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A Abstract

Existing positioning and navigation applications mainly rely on GNSS. However, its ap-

plication to indoor, metropolitan and heavy-foliage scenarios is significantly constrained

by the satellite visibility, limited accuracy and the intensively frequency-selective channel

condition. In this research, we investigated ranging and localization techniques using ultra-

wideband (UWB) signals. In particular, we have developed two time-of-arrival (ToA) esti-

mators for single-band UWB signals. To generalize them to multi-band UWB signals, we

investigated the pros and cons of coherent and non-coherent multi-band signal combining,

and studied the phase rotation calibration in order to facilitate effective coherent combin-

ing. Last but not least, we developed cooperative localization algorithms based on semi-

definite programming (SDP) and developed algorithms exploiting Doppler shift in mobile

scenarios. On these subjects, we have published/submitted 13 peer-reviewed journal and

conference papers [1-13].

B Overview

The proposed research aims at the fundamental understanding and system-level devel-

opment of alternative location and navigation in GPS-denied scenarios such as indoor,

metropolitan and heavy-foliage environments, where the application of GPS is significantly

constrained by the satellite visibility, limited accuracy and the intensively frequency-selective

channel condition. When GPS is also available, techniques developed here can be used to

enhance the GPS precision.

For time-of-arrival (ToA) based geo-location, the precision of ToA estimate is crucial. The

latter, however, is challenging in environments with extensive, and often unknown, multi-

path, such as heavy foliage, indoor or inside caves. Traditionally, this problem is treated as a

channel estimation problem, where the ToA is obtained as a by-product. However, such an

approach not only induces significant complexity especially in extensive multipath, but also

leads to unnecessary ToA errors as the optimality criterion for a channel estimator accounts

for timing, amplitude and phase errors of all taps. To this end, we developed estimators fo-

cusing on the ToA estimation, and without any direct channel estimation. Results show that

significant complexity reduction and accuracy improvement can be achieved when com-

pared to the current state-of-the-art.
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For multi-band orthogonal frequency-division multiplexing (MB-OFDM) ultrawide-band

(UWB) systems, we estimated the ToA of wireless channels by using the widely adopted

equally-spaced channel estimator. By suppressing the energy leakage due to the imperfect

sampling of the leading channel paths, we proposed a novel ToA estimator for the MB-

OFDM UWB system. This ToA estimator is evaluated and compared with the space alternat-

ing generalized expectation maximization (SAGE) algorithm. Simulation results show that

the proposed ToA estimator performs well in all channel models and outperforms SAGE by

directly locating the first channel path.

We further investigated the random phase rotation problem for MB-OFDM UWB sys-

tems. Random phase rotations need to be calibrated for coherent combining of MB channel

information for high resolution time-of-arrival estimation. Our analysis indicates that in the

presence of random phase rotations, energy leakage in the estimated channel increases and

hence the ToA resolution of MB-OFDM signals degrades. Based on this, we propose to cal-

ibrate random phase rotations across subbands by minimizing energy leakage. Simulation

results show that the proposed technique performs well in 802.15.4a UWB channels.

When it comes to range measurement data fusion into positioning and location estimate,

we considered cooperative localization by introducing and generalizing the application of

semidefinite programming (SDP). The SDP approach has been widely used to convert non-

convex problems into convex ones in recent years. In our work, we apply the SDP approach

to cooperative localization where the inter-target communication capability is exploited for

the purpose of coverage extension and accuracy enhancement. Cooperative ToA and Re-

ceived Signal Strength (RSS) minimax SDP algorithms are also proposed. Simulations show

that the cooperative localization with SDP can achieve satisfying performance with con-

siderably reduced complexity. In addition, we propose a virtual anchor concept to further

improve the localization accuracy, especially in the outside-of-the-convex-hull situations.

Among the various positioning techniques, the angle-of-arrival (AoA) has traditionally

been realized with large and costly antenna arrays. On the other hand, motion of the mobile

target will induce Doppler which is determined by the AoA of the incoming signal. Ex-

ploiting this Doppler, we developed Doppler-aided AoA estimators for mobile targets. By

studying the geometrical relationship among the target and anchors, we successfully lin-

earized the nonlinear problem, resulting in a low-complexity solution. We have also proved

the uniqueness of the solution using geometric tools. Interestingly, though the problem is

formulated as AoA-based geo-location (since the Doppler can only indicate the direction of

2



the target), the solution is obtained via a ToA-alike technique as the position of the target

is found to be the unique intersection of three circles (trilateration) each determined by two

anchors.

C Ranging with Single-Band UWB Signals: A Maximum-

Likelihood Approach

UWB technology exhibits prominent features in many wireless communications, network-

ing and localization applications. Since the ultrashort pulse waveform is transmitted at very

low power in UWB systems, accurate and rapid timing estimation becomes one of the most

critical challenges.

In this research, we address this issue via the establishment of a data-aided maximum

likelihood (ML) timing algorithm. Based on the ML criterion, estimation of all multipath

gains and delays was pursued in some existing work in the literature. However, they often

assume an unrealistic multipath channel model with no inter-path overlapping. The real

channel with a large number of dense taps would make this method impossible to imple-

ment. Here, we focus on estimation of a single parameter, namely, the delay of the first

arriving path, without invoking any unrealistic channel model assumption. We will show

that our ML estimator is able to collect multipath energy, although it does not explicitly

involve multipath channel estimation.

Considering the ML acquisition performance and the consistency requirement, we ob-

tain the unique optimum training pattern with which the ML algorithm can be simplified,

thus giving rise to the simplified ML (SML).

Fine timing with high accuracy is critical to localization with UWB technology. While

the data-aided SML estimator can theoretically achieve any resolution level, they may suf-

fer from the ambiguity induced by the weak tail of the multipath channel and the extent

of the noise-only region between consecutive symbols. To circumvent the ambiguity, we

supplement the SML algorithm with one more step to search for the peak of the first-order

difference of the objective functions. By doing so, chip-level fine timing can be achieved.

3



C.1 Signal Model

In impulse-radio UWB systems, every information symbol is transmitted over a duration of

Ts consisting of Nf frames. During each frame of Tf seconds, a data-modulated ultra-short

pulse p(t) with duration Tp � Tf is transmitted. With binary pulse amplitude modulation

(PAM), the training symbols are drawn from the binary alphabet {±1}, and the transmitted

waveform for a single user is modeled as:

v(t) =
√
E

+∞∑
n=0

snpT (t− nTs), (1)

where E is the energy per pulse and pT (t) =
∑Nf−1

j=0 p(t − jTf − cjTc) represents the symbol-

long transmitted waveform composed ofNf pulses. The pulse during the jth frame is shifted

by the time-hopping code cj , which takes integer value in the range of [0, Nc − 1]. The chip

duration is Tc = Tf/Nc.

After propagating through a multipath channel with Lc taps, the received waveform can

be written as r(t) =
∑Lc−1

l=0 αlv(t−τl)+η(t), where αl and τl denote the attenuation and delay

of the lth channel tap, and η(t) is the zero-mean additive white Gaussian noise (AWGN)

with power spectral density (PSD) N0/2. The channel is assumed to be either deterministic

or quasi-static over one transmission burst. We decouple the propagation delay τ0 from the

dispersive effects of the multipath channel by defining a set of relative delays with respect

to τ0, namely τl|0 , τl − τ0, ∀l. Without loss of generality (WLOG), τ0 ∈ [0, Ts) is assumed in

this work. Then the symbol-long received waveform capturing the multipath channel effects

is given by:

pR(t) =
Lc−1∑
l=0

αlpT (t− τl|0) , (2)

and the received waveform can be rewritten as:

r(t) =
√
E

+∞∑
n=0

snpR(t− nTs − τ0) + η(t) . (3)

To develop the ML timing algorithm, we assume that ISI is absent, but inter-frame interfer-

ence may be present. This condition can be easily satisfied by constraining the last frame

of each symbol such that the nonzero support of pR(t) does not extend beyond the range

[0, Ts). Note that this setup can also accommodate high-rate transmissions since the inter-

frame interference is allowed.
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For convenient manipulation, we divide the received signal into K consecutive symbol-

long segments and shift them so that they all lie in the range t ∈ [0, Ts): rk(t) , r(t +

kTs)rect(t), k = 1, · · · , K, where rect(t) = 1, t ∈ [0, Ts), is the window function. Substituting

(3) and defining ηk(t) , η(t+ kTs)rect(t), we have the received segments:

rk(t) =
√
E

+∞∑
n=0

snpR(t+ kTs − nTs − τ0)rect(t) + ηk(t), ∀k . (4)

Since pR(t) and rect(t) are confined within a finite support [0, Ts), it can be easily induced

that for a certain segment k only n = k−1 and n = k contribute nonzero summands to rk(t),

and (4) can be explicitly expressed as rk(t) =
√
E (sk−1pR(t+ Ts − τ0) + skpR(t− τ0)) rect(t)+

ηk(t), ∀k.

Stack the total K received segments into a vector, and define r(t) , [r1(t), · · · , rK(t)]T ,

s1 , [s0, · · · , sK−1]T , s2 , [s1, · · · , sK ]T and η(t) , [η1(t), · · · , ηK(t)]T . Then the signal model

can be rewritten in the following compact vector form:

r(t) =
√
Es1p

(a)
R (t; τ0) +

√
Es2p

(b)
R (t; τ0) + η(t) , (5)

where p
(a)
R (t; τ0) , pR(t + Ts − τ0)rect(t) and p

(b)
R (t; τ0) , pR(t − τ0)rect(t) consist of the

circularly shifted version of the symbol-long received waveform pR(t). It is noteworthy that

p
(a)
R (t; τ0) and p

(b)
R (t; τ0) are not overlapping in time; that is, the former is strictly zero for

t ∈ [τ0, Ts), and the latter is strictly zero for t ∈ [0, τ0).

C.2 ML Timing Algorithm and Its Acquisition Performance

In this section, we will first develop the ML timing algorithm for arbitrary known transmit-

ted symbol sequences, and then evaluate the timing acquisition performance of the algo-

rithm.

C.2.1 ML Timing Algorithm

With the signal model in (5), the deterministic but unknown parameters are: i) the overall re-

ceived symbol-long waveform pR(t) (or equivalently, its circularly shifted version p(a)
R (t; τ0)

and p(b)
R (t; τ0)) which carries the dispersive multipath channel information; and ii) the prop-

agation delay τ0. Given pR(t) and τ0, the log-likelihood function for (5) bears the form:

ln Λ (r(t); pR(t), τ0)∝
∫ Ts

0

−‖ r(t)−
√
Es1p

(a)
R (t; τ0)−

√
Es2p

(b)
R (t; τ0) ‖2 dt

5



∝
∫ Ts

0

2
√
ErT (t)

(
s1p

(a)
R (t; τ0)+s2p

(b)
R (t; τ0)

)
−E ‖ s1p

(a)
R (t; τ0)+s2p

(b)
R (t; τ0) ‖2dt. (6)

Our task is to obtain the ML estimates for pR(t) and τ0 by maximizing (6). We use the

notation x̃ to indicate a conjecture of unknown parameter x. The ML estimation will be

accomplished in two stages: based on a fixed conjecture τ̃0, we first obtain p̂R(t; τ̃0) as a

function of τ̃0; then we replace pR(t) with p̂R(t; τ̃0) in (6) to find the ML estimate of τ̂0.

In the first stage, the integral can be removed without affecting the optimality, since the

ML estimate of pR(t) is to be obtained in an instantaneous manner. As emphasized before,

given a candidate τ̃0, p(a)
R (t; τ̃0) and p

(b)
R (t; τ̃0) are non-overlapping in time. Accordingly, we

divide r(t) into two disjoint parts in time as well: r(t)rect(t + Ts − τ̃0) for t ∈ [0, τ̃0) and

r(t)rect(t − τ̃0) for t ∈ [τ̃0, Ts). The circularly shifted waveforms p(a)
R (t; τ̃0) and p

(b)
R (t; τ̃0) can

thus be estimated separately. Specifically, the objective function for p(a)
R (t; τ̃0) is [c.f. (6)]:

J (a)(t; τ̃0) = 2
√
ErT (t)s1p

(a)
R (t; τ̃0)− E ‖ s1p

(a)
R (t; τ̃0) ‖2, t ∈ [0, τ̃0) .

Taking the derivative of J (a)(t; τ̃0) with respect to the instantaneous p(a)
R (t; τ̃0), and setting it

to zero, we have the ML estimate of p(a)
R (t; τ̃0):

p̂
(a)
R (t; τ̃0) =

1

K
√
E

K∑
k=1

sk−1rk(t)rect(t+ Ts − τ̃0), t ∈ [0, τ̃0) . (7)

Likewise, the ML estimate of p(b)
R (t; τ̃0) can be obtained by maximizing the following objec-

tive function [c.f. (6)]:

J (b)(t; τ̃0) = 2
√
ErT (t)s2p

(b)
R (t; τ̃0)− E ‖ s2p

(b)
R (t; τ̃0) ‖2, t ∈ [τ̃0, Ts) ,

and the resultant estimate is:

p̂
(b)
R (t; τ̃0) =

1

K
√
E

K∑
k=1

skrk(t)rect(t− τ̃0), t ∈ [τ̃0, Ts) . (8)

In the second stage, we plug (7) and (8) back into (6), and discard the norm square term

whose integral is not affected by the candidate τ̃0. It turns out that the new ML objective

function for τ̃0 becomes:

JML(τ̃0) =
1

K2

∫ Ts

0

(
rT (t)s1

K∑
k=1

sk−1rk(t)rect(t+ Ts − τ̃0) + rT (t)s2

K∑
k=1

skrk(t)rect(t− τ̃0)

)
dt

=
1

K2

K∑
m=1

K∑
k=1

∫ Ts

0

(rm(t)rk(t)sm−1sk−1rect(t+Ts−τ̃0)+rm(t)rk(t)smskrect(t−τ̃0)) dt, (9)

6



and the ML estimate of τ0 can be obtained by maximizing JML(τ̃0):

τ̂0 = arg max
τ̃0

JML(τ̃0) . (10)

Proposition 1 [ML Timing Estimation] The ML timing estimator can be implemented in four

steps:

• Step 1: Take K received segments rk(t), k = 1, 2, · · · , K;

• Step 2: For each candidate τ̃0 calculate K2 cross (and auto) correlations among all pairs of the

segments as in (9);

• Step 3: Average the K2 correlations as suggested by (9);

• Step 4: Choose the τ̃0 which maximizes JML(τ̃0) as the ML estimate τ̂0 according to (10).

From Proposition 1 one should be aware that the computational complexity of the ML

timing estimator is very high. For each τ̃0 candidate, one need to calculate K2 correlations

and K2 summations. The high complexity is expected to be reduced for practical imple-

mentation.

C.2.2 Acquisition Performance of the ML timing Algorithm

In order to evaluate the performance of the ML estimator, we need to find the statistical

properties of the objective function. Re-express JML(τ̃0) as the sum of its noise-free part and

noise term as JML(τ̃0) = JML
0 (τ̃0) + ξML(τ̃0). Let us first consider the noise-free part

JML
0 (τ̃0)=

1

K2

K∑
m,k=1

∫ Ts

0

(ρm(t)ρk(t)sm−1sk−1rect(t+ Ts − τ̃0)+ρm(t)ρk(t)smskrect(t− τ̃0)) dt (11)

where ρk(t) denotes the signal part of rk(t). Assuming the candidate τ̃0 < τ0 WLOG,

we further define EA1 ,
√
E
∫ Ts−τ0

0
p2
R(t)dt, EA2(τ̃0) ,

√
E
∫ Ts−τ0+τ̃0
Ts−τ0 p2

R(t)dt, and EB(τ̃0) ,
√
E
∫ Ts
Ts−τ0+τ̃0

p2
R(t)dt. Then (11) becomes

JML
0 (τ̃0) =

1

K2

K∑
m,k=1

(s2
ms

2
kEA1 + s2

m−1s
2
k−1EA2(τ̃0) + sm−1smsk−1skEB(τ̃0))

=
1

K2

K∑
m,k=1

(EA(τ̃0) + sm−1smsk−1skEB(τ̃0)) (12)
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where EA(τ̃0) , EA1+EA2(τ̃0). Notice that EA(τ̃0)+EB(τ̃0) = E
∫ Ts

0
p2
R(t)dt = ER is the unknown

but constant energy of a received segment independent of the trial value τ̃0. The noise-free

part of the objective function can thus be simplified as

JML
0 (τ̃0) = ER −

∆K

K2
EB(τ̃0) , (13)

where ∆K ,
∑K

m,k=1(1 − sm−1smsk−1sk) is a positive (as long as not all sm−1smsk−1sk =

1, ∀m, k, which can be easily avoided.) parameter determined by the transmitted pilot se-

quence. By definition, the condition of correct timing τ̃0 = τ0 ensures that EB(τ̃0) vanishes

and JML
0 (τ̃0) achieves its unique maximum ER. Notice that since ∆K is a sum ofK2 constants,

its value is on the order of K2, or can be explicitly written as αK2, where α is a constant.

We now go to the noise term ξML(τ̃0). It can be proved that ξML(τ̃0) is Gaussian distributed

with mean and variance:

E{ξML(τ̃0)} =
N0Ts
2K

, var{ξML(τ̃0)} =
2N0J

ML
0 (τ̃0)

K
+
N2

0BTs
K2

. (14)

Then, one can obtain the mean and variance of the overall Gaussian ML objective function:

E{JML(τ̃0)} = JML
0 (τ̃0) + E{ξML(τ̃0)} = JML

0 (τ̃0) +
N0Ts
2K

,

var{JML(τ̃0)} = var{ξML(τ̃0)} =
2N0J

ML
0 (τ̃0)

K
+
N2

0BTs
K2

. (15)

As one can see from (15), JML(τ̃0) asymptotically converges to JML
0 (τ̃0) as K → ∞, suggest-

ing the optimality of the ML estimator.

We adopt the probability of detection lower bound P d to evaluate the coarse timing

(acquisition) performance of the ML algorithm. Instead of estimating the true τ0, coarse

timing aims at finding n0 such that |n0Ti− τ0| < Ti, where Ti is the searching step size in the

ML algorithm. Correspondingly, the maximization problem in (10) becomes:

n̂0 = arg max
ñ0

JML(ñ0Ti) (16)

and the probability of detection is given by

PML
d = Pr{n̂0 = n0} = Pr{max

ñ0

JML(ñ0Ti) = JML(n0Ti)} . (17)

Since JML(n0Ti) is Gaussian distributed, the lower bound of (17) is given by

PML
d =

∏
ñ0 6=n0

F

(
E{JML(n0Ti)} − E{JML(ñ0Ti)}√

var{JML(n0Ti)}+ var{JML(ñ0Ti)}

)
(18)

8



where F (·) is the cumulative distribution function (cdf) of Gaussian distribution with zero

mean and unit variance.

Substituting the mean and variance of the objective function given in (15), we can obtain

the probability of detection lower bound:

PML
d =

∏
ñ0 6=n0

F

(
∆KEB(ñ0Ti)√

4N0ERK3−2N0∆KEB(ñ0Ti)K+2N2
0BTsK

2

)
. (19)

Remarks: i) As K increases the variance of the objective function decreases and the proba-

bility of detection lower bound increases. This suggests that the timing performance would

benefit from more correlation averaging; and ii) As ∆K increases the variance of the objec-

tive function is reduced and the probability of detection lower bound increases. Intuitively,

(13) provides another evidence that the objective function becomes sharper along with the

increase of ∆K , making detection of n0 easier. Since ∆K is determined by the transmitted

symbol sequence, one can expect that the acquisition performance would be markedly im-

proved by optimizing the training sequence such that ∆K is maximized.

C.3 Training Sequence Design and The SML Algorithm

C.3.1 The Optimum Training Sequence Pattern

The value of ∆K =
∑K

m,k=1(1− sm−1smsk−1sk) is determined by the signs of the consecutive

symbols. Define ck , sk−1sk ∈ {±1}, k = 1, · · · , K, as the product of two consecutive

symbols. Then ck belongs to one of the two groups, Γ+ , {ck,∀k : ck = 1} with cardinality

K+ and Γ− , {ck,∀k : ck = −1}with cardinality K−. Evidently, K+ +K− = K.

Lemma 1 For a specific K, max{∆K} = K2 is achieved when K+ = K− = K/2; that is, half of

the {ck}k elements belong to Γ+ and the other half belong to Γ−.

Notice that we only considered even K WLOG, since odd K has the same maximization

result with its even neighbor K − 1.

Lemma 1 gives the condition that maximizes ∆K for a particular K. Additionally, the

optimum training sequence should also be consistent; that is, applicable to arbitrary K. To

this end, we first notice that the ML timing estimator requires K ≥ 2, since when K = 1,

JML
0 (τ̃0) = ER [c.f. (12)] is simply a constant and gives no information about τ0. Following

Lemma 1, the consistency property can be ensured ∀K ≥ 2 by: i) partitioning the {ck}k se-

quence into doublets {c2n−1 c2n}, n = 1, 2, · · · , K/2; and ii) making sure that each {c2n−1 c2n}

9



doublet contains a “+1” and a “−1”, i.e., each doublet should be either {+1,−1} or {−1,+1}.
With this condition, the {ck}k sequence always has K+ = K− regardless of K. Note that, the

K = 2 case which ensures rapid acquisition using only 2 segments is a natural corollary of

the consistency property.

In addition, to guarantee that the “+1”, “−1” pairing condition holds for any doublet

starting from odd- and even-indexed symbols, all the doublets should be identical. In other

words, they are either all {+1,−1} or all {−1,+1}. As a result, this gives rise to a unique

training sequence {sk}k consisting of the repeated pattern {+1,+1,−1,−1} (or its circularly

shifted versions). We summarize the analysis in the following result:

Proposition 2 [Optimum Training Sequence] The unique optimum training sequence for the

ML estimator has the structure

sk = (−1)bk/2c , (20)

which ensures rapid acquisition using as few as 3 symbols and is applicable to arbitrary K(≥ 2).

C.3.2 Simplified ML (SML) Algorithm

For simplicity, denote the integrals in the objective function for τ̃0 (9) as jm,k. Considering

the partition of the training sequence by groups Γ+ and Γ−, we can rewrite (9) as

JML(τ̃0) =
1

K2

 ∑
{(m,k):cm,ck∈Γ+}

jm,k +
∑

{(m,k):cm,ck∈Γ−}

jm,k (21)

+
∑

{(m,k):cm∈Γ+,ck∈Γ−}

jm,k +
∑

{(m,k):cm∈Γ−,ck∈Γ+}

jm,k

 .

Consider the first two summations. Since cm and cn are chosen from the same group (namely

Γ+ in the first summation and Γ− in the second summation), the noise-free parts of the

summands are exclusively EA(τ̃0) + EB(τ̃0) = ER [c.f.(12)]. Furthermore, it is not difficult

to verify that the noise terms in the first two summations do not change with the shift

candidate τ̃0. Therefore, the first two summations are nothing but constants, which provide

no information on τ0. If one knows which (cm, ck) pairs give rise to these summands, one

can avoid calculating their corresponding cross correlations.

The optimum training sequence given by (20) precisely allows one to achieve this. The

repeated pattern {+1,+1,−1,−1} indicates that the received K symbol-long segments can

10



be divided into two groups by simply checking their indices. Specifically, if the symbol-

long received segment with odd index r2k−1(t) carries two successive symbols satisfying

c2k−1 = s2k−2s2k−1 ∈ Γ+ (or Γ−), then the symbol-long received segment with even index

r2k must carry two successive symbols satisfying c2k = s2k−1s2k ∈ Γ− (or Γ+). Retaining

only the cross correlations between the two groups, we can obtain the simplified ML (SML)

objective function as

JSML(τ̃0) =
2

K2

K/2∑
m,k=1

jSML
m,k ,

jSML
m,k =

∫ Ts

0

r2m−1(t)r2k(t)(−1)b
2m−2

2
c(−1)b

2k−1
2
crect(t+Ts−τ̃0)

+r2m−1(t)r2k(t)(−1)b
2m−1

2
c(−1)b

2k
2
crect(t−τ̃0) dt. (22)

Note that the last two summation terms in (21) are exactly the same, which explains the

reason why a scaling coefficient 2 shows up in (22).

We can rewrite JSML(τ̃0) by putting the double summations into the integral:

JSML(τ̃0) =
1

2

∫ Ts

0

 2

K

K/2∑
m=1

(−1)mr2m−1(t)

 2

K

K/2∑
k=1

(−1)kr2k(t)


· (rect(t+ Ts − τ̃0)− rect(t− τ̃0)) dt . (23)

The above integrand includes the product of three terms. The first is the average of the odd

indexed received segments which satisfies the condition for the group Γ+; the second is the

average of those even indexed received segments falling into the group Γ−; and the last

term is the window function accounting for the guess shift τ̃0.

Proposition 3 [SML Timing Estimation] By employing the optimum training sequence given

in Proposition 2, the SML estimator can be implemented with much lower complexity than the ML

estimator:

• Step 1: Take K received segments rk(t),∀k;

• Step 2: Average the odd and even indexed segments respectively as suggested by (23);

• Step 3: For each candidate τ̃0, form the window functions rect(t+ Ts − τ̃0) and −rect(t− τ̃0),

and calculate JSML(τ̃0) as (23);

11



• Step 4: Choose the τ̃0 which maximizes JSML(τ̃0) as the SML estimate τ̂0; that is, τ̂0 =

arg maxτ̃0 J
SML(τ̃0).

It is important to note that the complexity of the SML timing estimator is significantly

reduced. One only needs to evaluate K summations and 1 correlation for each τ̃0 candi-

date. Moreover, in a digital implementation, we do not need to compute the correlation for

every new τ̃0, as most of the correlation is identical from the current τ̃0 value to the next.

Additional computing saving can be obtained by only updating the difference instead of

calculating every correlation anew.

Like the ML estimator, we are also interested in the acquisition performance of the SML

estimator. Inherited from (12) with s2m−2s2m−1s2k−1s2k = −1,∀m, k, the noise-free part of the

SML objective function in (22) can be expressed as:

JSML
0 (τ̃0) =

EA(τ̃0)− EB(τ̃0)

2
=
ER − 2EB(τ̃0)

2
. (24)

The noise term ξSML(τ̃0) is Gaussian distributed with zero mean and variance (the proof is

similar to that for the ML, thus omitted here):

var{ξSML(τ̃0)} =
N0ER
2K

+
N2

0BTs
2K2

. (25)

After calculating the mean and variance for JSML(τ̃0):

E{JSML(τ̃0)} =
EA(τ̃0)− EB(τ̃0)

2
, var{JSML(τ̃0)} =

N0ER
2K

+
N2

0BTs
2K2

, (26)

we obtain the probability of detection lower bound for the SML algorithm as:

P SML
d =

∏
ñ0 6=n0

F

(
KEB(ñ0Ti)√

KN0ER +N2
0BTs

)
. (27)

C.4 Implementation Considerations and Simulated Performance

Theoretically, the SML algorithm can always detect n0 such that |n0Ti − τ0| < Ti on any

resolution level Ti as long as the complexity of the receiver is allowed. In practice, however,

significant attenuation at the tail of a multipath channel and the extent of noise-only region

between consecutive symbols make things more complicated. The unique peak at n0 of the

objective function tends to be comparable with its left neighbors ñ0 < n0 even when the

noise is absent. Therefore, the correct timing of ñ0 = n0 with fine (e.g., chip-level) resolution

is not easily distinguishable as the peak. On the other hand, we notice that the value of the

12



objective function decreases dramatically for ñ0 > n0, as a result of the first few strong taps

of the channel. Thanks to the different behavior of the regions ñ0 < n0 and ñ0 > n0, one can

resort to the first-order difference of the objective function in aid of finding n0 at chip level.

Suppose that the frame-level acquisition has already been achieved. After obtaining

the values of J(ñ0Tc) in the right frame where n0 is located, take the difference ∆J(ñ0Tc) =

J(ñ0Tc)−J(ñ0Tc−wTc), where w ∈ [1, Nc] and wTc denotes the step size. Then the candidate

ñ0 which maximizes ∆J(ñ0Tc) will be regarded as the estimate of n0.

We use the channel model IEEE 802.15.3a CM1 to generate the multipath channel. The

UWB pulse is the second derivative of the Gaussian function with unit energy and duration

Tp ≈ 1 ns. The frame duration is Tf = 35 ns, and each symbol contains Nf = 32 frames. A

random time hopping code cj is uniformly distributed over [0, Nc − 1], with Nc = 35 and

Tc = 1 ns. To avoid ISI, the time hopping code for the last frame of each symbol is set to

cNf−1 = 0.

Test 1 illustrates the optimality of the training sequence given in (20) for the ML estima-

tor. Fig. 1(a) compares the optimum training pattern with four randomly chosen sequences.

We can observe that for K = 2 only the optimum training sequence works. With K > 2, al-

though the other four can also work, the optimum training sequence consistently provides

the best performance for any K. We will employ the optimum training sequence in the

subsequent simulations.

Test 2 plots the objective functions of the ML and SML algorithms in one realization at

the frame level in Fig. 1(b). For comparison, the corresponding noise-free part of the SML

(and TDT) algorithm is also provided. It is shown that the ML and SML objective functions

have identical shape. The difference between them remains the same for all candidates ñ0.

Test 3 depicts the acquisition performance of the SML algorithm. The probabilities of

detection, together with the analytical lower bounds (27) are plotted in Fig. 2(a). The nor-

malized mean square errors (MSE), which are normalized with respect to T 2
s , are also shown

in Fig. 2(b).

Test 4 is designed to show the chip-level fine timing performance. The frame-level acqui-

sition is assumed to be achieved beforehand. As illustrated in Fig. 3(a), the performance of

the difference operation depends on the step size wTc. Accordingly, we choose the optimum

value for CM1 in our simulation as wTc = 3ns at low SNR and wTc = 8ns at high SNR. The

normalized MSE for the SML algorithm with various K is plotted in Fig. 3(b). Notice that

all curves reach an error floor since the timing with chip-level resolution is performed.
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Figure 1: (a)Pd for various sequences, E/N0 = 1dB. (b) Objective function magnitude for the ML

and SML algorithms, E/N0 = 5dB, K = 8 and n0 = 15.
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Figure 2: (a) Pd and P d for the SML algorithm, coarse timing. (b) Normalized MSE for the SML

algorithm, coarse timing.
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Figure 3: (a) Normalized MSE versus differential step wTc under various E/N0. (b) Normalized

MSE for the SML algorithm, fine timing.

C.5 Summary

In this research, we developed the data-aided ML timing algorithm, and derived the opti-

mum training sequence for the ML algorithm. Based on this optimum sequence, the original

ML algorithm can be simplified without affecting its optimality. Extensive simulations have

been performed to corroborate our theoretical analysis.

D Ranging with Single-Band UWB Signals: Focusing-on-

First-arrival (FoFa)

In the literature, various techniques have been proposed for ToA estimation for broadband

wireless systems. A straightforward method is to capture the first signal arrival by a slid-

ing correlator with a locally generated template at the receiver. In order to achieve high-

accuracy channel estimation and consequently high-accuracy ToA estimation, the correlator

has to slide at a sufficiently small step size. This implies either very long search time or very

high complexity receiver, depending on whether the correlations are performed in serial or

parallel.

In order to avoid the sliding correlator required in the time domain approaches, fre-

quency domain alternatives were proposed for ToA estimation, which are typically based
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on the frequency domain equalization (FDE) framework. This type of techniques treat ToA

estimation as a by-product of channel estimation. Intuitively, if one obtains all channel pa-

rameters including each path’s gain and delay, then the delay of the first multipath arrival

automatically becomes the ToA estimate. Using the fast Fourier transform (FFT), FDE can

be realized at a low complexity. For FDE systems, the frequency domain channel informa-

tion should be converted to the time domain to facilitate ToA estimation. This conversion

gives rise to various channel estimation techniques including the model-based estimator

that models the channel as a tapped delay line structure, the space alternating generalized

expectation maximization (SAGE) algorithm and the subspace-based estimator.

Problems arise when these channel estimators are employed for ToA estimation. Firstly,

the fixed structure of the tapped delay line model can not match the contiguously changing

tap delays. Secondly, the criterion used for channel estimation purpose is often either to

maximize the likelihood or to minimize the estimation error between the estimates of all

channel paths and the real ones. As a result, the contribution from the first path is very

small, especially when there is a large number of dense multipath components. Hence,

these approaches often encounter poor convergence or suffer from local optimum problems,

when being used as ToA estimators.

To avoid these problems, we propose to estimate the ToA of the channel by Focusing On

the First Arrival, which we term as FoFa. Compared to conventional methods, the FoFa ToA

estimator has the following advantages. Firstly, FoFa uses the frequency domain channel

information readily available in FDE systems to recover the time domain channel with an

equally-spaced model, which can effectively reduce the complexity of the estimation. Sec-

ondly, unlike conventional ToA estimators, FoFa relies on a novel criterion to optimize the

ToA estimation; that is, locating the first path by minimizing the energy leakage prior to the

first path. As a result, FoFa directly addresses the delay estimation of the first channel path,

without unnecessarily caring about the estimation errors for the trailing paths. This avoids

the poor convergence and local optimum problems often encountered when treating ToA

estimate as a by-product of channel estimation. In addition, all computations are carried

out with the baseband signal instead of the analog or oversampled waveform. Therefore,

the complexity of the FoFa ToA estimator is much lower than that of the sliding-correlator-

based estimator.

Notation: We will use bold upper and lower cases to denote matrices and column vectors,

respectively. We will use (·)T and (·)H for transpose and conjugate transpose of matrices
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and vectors, and (·)∗ for conjugate of complex numbers.

D.1 Broadband System Model with FDE

In this section, we will briefly review the FDE systems. Typical FDE systems include the

well-known orthogonal frequency-division multiplexing (OFDM) system and the single-

carrier frequency domain equalization (SC-FDE) system. Let us first explain the basic idea

of OFDM systems, and then briefly introduce SC-FDE. At the OFDM transmitter (see Fig.

4), a block of information symbols s = [s1, . . . , sN ]T are multi-carrier modulated onto N or-

thogonal digital subcarriers to form x = FHs, where F is the FFT matrix. A guard interval

(GI) in the form of padding zeros (ZP) or cyclic prefix (CP) is added to each block to mitigate

the inter-symbol interference (ISI). After the digital-to-analog conversion (DAC), the signal

is carrier modulated and transmitted from the antenna. The transmitted signal then propa-

gate through the channel: h(t) =
∑L

l=1 hl · δ(t− τl), where {hl}Ll=1 and {τl}Ll=1 are amplitudes

and delays of the L channel paths, respectively. Note that we do not require {τl}Ll=1 to be

equally spaced and do not assume any a priori channel information.

At the receiver, the arriving waveform is carrier demodulated and analog-to-digital

(A/D) converted to baseband discrete-time samples. After the GI is removed, the base-

band signal is multi-carrier demodulated with FFT operation to generate sequence {rk}Nk=1.

With some coarse synchronization, it can be easily shown that

rk = skHk + wk , k = 1, . . . , N , (28)

where wk is the additive white Gaussian noise (AWGN), and {Hk}Nk=1 are the Fourier trans-
form (FT) coefficients of the channel:

Hk =
L∑
l=1

hl · exp(−ωkτl) , ωk = 2kπ/TB , (29)
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where TB is the information block duration. Based on (28), the maximum likelihood (ML)
estimate of Hk can be formed as Ĥk = rk/sk, 1 ≤ k ≤ N .

Fig. 4 compares the baseband block diagrams of OFDM and SC-FDE. The difference

between OFDM and SC-FDE is where the IFFT operation is performed. In OFDM, IFFT

is adopted at the transmitter to modulate information symbols on subcarriers. In SC-FDE,

IFFT is performed at the receiver to convert the FDE output back to the time domain sym-

bols.

D.2 Energy Leakage in Channel Estimate

Following the literature, the channel is estimated by fitting the equally-spaced model (30)

to the frequency domain channel

h̄(t) =
L̄∑
n=1

h̄n · δ(t− τ̄n) (30)

where τ̄n = τ̄1 + (n − 1)Tp, 1 ≤ n ≤ L̄ and L̄ = dTh/Tpe with Th being the maximum

channel delay spread and Tp the tap interval which is chosen as the inverse of the signal

bandwidth. By doing this, ToA of the channel can be estimated by optimizing the single

free parameter τ̄1. This is in comparison with existing channel estimators which search all

individual channel path delays in [0, Th].

Given τ̄1, {h̄n(τ̄1)}L̄n=1 are expected to satisfy [c.f. (29)]

L̄∑
n=1

h̄n(τ̄1)exp(−ωb,kτ̄n) = Ĥb,k (31)

where the dependance of {h̄n(τ̄1)}L̄n=1 on τ̄1 is explicitly shown. More compactly written, we

have

G(τ̄1)h̄(τ̄1) = H + η (32)

where H =
[
HT

1 ,H
T
2 , . . . ,H

T
B

]T
and η =

[
ηT1 ,η

T
2 , . . . ,η

T
B

]T include all the subband FT

coefficients and noise terms, respectively, h̄(τ̄1) = [h̄1(τ̄1), h̄2(τ̄1), . . . , h̄L̄(τ̄1)]T and G(τ̄1) =[
GT

1 (τ̄1), GT
2 (τ̄1), . . . ,GT

B(τ̄1)
]T

withGb(τ̄1) being aK×L̄ FT matrix with the (k, n)th element

being exp(−ωb,kτ̄n). Based on Eq. (32), h̄(τ̄1) can be obtained by

h̄(τ̄1) =
(
GH(τ̄1)G(τ̄1)

)−1
GH(τ̄1)H + η̄ (33)

18



0 2 4 6 8 10
−0.1

0

0.1

0.2

0.3

0.4

0.5

Delay (ns)

A
m

p
lit

u
d
e

 

 

Real channel

Estimated channel

strong energy leakage

0 2 4 6 8 10
−0.1

0

0.1

0.2

0.3

0.4

0.5

Delay (ns)

A
m

p
lit

u
d
e
 

 

 

Real channel

Estimated channel

weak energy leakage

Figure 5: (a) Strong energy leakage. (b) Weak energy leakage.

where η̄ is the noise.

From (29), the frequency domain channel response Hb,k contains information from all L

channel paths. Therefore, the channel estimate can also be expressed as

h̄(τ̄1) =
L∑
l=1

(
GH(τ̄1)G(τ̄1)

)−1
GH(τ̄1)H(l) + η̄ (34)

whereH(l) is the frequency domain contribution from the lth channel path which can con-

structed byH(l) =
[
HT

1 (l),HT
2 (l), . . . ,HT

B(l)
]T

andHb(l) = [hlexp(−ωb,1τl), hlexp(−ωb,2τl), . . . ,
hlexp(−ωb,Kτl)]T . Same as other ToA estimators for MB-OFDM, Eq. (33) also assumes that

no random phase rotation exists in subband signals.

Proposition 4 For the lth channel path (hl, τl), given the channel estimator (33), only themth tap of

the channel estimate contains non-zero contribution from the lth path if this path is exactly sampled

by the mth tap as τl = τ̄m, ∃m ∈ [1, L̄].

This is because when τl = τ̄m, H(l) will be the mth column of the matrix G(τ̄1) scaled

by hl. Then, only the mth element in (GH(τ̄1)G(τ̄1))−1GH(τ̄1)H(l) is non-zero (see Eq. (34)).

If the lth channel path is missampled, i.e., τl 6= τ̄n, ∀n ∈ [1, L̄], all estimated channel taps

{h̄n}L̄n=1 are generally non-zero even if noise is absent. As a result, energy of this channel

path will disperse into all taps. This is known as the energy leakage phenomenon. In a

multipath channel with continuously varying path delays, the equally-spaced model can

not simultaneously sample all channel paths. Therefore, energy leakage will always exist.

The tap interval Tp is set as the inverse of the signal bandwidth, which is known as
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the time resolution of the system. When Tp is smaller, GH(τ̄1)G(τ̄1) in (33) tends to be ill-

conditioned and the problem becomes unsolvable.

From Eq. (34), the nth estimated channel tap is the summation of contributions from all

paths of the physical channel:

h̄n(τ̄1) =
L∑
l=1

h̄n(τ̄1, l) + η̄n(τ̄1) , n = 1, . . . , L̄ (35)

where h̄n(τ̄1, l) contains the information of the lth path and η̄n(τ̄1) is the noise. When Tp is

chosen as the inverse of the signal bandwidth, h̄n(τ̄1, l) can be further expressed by

h̄n(τ̄1, l) =hlexp
(
π(N − 1)(τ̄n − τl)

NTp

)
× sin(π(τ̄n − τl)/Tp)
N sin(π(τ̄n − τl)/(NTp))

.

(36)

Eq. (36) is actually the sampled version of the discrete sinc-function. Therefore, we have

the following results.

Proposition 5 The mth channel estimate tap contains the strongest energy from the lth channel

path if m = arg min1≤n≤L̄ |τl − τ̄n| , i.e., {τ̄m, h̄m} is the closest tap to {τl, hl}. Given this, energy

leakage on the other taps decreases as their tap indices n (n 6= m) deviate from m.

Proposition 6 Given that themth estimated channel tap contains the strongest energy from {τl, hl},
hm(τ̄1, l) increases as |τl − τ̄m| decreases in [0, Tp/2). Energy on the other taps |h̄n(τ̄1, l)|, n 6= m

approximately decreases when |τl − τ̄m| decreases in [0, Tp/2).

Figs. 5(a) and 5(b) use two different values of τ̄1 to channel estimate. We can see that by

using a proper τ̄1, energy leakage prior to the first path {h1, τ1} can be much weaker.

D.3 The Proposed ToA Estimator

For the ToA estimation purpose, Fig. 5(b) is clearly more preferable than Fig. 5(a). This is

because when the channel estimate in Fig. 5(a) is used by the threshold-based ToA estimator,

one of the strong energy leakage taps can be mistakenly picked out as the first path. This

may cause a severe ToA estimation error. Therefore, we need to suppress the energy leakage

before estimating the ToA.

20



When the energy leakage is sufficiently suppressed, a sharp jump of the tap amplitude

will emerge near the leading edge of the channel (see Fig. 5(b)). This sharp jump of am-

plitude can be detected by searching the value of τ̄1 to maximize the following energy ratio

between two adjacent taps

γn(τ̄1) =
|h̄n(τ̄1)|2
|h̄n−1(τ̄1)|2 , n ∈ [L1, L2] (37)

where [L1, L2] represents the remaining ToA estimation error after coarse timing. The ToA

estimate is then obtained by:

τ̂1 = ˆ̄τ1 + (n̂− 1)Tp (38)

with (ˆ̄τ1, n̂) = argmax
0≤τ̄1<Th, L1≤n≤L2

γn(τ̄1). The advantage of this criterion is that it avoids the

channel dependent threshold required by the threshold-based ToA estimators.

D.3.1 Analysis of ToA Estimation Criterion

Analysis of Eq. (35) for an arbitrary multipath channel is mathematically intractable. There-

fore, we consider a simplified two-path channel with the inter-path interval being (p+0.5)Tp

and p an integer. In this model, the first path carries the ToA information and the second

path models the interference from trailing paths. For this case, the strongest interference

arises from the second path when the first path is sampled at its true arrival instant.

Suppose that the channel paths have amplitudes [h1, h2] and delays [τ1, τ2]. Then the

energy ratio given by Eq. (37) can be expressed as

γn(τ̄1) =
|h̄n(τ̄1, 1) + h̄n(τ̄1, 2)|2
|h̄n−1(τ̄1, 1) + h̄n−1(τ̄1, 2)|2 , n ∈ [L1, L2] (39)

where h̄n(τ̄1, 1) and h̄n(τ̄1, 2) are contributions from the two channel paths [c.f. (36)].

Using τ2 = (p+ 0.5)Tp + τ1 and exp(π(p+ 0.5)Tp/(NTp)) ≈ 1 when p� N , we have

h̄n(τ̄1, 2) ≈ h̄n(τ̄1, 1)
h2(−1)p

h1

× sin
(
π(τ̄n − τ1)/(NTp)

)
sin
(
π(τ̄n − τ2)/Tp

)
sin
(
π(τ̄n − τ1)/Tp

)
sin
(
π(τ̄n − τ2)/(NTp)

) . (40)

Therefore, energy of the nth tap can be approximated by |h̄n(τ̄1)|2 = |h̄n(τ̄1, 1)|2 + |h̄n(τ̄1, 2)|2

and the energy ratio can be expressed as

γn(τ̄1) =
|h̄n(τ̄1, 1)|2 + |h̄n(τ̄1, 2)|2
|h̄n−1(τ̄1, 1)|2 + |h̄n−1(τ̄1, 2)|2 , n ∈ [L1, L2] . (41)
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Since Eq. (41) is still too complicated to analyze, we need to further simplify it. Suppose

that |h̄n(τ̄1, 1)| and |h̄n(τ̄1, 2)| reach their maximum values at the mth and m′th taps (m <

m′), respectively, such that |h̄m(τ̄1, 1)| = max(|h̄n(τ̄1, 1)|) and |h̄m′(τ̄2, 1)| = max(|h̄n′(τ̄1, 2)|),

n, n′ ∈ [1, L̄]. Numerical analysis has confirmed that the energy ratio will only be maximized

at the mth and m′th taps of the estimated channel. Based on this, the ToA estimate will be

either τ̄m or τ̄m′ . From Proposition 5, we know that |τ1 − τ̄m| ∈ [0, Tp/2) and |τ2 − τ̄m′| ∈
[0, Tp/2). Certainly, we prefer τ̄m than τ̄m′ . We will later use an approach to avoid the energy

ratio being maximized at the m′th tap. For now, we just assume that the ToA estimate is τ̄m

and analyze γn(τ̄1) at the mth tap.

Estimate ToA with τ̄m
From Proposition 6, we know that |h̄m(τ̄1, 1)| is a decreasing function of |τ1 − τ̄m|. Sim-

ilarly, |h̄m(τ̄1, 2)| and |h̄m−1(τ̄1, 2)| which are the energy captured from the second path are

increasing functions of |τ2 − τ̄m′|. Due to the relationship τ2 = (p + 0.5)Tp + τ1, |τ2 − τ̄m′ |
decreases as |τ1 − τ̄m| increases. For these reasons, both |h̄m(τ̄1, 2)| and |h̄m−1(τ̄1, 2)| are in-

creasing functions of |h̄m(τ̄1, 1)|. From (36), the maximum value of |h̄m(τ̄1, 1)| is h1 when the

first path is exactly sampled. When τ̄m = (τ1 − 0.5Tp), |h̄m(τ̄1, 1)| reaches its minimum value

|h̄m(τ̄1, 1)| =
∣∣∣∣h1

N
· sin(0.5π)

sin(0.5π/N)

∣∣∣∣ ≈ 2h1

π
. (42)

In order to relate |h̄m(τ̄1, 1)| with |h̄m(τ̄1, 2)| and |h̄m−1(τ̄1, 2)|, we use the following ap-

proximation

|h̄n(τ̄1, 2)|2 =

(
|h̄m(τ̄1, 1)| − 2h1

π

)2

ce(n),

n = m,m− 1, |h̄m(τ̄1, 1)| ∈ [2h1/π, h1]

(43)

where 2h1/π is the minimum value of |h̄m(τ̄1, 1)|. Coefficients {ce(n)}mn=m−1 reflect the in-

terference strength from the second path. In particular, the stronger the second path or

the smaller the inter-path interval, the larger {ce(n)}mn=m−1. Numerical analysis shows that

ce(n) is almost independent with |τ1 − τ̄m|. Therefore, ce(n) can be approximated to be con-

stant to |τ1 − τ̄m| and accordingly to |h̄m(τ̄1, 1)|. In addition, numerical result shows that

ce(m− 1) ≈ ce(m) which especially holds when the inter-path interval is large.

From Proposition 6, |h̄m−1(τ̄1, 1)| decreases as |h̄m(τ̄1, 1)| increases. Based on this, we use

the approximation |h̄m−1(τ̄1, 1)|2 ≈ h2
1 − |h̄m(τ̄1, 1)|2. Then, the energy ratio at the mth tap of
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Figure 6: (a) ToA estimation by the maximizing Eq. (44). (b) ToA estimation by maximizing the

energy ratio at the strongest component tap of the first path; two path channel.

the estimated channel (41) is simplified as

γm(τ̄1) ≈ |h̄m(τ̄1, 1)|2 +
(
|h̄m(τ̄1, 1)| − 2h1/π

)2
ce(m)

h2
1−|h̄m(τ̄1, 1)|2+

(
|h̄m(τ̄1, 1)| − 2h1/π

)2
ce(m)

,

|h̄m(τ̄1, 1)| ∈ [2h1/π, h1].

(44)

Eq. (44) contains a single independent variable |h̄m(τ̄1, 1)| with the coefficient ce(m) model-

ing the interference from the second path. For each ce(m), the ToA estimate can be calculated

by searching |h̄m(τ̄1, 1)| to maximize the energy ratio (44). Fig. 6(a) shows that the ToA es-

timation error decreases as ce(m) decreases, which is a quite reasonable result. In addition,

when ce(m) is very small, the ToA estimation is always accurate. When ce(m) is large, the

ToA estimation error will rapidly increase because the second path is dominant.

Fig. 6(b) shows the numerical result for the two-path channel where the ToA is esti-

mated by maximizing the energy ratio of (39) at the mth tap that contains the strongest

contribution from the first path. As predicted by the approximate analysis in Eq. (44), the

ToA estimation error decreases either as the inter-path interval increases or the second path

strength decreases, both of which result in a smaller ce(m). When the inter-path interval is

large, the ToA estimate is very accurate since inference from the second path is very weak.

As the second path strength increases, the ToA estimation error will rapidly increase since

the inter-path inference becomes dominant.

Avoid the Fake ToA Estimate τ̄m′

In the preceding analysis, we estimate the ToA by searching τ̄1 to maximize the energy
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Figure 7: (a)Avoid picking out the second path; M = 4. (b) ToA estimation by maximizing the

energy ratio among the reconstructed taps for the two path channel; τ2 = τ1 + 3.5Tp.

ratio γn(τ̄1) at the mth tap that contains the strongest contribution from the first path. For

this approach to be realistic, we need to avoid the energy ratio γn(τ̄1) being maximized at the

m′th tap that contains the strongest contribution from the second path. We use the following

modified energy ratio

γn(τ̄1,M) =
|h̄n(τ̄1)|2

1

M

n−M∑
i=n−1

|h̄i(τ̄1)|2
, n ∈ [L1, L2] . (45)

Different from (41), the denominator in (45) also includes (M − 1) taps prior to the current

tap. Therefore, if M is sufficiently large, denominator of the m′th tap will not only include

the weak energy leakage of both paths but also the strong energy leakage from the first

path (see Fig. 7(a)). In comparison, denominator of the mth tap only contains weak energy

leakage from both paths. As a result, it will be less likely for Eq. (45) to reach its maximum

value at taps that contain strong energy from the second path.

The validity of this method has been confirmed by the numerical analysis where the

ToA is estimated by searching for the maximum value of γn(τ̄1,M) among all taps of the es-

timated channel (see Fig. 7(b)). In Fig. 7(b), an optimal value of M exists that optimizes the

ToA estimation performance. When M is smaller than this value, ToA estimation accuracy

improves asM increases since it becomes less likely to pick out the trailing paths when more

leading paths are included in the denominator of γn(τ̄1,M). As M continuously increases,

ToA estimation performance will again degrade. This is because as more weaker energy
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leakage taps prior to the first path are included, the estimator becomes less sensitive to the

ToA estimation error. Simulations show that these results also hold for the IEEE 802.15.4a

UWB channels.

D.3.2 ToA Estimation for Multipath Channels

Based on the preceding discussions, we have the following ToA estimation algorithm for

general multipath channels.

Proposed Algorithm: For each τ̄1 ∈ [0, Tp), we evaluate the energy ratio γn(τ̄1,M) = |h̄n(τ̄1)|2

/( 1
M

∑n−M
i=n−1 |h̄i(τ̄1)|2) at the nth tap, n ∈ [L1, L2]. [L1, L2] represents the remaining ToA estimation

error after the coarse timing. Then find the (τ̄1, n) pair that maximizes the energy ratio γn(τ̄1,M):

(ˆ̄τ1, n̂) = argmax
0≤τ̄1<Tp, L1≤n≤L2,

γn(τ̄1,M) . (46)

The ToA estimate can then be obtained as:

τ̂1 = ˆ̄τ1 + (n̂− 1)Tp . (47)

The range of τ̄1 in (46) has been reduced to [0, Tp) as compared to the [0, Th] in Eq. (38) where

Th is the maximum channel delay spread. This is because for the equally-spaced model, the

energy ratio satisfies γn(τ̄1 + kTp,M) = γn+k(τ̄1,M) for τ̄1 ∈ [0, Tp) with k being an integer

(see (36)). Therefore, it is sufficient to limit τ̄1 in [0, Tp) when γn(τ̄1,M) is also maximized

with respect to the tap index.

D.3.3 FoFa versus Traditional ToA Estimators

When the model-based channel estimator is used for ToA estimation, it can not achieve the

best accuracy provided by the channel condition. As FoFa, the model-based estimator also

uses (33) to estimate the channel. However, it does not consider the optimal choice of τ̄1 in

the sense of ToA estimation. From Fig. 5(a), we can see that with a bad choice of τ̄1, delay

of any of the first 5 taps could be used as the ToA estimate, due to their sufficiently large

amplitudes. In such cases, the resulting ToA estimation error will be comparable to, or even

much greater than, the tap spacing. Actually, with an intention to solve this problem, the

FoFa ToA estimator can be regarded as an enhanced sample-spaced estimator.

As introduced previously, all computations in the FoFa ToA estimator are performed in

baseband which avoids the manipulation of analog waveforms as in correlator-based esti-
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mators. In addition, FoFa uses the channel frequency response coefficients for ToA estima-

tion which are already available for equalization purposes in FDE systems such as OFDM

and SC-FDE. Therefore, the FoFa ToA estimator can achieve a much lower hardware cost

by building on existing FDE structures with minimum alteration.

Traditionally, ToA estimation can also be carried out via channel estimation which aims

at maximizing the likelihood or minimizing the error between the estimates of all paths

and the true ones. Since the contribution from the first path is small, these estimators often

encounter poor convergence or suffer from local optimum problems when being used as

ToA estimators. The FoFa ToA estimator directly addresses the delay estimation of the first

channel path. Therefore, FoFa can outperform the traditional channel-estimation-based ToA

estimators in terms of accuracy. This can be verified by simulations for FoFa and the well-

known SAGE algorithm. Furthermore, the FoFa ToA estimator is computationally efficient

since we focus on the estimation of a single parameter.

D.4 Summary

In this research, we propose a high-precision ToA estimator by focusing on the first arrival

(FoFa). The ToA estimator relies on a novel criterion; that is, locating the first channel path

by minimizing the energy leakage prior to the first path. By directly addressing the estima-

tion of the first channel path, the proposed ToA estimator can outperform the traditional

SAGE algorithm in terms of accuracy and computational efficiency. Furthermore, the pro-

posed ToA estimator operates in baseband to avoid the complicated manipulation of the

analog or oversampled waveform at the receiver, and can be implemented with minimum

alteration of existing FDEs.

E Ranging with Multi-Band UWB Signals: Coherent vs. Non-

coherent Combination

In our approach, the tap spacing Tp dictates the resolution of the candidate set {h̄l, τ̄l}L̄l=1. At

the first glance, it appears that the timing resolution can be arbitrarily improved by reducing

Tp. However, when Tp is smaller than the inverse of the bandwidth occupied by the channel

frequency response coefficients, the matrix GH(τ̄1)G(τ̄1) in (33) tends to be ill-conditioned
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and the problem becomes unsolvable. This is because, even though the Vandermonde ma-

trixG(τ̄1) always has full column rank, columns ofG(τ̄1) become increasingly correlated as

Tp decreases. In the extreme case when Tp → 0, the rank of G(τ̄1) becomes one. For this

reason, the achievable resolution of the estimator is constrained by the used bandwidth.

This bandwidth versus resolution problem has also been mentioned in the literature in a

different context.

For multi-band systems such as the MB-OFDM UWB, two strategies can be adopted to

combine the channel information from subbands: the coherent combining and the noncoherent

combining. For the coherent combining, estimates of channel frequency response coefficients

for all subbands are jointly used to estimate the time domain channel with Eq. (33). For

the noncoherent combining, the time domain channel is first estimated for each subband.

Then, the ToA estimates obtained from all subbands are averaged for a better final estimate.

The bandwidth used by the coherent combining is larger than each individual subband. In

addition, the smallest model resolution Tp is the inverse of the bandwidth that is used for the

time domain channel estimation. The coherent combining can provide a better resolution

than the noncoherent combining.

It should be noted that, as other ToA estimation techniques in the literature, the coherent

combining in the FoFa ToA estimator also requires that no random phase rotation exists in

subband signals after carrier demodulation. If there is random phase rotation, one would

have to adopt the noncoherent combining. In addition, the resolution enhancement by the

coherent combining is obtained at the price of increased computational complexity by com-

puting the inverse ofGH(τ̄1)G(τ̄1) of a greater dimension.

We simulate the performance of the FoFa ToA estimator based on the UWB MB-OFDM

system specified in the ECMA-368 standard. In this standard, the entire UWB spectrum is

divided into 14 equally-sized subbands. For each subband with a bandwidth of 528 MHz,

the multicarrier modulation/demodulatioin is performed with a 128 point IFFT/FFT. A

total of 122 subcarriers are used as data, guard and pilot subcarriers. Each simulation is

carried out in 2000 randomly generated channel realizations. As the performance of the

subspace-based algorithms are usually quite sensitive to channel order mismatch, we will

only compare the performance of the FoFa ToA estimator with the SAGE algorithm.

We first compare FoFa with the SAGE algorithm in the IEEE 802.15.4a LoS office channel

(CM3) (see Fig. 9(a)). Assume that the remaining timing ambiguity is ±4.5 ns after the

coarse synchronization. The M in (45) is set so that the average energy is calculated in the

27



−5 0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

SNR (dB)

R
M

SE
 (n

s)

 

 
FoFa, LoS, coherent combining
FoFa, LoS, noncoherent combining
SAGE, LoS, coherent combining
SAGE, LoS, noncoherent combining

 ! " ! #" #! $" $!
"%!

#

#%!

$

$%!

&

'()*+,-

)
.
'
/
0*
1
2
-

0

0

343560(74'60849:;:1<084=>?1?1@

343560(74'60141849:;:1<084=>?1?1@

'AB/60(74'60849:;:1<084=>?1?1@

'AB/60(74'60141849:;:1<084=>?1?1@

Figure 8: (a) The RMSE performance of SAGE and the FoFa ToA estimator in LoS channels. (b) The

RMSE performance of SAGE and the FoFa ToA estimator in NLoS channels.

range of 2 ns. For a fair comparison, the channel estimates obtained by using Eq. (33) with

a random τ̄1 are fed to the SAGE ToA estimator as the initial state of the iterative algorithm.

Fig. 9(a) shows the root-mean-square error (RMSE) performance of FoFa and SAGE

when the 3 subbands are either coherently or noncoherently combined. For both estimators,

the RMSE is much smaller than the receiver sampling interval 1.89 ns=1/528 MHz at high

SNR. For both coherent and noncoherent combining, SAGE outperforms the FoFa estimator

at low SNR. This is because the SAGE algorithm estimates the delays and amplitudes of all

channel paths. At high SNR, FoFa outperforms SAGE by directly estimating the ToA. With

our setup, the Matlab simulation time of the SAGE estimator is about 10 times that of FoFa1.

Although the simulation codes are not optimized, this can somehow show that the FoFa ToA

estimator is more computationally efficient. In Fig. 9(a), we also compare the performance

of both coherent combining and noncoherent combining. As predicted in the preceding

analysis, the coherent combining shows a better resolution (high SNR performance) than

the noncoherent combining due to the improved resolution of {h̄l, τ̄l}L̄l=1.

The FoFa and SAGE ToA estimators are then evaluated and compared in the IEEE 802.15.4a

non-line-of-sight (NLoS) office channel (CM4) (see Fig. 9(b)). Compared to the LoS channel

environment, both estimators show performance degradations. Notice that this is also a

common problem for existing timing and synchronization algorithms, because in the NLoS

scenario, the first channel path is not necessary to be a strong one and the synchronization

1For SAGE, we have used the time of one iteration for comparison.
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Figure 9: (a) ToA estimation for the outdoor LoS and NLoS channels. (b) ToA estimation for the

industrial LoS and NLoS channels.

is more likely to be affected by noise and the trailing paths.

We further test our algorithm in outdoor and industrial UWB channels. Figs. 9(a) and

9(b) show that performance in LoS channels is better than the corresponding NLoS chan-

nels. This is because in the NLoS channel, the first path may not be strong and the estimator

is more affected by the trailing paths. However, there is an exception for the outdoor envi-

ronment at high SNR. Comparing their channel realizations, we find that channel paths in

CM6 are weaker but sparser than CM5. As a result, the CM6 channel can be better resolved

than CM5 and the localization of its first path will be less interfered by its trailing paths.

The proposed ToA estimator is also compared with the SAGE-based ToA estimator.

Channel estimate results obtained by (33) with a random τ̄1 are fed to the SAGE-based ToA

estimator as the initial state of the iterative algorithm. Simulations show that FoFa out-

performs SAGE. SAGE is a practical method to estimate multiple parameters due to its fast

convergence than the EM algorithm. However, SAGE has the local optimum problem, espe-

cially when the number of unknown parameters is large. Therefore, the estimated channel

may not be very close to the real channel at the first path. The proposed ToA estimator

directly estimates the first path delay, without unnecessarily caring about the estimation

errors for the trailing paths and therefore enables a better ToA estimation performance.
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F Ranging with Multi-Band UWB Signals: Random Phase

Ratation

Multi-band orthogonal frequency-division multiplexing (MB-OFDM) UWB systems com-

bine OFDM and frequency hopping that periodically alters the carrier frequency among

multiple subbands. Due to their huge bandwidth, UWB systems can realize high resolu-

tion time-of-arrival (TOA) estimation for time-based wireless ranging and localization. For

MB-OFDM, this capability can be further enhanced if channel information is collected from

multiple subbands to estimate the TOA.

TOA estimation is usually carried out in two steps. First, the time domain channel is

estimated. Then, the first path is detected from the channel estimate and its delay is used as

the TOA estimate. In order to achieve high resolution channel estimation, channel informa-

tion from multiple subbands should be coherently combined so that consecutive subbands

are treated as a single larger band. Coherent combining requires that subband signals have

the same phase rotation after carrier demodulation. However, this cannot be guaranteed by

MB-OFDM receivers due to the uncertain initial phase states of modulator and demodulator

oscillators. Therefore, it is necessary to develop a signal processing algorithm to calibrate

random phase rotations across subbands.

The proposed phase rotation calibration algorithm relies on the energy leakage phe-

nomenon which has been used for precise TOA estimation as discussed in the preceding

section. Energy leakage is essentially due to the limited resolution of finite signal band-

width when the channel is estimated. Analysis in this work indicates that in the presence

of random phase rotations, resolution of MB-OFDM signals degrades which is reflected by

increased energy leakage in the channel estimate. Based on this, we propose to calibrate

phase rotations of subbands by suppressing the energy leakage effect. Validity of the pro-

posed technique is corroborated in IEEE 802.15.4a UWB channels.

F.1 MB-OFDM System Model

At the MB-OFDM transmitter (see Fig. 10(a)), information bits are mapped to constellation

points and multi-carrier modulated by inverse fast Fourier transform (IFFT). In order to

avoid the inter-symbol interference (ISI), guard interval (GI) is added to each OFDM sym-

bol. After digital-to-analog conversion (DAC), baseband signals are carrier modulated and
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transmitted from antenna. At the receiver (see Fig. 10(b)), received signals are carrier de-

modulated and analog-to-digital converted (ADC). After coarse timing, GI is removed and

the baseband signals are multi-carrier demodulated by FFT.

MB-OFDM systems can periodically alter the carrier frequency according to the time-

frequency code known to both transmitter and receiver (see Fig. 11). Due to the uncertain

phases of transmitter and receiver oscillators (φt and φr in Fig. 10), baseband received sig-

nals contain a random phase rotation φ̄ = (φt − φr) which varies in the range between 0

and 2π. Although the random phase rotation can even change when the system twice en-

ters the same subband, we mainly focus on the inter-band phase calibration across different

subbands. After that, we will briefly introduce how to perform the intra-band phase cali-

bration.

Same as the single-band OFDM, MB-OFDM can convert the frequency selective channel

to parallel flat fading channels, each corresponding to a subcarrier. Suppose that the system

operates over B subbands and each subband contains K subcarriers. The received signal

rb,k on the kth (0 ≤ k ≤ K−1) subcarrier of the bth (0 ≤ b ≤ B−1) subband can be expressed

as:

rb,k = sb,kHb,kexp(φ̄b) + ξb,k . (48)

In Eq. (48), sb,k is the signal transmitted on the kth subcarrier of the bth subband and ξb,k is

noise. Hk,b is the channel Fourier transform coefficient:

Hb,k =
L−1∑
l=0

hlexp(−ωb,kτl) (49)

where {hl}L−1
l=0 and {τl}L−1

l=0 are multipath amplitudes and delays of the channel impulse

response (CIR)

h(t) =
L−1∑
l=0

hlδ(t− τl) , (50)

and ωb,k is the frequency of the (k, b)th subcarrier. φ̄b is the random phase rotation in base-

band signals of the bth subband.

Based on (48), channel information can be obtained in frequency domain by the follow-

ing operation:

H̄b,k =
rb,k
sb,k

= Hb,kexp(φ̄b) + ηb,k (51)

where ηb,k = ξb,k/sb,k is noise.
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Figure 10: MB-OFDM system model.

F.2 Channel Estimation with Coherent Combining

The random phase rotation problem is encountered in channel estimation with coherent

combining which is the first step of high resolution TOA estimation for MB-OFDM. In the

absence of a priori channel information, the maximum likelihood (ML) criterion results in

the optimal channel estimator. Given that ξb,k in Eq. (48) is white Gaussian, the ML channel

estimator obtains estimates of {hl}L−1
l=0 , {τl}L−1

l=0 and nuisance parameters {φ̄b}B−1
b=0 when the

following squared error

E =
B−1∑
b=0

K−1∑
k=0

|rb,k − r̂b,k|2 (52)

is minimized between received signals and their reconstructed versions

r̂b,k = sb,k

L−1∑
l=0

ĥlexp(−ωb,kτ̂l)exp
(
 ˆ̄φb

)
. (53)

The ML estimator is too computationally intensive to be feasible for UWB channels due to

the huge number of multipath components.
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Figure 11: An typical example of the time-

frequency hopping pattern for MB-OFDM with

three subbands. The carrier frequency is altered

once every OFDM symbol duration.

In order to maintain low complexity,

many channel estimation related problems

are investigated based on the sampled chan-

nel. This suggests that the time domain
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channel can be reconstructed by fitting fre-

quency domain channel information (51) to

the following sequence with equally-spaced

samples:

h̄(t) =
L̄−1∑
n=0

h̄nδ(t− τ̄n) . (54)

The sequence h̄(t) contains L̄ samples with

amplitudes {h̄n}L̄−1
n=0 and delays {τ̄n}L̄−1

n=0 . Given the first sample delay τ̄0 and sample spacing

Tp, delays of other samples can be determined as τ̄n = τ̄0 + nTp, 1 ≤ n ≤ L̄ − 1. In order to

reconstruct the whole CIR, L̄Tp should be larger than the maximum channel delay spread.

In this work, tap spacing Tp is chosen as the inverse of the entire bandwidth of all subbands

which is known as the system resolution. Compared to the ML criterion (52) and (53), this

estimator has much lower-complexity because it has only one free parameter τ̄0. In the

preceding section, τ̄0 is optimized for TOA estimation when the mistiming induced energy

leakage is minimized.

For each arbitrary τ̄0, sample amplitudes of sequence (54) can be obtained by fitting

{h̄n}L̄−1
n=0 to the frequency domain channel information (51) as

L̄−1∑
n=0

h̄nexp(−ωb,kτ̄n) = H̄b,k,

0 ≤ k ≤ K − 1, 0 ≤ b ≤ B − 1

. (55)

As all subbands have been incorporated into channel estimation, Eq. (55) results in a coher-

ent combining of MB channel information.

The relationship (55) can be expressed in matrix form as

Gh̄ = H̄ (56)

where H̄ = [H̄0,0, H̄0,1, . . . , H̄B−1,K−1]T contains all frequency domain channel information,

h̄ = [h̄0, h̄1, . . . , h̄L̄−1]T is the vector of sample amplitudes and G is the Fourier transform

matrix determined by Eq. (55). A simple least squares (LS) solution of (56) can be formed as

h̄ =
(
GHG

)−1
GHH̄ . (57)

It should be noted that h̄ depends on the first sample delay τ̄0 throughG.
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Figure 12: (a) Amplitude of the lth path’s information in the estimated channel in the presence of

random phase rotations. (b) Amplitude of the lth path’s information in the estimated channel in the

absence of random phase rotations.

As mentioned above, sample spacing Tp is chosen to be the inverse of the entire band-

width. There are two reasons for this. First, if Tp is smaller than this value,GHG in Eq. (57)

tends to be ill-conditioned and the problem becomes unsolvable. Secondly, given this Tp,

GHG is an identity matrix and the computational cost is reduced by avoiding calculating

(GHG)−1.

F.3 Analysis and Calibration of Random Phase Rotation Effect

In this section, we first analyze the impact of random phase rotations to channel estima-

tion. Based on the analysis result, we will propose our random phase rotation calibration

algorithm.

F.3.1 With Random Phase Rotations

Because Eqs. (49) and (55) are linear to the L channel multipath components, the nth sample

h̄n of the estimated channel h̄(t) is the superposition of information obtained from all L

paths

h̄n =
L−1∑
l=0

h̄n(l) + η̄n , 0 ≤ n ≤ L̄− 1 . (58)
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In Eq. (58), η̄n is the noise term and h̄n(l) contains channel information obtained from the

lth multipath component which can be expressed by

h̄n(l) = hl

B−1∑
b=0

exp(φ̄b)exp
(


2πb

BTp
(τ̄n − τl)

)
× h̄sn(l)

(59)

and

h̄sn(l) = exp
(
π(K − 1)(τ̄n − τl)

NTp

)
× sin(π(τ̄n − τl)/(BTp))
N sin(π(τ̄n − τl)/(NTp))

. (60)

In Eq. (59), h̄n(l) contains channel information collected from all B subbands distorted

by random phase terms {exp(φ̄b)}B−1
b=0 with {φ̄b}B−1

b=0 being uniformly distributed in the rage

between 0 and 2π. Energy captured by h̄n(l) is random but its mean value can be obtained

as (cf. (59)):

E
(∣∣h̄n(l)

∣∣2) = h2
l

sin2(π(τ̄n − τl)/(BTp))
KN sin2(π(τ̄n − τl)/(NTp))

. (61)

Note that the energy in Eq. (61) is determined by the discrete sinc function sampled at time

instants (τ̄n − τl), 0 ≤ n ≤ L̄− 1.

Fig. 12(a) shows an example of Eq. (61) where the blue line represents the lth channel

path with delay τl = 0 and red lines are square root of Eq. (61) with their envelope (dashed

line) being the discrete sinc function. The sinc function has a main lobe width of 2BTp.

From the definition of Tp, BTp is the inverse of bandwidth of a single subband. This implies

that no matter how many subands are used, in the presence of random phase rotations,

resolution of channel estimation is only facilitated by subband bandwidth. As shown in

Fig. 12(a), even for a single channel path, multiple samples in the estimated channel contain

non-zero energy. This is known as the energy leakage phenomenon. It should be noted that

due to the random phase rotation effect, energy leakage cannot be avoided by horizontally

shifting the sequence (see Fig. 12(a)).

F.3.2 Without Random Phase Rotations

In this case, we assume that phase rotations of all subbands have been perfectly calibrated

to the same value, for example φ̄0. Then information of the lth path in the estimated channel
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can be expressed as (cf. (59))

h̄n(l) =hlexp(φ̄0)exp
(
π(N − 1)(τ̄n − τl)

NTp

)
× sin(π(τ̄n − τl)/Tp)
N sin(π(τ̄n − τl)/(NTp))

. (62)

Energy captured by the nth sample from the lth channel path is also a sampled discrete sinc

function but with a smaller main lobe width of 2Tp (see Fig. 12(b)):

∣∣h̄n(l)
∣∣2 = h2

l

sin2(π(τ̄n − τl)/Tp)
N2 sin2(π(τ̄n − τl)/(NTp))

. (63)

Same as (61), Eq. (63) still shows energy leakage dispersed from the lth path over

{h̄n(l)}L̄−1
n=0 . However, when the lth path is exactly sampled by the sequence if a proper

τ̄0 ∈ [0, Tp) is chosen, energy leakage in Eq. (63) vanishes and all energy of the lth path is

captured by the sample that has delay of τl. This is not a property possessed by (61) when

random phase rotations exist.

The difference between (61) and (63) indicates that energy leakage can be induced by

not only missampling but also the random phase rotation effect. In the presence of random

phase rotations, main lobe of (61) is B times wider than (63) which results in a more dis-

persive energy leakage. These suggest that {φ̄b}B−1
b=0 can be calibrated by suppressing the

additional energy leakage induced by random phase rotations.

F.3.3 Phase Rotation Calibration Algorithm

Fig. 5(a) shows the real-valued UWB channel and amplitude of the channel estimate (58)

using the first two subbands of the ECMA-368 MB-OFDM system. For multipath channels

with continuously varying delays, energy leakage always exists because the equally-spaced

sequence cannot exactly sample all channel paths. Among all samples in the channel es-

timate, those prior to the first channel path can well reflect the extent of energy leakage

because no multipaths fall in this range. We have seen that, TOA is estimated by choosing

a proper τ̄0 so that the missampling induced energy leakage contained by these samples is

minimized. For phase rotation calibration, energy leakage is induced by both missampling

and random phase rotations. Therefore, energy leakage prior to the first path can be min-

imized by choosing proper values for both τ̄0 and {φ̄b}B−1
0 . Based on this, random phase

rotations can be calibrated across subbands by the following algorithm.
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Proposed Algorithm: After coarse timing, select M samples {h̄n}M−1
n=0 before the first channel path

that only contain energy leakage. For each τ̄0 ∈ [0, Tp) and φ̄b ∈ [0, 2π), b ∈ [1, B − 1], calculate the

total energy leakage of these M samples

E(τ̄0, {φ̄b}B−1
b=1 ) =

M−1∑
n=0

|h̄n|2 . (64)

Then find τ̄0 and {φ̄b}B−1
b=1 that minimize the energy leakage

(ˆ̄τ0, { ˆ̄φb}B−1
b=1 ) = argmin

0≤τ̄0<Tp, 0≤φ̄b<2π

E(τ̄0, {φ̄b}B−1
b=1 ) . (65)

Correct phase rotations by multiplying the bth subband’s received signals with exp(− ˆ̄φb).

F.3.4 Discussions

We have introduced the inter-band phase calibration of different subbands. It should be

noted that phase rotation also changes when the system twice enters the same subband.

Suppose that φ̄b(i) and φ̄b(i+ 1) are phase rotations when the system for the ith and (i+ 1)th

times enters the bth subband and channel does not change in this period. Calibration of

φ̄b(i) and φ̄b(i+ 1) can be simply realized by using the phase of the following correlation:

R(i, i+ 1) =
K∑
k=1

rb,k(i)r
∗
b,k(i+ 1) . (66)

In Eq. (66), the same set of training data {sb,k}K−1
k=0 are transmitted for received signals

{rb,k(i)}K−1
k=0 and {rb,k(i + 1)}K−1

k=0 . Combining Eqs. (66) and (65), random phase rotations

can be calibrated for the general case with arbitrary time-frequency hopping patterns.

In Sections F.2 and F.3, we have focused on the coherent combining where multiple sub-

bands are treated as a single larger band for channel and TOA estimation. Analysis indicates

that when phase rotations of subbands are calibrated, coherent combining can achieve the

resolution facilitated by the entire bandwidth. In comparison, noncoherent combining first

estimates the CIR and/or TOA for each subband and then averages subband estimates for

a better final estimate. Analysis proves that noncoherent combining can reduce the mistim-

ing probability of TOA estimation when more subbands are used. Noncoherent combining

does not require the calibration of random phase rotations and its computational complex-

ity is lower than coherent combining. However, it can only obtain the resolution facilitated

by subband bandwidth.
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Figure 13: (a) Phase calibration performance for IEEE 802.15.4a office channels.(b) Phase calibration

performance for IEEE 802.15.4a industrial channels.

F.4 Simulations

The proposed phase rotation calibration algorithm is simulated based on the ECMA-368

MB-OFDM system in IEEE 802.15.4a UWB channels. Channel information from the first two

subbands are coherently combined to estimate the time domain channel. M = 4 samples

are used to calculate the energy leakage dispersed prior to the first channel path (see (64)).

Figs. 13(a) and 13(b) show performance for the IEEE 802.15.4a office and industrial chan-

nels including both the line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. Phase

calibration errors normalized by 2π are plotted versus the signal-to-noise ratio (SNR). For

both channel types, performance in the LOS scenario is better than the corresponding NLOS

scenario. This is because that in LOS channels, the first channel path is strong and energy

leakage (64) is dominated by the first path, which makes LOS channels more like single

path channels. Since the energy leakage based algorithm works perfectly for single path

channels, the LOS performance should be better than NLOS.

F.5 Summary

In this work, we solved the random phase rotation problem which is encountered in the

coherent combining of MB channel information for high resolution TOA estimation. Our

analysis indicates that in the presence of random phase rotation, resolution of MB signals

degrades due to the increased energy leakage in the channel estimate. Based on this, we
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propose to calibrate random phase rotations of subbands by minimizing energy leakage.

Simulation results show that our algorithm works well in IEEE 802.15.4a UWB channels.

G From Ranging to Localization: Cooperative Localization

via SDP

Recently, GPS-complementary location-aware sensor networks have attracted increasing in-

terests in a wide range of applications such as earthquake detection, weather forecasting,

current flow measurement. Such networks typically consist of two types of sensors: the

anchors or base stations with self-positioning capability, and the targets with their positions

unknown to the system. The localization problem amounts to estimating the locations of the

targets based on the known positions of the anchors and geometrical relationships among

the sensors.

In conventional wireless systems, such as cellular networks, localization is achieved in a

non-cooperative manner; that is, target positions are estimated only by the anchors within

the localization range. However, sensor networks can adopt a cooperative mode where

inter-target communications are also permitted such that targets can even utilize location

information of the anchors outside of the direct communications range and single-hop con-

nections to anchors are no longer a must. While not all targets can estimate their locations

non-cooperatively, more of them may cooperatively locate themselves. Cooperative local-

ization not only reduces the density of the expensive anchors but also provides improved

localization accuracy. Semidefinite programming (SDP) technique is widely adopted to con-

vert the original nonconvex problems into convex ones in recent years. Time-of-Arrival

(ToA) based Standard SDP (SSDP) was proposed in the literature. However, SSDP is not in-

herently suitable for large-scale networks since the arithmetic operation complexity of SDP

is at least O(k3), where k is the dimension of the semidefinite cones. This also indicates that

the semidefinite cones play an important role in further reducing the complexity of SDP. In

some other work, Edge-based SDP (ESDP) and Node-based SDP (NSDP) algorithms were

proposed as further relaxations of SSDP using ToA measurements. This method of relaxing

a set of low-dimensional cones instead of a single high-dimensional cone was computation-

ally desirable. Minimax SDP applicable to both ToA and Received Signal Strength (RSS)

models was also proposed.
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Fundamental limits of non-cooperative and cooperative localization with ToA measure-

ments were exploited recently. In this research, the Cramér-Rao Lower Bound (CRLB) is

tailored for our SDP algorithms in terms of the system models. Besides the CRLB for ToA

measurements, we also derive the CRLB for RSS measurements. These CRLBs are further

used to show that cooperative localization has the potential to outperform non-cooperative

localization. Our minimax Component-wise SDP (CSDP) algorithm is applicable to both

ToA and RSS models in both cooperative and non-cooperative setups. Here, we investigate

the effects of semidefinite cones in terms of accuracy and efficiency of the cooperative lo-

calization algorithms with both ToA and RSS measurements. Effects of SSDP, ESDP, NSDP

and CSDP are explored and analyzed to show that our CSDP is the best among them, it

is efficient while retaining the crucial theoretical properties of the SDP. Simulations will be

performed to verify all our analyses.

G.1 Cooperative Localization Algorithms

In a sensor network localization system with M anchors and N targets in a D dimensional

real Euclidean space RD (D = 2 or 3), locations of the anchors constitute a known vector

set Va := {a1,a2, . . . ,aM}, and locations of the targets form an unknown vector set Vx :=

{x1,x2, . . . ,xN}, with all vectors D-dimensional. Furthermore, we are given the Euclidean

distances dmn between am and xn for some (m,n), and d̄ij between xi and xj for some

(i, j). Specifically, let Ea := {∀ (m,n) : am ∈ Va,xn ∈ Vx, dmn is specified}, Ex := {∀ (i, j) :

xi,xj ∈ Vx, d̄ij is specified and i < j}. The localization problem in RD for the undirected

graph G := (V , E), where V := Va ∪ Vx, E := Ea ∪ Ex, is to determine the coordinates of the

unknown target positions Vx from the known anchor positions Va and the partial distance

measurements E .

Notation: | · | denotes the absolute value, ‖ · ‖ denotes the l2 vector norm, tr{·} is the

trace of a square matrix, (·)T is the matrix transpose operator, and diag(·) represents a di-

agonal matrix. Boldface lowercase letters denote vectors, boldface uppercase letters denote

matrices. Specifically, 0 denotes an all zero entry vector, ei denotes an N dimensional vector

with all of its entries zero except a unit entry at the i-th position, ID×D denotes a D × D-

dimensional identity matrix. Vector and matrix dimensions will be clear in the context, and

will be specified whenever necessary. Z � 0 means that Z is positive semidefinite (PSD),

where Z is a square matrix. Z(i1,...,ik) denotes the principal submatrix of Z from its rows
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and columns indexed by i1, . . . , ik. |A| denotes the number of elements in the set A. A\B
means the set difference {x|xi ∈ A ∩ xi /∈ B}.

Distances are measured so long as the node pairs are within the communications range

of each other. Suppose there are K available distances, out of which K̄ are between one

target and one anchor, and the remaining are between two targets.

G.1.1 ToA

Without loss of generality, we can denote the target-anchor distances as

d2
mn = ‖am − xn‖2 + nmn,∀(m,n) ∈ Ea, (67)

and represent the target-target distances as

d̄2
ij = ‖xi − xj‖2 + n̄ij , ∀(i, j) ∈ Ex and i < j, (68)

where noises nmn and n̄ij are i.i.d. Gaussian distributed with zero mean and variance σ2.

Denote the residue vector as ε = [ε1, ε2, . . . , εK̄ , εK̄+1, εK̄+2, . . . , εK ] = [εmn, . . . , ε̄ij, . . .] =

[d2
mn−‖am−xn‖2, . . . , d̄2

ij−‖xi−xj‖2, . . .], andXD×N = [x1,x2, . . . ,xN ], then the conditional

probability density function of the measured distances is

p(d2
mn, . . . , d̄

2
ij , . . . |X)

= 1
(2πσ2)K/2

e−
∑
∀(m,n)∈Ea ε

2
mn+

∑
∀(i,j)∈Ex and i<j ε̄

2
ij

2σ2 , (69)

where
∑
∀(m,n)∈Ea ε

2
mn represents the traditional non-cooperative information, and∑

∀(i,j)∈Ex and i<j ε̄
2
ij represents the cooperative information.

The Maximum Likelihood (ML) estimate ofX is

X̂ = arg min
X

∑
∀(m,n)∈Na

ε2
mn +

∑
∀(i,j)∈Nx and i<j

ε̄2
ij = arg min

X
‖ε‖2. (70)

Note that X̂ is optimal in the ML sense.

The optimization problem of (70) is highly nonlinear and nonconvex inX , thus difficult

to solve. In this work, we use minimax relaxation and semidefinite relaxation to convert the

original nonconvex problems into convex ones. Denote Y = XTX , and approximate this

nonlinear and nonconvex equation via semidefinite relaxation Y �XTX . The result is still

nonlinear but already convex. The minimax SDP algorithm for ToA measurements 2 is

min
t,Z

t (71)

2Suppose all targets are localizable. Localizability itself is a challenging research area which is beyond the

scope of this work.
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s.t.− t < tr


−am

en

(−aTm eTn

)
·Z

− d2
mn < t,

−t < tr


 0D×1

ei − ej

(01×D (ei − ej)T
)
·Z

− d̄2
ij < t,

∀ (m,n) ∈ Ea,∀ (i, j) ∈ Ex and i < j,

Z(1:D) = ID×D,Z(1:D,i) � 0,∀ xi ∈ Vx\X ,

Z(1:D,i,j) � 0,∀ (i, j) ∈ Ex and i < j.

G.1.2 RSS

In the ideal case, each target node emits a signal with power P , and anchor nodes within

the localization range can receive a signal with energy strength

smn = P‖am − xn‖−β,∀(m,n) ∈ Ea, (72)

and target nodes within the localization range can receive a signal with energy strength

s̄ij = P‖xi − xj‖−β,∀(i, j) ∈ Ex and i < j, (73)

where β is the path loss coefficient.

Under the lognormal fading channel, the RSS in dB can be modeled as

10 log smn = 10 logP − 10β log(‖am − xn‖) + nmn, (74)

∀(m,n) ∈ Ea for target-anchor connections and

10 log s̄ij = 10 logP − 10β log(‖xi − xj‖) + n̄ij , (75)

∀(i, j) ∈ Ex and i < j for target-target connections, where nmn and n̄ij are assumed to be

i.i.d. Gaussian distributed noises with zero mean and variance σ2.

Denote the residue vector as ε = [ε1, ε2, . . . , εK̄ , εK̄+1, εK̄+2, . . . , εK ] = [εmn, . . . , ε̄ij, . . .] =

[ln smn− ln( P
‖am−xn‖β ), . . . , ln s̄ij− ln( P

‖xi−xj‖β ), . . .], the conditional probability density func-

tion of the RSS in dB is

p(ln smn, . . . , ln s̄ij , . . . |X)

= 1
(2π(σ ln 10

10
)2)K/2

e
−

∑
∀(m,n)∈Ea ε

2
mn+

∑
∀(i,j)∈Ex ε̄

2
ij

2(σ ln 10
10 )2 , (76)

where
∑
∀(m,n)∈Ea ε

2
mn represents the traditional non-cooperative information, and∑

∀(i,j)∈Ex and i<j ε̄
2
ij represents the cooperative information.
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The ML estimate ofX can be obtained as

X̂ = arg min
X

∑
∀(m,n)∈Na

ε2mn +
∑

∀(i,j)∈Nx

ε̄2ij = arg min
X
‖ε‖2. (77)

Note that X̂ is optimal in the ML sense.

Again, the optimization problem of (77) is highly nonlinear and nonconvex in X , thus

difficult to solve. Similar to the ToA case, we adopt an minimax SDP approach to convert

the original nonconvex problems into convex ones. The minimax SDP algorithm for RSS

measurements is

min
t,Z

t (78)

s.t.− t < qmn · tr


−am

en

(−aTm eTn

)
·Z

− 1 < t,

−t < q̄ij · tr


 0D×1

ei − ej

(01×D (ei − ej)T
)
·Z

− 1 < t,

∀ (m,n) ∈ Ea,∀ (i, j) ∈ Ex and i < j,

Z(1:D) = ID×D,Z(1:D,i) � 0,∀ xi ∈ Vx\X ,

Z(1:D,i,j) � 0,∀ (i, j) ∈ Ex and i < j.

In (71) and (78) X = {xi|∀i,∃(i, j) ∈ Ex, i < j ∪ (n, i) ∈ Ex, n < i} is the set formed by all the

targets that have other target(s) as neighbor(s). The first conic constraint for those xi ∈ X
is redundant, since it is implied by the second conic constraint. Once the solutions of (71)

and (78) are found, the upper right D × N corners of Z are taken out as the semidefinite

approximated location estimate X̃ .

G.2 Cramér-Rao Lower Bound

Here, we derive the Cramér-Rao Lower Bound (CRLB) for both cooperative and non-

cooperative scenarios with both ToA and RSS measurements according to our system mod-

els. These CRLBs are then used to make comparisons between cooperative localization and

non-cooperative localization.
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G.2.1 ToA

Let zToA = [d2
mn, . . . , d̄

2
ij, . . .]

T be a vector that contains all measurements. From (69), we see

that zToA is Gaussian distributed with mean µToA and covariance matrix CToA

µToA = [‖am − xn‖2, . . . , ‖xi − xj‖2, . . .]T ,

CToA = diag(σ2, . . . , σ2, . . .). (79)

The Fisher information matrix (FIM) has elements

IToAi,j =
∂µTToA
∂xi C

−1
ToA

∂µToA
∂xj

+1
2 tr{C−1

ToA
∂CToA
∂xi C

−1
ToA

∂CToA
∂xj },

i, j = 1, 2, . . . , N. (80)

Considering given assumptions in our ToA model, the FIM is

IToA = 4σ−2IToA. (81)

Diagonal terms of IToA are

IToAnn =
∑

m,∀(m,n)∈Ea d
2
mn +

∑
i,∀(i,n)∈Ex and i<n d̄

2
in

+
∑

j,∀(n,j)∈Ex and n<j d̄
2
nj , n = 1, 2, . . . , N, (82)

and off-diagonal terms are

IToAij = IToAji = −d̄2
ij ,∀(i, j) ∈ Ex and i < j. (83)

Diagonal terms are contributed by all connections, including both the cooperative and

the non-cooperative connections, while off-diagonal terms display the effects of the coop-

erative links. Thus elements of IToA for the non-cooperative case with ToA measurements

only contains non-zero diagonal terms

IToAnn =
∑

m,∀(m,n)∈Ea

d2
mn, n = 1, 2, . . . , N, (84)

with all off-diagonal terms zero.

Suppose every targets is connected to at least one anchor, then IToA is a strictly diagonally

dominant matrix. By Levy-Desplanques theorem , IToA is non-singular. 3 Thus, the CRLB

for X with ToA measurements can be obtained from the diagonal elements of the inverse

matrix of IToA.
3If a target has no target-anchor connections, then without cooperative information, it will be an isolated

non-localizable node. Here we do not consider this type of cooperative vs. non-cooperative comparisons.
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G.2.2 RSS

Denote zRSS = [ln smn, . . . , ln s̄ij, . . .]
T . From (76), zRSS is Gaussian distributed with mean

µRSS = [ln( P
‖am−xn‖β ), . . . , ln( P

‖xi−xj‖β ), . . .]T and covariance matrix CRSS = diag((σ ln 10
10

)2,

. . . , (σ ln 10
10

)2, . . .). Similarly, the FIM is

IRSS = (
10β

ln 10
)2σ−2IRSS . (85)

Where

IRSSnn =
∑

m,∀(m,n)∈Ea
1

d2
mn

+
∑

i,∀(i,n)∈Ex and i<n
1
d̄2
in

+
∑

j,∀(n,j)∈Ex and n<j
1
d̄2
nj
, n = 1, 2, . . . , N, (86)

and

IRSSij = IRSSji = − 1

d̄2
ij

,∀(i, j) ∈ Ex and i < j. (87)

Similarly, elements of IRSS for the non-cooperative case with RSS measurements only

involves non-zero diagonal terms

IRSSnn =
∑

m,∀(m,n)∈Ea

1

d2
mn

, n = 1, 2, . . . , N, (88)

with all off-diagonal terms zero.

We can then get the CRLB for X with RSS measurements from the inverse matrix of the

FIM IRSS .

G.2.3 Cooperative vs. Non-cooperative Localization

Based on the CRLB derived in Section G.2.1 and G.2.2, we show that performance bounds

of cooperative algorithms will never be above the non-cooperative counterparts.

Theorem 1 The Cramér-Rao Lower Bound (CRLB) of the cooperative localization is lower than or

equal to that of the non-cooperative localization.

CRLBToA
Coop ≤ CRLBToA

Noncoop

CRLBRSS
Coop ≤ CRLBRSS

Noncoop. (89)

Proof: Denote eigenvalues of IToA as λ1, λ2, . . . , λN . By Geršgorin disc theorem ,

|λn − IToAnn | ≤
∑
i 6=n
|IToAni |, n = 1, 2, . . . , N. (90)
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For those xn’s that have no cooperative connections

λn =
∑

m,∀(m,n)∈Ea

d2
mn, (91)

and for those xn’s that have cooperative connections

λn >
∑

m,∀(m,n)∈Ea

d2
mn. (92)

Hence, eigenvalues of the inverse matrix of IToA are

λ−1
n =

1∑
m,∀(m,n)∈Ea d

2
mn

(93)

for those xn’s that have no cooperative connections and

λ−1
n <

1∑
m,∀(m,n)∈Ea d

2
mn

(94)

for those xn’s that have cooperative connections.

From (93) and (94), we conclude that

CRLBToA
Coop ≤ CRLBToA

Noncoop. (95)

Similarly, for RSS measurements

CRLBRSS
Coop ≤ CRLBRSS

Noncoop. (96)

For both ToA and RSS measurements, we get the conclusion that cooperative algorithms

have the potential to outperform non-cooperative ones.

G.3 Effects of Semidefinite Cones

Since objective functions and all inequality constraints of various minimax SDP algorithms

remain the same, to compare minimax SDP algorithms, we only need to compare all the ex-

isting and our proposed semidefinite cones. We then investigate into effects of semidefinite

cones on efficiency and accuracy of the cooperative localization algorithms.

G.3.1 Types of Semidefinite Cones

Standard Semidefinite Cones
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Standard semidefinite approximation is Y = XTX ⇒ Y � XTX , i.e., the standard

semidefinite cone is

Z =

 ID×D XD×N

XT
N×D Y N×N

 � 0. (97)

Further Relaxations to Standard Semidefinite Cones

• Edge-based Semidefinite Cones

Z(1:D,i,j) � 0,∀ (i, j) ∈ Ex. (98)

• Node-based Semidefinite Cones

Z(1:D,i,Nxi )
� 0,∀ xi ∈ Vx. (99)

where Nxi = {j : (i, j) ∈ Ex, i < j or (j, i) ∈ Ex, j < i} is the set formed by all the

targets connected to xi.

• Component-wise Semidefinite Cones (our proposed)

Z(1:D,i) � 0,∀ xi ∈ Vx\X .

Z(1:D,i,j) � 0, ∀ (i, j) ∈ Ex. (100)

G.3.2 Performance comparisons

In the literature, it has been shown that F SSDP ⊂ FNSDP ⊂ FESDP , where F represents

the solution set of the corresponding SDP algorithm. For our proposed CSDP, we have the

following result.

Proposition 7 The solution sets of NSDP, CSDP and ESDP follow the following relationship:

FNSDP ⊂ FCSDP ⊂ FESDP . (101)

Proof Denote solutions to (99), (100) and (98) as Z∗NSDP , Z∗CSDP and Z∗ESDP , respectively.

NSDP contains redundancy because it assumes that all pairwise connections of Nxi exist,

which is not necessarily true. After removing these unspecified variables in Z∗NSDP , one

would obtain Z∗CSDP . Similarly, after removing the non-cooperative constraints in Z∗CSDP ,

one would obtain Z∗ESDP .

To further explore the performances of these SDP algorithms, let us first introduce some

definitions.
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Definition 1 An undirected graph is a chordal graph if every cycle of length greater than three has

a chord. An equivalent definition is that any chordless cycles have at most three nodes.

Definition 2 A square matrix, possibly containing some unspecified entries, is called partial sym-

metric if whenever the (i, j)-th entry of the matrix is specified, then so is the (j, i)-th entry, and

the two are equal. A partial semidefinite matrix is a partial symmetric matrix for which every fully

specified principal submatrix is positive semidefinite.

Given these, we can now introduce the following Lemma.

Lemma 2 Every partial positive semidefinite matrix with undirected graph Ḡ has positive semidefi-

nite completion if and only if Ḡ is chordal.

Based on the above proposition, definitions and lemma, we have the following theorem.

Theorem 2 If the undirected graph Gx := (Vx, Ex) induced by all the targets is chordal, then

FSSDP = FCSDP . (102)

Proof: By Proposition 7, we only need to prove that any solution to (100) can be completed

to a solution of (97). Suppose

Z =

 I X

XT Y

 (103)

is a solution of (100). By Definition 2, Z is a partial semidefinite matrix.

By the prerequisite, the undirected graph induced by Y is chordal. We now prove that

the undirected graph induced by Z is also chordal. Notice that the graph induced by Z

has N + D nodes, with every specified off-diagonal entry denoting an edge. Every one of

the first D nodes in the graph induced by Z is connected to every target node in Vx. If

a cycle in the graph induced by Z contains some or all of the first D nodes, then it must

have a chord since each of the first D nodes is connected to every target; if the cycle does

not contain any of the first D nodes, then it must still contain a chord because the graph

induced by Y is chordal. Thus, the graph induced by Z is chordal. By Lemma 2, Z must

have a positive semidefinite completion Z̄. Considering that (97) and (100) share the same

constraints specified by the existing connections, Z̄ must be a solution to (97).

For chordal graphs Gx, we do not lose any relevant information in CSDP, thus SSDP and

CSDP are equivalent. Notice that we only need Gx to be chordal, not requiring that the
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whole localization graph G to be chordal. Furthermore, by Proposition 7 and Theorem 2,

one can easily deduce that

F SSDP = FNSDP (104)

for a chordal graph Gx, which coincides with the results in the existing literature.

These result essentially confirm that, containing reduced constraints, CSDP leads to

identical solutions as SSDP and NSDP. In other words, both SSDP and NSDP contain redun-

dant variables, and these redundant elements increase the complexity, thus have negative

impacts on the localization efficiency. ESDP is theoretically deficient, because the removed

D+ 1-dimensional conic constraints in (98) in the proof of Proposition 7 are necessary infor-

mation. ESDP only retains cooperative information while loses non-cooperative informa-

tion.

G.3.3 Complexity comparisons

In Table 1, we list the computational complexity of various SDP localization algorithms.

Note that,
∑N

i=1(D+1+|Nxi |)2, |Ex|(D+2)2, and (N−|X |)(D+1)2 +|Ex|(D+2)2 are typically

much smaller than (N+D)2. Hence, with a much smaller number of variables, NSDP, ESDP

and CSDP have the potential to reduce the computational complexity compared to SSDP,

especially for large N .

Table 1: SDP localization algorithm complexity analysis

Number of Dimension Number of Number of

Conic Constraints of Cones Variables Equality Constraints

SSDP 1 N +D (N +D)2 |Ea|+ |Ex|
NSDP N D + 1 + |Nxi |

∑N
i=1(D + 1 + |Nxi |)2 |Ea|+ |Ex|

ESDP |Ex| D + 2 |Ex|(D + 2)2 |Ea|+ |Ex|
CSDP N − |X |+ |Ex| D + 1, D + 2 (N − |X |)(D + 1)2 + |Ex|(D + 2)2 |Ea|+ |Ex|

Generally speaking, ESDP, NSDP and CSDP are all further relaxations of SSDP. Even

though SSDP is more accurate and may possess a better efficacy for small-scale networks, it

is not suitable for large scale networks since it involves a single high-dimensional semidef-

inite cone. ESDP loses some useful information, thus it is not robust enough and blows
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up under severe noisy cases. Even though NSDP involves multiple low-dimensional conic

constraints, it contains redundancy. CSDP naturally results from the component-wise for-

mulation of the original problem, keeps all the specified and necessary variables, and only

those variables. Thus CSDP can achieve comparable accuracy with reasonable complexity.

Moreover, given the complexity analysis, CSDP is suitable for large-scale wireless sensor

networks.

G.4 Simulations

In this section, we use the CVX package as our SDP solvers. Localization accuracy is eval-

uated by the mean square error (MSE = 1
N

∑N
n=1 ‖x̃n − xn‖2) of the location estimates, and

localization efficiency is indicated by the average time used for locating all the targets in

the sensor networks. System parameters for RSS measurements are P = 1000, β = 3. All

simulation results are averaged over 2000 Monte Carlo tests.

On a 2-D map, anchors are located at Va = {[0, 6]T , [0, 0]T , [2, 4]T , [6, 0]T , [7, 7]T , [8, 0]T},
targets are placed at Vx = {[0, 4]T , [3, 8]T , [2, 2]T , [6, 5]T , [7, 3]T}. Communications are allowed

between node pairs at Ea = {(1, 1), (2, 1), (1, 2), (3, 1), (2, 3), (3, 2), (3, 3), (5, 2), (3, 4), (4, 3),

(5, 4), (4, 5), (6, 5)} and Ex = {(4, 5)}. Cases, including inside the convex hull, on the edge of

the convex hull, out of the convex hull, as well as the cooperation between two targets, are

all considered in this localization system. We use the cooperative algorithms to make com-

parisons, and give the CRLBs for both cooperative and non-cooperative localization show-

ing that the cooperative localization has the potential to outperform the non-cooperative

counterpart.

See Figure 14(a) for algorithm accuracy performances and Figure 14(b) for algorithm

efficiency performances with ToA measurements. See Figure 15(a) for algorithm accuracy

performances and Figure 15(b) for algorithm efficiency performances with RSS measure-

ments. CRLBs are also given as benchmarks, showing that accuracy performances of our

SDP algorithms are satisfactory. Our simulation results show that CSDP achieves compara-

ble accuracy with reasonable complexity. Moreover, by adopting cooperative localization,

we successfully locate all the targets, including x4 and x5, which are not localizable without

cooperative information.
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Figure 14: (a) ToA localization accuracy. (b) ToA localization efficiency.
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Figure 15: (a) RSS localization accuracy. (b) RSS localization efficiency.
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G.5 Summary

In this research, Time-of-Arrival (ToA) and Received Signal Strength (RSS) based mini-

max semidefinite programming (SDP) algorithms were adopted for cooperative localiza-

tion where inter-target communication capability was exploited for coverage extension and

accuracy enhancement. We derived the Cramér-Rao Lower Bound (CRLB) to verify the

benefits of cooperative localization. Various semidefinite algorithms, including Standard

SDP (SSDP), Edge-based SDP (ESDP), Node-based SDP (NSDP) and Component-wise SDP

(CSDP), were then investigated to show that CSDP was the best among them in terms of

localization complexity and accuracy. These theoretical analyses had all been corroborated

with simulations.

H From Ranging to Localization: Exploiting Doppler Effects

Traditionally, position of a target can be estimated by measuring one or more of the follow-

ing quantities: angle-of-arrival (AoA), received signal strength (RSS), and time-of-arrival

(ToA). For AoA-based techniques, tracking of the moving target relies on the measurement

of the angle of the incoming signal arrival at each anchor node (AN) with antenna array.

The AoA is not very suitable for the opportunistic positioning, because the antenna array

is usually large and expensive. RSS-based positioning techniques require the knowledge

of channel path-loss parameters and are therefore very sensitive to the estimation of these

parameters. Compared to AoA and RSS, ToA measurement combined with the triangula-

tion is a more feasible means for wireless positioning in multipath channel environments,

especially when broadband signals are used to achieve the high timing resolution. To avoid

the need of the common time base between the target and each anchor node, the time dif-

ference of arrival (TDoA) technique can be adopted. However, the time base still needs to

be calibrated among all anchor nodes.

In order to avoid these problems associated with the traditional methods, we propose

a new localization and navigation approach based on the Doppler frequency of the line-

of-sight (LoS) path between the moving target (MT) and each AN. As long as the AN is

able to identify the LoS component of the multipath channel, it can estimate the Doppler

frequency caused by the movement of the target. After the Doppler frequency is measured

at each anchor node, the radial velocity which is defined as the relative velocity between
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the moving target and each anchor node can be estimated. Suppose that we have N ANs

with their location coordinates known to the system. We can establish N equations with

the radial velocities and four unknown parameters: the moving direction of the target, the

absolute velocity of the target, and the location coordinates of the moving target. Among

them, the angle of moving direction and the absolute velocity are two nuisance parameters.

Solving these equations, we can obtain the location of the moving target.

Figure 16: System setup.

Compared to existing techniques, the hard-

ware cost of this positioning method is lower,

because no antenna array is needed. In addi-

tion, no common time base is assumed either be-

tween the moving target and each anchor node

or among the anchor nodes. This is a great ad-

vantage in comparison with the conventional

ToA and TDoA techniques. Besides, our tech-

nique benefits from the motion of target, perfor-

mance improves as velocity increases.

H.1 System Description

Suppose we haveN anchor nodes (AN) with the

location coordinates {(xi, yi)}Ni=1 of the ith AN

known a priori to the system. The signal transmission can be either from MT to AN or

AN to MT. Our technique can be applied independent of the direction of signal flow. The

target moves in a direction θ with a velocity v m/sec. Let αi be the angle of arrival (AoA) of

the signal received at the ith AN, as shown in Fig.16.

Then the radial velocity of the moving target with respect to the ith anchor node is

vi = v cos(π + αi − θ) = −v cos(αi − θ) (105)

where i ∈ [1, N ], αi ∈ [0, 2π), and θ ∈ [0, 2π) Our objective is to recover the location coordi-

nates (xt, yt) of the moving target from v̂i and {(xi, yi)}Ni=1. Solving the nonlinear equation

(105) by using measurements of {vi}Ni=1, we can estimate the location of the moving target.

To show the feasibility of this approach, we first present a very direct approach.
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(a) (b) (c)

Figure 17: Error of mislocalization (a) 1 anchor node; (b) 2 anchor nodes; (c) 3 anchor nodes.

H.1.1 Straightforward Approach

In the region of interest where MT could possibly reside, we consider every possible can-

didate location (x′, y′). For each candidate location, calculate the radial velocities {v′i}Ni=1 at

all ANs assuming velocity v and direction θare known. After calculating the radial veloci-

ties for all possible locations, we choose that particular location which gives radial velocities

that match closest to the actual radial velocities {vi}Ni=1 obtained from the doppler spectrum.

For doing this we define the error of mislocalization given by

E =
N∑
i=1

(vi − v′i)2

We plot the error of mislocalization as shown in Fig. 17 for N = (1, 2, 3) anchor nodes that

are uniformly located on the circle with the radius of 2, and the target is marked by the

red solid triangle. When one anchor node is used, the target can be on either of two half

lines where the error is 0. This shows the approach is essentially equivalent to the AoA

based technique without any antenna array, the difference being that here we have two half

lines. When there are two anchor nodes, the target can be found at the intersection of the

ambiguity ranges of the two anchor nodes. Fig. 17 (b) shows that the error surface has two

minima in the area of interest. Only one corresponds to the position of the target. The other

one is false. As shown in Fig. 17 (c), when three anchor nodes are used, the false solution

can be eliminated. This way, the unique location of the moving target can be estimated

by determining the minimum peak of the error plot. It should be noted that {vi}Ni=1 and

(xt, yt) vary as the target moves. However, when the anchor nodes are far from the target,
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these parameters can be assumed to be constant during one localization processing interval.

Though it is pretty straightforward, it is impractical as it is computationally intensive to cal-

culate the mislocalization error for every single candidate location point in such a large area

covered by ANs. Thus we should explore for more sophisticated methods for practicality.

AN 1

AN 2

AN 3

MT

Figure 18: Only the set of cor-

rect AoA intersect at the MT

location

Our goal in this work is to estimate the MT location co-

ordinates (xt, yt) by solving Eq. (105). As for the solution of

this nonlinear equation, no linearization technique has been

found. Since among all the unknown parameters, the abso-

lute velocity v and the moving direction θ are two nuisance

parameters, if at least one or both of v and θ are known by the

ANs, the problem will be significantly simplified. Hence in the

following sections we present the solutions to the localization

equations with different levels of prior knowledge of v and θ.

H.2 Case I: Known v, Known θ

Consider the case when both the velocity and moving direc-

tion of the target are known at the ANs. This scenario could

occur when the target is mounted on a vehicle that is moving

with a constant speed in the same direction along a straight

road. The velocity of the target, v can be read electronically

from the speedometer of the vehicle and the moving direction

of the target, θ can be obtained from the gyroscope on the vehicle.

H.2.1 The Basic Algorithm

Recollect from Eq. (105), when both v and θ are known, we have

cos(αi − θ) = −vi
v
, i ∈ [1, N ]. (106)

We know αi ∈ [0, 2π) and θ ∈ [0, 2π), and hence (αi−θ) ∈ [−2π, 2π). Let γi = cos−1(−vi/v) be

the principal solution. Then (αi−θ) is one of the four possible solutions {γi, 2π−γi,−γi, γi−

55



2π} and hence αi is one of the four possible solutions {γi+θ, 2π−γi+θ,−γi+θ, θ−2π+γi}.
Using the known condition αi ∈ [0, 2π), we can directly eliminate two among four pos-

sible solutions. Now, we are left with two possible solutions of the AoA αi. Hence, the

problem reduces to AoA based location estimation. Only one of the two solutions is the

correct AoA. The correct AoA of all the N ANs intersect at a single point which is the actual

location of the target. The other angles will never intersect at a single point in ideal scenar-

ios where the noise is absent (see Fig. 18). Thus our task is to construct half-lines passing

through the ith AN at AoA αi and select the particular set which gives single intersect point.

H.2.2 Ambiguity Issues

Large Scale Ambiguity

Ideally, in the absence of noise, the correct set of AoA derived at each anchor node intersects

at a single point, the actual MT location (xt, yt). However imperfect estimation in the pres-

ence of noise leads to deviated AoAs which intersect at three different points and form a

triangle. This sometimes results in a false set of AoAs intersecting to form a smaller triangle

than the correct set of AoAs at a distance very far away from actual target and hence the lo-

cation error shoots up suddenly to a large value and significantly affect the performance on

average. This can be better understood from the error mislocalization function with perfect

radial velocities replaced by the estimated v̂i as E =
∑N

i=1(v̂i − v′i)2.

As shown in Fig. 19(a) for three anchor nodes located at 1 km apart, multiple minima

occur. It can be observed that the false solution occurs very far, generally lying outside the

region bounded by the three ANs. Hence in order to avoid the false solutions, we constrain

our region of interest only to the region formed by the set of ANs assuming that only those

anchor nodes which surround the MT are considered for estimation. Another way of elim-

inating the false minimum is to consider the location estimate over consecutive intervals.

The false minimum will change drastically while the correct estimate will be slowly vary-

ing. We need to pick the right location estimate that varies slowly thus avoiding the false

minimum. This problem of multiple solutions however is not entirely solved by constrain-

ing the region alone. If the MT and any pair of ANs are collinear, then the multiple solutions

may occur even for a constrained region as shown in Fig. 19(b). This can be understood in-

tuitively that the two anchor nodes are essentially giving the same information about the

MT location and not giving three different equations to solve. To tackle this problem, we
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(a) (b)

Figure 19: (a) Two peaks occur in error plot where only one corresponds to actual solution. The

false solution lies outside the triangle covered by the three anchor nodes. (b) Two peaks occur in

error plot even within the constrained triangle region

introduced at least one more anchor nodes which introduces more equations. Then the mul-

tiple solutions will merge to a single peak thus resolving the ambiguity.

Small Scale Ambiguity

In the presence of large noise, the centroid of the triangle formed by joining the intersection

points of AoA half lines deviates too much from the actual location. Sometimes, the centroid

may even fall outside the bounded region. As a remedy we introduce AoA sector scanning

where we scan each AoA between the ranges (AoA-Th) to (AoA+Th) and Th is the possible

error that occurs in AoA as shown in Fig. 20(a). These scanned regions of all ANs will

overlap with each each other. The MT resides in the region where the AoA sectors of all

the ANs overlap. We then choose the centroid of this overlap region as the estimate of the

location of MT. This technique ensures that the estimate lies within the bounded region

and gives an estimate closest to the correct solution. To obtain the AoA error threshold Th,

we plot the histogram of AoA error as shown in Fig. 20(b). If Th is too large then we are

unnecessarily considering a larger overlapping region and degrading the estimation since

for most of the cases error is small. On the other hand, if Th is too small then we end up
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Figure 20: (a) At each AN, the region from AoA-Th to AoA+Th is considered and the MT location

falls in the overlapping region. (b) Histogram of Error in AoA at SNR = 30dB. The threshold is

chosen at the point where occurrence of error falls too low.

not having any overlap region at all in too many cases. As a tradeoff between the two

extremes, we chose the threshold Th such that the number of cases with AoA error greater

than Th is very small (say ≤ 2%) as most of the error is concentrated closer to smaller error

as shown in Fig. 20(b). When the error is greater than the threshold, we average over

the regions overlapped fewer times say N − 1, N − 2, N − 3 and so on and yet performs

better than smallest triangle method. Please note that the threshold varies as per SNR value.

We can clearly observe in Fig. 20(a) that this method gives smaller overlap region and

closer to the actual location than the triangle formed by the intersection. Increasing anchor

nodes further reduces this region of overlap and thus improving the performance. Our

AoA sector scanning is a low complexity technique to determine location from imperfect

AoA estimation. There are several other existing techniques that give optimum location

estimate (see [9],[10],[11],[12]) that can be applied here.

H.2.3 Algorithm Flowchart

Our algorithm to estimate the location of MT for known velocity and motion direction is

summarized in the flowchart shown in Fig. 21.
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Figure 21: Flowchart of the localization technique for known v and θ of MT

H.2.4 Simulations

This section aims to analyze the performance of the algorithm and study the influence of the

number of anchor nodes and temporal averaging on the performance. Simulation setup in-

volvesN anchor nodes arranged on a circle, each separated from its neighbors by a distance

of 800m. Depending on the signal strength received at each anchor node, we can further

constrain our region of interest thus improving accuracy. As an example, consider the setup

as shown in Fig. 22(a) where there are four ANs. If the received signal strength is greater at

one anchor node, then the mobile terminal is located closer to that anchor node, and we can

constrain our region of interest to be the 400m x 400m square represented by shaded region.

We are right now considering only LOS channel model and the velocity components are

derived from the doppler shift equations. In order to suppress the noise influence on the

performance, the measured velocity component is averaged M times temporally during ev-

ery localization interval. With this setup and estimation method, the simulations have been

done and the root mean square error (RMSE) plots have been obtained for velocity range

of mobile terminal 36kmph-90kmph (10mps-25mps) for N = 4, 8 and M = 128 as shown in

Fig. 22(b). We can clearly see that the performance improves as the number of anchor nodes

are increased.
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Figure 22: (a) Setup of 4 anchor nodes separated by 800m. MT is closer to AN 1. Hence the region

of interest is constrained to the 400m x 400m shaded area. (b) RMSE vs SNR plot for known direction

and velocity. Performance improves as number of anchor nodes increased and when averaged over

more intervals of time

H.3 Case II: Known v, Unknown θ

For this case, the scenario is very similar to the first one except that the moving direction

information of the target does not need to be measured. Since the direction θ is unknown,

the method in the preceding section can not be applied here. Thus we should aim to elim-

inate the nuisance parameter θ and solve the nonlinear equations by relating the required

quantities location coordinates (xt, yt) with the known quantities v, vi, and {xi, yi}Ni=1.

H.3.1 The Basic Algorithm

To derive the relationship between the MT location co-ordinates (xt, yt) and the AoA αi, at

the ith anchor node we consider the relation tan(αi) = y−yi
x−xi . Let

βi = tan−1

(
y − yi
x− xi

)
(107)

We can easily derive the expression for αi as

αi =


βi, if αi < π

2
;

π + βi, if π
2
< αi <

3π
2

;

2π + βi, if 3π
2
< αi < 2π

(108)

60



Using the identity tan(kπ + ω) = tan(ω), we get

tan(αi − θ) = tan(βi − θ) (109)

To link known quantities v, vi, and {xi, yi}Ni=1 with the AoA αi, we can re-express equation

(106) as

1 + tan2(αi − θ) =
v2

v2
i

which implies that

tan(αi − θ) = ±
√
v2

v2
i

− 1

Let ηi = tan−1
√

v2

v2
i
− 1 be the principal solution. Then,

tan(αi − θ) = ± tan(ηi) (110)

Equating (109) and (110), we get

tan(βi − θ) = ± tan(ηi) (111)

In order to eliminate θ, consider the AN pair (i, j) and perform the subtraction to get

tan(βi − βj) = tan(±ηi ± ηj). (112)

In (112), the right hand side (RHS) can be calculated from v and vi while for the left hand

side (LHS), using the definition of βi given in (107) and the known identity, tan(A − B) =

tanA−tanB
1+tanA tanB

, we get

tan(βi − βj) = ( y−yi
x−xi −

y−yj
x−xj )/(1 + y−yi

x−xi
y−yj
x−xj )

(113)

Substituting LHS and RHS back in (112) and reordering the terms, we get the equation

(x− Ai,j)2 + (y −Bi,j)
2 = A2

i,j +B2
i,j − Ci,j (114)

where

Ai,j =
xi + xj

2
− yi − yj

2 tan(±ηi ± ηj)

Bi,j =
yi + yj

2
− xj − xi

2 tan(±ηi ± ηj)

Ci,j = xixj + yiyj +
xiyj − xjyi

tan(±ηi ± ηj)
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The RHS in (114) on simplification gives

A2
i,j +B2

i,j − Ci,j =
d2
i,j

4

(
1 +

1

tan2(±ηi ± ηj)

)
> 0 (115)

where di,j is the distance between the AN i and AN j. Thus (114) is of the form of equation

of a circle with center co-ordinates as (Ai,j, Bi,j) and radius as

r =
√
A2
i,j +B2

i,j − Ci,j =
di,j
2

√
1 +

1

tan2(±ηi ± ηj)
.

Interestingly, these circles have the following properties:

• The circle corresponding to the AN pair (i, j), (x−Ai,j)2 +(y−Bi,j)
2 = A2

i,j +B2
i,j−Ci,j

passes through ANs i and j. This can be verified easily by substituting the AN’s co-

ordinates in the equation.

• For N ANs we get (N − 1) independent circles for each of 2N different combinations

of ±ηi of which only one particular combination of (N − 1) circles intersect at a single

point (other than at AN itself) which is the MT location.

H.3.2 Ambiguity Issues

Similar to the known velocity (v) and known direction (θ) case, ambiguity issues arise in

this unknown direction case due to imperfect estimation of radial velocities at the ANs.

The large scale ambiguity is combated by constraining the region to the area bounded by

ANs and by increasing the number of ANs. The small scale ambiguity is combatted in

similar way as AoA sector scanning, except that instead of AoA we have the quantity Pi,j =

tan(±ηi±ηj) and we plot error histogram from Pi,j and sweep it between (Pi,j±Th) for each

circle and determine the overlap region. The centroid of this overlapping region is taken as

the location estimate.

H.3.3 Algorithm Flowchart

Our algorithm to estimate location of MT for known velocity and unknown direction is

summarized in the form of flowchart shown in Fig. 23.

H.3.4 Simulations
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Figure 23: Flowchart of the localization technique for known v and unknown θ of MT
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Figure 24: RMSE vs SNR plot for the

unknown direction and known veloc-

ity. Performance improves as number

of anchor nodes increased. The per-

formance for known and unknown

direction cases is similar

The simulation setup is exactly same as the known di-

rection case as explained in detail earlier. The perfor-

mance plot is as shown in the Fig. 24. The performance

of our technique for the unknown direction case is sim-

ilar to that of the known direction case but this is ob-

tained at the cost of increased computation and mini-

mum number of ANs required.

H.4 Summary

We presented a new approach to find the location of a

moving target using the observed radial velocities from

Doppler. We specifically focused on two cases - 1) Ve-

locity (v) and direction of motion (θ) of the moving tar-

get are known 2) Only velocity (v) is known and direc-

tion (θ) is unknown. We provided methods to estimate location coordinates of the moving

target by solving a set of nonlinear equations. Our approach imposes no requirement of

common time base between any two nodes and avoids large expensive antenna arrays at

the anchor nodes. Since our technique benefits from the motion of the target, the perfor-

mance improves as the mobility increases.
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