t \geq 0 : x_i(t) = x_j(t)\} \) and, recursively, \(t_{ij}^n = \min\{t > t_{ij}^{n-1} : x_i(t) = x_j(t)\} \), \(n \in \mathbb{N} \). An order-invariant trajectory can be derived from \(X \) permuting the cameras labels as follows (\(k = 0, 1, \ldots \)):

\[
\bar{x}_i(t) = x_j(t) \quad \text{and} \quad \bar{x}_j(t) = x_i(t) \text{ if } t_{ij}^1 \leq t < t_{ij}^2,
\]

\[
\bar{x}_i(t) = x_i(t) \quad \text{and} \quad \bar{x}_j(t) = x_j(t) \text{ otherwise.}
\]

Each point along the roadmap is visited at the same times in \(X \) and \(\tilde{X} \), thus \(\text{WDT}_s(X) = \text{WDT}_s(\tilde{X}) \). □

In general, the images of neighboring cameras may overlap. A camera trajectory is called non-overlapping if for every pair \(c_i \) and \(c_j \), it holds \(\text{Int}(\text{Im}(x_i)) \cap \text{Int}(\text{Im}(x_j)) = \emptyset \), where \(\text{Int} \) denotes the interior of a set.

Theorem 10 (Non-overlapping cameras trajectory for tree and ring roadmaps) Given a tree (resp. ring) roadmap \(G = (V, E) \) with cameras locations \(V_c \) and a cameras trajectory \(X \), there exists an order-invariant and non-overlapping cameras trajectory \(\tilde{X} \) with \(\text{WDT}_s(X) = \text{WDT}_s(\tilde{X}) \).

PROOF. Without affecting generality, we assume that the trajectory \(X \) is order-invariant (cf. Theorem 9). We start by considering tree roadmaps, and we define the trajectory \(\tilde{X} \) from \(X \) as follows.

Let \(a_0^i = |V_c^i| + 1 \), \(a_n^i = |V_c^i| \) for \(i = 2, \ldots, n \) and let \(\mathcal{P}_i^0 = \emptyset \) for every \(i = 1, \ldots, n \). Iteratively perform the following operations:

\[
S^k = \{v_i \in V_c : a_i^{k-1} = 1\},
\]

\[
\mathcal{P}^k = \text{Cl}(\text{Im}(x_i) \setminus \bigcup_{v_j \in V_c^i} \mathcal{P}_j^{k-1}), \quad \text{for each } v_i \in S^k,
\]

\[
a_j^k = a_j^{k-1} - 1, \quad \text{for each } v_j \in V_c^i \cup \{v_i\},
\]

where \(\text{Cl}() \) denotes the closure of a set, and \(k = 1, 2, \ldots \). After a finite number \(k_l \) of iterations, the set \(\mathcal{P}_i^{k_l} = \{\mathcal{P}_1^{k_l}, \ldots, \mathcal{P}_n^{k_l}\} \) is a continuous partition of \(G \). Finally, define the trajectory \(\tilde{X} \) as the DF-Trajectory on the partition \(\mathcal{P}_i^{k_l} \). In the interest of space, we do not prove the convergence of the above procedure, and we provide instead an illustration of the final partition in Fig. 2.

We now show that \(\text{WDT}_s(\tilde{X}) \leq \text{WDT}_s(\tilde{X}) \). Consider camera \(c_i \), let \(|V_c^i| = n_i \), and let \(\partial(\mathcal{P}_i^{k_l}) = \{v_{i1}, \ldots, v_{in_i}\} \) be the boundary points of \(\mathcal{P}_i^{k_l} \). By construction, there is only one boundary point, say \(v_{i2} \), such that some points in the interior of \([v_{i1}, v_{i2}] \) may be visited by a camera adjacent to \(c_i \) with reference to trajectory \(X \) (cf. Fig. 2). Notice that every boundary point is visited by \(c_i \). Without affecting generality, and possibly after relabeling the boundary points, let \(t_1 \) be such that \(x_i(t_1) = v_{i1} \), and \(t_2 \) such that \(x_i(t_2) = v_{i2} \) and no other boundary point is visited in \(\text{Int}([t_1, t_2]) \). Notice that \(t_2 - t_1 \geq ||v_{i1} - v_{i2}|| + ||v_{i1} - v_{i2}||/2 \), and that every boundary point must be visited in the interval \([t_2, t_1 + \text{WDT}_s(X)] \). It follows \(\text{WDT}_s(X) \geq 2 \sum_{j=1}^{n_i} ||v_{i1} - v_{ij}||/2 \), and this must hold for each camera \(c_i \). Finally notice that \(\text{WDT}_s(X) = \max_{i \in \{1, \ldots, n\}} 2 \sum_{j=1}^{n_i} ||v_{i1} - v_{ij}||/2 \), so that the statement follows. The case of a ring roadmap can be treated analogously. □
We now prove Theorem 7.

PROOF. Statement (i) follows from the definition of DF-Trajectory, because each camera sweeps its assigned subroadmap at maximum speed along a depth-first tour.

Regarding statement (ii), consider a min partition α, and let $G_{\text{max}} = (V_{\text{max}}, E_{\text{max}})$ be its associated maximal graph (see Lemma 6). Define $\text{Length}(G_{\text{max}}) = \sum_{(v_i, v_j) \in E_{\text{max}}} \|v_i - v_j\|^2_2$, and notice that

$$WDT^*_s|G_{\text{max}} \geq \frac{\text{Length}(G_{\text{max}})}{|V_{\text{max}}|},$$

where $WDT^*_s|G_{\text{max}}$ denotes the smallest static worst-case detection time for G_{max}. Indeed, since $L_i = L_j$ for each $v_i, v_j \in V_{\text{max}}$, each camera needs to sweep (at unitary speed) an image of length $\frac{\text{Length}(G_{\text{max}})}{|V_{\text{max}}|}$ for G_{max} to be covered. Moreover, due to Lemma 6, cameras outside G_{max} cannot visit any point in the interior of G_{max}. It follows that

$$WDT^*_s \geq WDT^*_s|G_{\text{max}}.$$

Finally, since $WDT_s(X^*) = 2\frac{\text{Length}(G_{\text{max}})}{|V_{\text{max}}|}$, we conclude that $WDT_s(X^*) \leq 2WDT^*_s$.

Consider a tree (resp. ring) roadmap. Due to Theorem 10, there exists an order-invariant and non-overlapping trajectory X with $WDT_s(X) = WDT^*_s$. To conclude the proof, we have $WDT_s(X^*) \leq WDT_s(X)$ since I^X is a continuous partition.

5 Cameras trajectories for dynamic intruders

In this section we design cameras trajectories for the detection of dynamic intruders. We start by characterizing a necessary and sufficient condition on the cameras locations for the existence of trajectories with finite dynamic detection time.

Theorem 11 (Existence of trajectories with finite dynamic detection time) Given a roadmap $G = (V, E)$ with cameras locations V_c, the following statements are equivalent:

1. There exists a cameras trajectory X satisfying $WDT_d(X) < \infty$;
2. For every $v_i \in V_c$ with $|N_i| \geq 3$, there exists $v_j \in N_i$ with $\alpha_{ij} = 0$ if $i < j$ and $\pi_{ij} = 1$ if $i > j$.

The following result is useful to prove Theorem 11.

Lemma 12 (Finite dynamic detection time for single camera) Given a roadmap $G = (V, E)$ with cameras locations $V_c = \{v_1\}$, there exists a cameras trajectory X with $WDT_d(X) < \infty$ if and only if $|N_1| \leq 2$.

PROOF. To show sufficiency, let \(|\mathcal{N}_1| \leq 2\), and note that \(G(V_c)\) is a chain. Let \(x_1\) be such that camera \(c_1\) continuously sweeps the chain, and note that \(\text{WDT}(X) < \infty\).

To show necessity of the statement, notice that if \(|\mathcal{N}_1| > 2\), an intruder may choose its trajectory \(p\) so that \(p(t) \neq v_1\) and \(p(t + \varepsilon) \in [v_1, v_2]\) whenever \(x_1(t) = v_1\) and \(x_1(t + \varepsilon) \in [v_1, v_2]\), for \(\varepsilon \in \mathbb{R}_{>0}, v_j, v_k \in \mathcal{N}^1_t\), and \(j \neq k\). \(\square\)

We are now ready to prove Theorem 11.

PROOF. In order to show that (ii) is a necessary condition for (i), suppose that (ii) does not hold. Then camera \(c_1\) needs to surveil a subroadmap in which \(|\mathcal{N}_1| \geq 3\). The statement follows from Lemma 12.

We now show that (ii) is also a sufficient condition for (i) by proposing a procedure to clear every subroadmap from intruders appearing at time 0. By periodically repeating this procedure, intruders appearing at different times are also detected. Notice that intruders appearing along the edge \([v_i, v_j]\) can be detected by moving the cameras \(c_i\) and \(c_j\) towards each other in a way that \(x_i(t) = x_j(t)\) for some time \(t\). Starting from \(v_1\), if \(|\mathcal{N}_1| \leq 2\), then sweep the adjacent edges by synchronizing the motion of \(v_1\) and its neighboring cameras in any order. If \(|\mathcal{N}_1| > 2\), suppose \(\{v_1, v_2\} \in V_c\), then let \(\alpha_{1,2} = 0\) from condition (ii). Let camera \(c_2\) sweep the entire edge \([v_1, v_2]\) and stop at \(v_1\), and let the other neighboring cameras \(c_j \in \mathcal{N}^m_i\) stop at their vertices \(v_j\). Then camera \(c_1\) sequentially sweeps its assigned adjacent segments \([v_1, v_1]\), with \(\{v_1, v_2\} \in E_c, j \neq 2\) by synchronizing its motion and those of the neighboring cameras, while keeping the f.o.v. of \(c_2\) at vertex \(v_1\). Notice that any intruder appearing in an edge adjacent to \(v_1\) at time 0 is detected by this procedure. Then let \(c_1\) and its neighboring cameras return to their vertices. Finally iterate the procedure for subsequent cameras in increasing order, and repeat over time. \(\square\)

In the remainder of this section we design cameras trajectories for the special cases of ring and tree roadmaps. We refer the reader to [21] for a solution to the case of chain roadmaps (cf. Equal-Waiting trajectory).

5.1 Ring roadmap

Consider a ring roadmap \(G = (\mathcal{V}, \mathcal{E})\) with cameras locations \(V_c\), and visibility constraints \(\alpha, \bar{\alpha}\). Let \(\mathcal{P}^* = \{\mathcal{P}^1, \ldots, \mathcal{P}^n\}\) be a min-max partition of \(G\), and let \(L = L(\mathcal{P}^*) = \max \{L_1, \ldots, L_n\}\), where \(L_i\) is defined in (4). Notice that \(|\mathcal{N}^1_i| = 2\) for all \(v_i \in V_c\), and that each subroadmap \(\mathcal{P}^i\) can be written as a segment, parametrized by \(s_i: [0, L_i] \to [v_{i-1,i}, v_{i+1,i}]\), such that \(s_i(t) = (t v_{i+1,i} + (L_i - t)v_{i-1,i})/L_i\).

Algorithm 2 Ring-Sync-Trajectory for camera \(c_i\)

<table>
<thead>
<tr>
<th>Camera (c_i) surveils (\mathcal{P}^i = [v_{i-1,i}, v_{i-1,i} + v_{i+1,i}];)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set (I_0 = [L, 2L], T_n = L_i), if (n) is odd;</td>
</tr>
<tr>
<td>(I_n = \emptyset, T_n = 0), if (n) even;</td>
</tr>
<tr>
<td>if (i) is even (\textbf{then})</td>
</tr>
<tr>
<td>(x_i(t) = v_{i-1,i},) for (t \in [0, L - L_i];)</td>
</tr>
<tr>
<td>(x_i(t) = s_i(t - (L - L_i)),) for (t \in [L - L_i, L_i];)</td>
</tr>
<tr>
<td>(x_i(t) = s_i(t + 1) - t,) for (t \in [L - L_i, L_i];)</td>
</tr>
<tr>
<td>(x_i(t) = s_i(2L + T_n - t),) for (t \in [2L - L_i + T_n, 2L + T_n];)</td>
</tr>
<tr>
<td>else if (i) is odd (\textbf{then})</td>
</tr>
<tr>
<td>(x_i(t) = v_{i+1,i} + v_{i+1,i},) for (t \in [0, L - L_i];)</td>
</tr>
<tr>
<td>(x_i(t) = s_i(L - t),) for (t \in [L - L_i, L_i];)</td>
</tr>
<tr>
<td>(x_i(t) = s_i(2L - L_i + T_n),) for (t \in [2L - L_i + T_n, 2L + T_n];)</td>
</tr>
<tr>
<td>if (i = n) (\textbf{then})</td>
</tr>
<tr>
<td>(x_i(t) = v_{i+1,i} + v_{i+1,i},) for (t \in [0, 2L - L_i];)</td>
</tr>
<tr>
<td>(x_i(t) = s_i(2L - L_i),) for (t \in [2L - L_i, 2L];)</td>
</tr>
<tr>
<td>(x_i(t) = v_{i-1,i},) for (t \in [2L, 3L - L_i];)</td>
</tr>
<tr>
<td>(x_i(t) = s_i(t - (3L - L_i)),) for (t \in [3L - L_i, 3L];)</td>
</tr>
<tr>
<td>end if</td>
</tr>
</tbody>
</table>

We propose the Ring-Sync-Trajectory in Algorithm 2; see Fig. 3 for a graphical illustration. We next provide an informal description of the Ring-Sync-Trajectory within its period for the case of an even number of cameras:
Fig. 3. Consider the ring roadmap \(G = (V, E) \) with cameras locations \(V_c \) and \(n = 5 \). Its associated optimal partition \(P \) depicted in Fig. 3(a). The corresponding \(3L \)-periodic Ring-Sync-Trajectory described in Trajectory 2 is shown in Fig. 3(b).

(i) the f.o.v. of camera \(c_i \) is set at its right (left) boundary point if \(i \) is odd (even), so that all the cameras are pairwise synchronized;
(ii) each camera sweeps its subroadmap at maximum speed, and
(iii) each camera stops for \(L - L_i \) at each boundary point.

If the number of cameras is odd, the algorithm is more involved and it is formally described in Trajectory 2. Notice that, (i) the \(i \)-th camera surveils only \(P^*_i \), (ii) the trajectory of each camera is \(3L \)-periodic if \(n \) odd, and \(2L \)-periodic if \(n \) even, and (iii) the f.o.v.s of each pair of neighboring cameras coincide at some times within the period.

Theorem 13 (Dynamic worst-case detection for Ring-Sync-Trajectory) Given a ring roadmap \(G = (V, E) \) with cameras locations \(V_c \), let \(X^* \) be the Ring-Sync-Trajectory in Algorithm 2. Then

(i) if \(n \) is even,
\[
WDT_d(X^*) = WDT_s(X^*) = WDT^*_d;
\]
(ii) if \(n \) is odd,
\[
WDT_d(X^*) = WDT_s(X^*) \leq \frac{3}{2} WDT^*_d.
\]

PROOF. In order to prove statement (i), consider a ring roadmap with \(n \) even, and compute the optimal partition \(P^*_i \) with dimension \(L \) (see Section 6). Once we synchronize the cameras according to Trajectory 3, the minimum dynamic worst-case detection time is achieved. In order to prove (ii), notice that the Ring-Sync-Trajectory \(X^* \) is \(3L \)-periodic when \(n \) odd, and that each camera surveils the corresponding subroadmap \(P^*_i \). The thesis is proved observing that \(WDT^*_d \geq WDT^*_s = 2L \).

5.2 Tree roadmap

Consider a tree roadmap \(G = (V, E) \) with cameras locations \(V_c = V \setminus \{v_1\} \), where node \(v_1 \) is labeled as root. Assume that each camera can entirely surveil each adjacent edge, that is, \(\alpha = 0 \) and \(\sigma = 1 \). We now design a cameras trajectory for dynamic intruders, and we show that the performance of our trajectory is within a constant factor of optimality. We start by recalling some definitions [10]. Then, vertex \(v_i \in V_c \) is a parent of vertex \(v_j \in V_c \) (\(v_i \) is a child of \(v_j \)) if \(\{v_i, v_j\} \in E_c \) and \(v_i \) lies on the unique shortest path from \(v_j \) to \(v_1 \). Let \(v_i^p \) denote the parent of \(v_i \), and let \(\ell^p \) denote the length of the segment \([v_i, v_i^p] \). Recall that \(\ell^\text{max} \) is the length of the longest edge. Let us parametrize the segment \([v_i, v_i^p] \) as \(s_i : [0, \ell^p] \rightarrow [v_i, v_i^p] \), \(s_i(t) = (tv_i^p + (\ell^p - t)v_i)/\ell^p \). We divide the vertices into two groups according to the parity of their distance to the root. In particular, we define \(\text{dist-r}(v_i) \) as the number of edges in the shortest path from \(v_i \) to the root \(v_1 \).

We propose the Tree-Sync-Trajectory in Trajectory 3 (see Fig. 4 for an example). An informal description of the Tree-Sync-Trajectory follows:
Fig. 4. Fig. 4(a) show a tree roadmap where v_1 is labeled as root vertex. In Fig. 4(b) we report the Tree-Sync-Trajectory described in Trajectory 3. Note that cameras are synchronized, that is, for each pair of adjacent cameras $\{v_i, v_j\} \in E_c$, there exists $k \in [0, 2\ell_{\text{max}}]$ such that $x_i(t) = x_j(t)$.

Trajectory 3 Tree-Sync-Trajectory for camera c_i

Camera c_i surveils only the segment $[v_i, v_i^p]$;

1. if dist-$r(v_i)$ is odd then
 - $x_i(t) = v_i^p$, for $t \in [0, \ell_{\text{max}} - \ell_i^p]$;
 - $x_i(t) = s_i(\ell_{\text{max}} - t)$, for $t \in [\ell_{\text{max}} - \ell_i^p, \ell_{\text{max}}]$;
 - $x_i(t) = v_i$, for $t \in [\ell_{\text{max}} - 2\ell_{\text{max}} - \ell_i^p, 2\ell_{\text{max}}]$;
 - $x_i(t) = s_i(t - (2\ell_{\text{max}} - \ell_i^p))$, for $t \in [2\ell_{\text{max}} - \ell_i^p, 2\ell_{\text{max}}]$;

end if

1. if dist-$r(v_i)$ is even then
 - $x_i(t) = v_i$, for $t \in [0, \ell_{\text{max}} - \ell_i^p]$;
 - $x_i(t) = s_i(t - (\ell_{\text{max}} - \ell_i^p))$, for $t \in [\ell_{\text{max}} - \ell_i^p, \ell_{\text{max}}]$;
 - $x_i(t) = v_i^p$, for $t \in [\ell_{\text{max}} - 2\ell_{\text{max}} - \ell_i^p, 2\ell_{\text{max}}]$;
 - $x_i(t) = s_i(2\ell_{\text{max}} - t)$, for $t \in [2\ell_{\text{max}} - \ell_i^p, 2\ell_{\text{max}}]$;

end if

(i) the f.o.v. of camera c_i is set at the vertex v_i^p (resp. v_i) if dist-$r(v_i)$ is odd (resp. even),
(ii) camera c_i sweeps the segment $[v_i, v_i^p]$, and
(iii) camera c_i stops for $\ell_{\text{max}} - \ell_i^p$ at each boundary point.

Notice that, (i) camera c_i surveils only the segment $[v_i, v_i^p]$ (ii) the trajectory of each camera is $2\ell_{\text{max}}$-periodic, (iii) cameras are synchronized, that is $x_i(t_k) = x_i^p(t_k)$ for $t_k = k\ell_{\text{max}}$, with $k \in \mathbb{N}$ even (resp. odd) if dist-$r(v_i)$ is even (resp. odd). Our Tree-Sync-Trajectory in Trajectory 3 extends the concept of Equal-waiting trajectory to the case of tree roadmap [21].

Theorem 14 (Dynamic worst-case detection for Sync-Trajectory) Given a tree roadmap $\mathcal{G} = (V, E)$ with cameras locations $V_c = V \setminus \{v_1\}$ and $\alpha = 0, \gamma = 1$, let X^* be the Tree-Sync-Trajectory in Trajectory 3. Then,

$$WDT_d(X^*) = WDT_s(X^*) \leq 2WDT_d^*.$$

PROOF. Consider the Tree-Sync-Trajectory X^*. Notice that X^* is $2\ell_{\text{max}}$-periodic, that each camera surveils a single edge, and that each edge is surveilled by a different camera. Let an intruder appear at time t_0 along $[v_i, v_i^p]$, with $\|v_i - p(t_0)\|_2 \leq \|v_i - x_i(t_0)\|_2$. Then, such intruder is confined in $[v_i, v_i^p] \cup \cup_{v_j} [v_i, v_j]$ to avoid detection, where v_j is a child of v_i. Since v_i and all its children synchronize at most every $2\ell_{\text{max}}$, we have $WDT_d(X^*) = WDT_s(X^*) = 2\ell_{\text{max}}$. Notice that the case $\|v_i - p(0)\|_2 > \|v_i - x_i(t_0)\|_2$ yields the same conclusion. On the other hand, since each edge can be surveilled by at most two cameras, it holds $WDT_d^* \geq WDT_s \geq \ell_{\text{max}}$, which concludes the proof.

6 Distributed Partitioning Algorithms

In what follows we design three distributed algorithms for the continuous min-max partitioning problem. Given an optimal partition, cameras organize along a DF-Trajectory as in Trajectory 1.
asynchronism assumption \(\tau \in \mathbb{R} \). In order to guarantee the convergence of the algorithm, we assume the existence of a finite duration \(\tau \) for each camera. In order to compute the new values to (some) neighboring cameras. These operations are detailed in the next sections.

For convenience, let \(S^t_i = \{ \alpha^t_{ij} : v_j \in \mathcal{N}^i \} \) be the state of camera \(c_i \) at iteration \(t \in \mathbb{N} \). Finally, we initialize \(\alpha^0_{ij} = \pi_{ij} \) for all \(\{v_i, v_j\} \in \mathcal{E}_c \) with \(i < j \).

6.1 Synchronous Gradient Partitioning algorithm

The distributed algorithm presented in this section assumes a synchronous mode of operation of the cameras, and it is inspired by the classical gradient projection method [5]. In particular, every camera performs operations at uniform time instants. The \(t \)-th iteration of this algorithm is detailed in Algorithm 4.

Theorem 15 (Synchronous Gradient Partitioning) For a roadmap \(\mathcal{G} \) with cameras locations \(V_c \), let \(A \) and \(b \) be as in (5) and (6), respectively. Let \(0 < \varepsilon < \left(\max_{i,j} T_{\max} \right)^{-1} \), where \(\max_{i,j} T_{\max} = \max \{ |\mathcal{N}^i| : v_i \in V_c \} \). Then, the Synchronous Gradient Partitioning algorithm in Algorithm 4 asymptotically converges to \(\alpha^*_{\text{SGD}} = \lim_{t \to \infty} \alpha^t \), and

\[
\min_{\alpha : \alpha \leq \mathbf{\pi}} \| A\alpha + b \|_2^2 = \| A\alpha^*_{\text{SGD}} + b \|_2^2,
\]

where \(\alpha \) and \(\mathbf{\pi} \) denote the cameras constraints.

PROOF. Note that the update step can be expressed in vector form as

\[
\alpha^{t+1} = \alpha^t - \varepsilon A^T (A\alpha^t + b),
\]

and that \(A^T A \alpha + A^T b \) is the gradient of the quadratic function \(\frac{1}{2} \| A\alpha + b \|_2^2 \). Therefore the Synchronous Partitioning algorithm coincides with the gradient projection method [5]. To conclude the proof note that the gradient of \(\frac{1}{2} \| A\alpha + b \|_2^2 \) is Lipschitz-continuous with some Lipschitz constant \(K \in \mathbb{R}_{>0} \). Thus, for a sufficiently small step size \(\varepsilon \), precisely if \(0 < \varepsilon < 2/K \), the convergence of \(\alpha^t \) to a min partition is guaranteed by [5, Proposition 3.4]. In order to compute the stated upper bound for the stepsize \(\varepsilon \), it can be shown that \(K \leq 2 (\max_{i,j} T_{\max})^2 \). Finally, the claimed statement follows from Theorem 5. See [5] for further details.

6.2 Asymmetric Broadcast Partitioning algorithm

The distributed algorithm presented in this section assumes an asymmetric broadcast communication protocol. In particular, at each iteration only one camera updates its state by using local information from its neighboring cameras. In order to guarantee the convergence of the algorithm, we assume the existence of a finite duration \(\tau \in \mathbb{R}_{>0} \) such that, for all \(t \in \mathbb{N} \), every camera in \(V_c \) is selected at least once in the time interval \([t, t+\tau) \) (partial asynchronism assumption). The \(t \)-th iteration of this algorithm is detailed in Algorithm 5.

Theorem 16 (Asymmetric Broadcast Partitioning) For a roadmap \(\mathcal{G} \) with cameras locations \(V_c \) and cameras edges \(\mathcal{E}_c \), let \(A \) and \(b \) be as in (5) and (6), respectively. Let \(\tau \) be the partial asynchronism constant, and let \(0 <
Algorithm 5 Asymmetric Broadcast Partitioning

Camera c_i is randomly selected;
Camera c_i receives S_i^t from camera c_j, for all $v_j \in \mathcal{N}_i^m$;
for $v_i \in \mathcal{N}_i^m$ do
 $\alpha_{ij}^{t+1} \leftarrow \alpha_{ij}^t - \varepsilon f_{ij}(L_i - L_j)$;
 if $\alpha_{ij}^{t+1} < \alpha_{ij}^t$ then $\alpha_{ij}^{t+1} = \alpha_{ij}^t$;
 else if $\alpha_{ij}^{t+1} > \pi_{ij}$ then $\alpha_{ij}^{t+1} = \pi_{ij}$;
end if
end for
Camera c_i transmits S_i^{t+1} to camera c_j, for all $v_j \in \mathcal{N}_i^m$.

Algorithm 6 Symmetric Gossip Partitioning

Neighboring cameras c_i and c_j are randomly selected;
Camera c_i (c_j) receives S_i^t (S_j^t) from camera c_j (c_i);
$L^* = (L_i + L_j)/2$;
$\alpha_{ij}^{t+1} = (L^* - \sum_{v_k \in \mathcal{N}_i^m, k \neq j} \alpha_{ik}^t)/(\ell_{ij}^t)$;
if $\alpha_{ij}^{t+1} < \alpha_{ij}^t$ then $\alpha_{ij}^{t+1} = \alpha_{ij}^t$;
else if $\alpha_{ij}^{t+1} > \pi_{ij}$ then $\alpha_{ij}^{t+1} = \pi_{ij}$;
end if
Camera c_i transmits S_i^{t+1} to c_k, for all $v_k \in \mathcal{N}_i^m$;
Camera c_j transmits S_j^{t+1} to c_k, for all $v_k \in \mathcal{N}_j^m$.

$\varepsilon < (K(1 + \tau + \pi|E_c|))^{-1}$, where $K \in \mathbb{R}_{>0}$ is the Lipschitz constant of $\alpha \rightarrow A^T(A\alpha + b)$. Then, the Asymmetric Broadcast Partitioning algorithm in Algorithm 5 asymptotically converges to $\alpha_{AB}^* = \lim_{t \rightarrow \infty} \alpha^t$. Moreover,

$$\min_{\alpha \leq \alpha \leq \overline{\alpha}} \|A\alpha + b\|_\infty^2 = \|A\alpha_{AB}^* + b\|_\infty^2,$$

where α and $\overline{\alpha}$ denote the cameras constraints.

PROOF. As in Theorem 15, the algorithm update follows the gradient of $\alpha \rightarrow \frac{1}{2} \|A\alpha + b\|_2^2$. Because of the partial asynchronism assumption and the fact that $\alpha^t \in [0,1]^{|E_c|}$ is such that $\underline{\alpha} \leq \alpha^t \leq \overline{\alpha}$ for all $t \in \mathbb{N}$, the statement follows from [5, Section 7, Proposition 5.3] and Theorem 5. Note that the bound for the stepsize ε depends on the Lipschitz constant K, the time horizon τ and the number of edges connecting cameras $|E_c|$. See [5] for further details. \[\square\]

6.3 Symmetric Gossip partitioning algorithm

The distributed algorithm presented in this section assumes a symmetric gossip-type communication protocol. In particular, at each time iteration only one component of a camera state is updated, and only two adjacent cameras are involved in the computation. The t-th iteration of this algorithm is detailed in Algorithm 6.

Theorem 17 (Symmetric Gossip Partitioning) For a roadmap \mathcal{G} with cameras locations \mathcal{V}_c, let A and b be as in (5) and (6), respectively. Let the partial asynchronism assumption hold. Then, the Symmetric Gossip Partitioning algorithm in Algorithm 6 asymptotically converges to $\alpha_{SG}^* = \lim_{t \rightarrow \infty} \alpha^t$. Moreover,

$$\min_{\alpha \leq \alpha \leq \overline{\alpha}} \|A\alpha + b\|_\infty^2 = \|A\alpha_{SG}^* + b\|_\infty^2,$$

where α and $\overline{\alpha}$ denote the cameras constraints.

PROOF. Define $U(\alpha) = \sum_{v_i, v_j \in E_c} (L_i - L_j)^2$ as energy storage function. The convergence of the algorithm can be retrieved reasoning along the lines of [1, Theorem IV.1], and by applying Theorem 5. \[\square\]
To conclude this section, we validate our distributed algorithms through a numerical study. The tree roadmap considered for the simulations is in Fig. 2. Notice that \(|E_c| = 6, n = |V_c| = 7,\) and the number of locations is given by \(|V| = 14.\) The stepsizes for Algorithm 5 and Algorithm 6 are chosen sharp, up to a constant \(\epsilon = .01,\) to their upper bounds stated in Theorem 15 and Theorem 16, respectively. The results of our simulation study are in Fig. 5. Notice that all the proposed algorithms converge to the desired value.

7 Conclusion

In this work we design surveillance trajectories for a network of autonomous cameras. We consider both static and dynamic intruders in the environment to be surveilled. As performance criteria we consider the worst-case detection time of intruders. For the case of static intruders, we derive optimal trajectories for ring and tree roadmaps, and constant-factor suboptimal trajectories for general roadmaps. For the case of dynamics intruders, we derive constant-factor suboptimal trajectories for chain, ring, and tree roadmaps. As a complementary result, we introduce the continuous partitioning problem of a weighted graph, and we propose distributed algorithms for its solution.

References