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ANALYTICAL APPROXIMATE SOLUTION OF COUPLED WAVE  
EQUATIONS WITH A NONLINEAR STIFFNESS 

 
 
 

INTRODUCTION 
 
 
PURPOSE 
 
 

Equations of motion can be derived for complex dynamical systems by using calculus of 
variations; however, because of the nonlinear complexities of these equations, closed-form 
solutions are usually unattainable.  An alternative approach is to interrogate the derived 
equations by numerical methods.  Although the numerical methods do allow the capture of the 
dynamic response of the system, a closed-form solution is always more desirable.  This report 
describes the Naval Undersea Warfare Center (NUWC) Division Newport’s effort to develop a 
method to derive an approximate closed-form solution of the coupled wave equation.   
 
 
BACKGROUND 
 

In the early 1990s, Adomian developed a method to derive analytical approximate 
solutions to nonlinear functional equations.1  This method is referred to as the “Adomian 
decomposition method” (ADM).  The solution to the given nonlinear functional equation can be 
approximated by an infinite series solution of the linear and nonlinear terms, provided the 
nonlinear terms are represented by a sum of series of Adomian polynomials.2, 3, 4  ADM has been 
successfully applied to various types of ordinary,5, 6, 7 partial,8, 9, 10, 11, 12 and delay differential 
equations13 to develop closed-form approximate solutions.   
 
 
SCOPE 
 

In this report, the derivation of an approximate closed-form solution of the coupled wave 
equation is accomplished by using the ADM.  The coupling is realized by both the nonlinear 
softening and the nonlinear hardening springs and a linear spring located at the center of the 
crossing strings.  The dynamic response of the closed-form solutions is compared for each spring 
type under the same prescribed initial condition.   

 
The remainder of this report explores the Adomian decomposition method and provides a 

brief derivation of the coupled wave equations; derives approximate analytical solutions for the 
coupled wave equation using the Adomian decomposition method; and investigates the closed-
form solutions for the three different types of springs under the same prescribed initial condition.   
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ADOMIAN DECOMPOSITION METHOD 
 
 
GENERAL 
 

Consider equation (1), 
 
 ( )Fu g t , (1) 
 
where F  is a nonlinear operator, and, when it is expanded into linear and nonlinear terms, 
results in,  
 
 ( ).Lu Ru Nu g t    (2) 
 
The linear term is represented by ,Lu L  is invertible and is chosen to be the highest order 

derivative, R  is the remainder of the linear terms, ( )g t  is the nonhomogeneous right side, and 

the nonlinear terms are represented by .Nu   If L  is chosen to be a derivative of order n , then 1L  
will be an n -fold integral.  For example, if 
 

     ,  then
0 0

1
2

2

dtdtL
dt

d
L

t t

     

 
and 

 1 (0) (0).L L u tu    
 
Solving equation (2) for Lu results in 
 
 ( ).Lu Ru Nu g t     (3) 
 
Adomian postulated that the solution u can be approximated by an infinite sum of series 
 

 
0

,n
n

u u




   (4) 

 
and the nonlinear term Nu can be approximated by a sum of Adomian polynomials  
 

 0 1
0

( , ,..., )n n
n

Nu A u u u




 , (5) 

 
where the Adomian polynomials of 0 1,. ., . , nu u u  can be calculated by the formula 
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 0 1
0 0

1( , ,..., ) ,
!

n
i

n n in
i

dA u u u N u
n d

λ

λ
λ

∞

= =

  =   
  
∑  (6) 

 
where λ  is a dummy variable.  The first three Adomian polynomials are shown for convenience, 
 

 
0 0

1 1 0
2
1

2 0 2 0

( )
( )

( ) ( ),
2!

A N u
A u N u

uA N u u N u

=
′=

′= +

 (7) 

 
where ( )′⋅  denotes the first derivative with respect to u .  Substituting equation (4) and equation 
(5) into equation (3) results in  
 

 0 1
0 0 0

( , ,..., ) ( ),n n n n
n n n

L u R u A u u u g t
∞ ∞ ∞

= = =

= − − +∑ ∑ ∑  (8) 

 
and operating on equation (8) with its inverse 1L−  yields 
 

 1 1 1
0 1

0 0 0
(0) (0) ( , ,..., ) ( ).n n n n

n n n
u u tu L R u L A u u u L g t

∞ ∞ ∞
− − −

= = =

′= + − − +∑ ∑ ∑  (9) 

 
Finally, equation (9) can be rewritten in a recursive relation as in equation (10), 
 

 
1

0
1 1

1 1

(0) (0) ( ),

,  1,n n n

u u tu L g t
u L Ru L A n

−

− −
− −

′= + +

= − − ≥
 (10) 

 
where 0u  is obtained from the prescribed initial and boundary conditions.  The k-term 
approximation can be used as a series solution, 
 

 
1

0

k

k i
i

u uφ
−

=

= ≈∑ , (11) 

 
where the exact solution is given by 
 
 lim .nn

u u
→∞

=  (12) 

 
If more accuracy is desirable, then more terms should be included in the series solution. 
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WAVE EQUATION DERIVATION 
 

Using the Euler-Lagrange equations allows the coupled wave equations to be derived 
where the coupling is realized through a nonlinear softening spring.  Consider the two crossing 
strings depicted in figure 1, where the strings lie in the x1x2-plane.  In this report, the strings are 
considered to be orthogonal to each other throughout the simulation.  Shearing or twisting effects 
of the strings are not considered.  The string in the 1x -direction has a vertical displacement 

1 2( , , )u x x t , and the string in the 2x -plane has a vertical displacement 1 2( , , )v x x t .   
 
 

 
 

Figure 1.  Two Crossing Strings Where the Coupling Is Realized  
with a Nonlinear Softening Spring 

 
 

The Lagrangian can be defined as  
 
 1 2 1 2( , , , , ) f sL x x x x t T V V≡ − −  , 
 
where T  is the kinetic energy, fV  is the potential energy due to the work required to displace a 

differential element of the string, and sV is the potential energy of the nonlinear spring where a 
nominal spring length is used.  After substituting in the terms, the Lagrangian can be expressed 
as 
 

 

( ) ( )

2 2

1 2 1 2

2 2

1 2 1 2 1 2 1 2

1 2 1 2

2 4
1 2 1 2 1 2 1 2

1 ( , , ) ( , , )
2

( , , ) ( , , ) ( , , ) ( , , )

( ) (

2

, , , , , , ,) ( , ,) ( )
2 4

L NL

L u x x t v x x t
t t

E u x x t u x x t v x x t v x x t
x x x x

K Kx xv u vt x x t x x t x x tu

ρ
 ∂ ∂   = +     ∂ ∂    
    ∂ ∂ ∂ ∂ − + + +    ∂ ∂ ∂ ∂    

 − −


− 


−

 (13) 
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where ρ is the mass density of the string, E is the Young’s modulus of the string, and LK  and 

NLK  are the linear and nonlinear stiffness coefficients, respectively.  In this report, ρ  and E  are 
kept the same in both strings.  In its normal form, the Euler-Lagrangian differential equation is 
expressed as 
 

 0L d L
q dt q

 ∂ ∂
− = ∂ ∂ 

, (14) 

 
where q  is the generalized coordinate and q  is the time derivative.  The system of interest here, 
however, is continuous, so the generalized coordinates are 1 2( , , )u x x t  and 1 2( , , )v x x t ; thus, the 
Euler-Lagrangian differential equations for 1 2( , , )u x x t  and 1 2( , , )v x x t are 
 

 

1 21 2 1 21 2 1 2

1 2

1 21 2 1

0
( , , )( , , ) ( , , ) ( , , )

( , , )( , , ) (

L L L L
u x x tu x x t t x xu x x t u x x t

t x x

L L L
v x x tv x x t t x v x

t

    
    ∂ ∂ ∂ ∂ ∂ ∂ ∂    − − − =
   ∂∂ ∂ ∂ ∂     ∂ ∂ ∂ ∂ ∂         ∂  ∂ ∂           

 
 ∂ ∂ ∂ ∂ ∂ − −

∂∂ ∂ ∂  ∂ ∂ ∂  ∂  
21 2 1 2

1 2

0.
, , ) ( , , )

L
xx t v x x t

x x

   
   

∂ ∂   − =
   ∂   ∂

∂      ∂ ∂         

 (15) 

 
Evaluating the terms yields the coupled wave equations 
 

 
( ) ( )

( ) ( )

2
32 21 2

1 1 2 1 2 1 2 1 2 1 22

2
32 21 2

2 1 2 1 2 1 2 1 2 1 22

( , , ) ( , , ) ( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , ) ( , , ) ( , , ) ( , , ) ,

L NL

L NL

u x x t c u x x t K v x x t u x x t K v x x t u x x t
t

v x x t c v x x t K u x x t v x x t K u x x t v x x t
t

∂
= ∇ + − − −

∂
∂

= ∇ + − − −
∂

(16) 

 
where  
 

 2
1c E

ρ
=  and 2

2
Ec
ρ

= .  
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ADM APPLIED TO THE COUPLED WAVE EQUATION 
 
 

According to the ADM, the solution to 1 2( , , )u u x x t  and 1 2( , , )v v x x t  can be 

represented as 
 

and 
1 2 1 2

0

1 2 1 2
0

( , , ) ( , , )

( , , ) ( , , ).

n
n

n
n

u x x t u x x t

v x x t v x x t
















 (17) 

 
Because the summation of nu  and nv  is the desired solution and converges rapidly, the k -terms 

of the summation can be calculated.  The resulting approximate analytical solution, therefore, is 
 

and 

1

1 2
0

1

1 2
0

( , , )

( , , ).

k

k n
n

k

k n
n

u x x t

v x x t




















 (18) 

 
Because the nonlinear terms are functions of two variables, one cannot continue with the 
Adomian polynomials described in equation (6).  The Adomian polynomials for the two 
displacement variables 0 1 0 1, , , , , , ,n nu u u v v v   are described by 

 

 0 1 0
0 0

1

0

, ,
1

( ,..., , ,..., ) , ,
!

n
i i

n n n i in
i i

d
B uu u v N u v

n
v v

d


 


 

  

     
  
   (19) 

 
where the first three terms are shown for convenience: 
 

0 0 0

1 1 0 0 1 0 0

2 22 2 2
1 1

2 0 0 0 0 1 1 0 0 2 0 0 2 0 02 2

( , )

( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , ).
2! 2!

B N u v

B u N u v v N u v
u v

u v
B N u v N u v u v N u v u N u v v N u v

u v u v u v



 
 

 
    

    
     

 (20) 

 
 For the remainder of this report, 1 2( , , )u u x x t  and 1 2( , , )v v x x t .  From the coupled 

wave equations described in equation (16), the highest-order derivative is second order, so the 

linear operator becomes 
2

2
L

t





 and 1

0 0

( )
t t

L dtdt    .  In the u equation, the nonlinear term is 

3( (, ) )NLN u K vv u  and 3( , ) ( )NLN u v K u v   for the v  equation.  The first three terms of the 
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Adomian polynomial series expansion are shown for convenience where the superscripts ,u v  
denote the polynomials for the ,u v  equations, respectively: 
 

 

3
0 0 0

2
1 0 0 1 1

2 2
2 1 1 0 0 0 0 2 2

3 0 0 1 1 2 2 0 0 3 3

0 0

1 1

2

3

1

2

1

2

3

3

( )

3 ( ) ( )

33( ) ( ) ( ) (2 2 )
2

2 2 61( ) 3( )( )( ) ( ) ( )
2

.

6

u
NL

u
NL

u
NL

u
NL

v u

v u

v u

v u

B K v u

B K v u v u

B K v u v u v u v u

B K v u v u v u v u v u

B B
B B
B B

v

B B

u

= −

 = − − 
 = − − + − −  
 = − − − − −  

=

− + +

−
−
−
−

=
=
=

 (21) 

 
The n th  recursive equation for both u  and v  are found by plugging equation (16) into equation 
(10), which yields: 

 
( )

( )

2 2
1 1 1 1 1 0 1 0 1

0 0 0 0

2 2
2 1 1 1 1 0 1 0 1

0 0 0 0

( ,..., , ,..., )

( ,..., , ,..., ) .

t t t t
u

n n L n n n n n

t t t t
v

n n L n n n n n

u c u K v u dtdt B u u v v dtdt

v c v K u v dtdt B u u v v dtdt

− − − − − −

− − − − − −

 = ∇ + − − 

 = ∇ + − − 

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫
 (22) 

 
Because the solution is a sum of iterates, it must be transformed into a closed-form 

solution.  This transformation is achieved by taking a Laplace transform of both kφ  and kϕ  with 
respect to t .  A Pade approximation of order [2, 2] was used to approximate the coefficients of 
the Laplace transformed polynomials into a rational function.14  An inverse Laplace transform 
was used to convert back to the time domain to yield a closed-form solution.   
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SIMULATION RESULTS 
 
 

In this section, the approximate solutions are computed for three types of springs with the 
same initial condition with the following system parameters over the domainΘ .  Both strings 
experience an initial displacement ( 0 0an d u v ) as shown in equation (23) with zero initial 
velocity ( 1 1an d u v ): 
 

 

0 1 2 0 1 2 1 1

2 2
1 2

1sin( )sin( ),  sin( )sin( ),  0
2

= 1,  g(t)=0,  = [0,1] [0,1]. 

u x x v x x u v

c c

π π π π= = − = =

= Θ ×
 (23) 

 
The following spring constants were chosen: 

 

 
(1) nonlinear softening spring      1,  K = -3
(2) nonlinear hardening spring    1,  K = 3 
(3) linear spring                           1,  K = 0.

L NL

L NL

L NL

K
K
K

=
=
=

 (24) 

 
In the first case, the steps used toward deriving the closed-form solutions are presented; however, 
in the other two cases, only the responses are provided. 
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CASE 1 
 
 In this case, a nonlinear softening spring is used.  Only the first three iterations are shown 
due to the number of terms; four iterations, however, were used to develop the closed-form 
solution  
 

 

( )
( )

0 1 2

0 1 2

2
2 2 2 2 2

1 1 2 2 1 1 2

2 2 2 2 2 2
1 1 2 2 1 1 2

4

2

sin( )sin( )
1 sin( )sin( )
2

sin( )sin( ) 16 93 81cos ( ) 81cos ( ) 81cos ( )cos ( )
16
sin( )sin( ) 8 93 81cos ( ) 81cos ( ) 81cos ( )cos ( )

sin
192

u x x

v x x

tu x x x x x x

v t x x x x x x

tu

π π

π π

π π π π π π π

π π π π π π π

=

= −

= − + − − +

= + − − +

=

4 2 2 2
1 2

2 2 2
1 2

2 2 2 2 2
1 2 1 2 1 2

4 2 4 2
2 1 1 2

4 4
1

22785 32 3888 (cos ( ) cos ( ))

81810cos ( )cos ( ) 3450

( )sin( ) 42444(cos ( ) cos ( )) 4374 cos ( )cos ( )

39366(cos ( )cos ( ) cos ( )cos ( ))

19683(cos ( ) cos

x x
x x

x x x x x x
x x x x
x

π π π π

π π π

π π π π π π π

π π π π

π

+ − +

+ +

− + +

− +

+ + 4 4
2 1 2

4 2 2 2
1 2

2 2 2
1 24

2 2 2 2 2
2 1 2 1 2 1 2

4

( ) cos ( )cos ( ))

22785 32 3888 (cos ( ) cos ( ))

81810cos ( )cos ( ) 3450

sin( )sin( ) 42444(cos ( ) cos ( )) 4374 cos ( )cos ( )
192

39366(cos

x x x

x x
x x

tv x x x x x x

π π π

π π π π

π π π

π π π π π π π

 
 
 
 
 
 
  + 

+ − +

+ +

= − − + +

− 2 4 2
2 1 1 2

4 4 4 4
1 2 1 2

.

( )cos ( ) cos ( )cos ( ))

19683(cos ( ) cos ( ) cos ( )cos ( ))

x x x x
x x x x

π π π π

π π π π

 
 
 
 
 
 +
  + + + 

(25) 

 

After four iterations, the approximate solution for u  is 
3

4 1 2
0

( , , ) n
n

x x t uφ
=

=∑ ; for v , the 

approximate solution is
3

4 1 2
0

( , , ) n
n

x x t uϕ
=

=∑ .  The Laplace transform of 4 1 2( , , )x x tφ  and 

4 1 2( , , )x x tϕ yield 4 1 2( , , )x x sφ  and 4 1 2( , , )x x sϕ .  The Pade approximate of order [2, 2] for both  

4 1 2( , , )x x sφ  and 4 1 2( , , )x x sϕ  is  
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( )

( )

1 2
4 1 2

2 2 2 2 2
1 2 1 2

2

1 2
4 1 2

2 2 2 2 2
1 2 1 2

2

81sin( )sin( )( , , )
6561 7533cos ( )cos ( ) cos ( ) cos ( ) 162

8 881

9sin( )sin( )( , , )
6561 7533cos ( )cos ( ) cos ( ) cos ( ) 162

4 481

x xx x s
x x x x

s
s

x xx x s
x x x x

s
s

π πφ
π π π π π

π πϕ
π π π π π

=
 − − + + 

+ 
 
 

= −
 − − + + 

+

 

.




(26) 

 
The final closed-form solution is: 

 
2 2 2 2

1 2 1 2 1 2 1

2 2 2 2
1 2 1 2 1 2 1

( , , ) sin( )sin( )cosh 186 32 162cos ( ) 162cos ( )(cos ( ) 1)
4

1( , , ) sin( )sin( )cosh 93 8 81cos ( ) 81cos ( )(cos ( ) 1) .
2 2

tu x x t x x x x x

tv x x t x x x x x

π π π π π π

π π π π π π

 = − − + − − 
 

 = − − − + − − 
 

(27) 

 
The dynamic response to the prescribed initial condition is shown in figures 2 and 3.  

Figure 2 depicts the response of 1 2( , , )v x x t  (blue line) along the 2x -direction and 1 2( , , )u x x t  (red 
line) along the 1x -direction at time snaps t = 0.0, 0.4, 0.8, 1.2, 1.6, and 2.0.  Figure 3 shows a 
projection of these two responses for 1 2( , , )v x x t  (blue line) and 1 2( , , )u x x t  (red line) along the 
same coordinate axis to compare the oscillations between the two strings.  Initially, the spring is 
compressed with the string along the 1x -direction having an initial displacement with a greater 
magnitude than the string along the 2x -direction.  The effect of the nonlinear softening spring 
becomes evident as time progresses.  The center location of both strings, where the spring is 
attached, oscillates at a higher frequency than the points closer to the fixed ends.  In essence, this 
oscillation creates a rippling effect from the center of the string to the boundaries.  If time were 
to progress further, the string would experience high-frequency oscillations throughout its length. 
  



 

11 

 
 

Figure 2.  Response of 1 2( , , )v x x t  (blue line) Along the 2x -Direction and 1 2( , , )u x x t   
(red line) Along the 1x -Direction for Case 1 at Time Snaps t  = 0.0, 0.4, 0.8, 1.2, 1.6, and 2.0 
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Figure 3.  Projection View of the Response of 1 2( , , )v x x t  (blue line) and 1 2( , , )u x x t  (red line)  
Along the Same Axis for Case 1 at Time Snaps t  = 0.0, 0.4, 0.8, 1.2, 1.6, and 2.0 
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CASE 2 
 

In this case, a nonlinear hardening spring is used.  The final closed-form solution is: 
 

 
( )

( )

2 2 2 2
1 2 1 2 1 2 1

2 2 2 2
1 2 1 2 1 2 1

( , , ) sin( )sin( )cosh 138 32 162cos ( ) 162cos ( )(cos ( ) 1)

1( , , ) sin( )sin( )cosh 69 8 81cos ( ) 81cos ( )(cos ( ) 1) .
2

u x x t x x t x x x

v x x t x x t x x x

π π π π π π

π π π π π π

= − − + −

= − − − + −
(28) 

 
The dynamic responses depicted in figures 4 and 5 are similar to those for case 1 dynamics in figures 2 
and 3.  This similarity can be observed in the closed-form solutions in equations (28) and (27), which 
differ only by constants.  The global oscillations remain the same, but the higher frequency oscillations 
are different from what was observed in the nonlinear softening spring.  Figure 4 depicts the response 
of 1 2( , , )v x x t  (blue line) along the 2x -direction and the response of 1 2( , , )u x x t  (red line) along the 1x -
direction at time snaps t = 0.0, 0.4, 0.8, 1.2, 1.6, and 2.0; figure 5 shows a projection of these two 
responses for 1 2( , , )v x x t  (blue line) and 1 2( , , )u x x t  (red line) along the same coordinate axis.  The 
effects of the nonlinear hardening characteristics of the spring are apparent in the response of the 
center location of the strings where the spring is located.  Unlike the nonlinear softening case (case 1), 
both strings in case 2 have their inflection points at different times in the simulation.   
 

 
 

Figure 4.  Response of 1 2( , , )v x x t  (blue line) Along the 2x -Direction and 1 2( , , )u x x t  (red line)  
Along the 1x -Direction for Case 2 at Time Snaps t  = 0.0, 0.4, 0.8, 1.2, 1.6, and 2.0  
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Figure 5.  Projection View of the Response of 1 2( , , )v x x t  (blue line) and 1 2( , , )u x x t  (red line)  
Along the Same Axis for Case 2 at Time Snaps t  = 0.0, 0.4, 0.8, 1.2, 1.6, and 2.0 
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CASE 3 
 

In this case, a linear spring is used.  The final closed-form solution is: 
 

 ( )

2
1 2 1 2

2
1 2 1 2

( , , ) sin( )sin( )cosh 8 6
2

1( , , ) sin( )sin( )cosh 2 3 .
2

tu x x t x x

v x x t x x t

π π π

π π π

 = − − 
 

= − − −

 (29) 

 
The dynamic response for case 3 is depicted in figures 6 and 7.  Because the coupling 

spring connecting the two strings is linear and the initial condition is composed of just the first 
mode of oscillation for a string with fixed ends, both strings oscillate only in that first mode.  The 
figures show that there are no higher frequency oscillations in the string, which can further be 
seen in the close-form solution in equation (29).   

 

 
 

Figure 6.  Response of 1 2( , , )v x x t  (blue line) Along the 2x -Direction and 1 2( , , )u x x t  (red line)  
Along the 1x -Direction for Case 3 at Time Snaps t  = 0.0, 0.4, 0.8, 1.2, 1.6, and 2.0 
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Figure 7.  Projection View of the Response of 1 2( , , )v x x t  (blue line) and 1 2( , , )u x x t  (red line)  
Along the Same Axis for Case 3 at Time Snaps t = 0.0, 0.4, 0.8, 1.2, 1.6, and 2.0 
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CONCLUSIONS 
 
 

The Adomian decomposition method was used to develop an approximate analytical 
solution for coupled wave equations.  The coupling was realized by nonlinear softening and 
nonlinear hardening springs as well as for a linear spring.  The equations for each type of spring 
were derived from the Euler-Lagrange equations.  The effects of the nonlinear spring behaviors 
were evident in both the dynamic response and closed-form equations—very unlike the behavior 
observed for the linear spring case.  In both the nonlinear softening and nonlinear hardening 
springs, higher frequency oscillations were observed at the spring location; however, when a 
linear spring was used, the strings exhibited no higher frequency oscillations and oscillated only 
in the mode by which they were excited.   
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