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Abstract

A major issue in modeling and computation is how to handle high dimen-
sional problems. We can divide these high dimensional problems into two
classes: moderately high dimensional problems or very high dimensional prob-
lems. In the former class, we have problems such as the Boltzmann equation
and Fokker-Planck equation, whose dimensionality is moderately high but are
amendable to sparse grid based methods. In the latter class, we have problems
such as exploration of the configuration space of a large molecule. These prob-
lems often involve hundreds of thousands of dimensions, and methods based on
fixed grids are far from being adequate. We developed various techniques in
handling these problems using the hyperbolic cross/sparse representation for
the former class, and adaptive sampling for the latter. These developments
are aimed at providing a solid foundation for efficient and reliable numerical
simulations of Boltzmann and Fokker-Planck equations.

Besides the work presented in this report, a number of other related publi-
cations by the PlIs were also partially supported by this grant.

1 Sparse spectral methods for solving high-dimensional
partial differential equations

How to numerically solve Boltzmann equations and Fokker-Planck equations are a
major challenge in computational science. Traditional numerical approaches are hin-
dered by the high dimensionality of these equations. An effective strategy for dealing
with moderately high dimensional problems, as in the case of Boltzmann equations
and Fokker-Planck equations, is to use hyperbolic cross/sparse grid based approxi-
mations.



Our first goal is to establish some fundamental approximation results for the
hyperbolic cross approximations. The second goal is to develop efficient sparse spec-
tral methods for numerical integrations on high-dimensional infinite domains and for
solving a class of high-dimensional PDEs. The third goal is to develop efficient and ac-
curate sparse spectralmethods to solve the Boltzmann and Fokker-Planck equations.
We have essentially achieved the first two goals above, and have made substantial
progress towards the third goal. Our progress in these directions are summarized
below.

1.1 Error analysis for hyperbolic cross approximations

We studied the hyperbolic cross approximations based on Jacobi polynomials for
bounded domains and Hermite/Laguerre functions on unbounded domains, and es-
tablished optimal error estimates in proper anisotropic weighted Korobov spaces for
both the regular hyperbolic cross approximations and optimized hyperbolic cross ap-
proximations. These results (cf. [1]) are of fundamental importance and are proved
systematically with a uniform approach that can be used to study the hyperbolic
cross approximations by other orthogonal systems.

1.2 Efficient sparse spectral methods for bounded and un-
bounded domains

In the case, of bounded domains, by using the generalized Jacobi polynomials J, 1 (z)
as basis functions, we showed that the linear system resulting from the hyperbolic
cross approximation is sparse. However, one can no longer apply the usual technique
(for the full grid) of matrix diagonalization/decomposition to efficiently solve this
linear system. On the other hand, the integrals involving the forcing function f has
to be approximated by a suitable quadrature or the function f has to be replaced by
a suitable interpolation Iy f. We have developed a quasi-optimal sparse Chebyshev-
Legendre method in which the Legendre formulation is used in order to have a sparse
system matrix, while the sparse grid based on the Chebyshev-Gauss-Lobatto points
is used for interpolation/integration. This new method makes it possible to solve
moderately high dimensional problems which are otherwise out of reach by the usual
full grid methods (cf. [2]).

However, in the case of unbounded domains, the classical quadrature rules based
on Hermite and Laguerre functions are not nested, so the numbers of nodes in the
Smolyak’s sparse grid based on these quadrature rules grows significantly faster than
the sparse grid based on a nested quadrature rule. To overcome this difficulty, we
considered a mapped approach. Namely, we construct a family of mappings which
map (—1,1) to (—oo,+00) or (0,+00), and then use the mapped sparse grid based
on the Chebyshev Gauss-Lobatto quadrature. The parameter in this family of map-
pings can be used to fine tune the performance with respect to the regularity and
asymptotic property of the underlying function. We have developed efficient imple-
mentations by using these mapped Chebyshev sparse grids for numerical integration



as well as for solving model elliptic equations, and investigated their convergence rate
and performance in comparison with the usual approach (cf. [3]).

In a related work [4], we developed an efficient stochastic Galerkin method for
random diffusion equations.

1.3 Approximation of the Fokker-Planck Equation of FENE
dumbbell model

A necessary step towards solving the full Navier-Stokes Fokker-Planck equations is
to develop an efficient and accurate method for solving the Fokker-Planck equation.
To fix the idea, we took the Fokker-Planck equation for FENE dumbbell model as
an example. The FENE dumbbell model is a well-known coarse grain model for
dilute polymer solutions and has been studied extensively in recent years. However,
the existing mathematical formulation for the FENE dumbbell model assumes the
initial condition decays sufficiently fast near the boundaries, and limits the scope of
its applicability.

We introduced a new weighted weak formulation which allows the largest possible
set of initial conditions, and proved its well-posedness in weighted Sobolev spaces.
Moreover, we showed that the solution of our weighted weak formulation enjoys a
boundary smoothing property. This was the first result of such kind for the FENE
dumbbell model and we believe that the weighted weak formulation that we proposed
is a natural formulation for the Fokker-Planck equation of the FENE dumbbell model.

We also constructed simple, yet efficient semi-implicit time-discretization schemes
and proved that they are unconditionally stable. These semi-implicit schemes allow
us to reduce 2-D and 3-D problems into a sequence of 1-D problems which can then
be solved by tailored Jacobi spectral-Galerkin algorithms which enjoy the optimal
computational complexity, conserve the volume naturally, and provide accurate ap-
proximation to higher-order moments of the distribution function. Our algorithms
are orders of magnitude more efficient than existing schemes. Thus, they provide
a solid first step towards our ultimate goal of directly solving the coupled five- and
six-dimensional Navier-Stokes Fokker-Planck equations. These results are presented
in [5] and [6].



1.4 Sparse spectral methods for electronic Schrodinger equa-
tion

2 Exploring parameter space using sparse repre-
sentation/adaptive sampling

2.1 Calibrating and improving empirical inter-atomic poten-
tials

One of the most important issues in atomistic modeling is to determine the inter-
atomic potential. The process often goes as follows: one first specifies a form of the
potential, based on experience or known facts which often involve many undetermined
parameters; one then determines values of these parameters using experimental data
or data obtained from first principle calculations. Needless to say, the success of such
empirical potentials depends heavily on the assumed form.

Assessing the accuracy of such an empirical potential is a rather difficult task
since the dimension of the configuration space of the atoms is usually very high. One
question we have pursued is to assess the validity of the embedded atom model in
the elastic regime. The embedded atom model is a very popular model for studying
metallic systems. The space of elastic deformations is parameterized by the strain,
which is a six-dimensional space. Using sparse representation in the six dimensional
space, we were able to systematically explore the space of elastic deformations. It was
found that the embedded atom model works quite well when the system is under shear
or tension, but it works poorly when the system is under compression. In analogy
with the modeling of exchange-correlation functionals in density functional theory
and viewing the embedded atom model as the analog of the local density approxima-
tion (LDA), we have developed an analog of the generalized gradient approximation
(GGA). Current results suggest that this improved model gives much better results
in all regimes. The results are published in [7].

2.2 Sequential multiscale modeling

While sequential multiscale modeling has certain advantages, it if often believed that
it is limited to the passage of a few parameters from microscale models to macroscale
models. If the unknown component of the macroscale model is a function that de-
pends on many variables, sequential multiscale modeling generally becomes ineffec-
tive. However, the power of sequential multiscale modeling can be greatly improved if
sparse representations are used. For example, assume that we are modeling complex
materials or complex fluids, for which the constitutive law for the stress is either a
function of the strain or the rate of strain, which in three dimension is a function
of six variables, then it becomes feasible to precompute the constitutive information
using sparse representation. This has important consequences in multiscale modeling:
In many cases, it is enough to use sequential multiscale modeling if we represent the
constitutive information in a smart way. This is illustrated in [8].



2.3 The adaptive minimum action method

Sparse representation is only effective if the dimension of the problem is only moder-
ately high. In computational science we often encounter problems whose dimension
can be thousands or even larger. In this case, we have to use other strategies.

One strategy that we have pursued so far is adaptive sampling. The general
procedure is as follows: we first identify a lower dimensional region (e.g. points,
curves or surfaces) in the configuration spaces; we then sampling the probability
distribution of our interest in the neighborhood of that region, and determine how
the region moves in the iteration. Such an adaptive sampling procedure has been
used with great success to gradient systems, i.e. systems that have an underlying
energy landscape, with applications to many important problems in material science,
chemistry and biology.

Our new interest is to study non-gradient systems. We will use transition pathways
between stable states as an example.

Given two stable or metastable states, we would like to find the most probable
transition path between the two states. For gradient systems, the string methods
have been very successful. For non-gradient systems, we are exploring the minimum
action method, which is more general. But for it to be effective, a high quality mesh
along the path is required in order to resolve the path. This is very important since
these paths are often very complicated.

We have developed an adaptive minimum action method. The basic idea comes
from the moving mesh method. The objective is to find the optimal mesh using
carefully chosen monitor functions, as the iteration proceeds. This is very simple, but
it proves to be quite effective, see [9].

2.4 Application to the Kuramoto-Sivashinsky equation

As an application, we have used the adaptive minimum action method to study the
dynamics of the Kuramoto-Sivashinsky equation in its configuration space. One first
identifies a stable stationary solution and another traveling wave solution. By finding
transition pathways between these two solutions, one further finds more stationary
solutions. More importantly, one can further refine the whole procedure and find
important objects on the separatrices between the basins of attractions of the different
stable solutions. This procedure gives us a rich set of information about the very
complicated configuration space of the Kuramoto-Sivashinsky equation. The results
are documented in [10].

So far we have only studied the Kuramoto-Sivashinsky equation. But the method-
ology is fairly general. We intend to use this strategy to study the Navier-Stokes
equations.

2.5 Subcritical instabilities

Many important physical systems exhibit subcritical bifurcations. One of the best
known examples is laminar flow in a circular pipe, which is linearly stable for all



Reynolds number, yet it undergoes transition to more complicated and eventually
turbulent flows when the Reynolds number is sufficiently large. In contrast to super-
critical instabilities which are local phenomena in the configuration space and can
be studied by analyzing linearized models, subcritical instabilities are related to the
global behavior of the system under consideration.

It is clear that finite amplitude perturbations are needed in order to trigger sub-
critical instabilities. What is not clear, however, is how to turn this intuition into a
set of tools with which one can analyze subcritical instabilities and make quantitative
predictions. We have developed a quantitative tool for analyzing such instabilities,
assuming that the instability is driven by a small amplitude noise. Our framework is
based on the large deviation theory, and it gives specific criteria for determining the
stability of a state under noisy perturbations, see [11]. We are now in the process of
applying these results to the analysis of the instability for laminar flows.

3 Evaluation of the selected components of an in-
verse matrix

In many scientific applications, we need to calculate a subset of the entries of the
inverse of a given matrix. A particularly important example is in the electronic
structure analysis of materials using algorithms based on pole expansion [12] where
the diagonal and sometimes sub-diagonals of the discrete Green’s function or resolvent
matrices are needed in order to compute the electron density. Other examples in
which particular entries of the Green’s functions are needed can also be found in the
perturbation analysis of impurities by solving Dyson’s equation in solid state physics,
or the calculation of retarded and less-than Green’s function in electronic transport.
We will call this type of calculations selected inversion of a matrix. Our goal is to find
a direct method to extract selected components, especially all the diagonal elements
of the inverse of a given symmetric sparse matrix A without calculating the entire
inverse matrix.

An obvious way to obtain selected components of A~! is to compute A~! first
and then simply pull out the needed entries. The computational cost of such method
is O(N?) where N is the dimension of the system. This procedure already becomes
prohibitively expensive for N ~ 100, 000.

We have developed the selected inversion algorithm [13, 14, 15] to exploit the
sparsity structure of A and obtain the selected components of the inverse matrix.
Our algorithm is based on LDLT factorization with necessary reordering strategy
of the matrix A. The main result is that the inverse of A restricted to the non-
zero pattern of L and L” can be computed without seeking elements outside this
pattern. Especially, the diagonal elements of the inverse matrix are inside this non-
zero pattern. The number of non-zero elements in L is usually less than O(N?), and
the fast algorithm is obtained. To be more specific, the complexity of the selected
inversion algorithm is O(N) for one dimensional system, O(N'?) for two-dimensional
system and O(N?) for three-dimensional system.



The selected inversion algorithm is vastly suitable for the computation using dif-
ferent discretization techniques for the operator and different domain shapes. We
have applied the selected inversion algorithm to evaluate the inverse of 2D Laplacian
operator. The domain size is 65535 x 65535, which results in a matrix of size 4.3 bil-
lion. The selected inversion algorithm is able to compute the diagonal of the inverse
of the 2D Laplacian operator within 25 minutes on 4,096 processors.

Combined with the recently developed pole expansion technique, we have applied
the selected inversion algorithm to Kohn-Sham density functional theory for metallic
system, which is a well-known difficult problem in material science. We have com-
puted the electronic structure of 2D quantum dot system, and compared the efficiency
with the benchmark software OCTOPUS. For one self-consistent iteration step with
512 electrons, OCTOPUS costs 1091 sec, and selected inversion costs 9.76 sec. The
algorithm exhibits significant advantage for 2D systems, and shows potential value
for studying the electronic structure of 3D systems.

The selected inversion algorithm serves as an powerful alternative approach for
large scale Kohn-Sham density functional theory calculation and ab initio molecular
dynamics simulation with improved scaling property. The algorithm can be also
applied to other related fields where selected components of inverse matrix is to
be extracted, such as the non-equilibrium Green’s functional approach for quantum
transport computation.
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