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Efficient High-Fidelity, Geometrically Exact,
Multiphysics Structural Models,

Final Report: AFOSR Grant FA9550-08-1-0405

Wenbin Yu
Department of Mechanical and Aerospace Engineering

Utah State University, Logan, Utah 84332-4130

Abstract

Under the sponsorship of AFOSR, USU carried out a challenging research project
to develop efficient high-fidelity, geometrically exact, multiphysics structural models
for synergetic exploitations of static or dynamic large nonlinear structural deforma-
tions under coupled thermal, electromagnetic, and mechanical loads. The approach
uses the concept of decomposition of the rotation tensor to systematically capture all
geometrical nonlinearities, and uses the variational asymptotic method to achieve an
excellent tradeoff between accuracy and efficiency. In the first year, we have carried out
a critical assessment of the proposed approach and developed models for functionally
graded plates. In the second year, we developed models for functionally graded smart
plates responsive to electromagnetical fields in addition to mechanical fields. We also
developed a new classical plate model for heterogeneous plates through simultaneous
homogenization and dimensional reduction. In the third year, we initiated the develop-
ment for a geometrically exact plate analysis, a refined plate model for heterogeneous
plates, and used the finite element method to solve the multiphysics plate model and
confirmed our analytical solutions.

1 Introduction

This grant has been active since August 2008. In this final report, all work done
will be summarized and papers written under grant sponsorship will be appended to
provide the technical details. The goal of this research was to advance our predictive
capabilities for aerospace structures undergoing large deformations in coupled multiple
fields. The importance of such a research stems from the recent Air Force interest of
several novel concepts such as micro air vehicles, sensorcraft, hypersonic vehicles, and
adaptive morphing air vehicles to develop future aerospace systems for various missions
such as intelligence, surveillance, reconnaissance, and long range strike. These new
concepts have three distinctive features:

• These structures are highly flexible and could undergo large nonlinear deforma-
tion, which demands the structural models to systematically capture geometrical
nonlinearity under quasi-static or dynamic loads.



• These structures will take full advantage of composites and smart materials which
are active to thermal and electromagnetic fields in addition to the traditional
mechanical field. Behavior of such structures will be multiphysical, for example,
a smart wing actuated using piezoelectric materials or shape memory alloys.

• These structures are highly heterogeneous in both material and geometry, such as
sandwich structures with woven composites or corrugated cores. The local details
will not only affect the global behavior but also the pointwise 3D fields.

These features pose formidable obstacles for theoretical prediction of these struc-
tures, which must be overcome before we can reap their full benefits for future air
vehicles. Furthermore, to rapidly yet confidently assess the potential and feasibility
of these new concepts, the designers must be equipped with a versatile computational
design framework to accurately analyze the associated physics while maintaining the
speed of conceptual design This calls for efficient high-fidelity physics-based models to
deliver the best possible accuracy within desirable efficiency. Although the ultimate
accuracy of multiphysical behavior can be predicted using detailed 3D multiphysics sim-
ulation such as those available in ANSYS or COMSOL, they are too time-consuming to
be used for effective design space exploration. Timely assessment of future air vehicle
concepts presents a pressing need for efficient high-fidelity multiphysics models suit-
able for geometrically nonlinear quasi-static and dynamic analysis of structures under
combined thermal, electromagnetic, and mechanical loads. This project was proposed
to meet this need.

There are three main research objectives originally proposed in the proposal:

1. Formulate the exact kinematics to systematically capture all geometrical non-
linearities using the concept of decomposition of the rotation tensor (DRT) [1],
a powerful kinematic concept particularly suitable for geometrically nonlinear
modeling of beams, plates, and shells.

2. Construct efficient high-fidelity multiphysics plate/shell models using the varia-
tional asymptotic method (VAM) [2], the best known method for dimensional re-
duction, to rigorously split the original three-dimensional (3D) multiphysics prob-
lem into a one-dimensional (1D) analysis over the thickness (thickness analysis)
and a two-dimensional (2D) analysis over the reference surface (surface analysis)
without invoking any apriori assumptions. The thickness analysis will provide a
multiphysics constitutive model for the surface analysis.

3. Treat various type of material nonlinearities, such as those inherent in shape
memory alloys or electrostrictive materials, by coupling the thickness analysis
and the surface analysis into an iterative numerical framework.

We also find out that heterogeneous plates with complex microstructure such as cor-
rugated sandwich panels, woven or braided composites are also extensively used in
aerospace systems. Hence, we also started to work on development of models for het-
erogeneous plates.

2 Approach

The proposed approach is founded on two pillars: DRT and VAM. DRT is a powerful
kinematic concept for systematically capturing all the geometrical nonlinearities. VAM
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is a mathematical method for asymptotical analysis of the governing variational state-
ment. Starting from the 3D multiphysics continuum formulation, we can first use DRT
to formulate the kinematics in a geometrically exact manner. Then taking advantage
of the small parameters of the structure, say the thickness of a plate/shell, we can use
VAM to rigorously reduce the original 3D problem into a lower-dimensional structural
analysis. The unique features of the proposed approach are:

• Use VAM to avoid apriori assumptions, which are commonly invoked in other
approaches, providing the most mathematical rigor and the best engineering gen-
erality.

• Decouple a 3D nonlinear problem into two sets of analyses: a structural modeling
analysis of smaller dimensions and a lower-dimensional structural analysis. The
synergetic use of DRT and VAM allows the lower-dimensional structural analysis
to be formulated exactly as a general continuum and confines all approximations
to the structural modeling analysis, whose accuracy is guaranteed to be the best
by VAM.

• Maintain the engineering simplicity and legacy by repacking the refined asymp-
totically correct functionals into common engineering models such as Reissner-
Mindlin model for plates/shells [3].

3 Work Accomplished-First Year

During the first year, we have made two accomplishments which are summarized as
below:

3.1 Critical Assessment of the Proposed Approach

We collaborated with Prof. Luciano Demasi of the San Diego State University to
assess the performance, including both the accuracy and efficiency, of the proposed
approach, against the models constructed based on a priori assumptions. It is find out
that our proposed approach can achieve an excellent tradeoff between efficiency and
accuracy. Our proposed approach is as efficient as first-order shear-deformation theory,
yet it is as accurate as higher-order zig-zag and layerwise models. This assessment was
documented in [4] and presented on the 50th SDM conference. We have also modified
this paper for journal publication and it is now in print with the journal of Mechanics
of Advanced Materials and Structures [5].

3.2 Modeling Plates Made of Functionally Graded Materials

We have also developed efficient high-fidelity models for composite plates made of
functionally graded materials. The derivation shows that the theoretical formulation
is very similar to the formulation of plates made of layerwise homogeneous materials,
although one has to pay attention to the fact that for each layer of functionally graded
plates, the material properties are not constant. Several examples have shown that
our model can achieve an excellent agreement with the 3D exact solution. We have
also shown that it is advantageous to use functionally graded materials to smoothen
the discontinuity of in-plane stresses and displacement tangent on the interfaces. This
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development was first documented in [6] and presented on the 50th SDM conference.
Later, a significantly enhanced version was published in the AIAA Journal [7] in year
2010.

4 Work Accomplished-Second Year

During the second year, we have made two accomplishments which are summarized as
below:

4.1 Modeling Multiphysical Behavior of Smart Plates

We have also developed efficient high-fidelity models for smart plates made of func-
tionally graded materials. By taking advantage of the inherent small parameter char-
acterized by the ratio of the thickness to the in-plane dimension of the plate, we
systematically reduced the original multiphysically coupled three-dimensional model
to a series of two-dimensional plate models. A companion one-dimensional through-
the-thickness analysis provides the necessary constitutive models needed for the plate
analysis. For practical uses, we also fit the asymptotically correct second-order electro-
magnetic enthalpy into a generalized Reissner-Mindlin model. The three-dimensional
displacement/strain/stress fields as well as the electric/magnetic potentials and fluxes
of the plate are obtained through recovery relations. Without introducing any a priori
kinematic, electric, or magnetic assumptions in the derivation, the present plate model
is rigorously derived to capture geometrical nonlinearity and is valid for large deforma-
tions and global rotations. The efficiency and the accuracy of the proposed method has
been validated by comparing results with three-dimensional exact solutions for several
problems featuring electromagnetic and elastic coupling. This development was first
presented on the ASME 2009 Conference on Smart Materials, Adaptive Structures &
Intelligent Systems [8] and the 51th SDM conference [9]. We have submitted an up-
dated version for submission for journal publications [10]. We are currently revising
this paper.

4.2 Modeling Heterogeneous Plates

We have also constructed a classical plate model for heterogeneous plates. We first
formulate the original three-dimensional problem in an intrinsic form which is suitable
for geometrically nonlinear analysis. Taking advantage of smallness of the plate thick-
ness and heterogeneity, we use the variational asymptotic method to systematically
obtain an effective plate model unifying a homogenization process and a dimensional
reduction process. This approach is implemented in the computer code VAPAS using
the finite element method for the purpose of dealing with real heterogeneous plates in
application. A few examples are used to demonstrate the capability of this new model.
This development was first documented in [11] and presented on the 16th U.S. National
Congress of Theoretical and Applied Mechanics. Later, an updated version was rapidly
accepted and quickly published by International Journal of Solids and Structures [12].
Prof. Yu, the PI of this project, also applied this method to model textile composites,
a current interest of AFRL/RBSA, through a summer faculty research program.
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5 Work Accomplished-Third Year

During the third year, we have made several accomplishments which are summarized
as below:

5.1 Geometrical Exact Plate Analysis

Prof. Hodges of Georgia Tech was initially supported as a consult on this project to
work on geometrically exact dynamic analysis of moving plates, which is part of our
second objective. On the third year, he hired a graduate student for developing some
code for preliminary testing of the theory. Their report entitled “Finite Element For-
mulation for Dynamics of Moving Plates” is attached in the appendices. Basically, a
finite element solution technique, based on a geometrically-exact, fully intrinsic equa-
tions is presented and applied to an homogeneous, isotropic cantilevered plate. Right
now, the reasons for the deviation of the results compared to the exact solution are
being investigated. Future work would involve including the non-linearities and aeroe-
lastic effects and extending the equations to study the dynamics of a flapping wing
[13].

5.2 Finite Element Formulation for Multiphysics Modeling

The multiphysics plate model developed in the second year was solved analytically
with the help of a symbolic manipulator. As shown in our submitted manuscript [10],
our model provides accurate predictions for most cases. However, for some cases, the
prediction is not that satisfactory. To confirm that we solved the problem correctly, we
developed a finite element formulation for the model and find out that the numerical
solution reproduces the analytical solution. Thus we are confident to conclude that
when some of the multiphysics are truly 3D, they cannot be accurately captured by a
plate model. We are preparing a paper to document our findings of the limitation in
using a plate theory to model multiphysics behavior.

5.3 Refined Modeling Heterogeneous Plates

For heterogeneous plate exhibiting significant transverse shear such as a sandwich struc-
ture with a soft core, we find out that the classical plate model we constructed is not
sufficient and we extended our work on simultaneous dimensional reduction and ho-
mogenization to construct a generalized Reissner-Mindlin model for plates with het-
erogeneity. The theory has been developed and implemented using the finite element
in a numerical code. A paper is in preparation and will be submitted for journal publi-
cation shortly. We also applied this approach to model integrated thermal protections
which is actively investigated in the AFRL In-House research program entitled “Rapid
Insertion and Development of Hypersonic Materials”.

In the third year, we also explored the possibility to treat various type of material
nonlinearities, such as those inherent in shape memory alloys or electrostrictive mate-
rials. By some preliminary theoretical derivation, we found out that this can be done
by coupling the thickness analysis and the surface analysis into an iterative numerical
framework, as been demonstrated by our work in micromechanics [14, 15].
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6 Conclusions

Many progresses have been made in multiphysics modeling of composite structures
of Air Force interest. The critical assessment of the proposed approach with many a
priori models gives us confidence that we have found an approach that can achieve an
excellent tradeoff between efficiency and accuracy for multiphysics modeling of com-
posite/smart plates and shells. We applied this approach to construct models for
functionally graded plates and great performance has been achieved for these models.
The analytical and numerical modeling of multiphysical behavior of functional graded
smart plates provides the right foundation and benchmark for us to develop a general-
purpose computational tool for modeling smart structures. Modeling of heterogeneous
plates with complex microstructures significantly boosts the application of the ending
result of this project. It will not only be applicable to laminated composites, but also
textile composites, and sandwich structures and other heterogeneous structures caused
by geometry heterogeneity and/or material heterogeneity.

7 Personnel Supported

This effort involves two faculty members: Prof. Wenbin Yu (USU) and Prof. Dewey H.
Hodges (Georgia Tech), two postdoctoral fellows: Dr. Hui Chen (08/2008-06/2011) and
Dr. Chang-Yong Lee (01/2010-07/2011). Several students were also supported during
the course of this project including Krishnan Chathadi (Georgia Tech), Nachiket B.
Patil (USU).

8 Interaction/Transitions

During the course of this project, Prof. Wenbin Yu has a very active interaction with
AFRL researchers at WPAFB, particularly the Air Vehicles Directorate and Materials
and Manufacturing Directorate. The interaction was initiated with a AFOSR/ASEE
summer faculty fellowship in AFRL/RBSD with Dr. Max Blair and Phil Beran to
develop efficient high-fidelity structural models for sensorcraft. It was followed by a
one-year sabbatical stay with the same branch supported by Chief Scientist Innovative
Research Fund. And also in summer 2010, Prof. Yu worked with Dr. Bill Beran
(AFRL/RBSA) on efficient high-fidelity modeling of textile composites. In summer
2011, Prof. Yu worked with Dr. Ming Chen (AFRL/RXBC) Dr. Andy Swanson
(AFRL/RBSA) on modeling integrated thermal protection systems. All these interac-
tions are focus on applying the theory developed in this project into various applications
of Air Force interest.
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Asymptotical Construction of an Efficient

High-Fidelity Model for Multilayer Functionally

Graded Plates

Hui Chen∗

and

Wenbin Yu†

Utah State University, Logan, Utah 84322-4130

An efficient high-fidelity plate model is developed for heterogeneous multilayer laminates

made of functionally graded material. Taking advantage of the smallness of the ratio of

the thickness to the characteristic wavelength of the deformation of the reference surface,

we apply the variational-asymptotic method to rigorously decouple the three-dimensional,

anisotropic elasticity problem into a one-dimensional through-the-thickness analysis and a

two-dimensional plate analysis. The through-the-thickness analysis provides constitutive

relations for the plate analysis as well as the recovery information for the three-dimensional

fields, reducing the complex three-dimensional elasticity model to a simple two-dimensional

plate model with an excellent tradeoff between efficiency and accuracy. The present model

is valid for large displacements and global rotations and can capture all the geometric

nonlinearity of a plate when the strains are small. A few examples are used to validate this

model.

Nomenclature

bi base vectors of the coordinate system before deformation

Bi base vectors of the coordinate system after deformation

Cij direction cosine matrix describing the rotation from triad bi to triad Bi

c‖ through-the-thickness average of in-plane warping functions

∗Research Engineer, Department of Mechanical and Aerospace Engineering. Member, AIAA and ASME.
†Associate Professor, Department of Mechanical and Aerospace Engineering. Senior Lifetime Member, AIAA; Member,

ASME and AHS.
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εαβ ,Kαβ , ε, κ two-dimensional generalized plate strains

E a column matrix containing two-dimensional generalized strains E = bεT κT cT

eijk the permutation symbol

η a small parameter used to denote the order of strains

fi, mα generalized forces and moments, respectively

Fij mixed-basis deformation gradient tensor

Γij three-dimensional strain tensor

Gi covariant basis vectors of the deformed configuration

h thickness of the plate

K∗ effective bulk modulus estimated by Mori-Tanaka scheme

λ‖, λ3, Λ3 Lagrange multipliers for enforcing in-plane and out-of-plane warping constraints

K three-dimensional kinetic energy

K2D two-dimensional kinetic energy

Lα integration constants for determining the relationship between E and c‖

l characteristic wavelength of the plate deformation

µ characteristic magnitude of the elastic constants

µ∗ effective shear modulus estimated by Mori-Tanaka scheme

M plate moment resultants

N plate force resultants

φi applied body force

Qi tractions applied on lateral surfaces

r position vector of a material point on the undeformed reference surface

r̂ position vector of a material point in the undeformed three-dimensional configuration

R position vector of a material point on the deformed reference surface

R generalized strain measures of the Reissner-Mindlin model
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R̂ position vector of a material point in the deformed three-dimensional configuration

ρ mass density

σij three-dimensional stress tensor

γ transverse shear strains for the Reissner-Mindlin model

τi, βi tractions applied on top and bottom surfaces

t1, t2 arbitrary fixed times

Ui three-dimensional displacements

ui two-dimensional displacements

U three-dimensional strain energy

UA0 zeroth-order strain energy

V̂i absolute velocity of a material point in three-dimensional configuration

Vi absolute velocity of a point on the deformed reference surface

δW three-dimensional virtual work

δW2D two-dimensional virtual work

ω inertial angular velocity of triad Bi

Ω the reference surface

∂Ω boundary of the reference surface

wi warping functions

xi Cartesian coordinates

Introduction

Functional graded materials (FGM) have received significant attention in recent years. The various

functional effects of FGM have been used to address a large variety of application fields, such as graded

thermoelectrics and dielectrics, piezoelectrically graded materials for ultrasonic transducers, and tungsten-

copper composites for high current connectors and diverter plates, to name but a few.1,2 One extensively

investigated FGM, typically used for constructing panels in aerospace systems, is made of a mixture of
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ceramics and metals and characterized by a continuously changing of its mechanical properties using a

smooth change in volume fraction of the constituent materials from one surface of the material to the other.

The surface with high ceramic constituents can provide superior thermal-resistance for high temperature

environments while the surface with high metal constituents offers strong mechanical performance. This kind

of material arrangement reduces the risk of catastrophic fracture under extreme environments. Recently,

the concept of FGM is actively explored in the multilayered design of thermal coatings as well as sandwich

panels to overcome the mismatch of the thermomechanical properties between the coating and the substrate

or between the surface panels and the core.3–6

To use FGM effectively, we need to develop efficient yet accurate models for structures made of such

materials such as FGM plates and shells. These structures are characterized by one of their dimensions (the

thickness) being much smaller than the other two. Although all structures made of FGM can be described

using three-dimensional (3D) continuum mechanics, exact solutions exist only for a few specific problems with

very idealized material types, geometry, and boundary conditions.4,5, 7–9 For more realistic cases, one often

has to rely on 3D numerical simulation tools such as ANSYS and ABAQUS to find approximate solutions.

However, this approach is computation intensive and they are usually used in the detailed analysis due to

their prohibitive computational cost. In view of the fact that the thickness is small, analysis of such structures

can be simplified using two-dimensional (2D) models. Although many 2D models have been developed to

analyze FGM plates and shells treating different topics, most of them rely on some a priori kinematic

assumptions. Examples may be found in the application of classical lamination theory (CLT) in thermal

residual stress and free vibration analyses,3,10 the use of the first-order shear-deformation theory (FSDT)

in active control analysis,11 and the implementation of the third-order shear-deformation theory(TSDT) in

bending and buckling analyses.12 CLT ignores transverse shear effects and provides reasonable results only for

very thin plates. Moreover, in CLT, both plane strain and plane stress are assumed which we know will not be

true at the same time for materials having nonzero Poisson’s ratios. A number of shear deformation theories

have been developed to overcome some drawbacks of CLT, with the simplest of which being FSDT (equivalent

to Reissner-Mindlin theory for plates made of isotropic homogeneous materials), where a constant distribution

of shear strain through the thickness is assumed and a shear correction factor is required to account for the

deviation of the real shear strain from the assumed constant one. The dependence of the shear correction
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factor on the geometry and material of the plate makes it difficult to guarantee the accuracy of FSDT. By

expanding the displacement field of the plate using higher-order polynomials, higher-order shear deformation

plate theories are developed, which can account for both transverse normal and shear deformations without

relying on shear correction factors. However, as indicated by Bian et. al [13] and Das et. al. [6] for laminated

plates and shells, models based on higher-order theories cannot capture the discontinuous slope of in-plane

and transverse displacement components in the thickness direction. By extending a generalized refined

theory (referred as Soldatos plate theory14,15) which incorporates shape functions to guarantee continuity of

transverse shear stresses at interfaces, these authors provide analytical solutions for simply- and multiply-

spanned functionally graded plates under cylindrical bending.13 Higher-order shear deformation theories have

also been implemented using the finite element method (FEM) to analyze functionally graded plates. As

recent examples, Gilhooley et. al.16 carried out a numerical investigation of a two-constituent metal/ceramics

thick plate by combining a meshless local Petrov-Galerkin method and a higher-order shear deformation plate

theory; while Zhen and Chen17 combined the higher-order shear deformation theory with refined three-

node triangular element for analyzing multilayer FGMs. Despite of the popularity of the aforementioned

methods in analyzing many functionally graded plates and laminated plates, these approaches have two major

disadvantages: (1) the a priori assumptions which are naturally extended from the analysis of isotropic

homogeneous structures cannot be easily justified for heterogeneous and anisotropic structures, such as

FGMs; (2) it is difficult for an analyst to determine the accuracy of the result and which assumption should

be chosen for efficient yet accurate analysis for a particular plate.

Recently, the variational-asymptotic method (VAM)18 was used to develop a series of rigorous Reissner-

Mindlin plate models for heterogeneous and anisotropic composite plates and smart plates.19–25 These models

have excellent compromise between the efficiency and accuracy. In this paper, we expand this method

to construct an efficient and high-fidelity model which is able to capture the geometric nonlinearity for

multilayer functionally graded plates, where material properties of each layer can be continuous functions of

the thickness coordinate x3.

In present work, the 3D displacement field of an arbitrary material point of the plate is expressed using

the deformation of the reference surface along with unknown warping functions, without invoking any a

priori kinematic assumptions. The original 3D elasticity problem is cast in an intrinsic form so that the
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theory can accommodate arbitrary large deformations and global rotations with the restriction that the

strain field is small. Taking advantage of the small parameter h/l, we apply VAM to systematically reduce

the original 3D model to a series of 2D models, so that the original, nonlinear 3D problem is rigorously split

into a linear one-dimensional (1D) through-the-thickness analysis and a 2D nonlinear plate analysis. For

practical uses, we also transfer the asymptotically correct energy into the Reissner-Mindlin model with the

transverse shear stiffness calculated through a least square scheme. To validate this model, we analyzed a

couple of examples and excellent agreement with the 3D exact elasticity solution has been achieved using

the present model.

Three-dimensional Formulation

The elastodynamic behavior of a solid is governed by the extended Hamilton principle:

∫ t2

t1

[
δ(K − U) + δW]

dt = 0, (1)

where the overbar is used to indicate that the virtual work δW dose not necessarily represent variation of a

function, or in other words, there may not exist such a functional W that its variation is equal to the virtual

work done by the applied loads.

A point in the plate can be described by its Cartesian coordinates xi, see Figure 1, where xα are two

orthogonal lines in the reference surface and x3 is the normal coordinate originating from the middle of the

thickness. Throughout the analysis, Greek indices assume values 1 and 2 while Latin indices assume 1, 2,

and 3; repeated indices are summed over their range except where explicitly indicated. Letting bi denote

the unit vector along xi for the undeformed plate, we can then describe the position of any material point

in the undeformed configuration by its position vector r̂ from a fixed point O, such that

r̂(x1, x2, x3, t) = r(x1, x2, t) + x3b3, (2)

where r is the position vector from a fixed point O to the point located by xa on the reference surface at

a specific time t. When the reference surface of the undeformed plate coincides with its middle surface, we
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have

〈r̂(x1, x2, x3, t)〉 = hr(x1, x2, t), (3)

where the angle brackets denote the definite integral through the thickness of the plate.

Undeformed State Deformed State

b₃

O

wi (x₁, x₂,x₃) Bi

b₂

b₂

B₁ (x₁ x₂)

B₂ (x₁ x₂)B₃ (x₁ x₂)

u (x₁ x₂)

r (x₁ x₂ x₃)
∧

R (x₁ x₂ x₃)
∧

r (x₁ x₂)

R (x₁ x₂)

Figure 1. Schematic of plate deformation

When the plate deforms, the particle that had position vector r̂ in the undeformed state now has position

vector R̂ in the deformed plate, which can be uniquely determined by the deformation of the 3D body. We

introduce another orthonormal triad Bi for the deformed configuration so that:

Bi = Cijbj , Cij = Bi · bj , (4)

subjecting to the requirement that Bi is coincident with bi when the structure is undeformed. The direction

cosines matrix C(x1, x2) represents the possible arbitrary rotation between Bi and bi.

After deformation, the position vector R̂ in the deformed state can be expressed as

R̂(x1, x2, x3, t) = R(x1, x2, t) + x3B3(x1, x2, t) + wi(x1, x2, x3, t)Bi(x1, x2, t), (5)

where R is the position vector of the reference surface for the deformed plate and wi(x1, x2, x3, t) are the

warping functions introduced to accommodate all possible deformations. Equation (5) can be considered
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as a change of variables for R̂ in terms of R, Bi, and wi. Proper definitions of R and Bi are needed to

introduce six constraints to ensure a one-to-one mapping of this change of variables. We can introduce the

following three constraints for the warping functions:

〈wi(x1, x2, x3, t)〉 =





c‖

0





, with c‖ =





c1

c2





, (6)

where c1 and c2 are functions of the in-plane coordinates xα and time t, introduced for providing free

variables for the construction of an optimal Reissner-Mindlin model which will be described later. Two

other constraints can be specified by taking B3 as the normal to the reference surface of the deformed

plate. It should be noted that this choice has nothing to do with the well-known Kirchhoff hypothesis. In

the Kirchhoff assumption, no local deformation of the transverse normal is allowed. However, in present

derivation we allow all possible deformation using the warping functions. Because Bα can freely rotate

around B3, we can introduce the last constraint as

B1 ·R,2 = B2 ·R,1, (7)

where ( ),α = ∂( )/∂xα.

Based on the concept of decomposition of rotation tensor,26,27 the Jauman-Biot-Cauchy strain components

for small local rotation are given by

Γij =
1
2
(Fij + Fji)− δij , (8)

with

Fij = Bi ·Gkbk · bj. (9)

Here Gk = ∂R̂/∂xk is the covariant basis vector of the deformed configuration. The details for obtaining

this concise expression for the Jauman-Biot-Cauchy strain tensor can be found in Ref. [26]. To express the
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3D strain field in terms of 2D plate strains, we can define the 2D generalized strains following Ref. [28] as:

R,α = Bα + εαβBβ (10)

Bi,α = (−KαβBβ ×B3 + Kα3B3)×Bi (11)

Using this definition, one can show that Eq. (7) implies ε12 = ε21. The expressions for 2D generalized

strained in terms of plate displacements and rotations can be found in Ref. [28].

For geometrically nonlinear analysis, we can assume that both the 3D and 2D strains are small when

compared to the unity and from which we can also conclude that warpings are of the order of the stain or

smaller. Using Eq. (8) along with Eqs. (9), (5), (2), (10) and (11), we can derive the following expression

for the 3D strain field:

Γe = ε + x3κ + I1w‖,1 + I2w‖,2

2Γs = w′‖ + e1w3,1 + e2w3,2

Γt = w′3

(12)

where ()′ = ∂()
∂x3

, ()‖ = b()1 ()2cT , and

Γe = bΓ11, 2Γ12 Γ22cT , 2Γs = b2Γ13 2Γ23cT , Γt = Γ33,

ε = bε11 2ε12 ε22cT , κ = bK11 K12 + K21 K22cT ,

(13)

I1 =




1 0

0 1

0 0




, I2 =




0 0

1 0

0 1




, e1 =





1

0





, e2 =





0

1





. (14)

Note in deriving Eq. (12), we have neglected the products between warping and strain because these terms

are negligible based on our small strain assumption. With the knowledge of the 3D strain field, we can
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express the strain energy as

U =
∫

Ω

1
2

〈





Γe

2Γs

Γt





T 


Ce Ces Cet

Ces
T Cs Cst

Cet
T Cst

T Ct




T 



Γe

2Γs

Γt





〉
dΩ ≡

∫

Ω

UAdΩ (15)

where Ce, Ces, Cet, Cs, Cst, Ct are the corresponding partition matrices of the 3D 6×6 material matrix which

are functions of xi for functionally graded materials. Here for simplicity, we restrict ourselves to FGM plates

having material properties as functions of x3 only.

To calculate the kinetic energy, the absolute velocity of a generic point in the structure is obtained by

taking a time derivative of Eq. (5) as

V̂ = V + ω̃(ξ + w) + ẇ, (16)

where ˙( ) is the partial derivative with respect to time and the notation (̃ ) forms an antisymmetric matrix

from a vector according to (̃ )ij = −eijk( )k. In Eq. (16), the symbols V̂ , V, ω, w denote column matrices

containing the components of corresponding vectors in Bi bases, and ξ = b0 0 x3cT . The kinetic energy of

the plate structure can be obtained by

K =
1
2

∫

V
ρV̂ T V̂ dV = K2D +K∗ (17)

with

K2D =
1
2

∫

Ω

(µ̄V T V + 2ωT µ̃ξ̄V + ωT jω)dΩ (18)

K∗ =
1
2

∫

V
ρ

[
(ω̃w + ẇ)T (ω̃w + ẇ) + 2(V + ω̃ξ)T (ω̃w + ẇ)

]
dV, (19)

where µ̄, µξ̄, and j are inertial constants commonly used in plate dynamics, which can be trivially obtained
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by taking integral operations through the thickness:

µ̄ = 〈ρ〉 , µξ = b0 0 〈x3ρ〉cT , j =




〈
x2

3ρ
〉

0 0

0
〈
x2

3ρ
〉

0

0 0 0




. (20)

The virtual work of the structure can be calculated as

δW =
∫

Ω

(〈
φ · δR̂

〉
+ τ · δR̂+ + β · δR̂−

)
dΩ +

∫

∂Ω

〈
Q · δR̂

〉
ds (21)

where ( )± = ( )|x3=±h/2; φ = φiBi is the applied body force; τ = τiBi, β = βiBi are tractions applied on

the top and bottom surfaces, respectively; Q = QiBi are the applied tractions along the lateral surfaces.

δR̂ is the Lagrangian variation of the displacement field which can be expressed as

δR̂ = δqiBi + x3δB3 + δwiBi + wjδBj , (22)

in which the virtual displacement and rotation are defined by

δqi = δR ·Bi, δBi = (−δψ2B1 + δψ1B2 + δψ3B3)×Bi, (23)

where δqi and δψi contain the components of the virtual displacement and rotation in the Bi system,

respectively. Since the warping functions are small, one may safely ignore products of the warping functions

and the virtual rotations in δR̂ and obtain the virtual work due to applied loads as

δW = δW2D + δW∗
, (24)
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where

δW2D =
∫

Ω

(
fiδqi + mαδψα

)
dΩ +

∫

∂Ω

(〈Qi〉 δqi + 〈x3Qα〉 δψα

)
ds, (25)

δW∗
=

∫

Ω

(〈φiδwi〉+ τiδw
+
i + βiδw

−
i

)
dΩ +

∫

∂Ω

〈Qiδwi〉 ds, (26)

with the generalized forces fi and moments mα defined as

fi = 〈φi〉+ τi + βi, mα = 〈x3φα〉+
h

2
(τα − βα). (27)

The second integration in Eq. (26) accounts for the virtual work done through warping functions along the

lateral boundaries of the plate. This term is necessary for the edge-zone problem, which is an important

subject in its own right and beyond the scope of the present paper. For simplicity, we will drop this term

hereafter. With the knowledge of Eqs. (17), (15), and (24), the extended Hamilton’s principle in Eq. (1)

becomes
∫ t2

t1

[
δ(K2D +K∗ − U) + δW2D + δW∗]

dt = 0 (28)

So far, we have presented a 3D formulation for the plate structure in terms of 2D displacements (represented

by R− r), 2D rotations (represented by bi and Bi), and 3D warping functions (wi). If we attempt to solve

this problem directly, we will meet the same difficulty as solving any full 3D problem with the additional

difficulty coming from the anisotropy and heterogeneity of functional graded materials. The main complex-

ity comes from the unknown 3D warping functions wi. A common practice in the literature is to use a

priori assumptions. However, for plates made with general anisotropic and heterogeneous materials such as

functionally graded materials, imposition of such assumptions may introduce significant errors. Fortunately,

VAM provides a useful technique to obtain wi through an asymptotical analysis of the variational statement

in Eq. (28) in terms of small parameters inherent in the problem which will be described in the next section.

Dimensional Reduction

The dimensional reduction from the original 3D formulation to a 2D plate model can only be done

approximately. One way to accomplish this is to take advantage of the small parameters in the formulation
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to construct a 2D formulation so that the loss of accuracy can be minimized.

In order to apply VAM, we first need to assess the order of quantities in terms of small parameters. As

mentioned previously, the ratio of the plate thickness to the characteristic wavelength of the deformation of

the reference surface is small, i.e. h/l ¿ 1. The strain is also small if we only interest in a geometrically

nonlinear but physically linear 2D theory, i.e., εαβ ∼ hκαβ ∼ η ¿ 1. From the plate equations of equilibrium,

we can estimate the orders of the following quantities corresponding to the order of strains:

hφ3 ∼ τ3 ∼ β3 ∼ µ(h/l)2η, hφα ∼ τα ∼ βα ∼ µ(h/l)η,

Qα ∼ µη, Q3 ∼ µ(h/l)η, (29)

We can choose the characteristic scale of change of the displacements and warping functions with respect to

time in such a way that K∗ is much smaller than other terms in Eq. (28). In other words, here we are only

interested the accurate description of low frequency dynamic problems.

Zeroth-order approximation

To clearly illustrate the application of VAM for FGM plates, we first construct a classical FGM plate model.

By applying VAM, the zeroth-order approximation of the variational statement in Eq. (28) can be obtained

as
∫ t2

t1

[
δ(K2D −

∫

Ω

UA0dΩ) + δW2D

]
dt = 0 (30)

where UA0 can be obtained from Eq. (15) by dropping the derivatives with respect to xα in Equation (12),

resulting in

2UA0 =2
〈
(ε + x3κ)T (Cesw‖′ + Cetw3

′) + w‖′T Cstw3
′〉

+
〈
(ε + x3κ)T Ce(ε + x3κ) + w‖′T Csw‖′ + w3

′Ctw3
′〉 + o

(
(
h

l
)0η2

)
.

(31)

It is obvious that the warping functions wi can be obtained by solving the following variational statement

δUA0 = 0, (32)
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along with the constraint equation expressed in Eq. (6). The corresponding Euler-Lagrange equations are:

[
(ε + x3κ)T C

(k)
et + w

′(k)
‖

T
C

(k)
st + w3

′(k)C
(k)
t

]′
= λ3,

[
(ε + x3κ)T C(k)

es + w
′(k)
‖

T
C(k)

s + w
′(k)
3 C

(k)
st

T
]′

= λ‖, k = 1, 2, 3, . . . , N (33)

where λ‖ and λ3 are Lagrange multipliers corresponding to the in-plane and out-of-plane constraint equations

expressed in Eq. (6); (•)(k) denotes functions (•) for the kth layer. The boundary conditions as well as the

interlaminar continuous conditions are:

[
(ε + x3κ)T Cet + w′‖

T
Cst + w′3Ct

]+

= 0,

[
(ε + x3κ)T Ces + w′‖

T
Cs + w′3Cst

T
]−

= 0, (34)

and

[w3] = 0,
[
(ε + x3κ)T Cet + w′‖

T
Cst + w′3Ct

]
= 0, on Ωi,

[
w‖

]
= 0,

[
(ε + x3κ)T Ces + w′‖

T
Cs + w′3Cst

T
]

= 0, on Ωi, (35)

respectively. Here, Ωi denotes the interfaces between the ith layer and i + 1th layer; i = 1 . . . N − 1 with

N denoting the total number of layers; the bracket [·] denotes the jump of the enclosed argument on the

interface. From these conditions, we can solve wi
′ from Eq. (33):

w
′(k)
‖

T
=− (ε + x3κ)T Ĉ(k)

es C(k)
s

−1
,

w
′(k)
3 =− (ε + x3κ)T Ĉ

(k)
et /Ĉ

(k)
t , (36)

with the hatted quantities being expressed as:

Ĉ(k)
es = C(k)

es − Ĉ
(k)
et C

(k)
st

T
/C

(k)
t , Ĉ

(k)
et = C

(k)
et − C(k)

es C(k)
s

−1
C

(k)
st ,

Ĉ
(k)
t = C

(k)
t − C

(k)
st

T
C(k)

s

−1
C

(k)
st . (37)
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Substituting Eq. (36) into Eq. (31), we obtain the zeroth-order strain energy as

2UA0 =





ε

κ





T 


Â B̂

B̂T D̂








ε

κ





+ o

(
(
h

l
)0η2

)
, (38)

with

Â =
〈
Ĉe

〉
, B̂ =

〈
x3Ĉe

〉
, D̂ =

〈
x2

3Ĉe

〉
, Ĉe = Ce − CesC

−1
s ĈT

es − CetĈ
T
et/Ĉt. (39)

With UA0 expressed in Eq. (38), the original 3D problem in Eq. (1) has been rigorously reduced to a

2D formulation in Eq. (30) which approximates the original problem asymptotically correct to the order of

(
h
l

)0
. If we define the force resultants N and moment resultants M by

N =
∂UA0

∂ε
, M =

∂UA0

∂κ
(40)

we obtain a 2D constitutive model for the classical plate analysis of FGM plates, expressed as





N

M





=




Â B̂

B̂T D̂








ε

κ





(41)

It is clear that although the plate is made of functionally gradient materials, the 2D plate model of the

zeroth-order remains the same. Despite the similarity with CLT, the present model is asymptotically correct

and has the following features in contrast with CLT:

1. The normal line of undeformed plate does not remain straight and normal to the deformed plate;

rather, it deforms in both the normal and in-plane directions in response to plate deformation (ε and

κ).

2. This model can handle general functionally gradient materials with full anisotropy.

3. It can be easily observed that neither the normal strain nor the transverse shear strains vanish. The

transverse normal and shear stresses can be shown to vanish, which are not assumed a priori but can
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be concluded from the derivation.

It is worth to emphasize that no a priori assumptions, such as setting the transverse normal strain equal to

zero, were used in the derivation.

For the zeroth-order approximation, the 3D strain field can be recovered using Eqs. (12) by neglecting

those terms of order higher than
(

h
l

)0
:

Γ0
e = ε + x3κ, 2Γ0

s = w‖′, Γ0
t = w3

′. (42)

Up to this point, the zeroth-order solution wi in Eq. (36) as well as the 2D strain energy in Eq. (38) are

valid for FGM plates with fully populated 6× 6 material matrix C. As most real materials have at least a

monoclinic symmetry about their own mid-plane, hereafter, monoclinic material matrix characterized by 13

independent material properties, implying Ces = 0 and Cst = 0, will be used for the rest of derivation. This

leads to much simpler expressions for the zeroth-order approximation of warping function:

w
(k)
‖ = 0, w

(k)
3 = C

(k)
⊥ E , k = 1, 2, 3, . . . , N (43)

where,

C
′(k)
⊥ = b−C

(k)
et

T
/C

(k)
t − x3C

(k)
et

T
/C

(k)
t c, E = bε κcT , 〈C⊥〉 = 0. (44)

Note that inter-lamina continuity of C
(k)
⊥ must be maintained due to the continuity of warping functions

to produce a continuous displacement field. It should also be pointed out that we have constrained in-

plane warpings to vanish (
〈
w‖

〉
= 0) as the free constants in Eq. (6) will be absorbed in the first-order

approximation.

First-order approximation

To obtain the first-order approximation, we simply perturb the zeroth-order warping functions as

w‖ = v‖+o

(
h

l
η

)
, w3 = v3 + C⊥E+o

(
h

l
η

)
. (45)
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Substituting Eq. (45) back into Eq. (12), and using Eqs. (28), (15) (24) and (26), one can obtain the leading

terms for the first-order approximation of the variational statement in Eq. (28) as

δΠ∗1 =
〈
v′‖

T
Cs δv′‖ + v′3Ct δv′3 + (ε + x3κ)T C‖Iαδv‖,α + (eαC⊥E,α)T

Csδv
′
‖ − φT

‖ δv‖
〉
−τT

‖ δv+
‖ −βT

‖ δv−‖ +o

(
(
h

l
)2η2

)
,

(46)

where C‖ = Ce − CetC
T
et/Ct.

It can be easily observed that v3 is decoupled from v‖. Considering the warping constraint in Eq. (6), v3

only has a trivial solution. The stationary conditions of the functional given in Eq. (46) are

(C(k)
s v′‖ + C(k)

s eαC
(k)
⊥ E,α)′ = D′(k)

α E,α + g′(k) + λ‖

(Csv
′
‖ + CseαC⊥E,α)+ = τ‖ (47)

(Csv
′
‖ + CseαC⊥E,α)− = −β‖

where D
′(k)
α = −IT

α bC(k)
‖ x3C

(k)
‖ c, g′(k) = −φ

(k)
‖ , and λ‖ are Lagrange multipliers to enforce the constraints

in Eq. (6). The continuity conditions on the interfaces can be derived as:

[v‖] = 0, [Cs(v′‖ + eαC⊥E,α)] = 0 on Ωi, (48)

The inter-lamina continuity on D
(k)
α and g(k) are maintained by the second condition in Eq. (48). It should

be mentioned that since the goal is to obtain an interior solution for the plate without considering edge

effects, integration by parts with respect to the in-plane coordinates is used hereafter and throughout the

rest of the paper, whenever it is convenient for the derivation.

Integrating the first equation in Eq. (47), one obtains

C ′(k)
s v‖ + C(k)

s eαC
(k)
⊥ E,α = D(k)

α E,α + g(k) + λ‖x3 + const
(k)
‖ (49)

and the interface continuity condition in the second equation of Eq. (48) becomes

const
(k+1)
‖ − const

(k)
‖ = −

∫ zk+1

zk

IT
α bC(k)

‖ x3C
(k)
‖ c dx3, (50)
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where const
(k)
‖ is the integration constant for kth layer, zk is the x3 coordinate of the bottom of the kth

layer, and D
(k)
α , g

(k)
α are defined as:

D(k)
α (x3) =

∫ x3

zk

D′(k)
α dz = −

∫ x3

zk

IT
α bC(k)

‖ zC
(k)
‖ c dz, (51)

g(k)
α (x3) =

∫ x3

zk

g′(k)
α dz = −

∫ x3

zk

φ
(k)
‖ dz. (52)

Solving Eqs. (49), (50), the two boundary equations in Eq. (47) as well as (6), one obtains the following

Lagrange multipliers and warping functions:

λ‖ =
1
h

(
τ‖ + β‖ − 〈D′

α〉 Eα − 〈g′〉
)
, (53)

v
(k)
‖ = (D

(k)

α + Lα)E,α + g(k), (54)

with

D
(k)

α

′
= C(k)

s

−1
D(k)

α

∗
,

〈
Dα

〉
= 0, g′

(k)
= C(k)

s

−1
g(k)∗, 〈g〉 = 0, LαE,α = c‖/h, (55)

where D
(k)
α

∗
and g(k)∗ can be obtained from Eqs. (49), (50), (53) as well as the boundary conditions in Eq.

(47).

Now we are ready to obtain an expression for the total energy that is asymptotically correct through the

order of µ(h/l)2η2, viz.,

2Π1 = ET AE + ET
,1BE,1 + 2ET

,1CE,2 + ET
,2DE,2 − 2ET F+o

(
(
h

l
)2η2

)
, (56)
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where

A =




〈
C‖

〉 〈
x3C‖

〉

〈
x3C‖

〉 〈
x2

3C‖
〉


 ,

B =
〈
Cs11C

T
⊥C⊥ −D∗T

1 C−1
s D∗

1

〉
+ LT

1 〈D′
1〉+ 〈D′

1〉T L1,

C =
〈
Cs12C

T
⊥C⊥ −D∗T

1 C−1
s D∗

2

〉
+ LT

1 〈D′
2〉+ 〈D′

1〉L2,

D =
〈
Cs22C

T
⊥C⊥ −D∗T

2 C−1
s D∗

2

〉
+ LT

2 〈D′
2〉+ 〈D′

2〉L2,

F = C+T
⊥ τ3 + C−T

⊥ β3 +
〈
CT
⊥φ3

〉−
〈
D∗

α
T C−1

s g∗,α
〉
− LT

α

(
τ‖ + β‖ +

〈
φ‖

〉)
,α

. (57)

Eq. (56) is an energy functional expressed in terms of 2D variables which can asymptotically approximate

the original 3D energy. It is noted that quadratic terms of the applied loads are neglected as they will not

affect the 2D model.

Transforming into the Reissner-Mindlin Model

Although Eq. (56) is asymptotically correct through the second order and straightforward use of this strain

energy is possible, it involves more complex boundary conditions than necessary since it contains derivatives

of the generalized strain measures. To obtain an energy functional that is of practical use, one can transform

Eq. (56) into the Reissner-Mindlin model. In the Reissner-Mindlin model, there are two additional degrees

of freedom, which are the transverse shear strains incorporated into the rotation of transverse normal. We

introduce another triad B∗
i for the deformed plate, so that the definition of 2D strains becomes

R,α = B∗
α + ε∗αβB∗

β + 2γα3B∗
3

B∗
i,α = (−K∗

αβB∗
β ×B∗

3 + K∗
α3B

∗
3)×B∗

i (58)

where the transverse shear strains are γ = b2γ13 2γ23cT . Since B∗
i is uniquely determined by Bi and γ, one

can derive the following kinematic identity between the strains measures R of Reissner-Mindlin plate and

E29

E = R−Dαγ,α (59)
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where

D1 =




0 0 0 1 0 0

0 0 0 0 1 0




T

D2 =




0 0 0 0 1 0

0 0 0 0 0 1




T

R = bε∗11 2ε∗12 ε∗22 K∗
11 K∗

12+K∗
21 K∗

22cT (60)

Now one can express the strain energy asymptotically correct to the second order in terms of strains of the

Reissner-Mindlin model as

2Π1 = RT AR− 2RT AD1γ,1 − 2RT AD2γ,2

+RT
,1BR,1 + 2RT

,1CR,2 +RT
,2DR,2 − 2RT F (61)

The generalized Reissner-Mindlin model is of the form

2ΠR = RT AR+ γT Gγ − 2RT FR − 2γT Fγ (62)

To find an equivalent Reissner-Mindlin model Eq. (62) for Eq. (61), one has to eliminate all partial derivatives

of the strain. Here equilibrium equations are used to achieve this purpose. From the two equilibrium

equations relating with the equilibrium of bending moments30, one can obtain the following formula

Gγ − Fγ = DT
αAR,α +





m1

m2





, (63)

where FR,α is dropped because they are high order terms. Substituting Eq. (63) into Eq. (61), one can show

that FR = F and Fγ = 0. Finally one can rewrite Eq. (61) as

2Π1 = RT AR+ γT Gγ − 2RT F + U∗ (64)
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where

U∗ = RT
,1BR,1 + 2RT

,1CR,2 +RT
,2DR,2 (65)

and

B = B + AD1G
−1DT

1 A

C = C + AD1G
−1DT

2 A

D = D + AD2G
−1DT

2 A (66)

If we can drive U∗ to be zero for any R, then we have found an asymptotically correct Reissner-Mindlin plate

model. For general anisotropic plates, this term will not be zero; but we can minimize the error to obtain a

Reissner-Mindlin model being as asymptotically correct as possible. The accuracy of the Reissner-Mindlin

model depends on how close to zero one can drive this term. In other words, one needs to seek an optimal set

of the 27 unknowns (3 unknowns for G and 24 unknowns for Lα) so that the value of the quadratic form in

Eq. (65) is as close to zero as possible for arbitrary generalized strain measures. We let the distinct 78 terms

in the symmetric 12×12 coefficient matrix equal to zeros to formulate 78 equations. It is a linear system with

27 unknowns. Then we use a least square technique to solve the overdetermined system for the constants.

Mathematically, the overdetermined system (78 equations with 27 unknowns, indicated by MX = b) may

be singular for some material properties. For example, the rank of MT M is only 26 for single-layer isotropic

and orthotropic plates. In this situation, singular value decomposing technique can be applied to solve this

least square problem. Moreover, for an accurate estimation of the transverse shear matrix, a nondimensional

scheme is used to guarantee that each of the 78 equations having the same physical unit.

From the asymptotic point of view, by driving U∗ to zero, we obtain the “best” Reissner-Mindlin model

which will be used for 2D plate analysis:

2ΠR = RT AR+ γT Gγ + 2RT F, (67)

where A, G, F capture the necessary material and geometric information obtained from the dimensional

reduction process. It is worthy to emphasize that although the 2D constitutive model is constructed in a
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way dramatically different from traditional Reissner-Mindlin models, the plate analysis remains the same,

with no changes in the governing equations and boundary conditions except that the strain measures are

now defined using Eqs. (58).

Recovery 3D Fields

Thus far, we have obtained a generalized Reissner-Mindlin model based on the asymptotically correct

second-order energy for FGM plates. This model can be used for various analyses of FGM plates, spanning

from static, dynamic, buckling, to aeroelastic analyses. In many applications, however, the capability of

predicting accurate 2D displacement fields of FGM plates is not sufficient. Ultimately, the fidelity of a

reduced-order model should be evaluated based on how well it can predict the 3D displacement/strain/stress

fields for the original 3D problem. Therefore, it is necessary to provide recovery relations to express the 3D

displacement, strain, and stress fields in terms of 2D quantities and x3.

Using Eqs. (2), (4) and (5), one can recover the 3D displacement field through the first order as

Ui = ui + x3(C3i − δ3i) + Cjiwj , (68)

where wα = vα, w3 = C⊥E . From Eq. (12), the 3D strain field can be recovered up to the first order as

Γe = ε + x3κ, 2Γs = v′‖ + eαC⊥E,α, Γt = C ′⊥E . (69)

Consequently, 3D stresses σij can be obtained by applying the 3D constitutive relations. Since we have

obtained an optimal estimation of the shear stiffness matrix G, the recovered 3D results up to the first order

are better than CLT and FSDT. However, the transverse normal stress (σ33) is a second-order quantity and

cannot be estimated within the first-order approximation. Despite that it is usually much smaller than other

stress components, σ33 is critical for predicting some structural failure mechanisms such as delamination. In

order to obtain a reasonable recovery for the transverse normal stress, VAM procedure is applied once more
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to find the warping functions of second-order accuracy. Similarly, we perturb the warping functions as

w‖ = v‖ + y‖+o

(
(
h

l
)2η

)
, w3 = C⊥E + y3+o

(
(
h

l
)2η

)
, (70)

where y‖ and y3 are the second-order warping functions. It can be shown that the in-plane components y‖

vanish and the equations governing y3 are

(C(k)
t y

′(k)
3 + C

(k)
et

T
Iαv

(k)
‖,α)′ + eT

β C(k)
s (v′(k)

‖ + eαC
(k)
⊥ E,α),β + φ3 = Λ3,

(Cty
′
3 + CT

etIαv‖,α)+ = τ3,

(Cty
′
3 + CT

etIαv‖,α)− = −β3, (71)

[y3] = 0 [Cty
′
3 + CT

etIαv‖,α] = 0, on Ωi

where Λ3 is the Lagrange multiplier to enforce the constraint 〈y3〉 = 0. The Euler-Lagrange equation and

the inter-surface continuity equation in (71) can be expressed as:

C
(k)
t y

′(k)
3 + C

(k)
et

T
Iαv

(k)
‖,α = E

(k)
αβ Eαβ + S(k) + Λ3x3 + const(k)

y3
, k = 1, 2, 3, . . . , N. (72)

const(k+1)
y3

− const(k)
y3

= E
(k)
αβ Eαβ(zk+1) + S(k)(zk+1), (73)

with

E
(k)
αβ (x3) = −

∫ x3

zk

(eT
αD∗(k)

β + C(k)
sαβ

C
(k)
⊥ ) dz, (74)

S(k)(x3) = −
∫ x3

zk

(eT
αg∗(k)

,α + φ
(k)
3 ) dz. (75)

The Lagrange multiplier Λ3 and the solution of y3 are given by

Λ3 =
1
h

(τ3 + β3 −
〈
E′

αβ

〉 E,αβ − 〈S′〉), (76)

y
(k)
3 = E

(k)

,αβE,αβ + S
(k)

, (77)

23 of 36

American Institute of Aeronautics and Astronautics



with

E′(k)

αβ = C
(k)
t

−1
E

(k)
αβ

∗
,

〈
E

(k)

αβ

〉
= 0, S′

(k)
= C

(k)
t

−1
S(k)∗,

〈
S

〉
= 0,

where E
(k)
αβ

∗
and S(k)∗ can be obtained from Eqs. (72), (73), (76) as well as the interlaminar continuous

conditions in the last equation of Eq. (71).

Although y3 can help us obtain an energy expression asymptotically corrected up to the order of (h/l)4η2,

such an energy expression is too complex for practical use. We will still use the Reissner-Mindlin model to

carry out the 2D plate analysis and use y3 for the second-order prediction of the 3D displacement/strain/stress

field. As will be shown latter, this approach achieves excellent predictions even though only the Reissner-

Mindlin plate model is used for the 2D plate analysis.

Finally, we can recover the 3D displacement field up to the second order as

Ui = ui + x3(C3i − δ3i) + Cjiwj + δ3iC3iy3 (78)

and the strains up to the second order as

Γe = ε + x3κ + Iαv‖,α, 2Γs = v′‖ + eαC⊥E,α, Γt = C ′⊥E + y′3. (79)

Finally, we can recover the 3D stress field up to the second order as

bσ11 σ12 σ22cT = C‖(ε + x3κ) + Cety
′
3 + CeIαv‖,α,

bσ13 σ23cT = Cs(v′‖ + eαC⊥E,α),

σ33 = CT
etIαv‖,α + Ct y′3. (80)

Validation Examples

We have derived a general formulation to treat multilayer plates made of functionally graded materi-

als with properties as functions of x3. In the following, we will use several examples to demonstrate the
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performance of the present theory.

The first example is a single-layer, simply supported, square, functionally graded plate. The width of the

plate is denoted as a. The top surface of the FGM plate is ceramic rich and the bottom surface is metal rich.

The region between the two surfaces is made of the mixture of ceramic-metal materials with continually

varying of the volume fractions of the ceramic and metal. The volume fraction of the ceramics Vc is assumed

to vary according to a power law as

Vc = V −
c +

(
V +

c − V −
c

) (
1
2

+
x3

h

)p

, p ≥ 0,

where V +
c and V −

c are the volume fractions of the ceramic on the top and the bottom surfaces, respectively; p

is the volume fraction index, and h the thickness of the plate. The effective elastic moduli of the functionally

graded metal-ceramic material are estimated by the Mori-Tanaka scheme as





K∗ −Km

Kc −Km
=

Vc

1 + (1− Vc)
Kc −Km

Km +
4
3
µm

µ∗ − µm

µc − µm
=

Vc

1 + (1− Vc)
µc − µm

µm + s1

, (81)

where s1 = µm(9Km +8µm)/(6(Km +2µm)), Km and µm represent the bulk and shear modulus of the metal

and Kc and µc represent the bulk and shear modulus of the ceramic material.9,16 The Young’s modulus,

E(x3), and Poisson’s ratio, ν(x3), are related to effective bulk and shear moduli by

K∗(x3) =
E(x3)

3[1− 2ν(x3)]
, µ∗(x3) =

E(x3)
2[1 + ν(x3)]

. (82)

For the purpose of illustration, we choose the properties of the constituent materials as Em = 70 GPa

νm = 0.3 for Al and Ec = 427 GPa, νc = 0.17 for SiC. Figure 2 plots through-the-thickness variation of

effective Young’s modulus and Poisson’s ratio for various material index p.

The FGM plate is subjected to a sinusoidally distributed pressure on the top surface, described by:

τ3(x1, x2) = q0 sin(πx1/a) sin(πx2/a).
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z

E

(a) variation of Young’s modulus E

z

ν

(b) variation of Poisson’s ratio ν

Figure 2. Through-the-thickness variation of effective Young’s modulus E and Poisson’s ratio ν estimated by
Mori-Tanaka scheme for different values of p.

There is no body force and the bottom surface is traction free. To facilitate our comparison, the physical

quantities are nondimensionlized by the following relations:

Ūα =
100Eh2Uα

q0a3
, Ū3 =

100Eh3U3

q0a4
,

σ̄αβ =
10h2σαβ

q0a2
, σ̄α3 =

10hσα3

q0a
, σ̄33 =

σ33

q0
.

Table 1 provides a detailed comparison of displacement and stress components with exact 3D solution9 at

various critical locations of the plate. Results in the top part of Table 1 (V −
c = 0, V +

c = 0.5, p = 2) indicate

the effect of a/h on displacement and stress components. It shows an excellent match between the present

plate theory and the 3D exact solution. The maximum percentage error occurs for σ13 (1.5%) when a/h = 5,

with the percentage errors for other components being less than 0.21%. As expected, the relative errors for

displacement and stress components decrease as a/h increases. For example, when a/h = 10, the maximum

percentage error still occurs for σ13 with a value of 0.38% and the relative errors for other components being

less than 0.04%. The effect of volume fraction of the ceramic constituent for a thick functionally graded plate

(V −
c = 0, p = 2, a/h = 5) is provided in the bottom half of Table 1. Again, all stress and displacement results

match very well with the exact solutions. The maximum percentage error takes the value of σ13 = 1.9%,

σ13 = 1.4%, and σ33 = 1.67% for V +
c = 0.2, V +

c = 0.6, and V +
c = 1.0, respectively, while the relative errors
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Table 1. Comparison of displacements and stresses at specific locations with 3D elasticity solutions for Al/SiC
functionally graded plates

V −
c = 0, V +

c = 0.5, p = 2

a/h = 5 a/h = 10 a/h = 40

Variable exact present exact present exact present

Ū1(0, a/2, h/2) -2.9129 -2.9124 -2.8997 -2.8987 -2.8984 -2.8983

Ū3(0, a/2, 0) 2.5748 2.5716 2.2266 2.2256 2.1163 2.1163

Ū3(0, a/2, h/2) 2.5559 2.5524 2.2148 2.2139 2.1155 2.1154

σ̄11(a/2, a/2, h/2) 2.7562 2.7558 2.6424 2.6415 2.6093 2.6092

σ̄12(0, 0, h/2) -1.5600 -1.5597 -1.5529 -1.5524 -1.5522 -1.5521

σ̄13(0, a/2, 0) 2.3100 2.2749 2.3239 2.3150 2.3281 2.3276

σ̄33(a/2, a/2, h/4) 0.8100 0.8117 0.8123 0.8127 0.8129 0.8129

V −
c = 0, p = 2, a/h = 5

V +
c = 0.2 V +

c = 0.6 V +
c = 1.0

Variable exact present exact present exact present

Ū1(0, a/2, h/2) -3.6982 -3.6966 -2.6708 -2.6697 -1.7421 -1.7359

Ū3(0, a/2, 0) 3.0254 3.0215 2.4326 2.4293 1.8699 1.8634

Ū3(0, a/2, h/2) 2.9852 2.9808 2.4196 2.4160 1.8767 1.8702

σ̄11(a/2, a/2, h/2) 2.3285 2.3273 2.9359 2.9347 4.1042 4.0899

σ̄12(0, 0, h/2) -1.2163 -1.2158 -1.7106 -1.7099 -2.8534 -2.8433

σ̄13(0, a/2, 0) 2.3516 2.3065 2.2918 2.2604 2.1805 2.1683

σ̄33(a/2, a/2, h/4) 0.8300 0.8284 0.8024 0.8047 0.7623 0.7675

for other components are less than 0.14%, 0.29%, and 0.55% corresponding to these three cases. From this

example, one can also observe that the present model, although based on asymptotic analysis of the small

parameter h/l (l = a for this example), can provide fairly good prediction for not so small parameters such as

for this case h/l = 0.2. However, because no further data of the 3D solutions is available from the reference,

the accuracy of present plate model for thicker plates cannot be estimated. Nevertheless, the present 2D

plate model can be shown to achieve a high accuracy even for fairly large (h
l ). For example, in Ref. [25],

we analyzed the cylindrical bending of an isotropic homogeneous plate. For an extremely thick plate with

h
l = 0.5, the maximum relative error among all the 3D fields less than 6%, in comparison to the 3D exact

solution.

Further comparisons are also made for another FGM plate with V −
c = 0, V +

c = 1, p = 1, a/h = 5. The

results are plotted in Figure 3, where z̄ = x3/h. Both magnitude and trend match very well with the exaction

solution, which again demonstrates that the present plate model can be used to accurately predict FGM

plates.

The second example is two double-layer coating/substrate systems as discussed in Refs. [4, 5] including
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Exact (3D)

Present

U₃

z

(a) transverse deflection Ū3, x1 = a/2, x2 = a/2

Exact (3D)

Present

σ₁₁

z

(b) longitudinal stress, σ̄11, x1 = a/2, x2 = a/2

Exact (3D)

Present

σ₁₃

z

(c) transverse shear stress, σ̄13, x1 = 0, x2 = a/2

σ₃₃

z

Exact (3D)

Present

(d) transverse normal stress, σ̄33, x1 = a/2, x2 = a/2

Figure 3. Nondimensional transverse deflection, longitudinal stress, transverse shear stress, transverse normal
stress distributions along thickness direction for a Ai/Sic FGM square plate under sinusoidal pressure on the
top surface, V −c = 0, V +

c = 1.0, p = 1, a/h = 5.
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Figure 4. Through-the-thickness variation of shear moduli G in two coating/substrate systems: (a) system H;
(b) system F.

a homogeneous substrate with a thin homogeneous coating (system H) and a homogeneous substrate with a

thin functionally graded coating (system F). In both systems the Poisson’s ratios for the substrate and the

coating are assumed to be constants and equal, i.e. ν
(1)
H = ν

(2)
H = ν

(1)
F = ν

(2)
F = 0.3. The shear modulus of

the substrate and the coating for system H takes the value of G
(1)
H , G

(2)
H , respectively, while for system F the

shear modulus of the substrate and the coating takes the form of:

G
(1)
F = G

(1)
H ,

G
(2)
F (x3) = ξG

(2)
H e

θ(
x3

h
− 1)

,

where ξ = G
(2)
H /G

(1)
H is the ratio of the stiffness on the top of the functionally graded coating to that of the

homogeneous substrate; θ = h/h(2)lnξ is the inhomogeneous parameter of the functionally graded coating;

h(2) is the coating thickness. The through-the-thickness variation of shear moduli G for two systems is

shown in Figure 4. In the present analysis, ξ and h/h(2) are chosen to be 10 and 5, respectively. The plate

is assumed to be simply supported and subjected to the following boundary conditions:

x = 0, a : σ11 = 0, U2 = U3 = 0,

y = 0, b : σ22 = 0, U1 = U3 = 0.
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The top surface of the coating at x3 = h/2 is subjected to a sinusoidally distributed pressure (τ3 =

−q0 sin(πx1)/a) sin(πx2/b)) while the bottom surface of the substrate is traction free. Again no body

force is applied. The stress and displacement components are nondimensionlized as σ̄ij = σij/q0 and

Ūi = UiG
(2)
H /(q0h). A general solution procedure for inhomogeneous isotropic media free of body forces

is developed by Plevako31 and was applied to simplify supported multilayer functionally graded plates.4,5

Because of some typos existing in the formulas in Ref. [4], the authors re-derived the 3D exact solutions for

the multilayer functionally graded plate. Moreover, unlike in Refs. [4, 5] where solutions for homogeneous

plate is approximated by using a small inhomogeneous parameter γ, exact solutions for homogeneous plate

are derived and used in the results presented here.

Figure 5 depicts the through-thickness variation of nondimensional in-plane displacement Ū1, transverse

displacement Ū3, longitudinal normal stress σ̄11, in-plane shear stress σ̄12, transverse shear stress σ̄13, and

transverse normal stress σ̄33 for a thick (a/h = b/h = 3) homogeneous coating/substrate system (system

H). It can be observed that all in-plane stress and displacement components, i.e., Ū1, σ̄11, and σ̄12, as well

as transverse normal stress σ̄33 match very well with the 3D exact solution. Because of the discontinuity

of the shear modulus G for the homogeneous coating and homogeneous substrate, there exist some jumps

for in-plane normal σ̄11 stress and shear stress σ̄12 at the interface. It seems that there exists a constant

shift (about 5% of the maximum value) between the results of the present model and the 3D solution for

the transverse displacement Ū3. This may be attributed to that our plate model is reduced from the original

3D model and some information which cannot be captured by a 2D model are lost during the dimensional

reduction process. Further investigation shows that there are some discrepancies near the interface of the

coating/substrate between the present theory and the 3D solution for the transverse shear stress σ̄13: the

3D solution presents a sharp change of σ̄13 inside the coating layer while our model has a more smooth

transition. Nevertheless, both results show similar maximum value for σ̄13.

The through-thickness variations of various displacement and stress components for a thick (a/h = b/h =

3) double-layer functionally graded coating/substrate system (system F) are plotted in Figure 6. It can be

observed from this figure that all displacement and stress components except for Ū3 match well with the

exact 3D solutions. Similar constant shift can be observed between the present model and the 3D exact

solution. It is important to note that by adopting functionally graded coating the shear moduli G is now
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Figure 5. Through-the-thickness variation of nondimensional displacements and stresses for a thick two-layer
homogeneous coating/substrate system (system H) under sinusoidal pressure on the top surface (a/h = b/h = 3).
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Figure 6. Through-the-thickness variation of nondimensional displacements and stresses for a thick two-
layer functionally graded coating/substrate system (system F) under sinusoidal pressure on the top surface
(a/h = b/h = 3). 32 of 36
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continuous at the interface, the in-plane stress components such as σ̄11 and σ̄12 , therefore, become smooth

throughout of the total thickness of the F system. In addition, no sharp peak appears for transverse shear

stress σ̄13. Results presented in Figure 6 clearly show that using functionally graded coating instead of the

homogeneous one will eliminate the mismatch of interface stress components to reduce the risk of cracking

and rebounding of the coating.

Conclusions

An efficient high-fidelity plate model for multilayer functionally graded plate has been developed using

the variational asymptotic method (VAM). By taking advantage of the small parameter h/l, VAM is used

to systematically reduce the original, nonlinear 3D model to a series of 2D models in terms of the small

parameter. No a priori assumptions have been adopted during the derivation. The theory is applicable to

functionally graded plates with material properties either being constant or changing continuously in each

layer. Although the resulting plate theory is as simple as a single-layer FSDT, the recovered 3D displacement,

strain, and stress results have excellent accuracy in comparison with the 3D elasticity. Moreover, the present

model is valid for large displacements and global rotations and can capture all the geometric nonlinearity of

a plate when the strains are small. The present paper has built on the second author’s previous work19,21

with the following new contributions:

1. The present work has the capability of analyzing multilayer functionally graded plate with material

properties as functions of transverse locations or constants while in previous work these properties are

treated as constants for each layer;

2. Interface continuity conditions are explicitly derived and solved to obtain the multilayer solutions;

3. Simplifications have been made in deriving B, C, D matrices;

4. Explicit analytical solutions for the second-order approximation of warping functions have been pro-

vided;

5. A nondimensional scheme has been applied on solving the least square problem resulting in a more

reliable estimation of the transverse shear stiffness matrix.
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Asymptotical Construction of an Efficient

High-Fidelity Model for Functionally Graded Plates

Hui Chen∗

and

Wenbin Yu†
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This paper constructs an efficient high-fidelity model for plates made of functionally
graded material. By taking advantage of an inherent small parameter, the ratio of the
thickness to the characteristic wavelength of the deformation of the reference surface,
we apply the variational asymptotic method to rigorously decouple the original three-
dimensional anisotropic elasticity problem into a one-dimensional through-the-thickness
analysis and a two-dimensional plate analysis. The through-the-thickness analysis pro-
vides constitutive relations for the plate analysis as well as the recovery information for
the three-dimensional fields, linking the original, complex three-dimensional anisotropic
heterogeneous elasticity problem to a simple two-dimensional plate model which achieves
the best compromise between efficiency and accuracy. Furthermore, the derived models
are geometrically exact and valid for large deformations and global rotations with the re-
striction that strains are small. Excellent accuracy of present model has been validated
by comparing the displacement and stress distributions with exact solutions both for the
cylindrical bending of an isotropic plate and the behavior of a thick, simply-supported,
two-constituent metal-ceramic functionally grated rectangular plate.

Introduction

Functional grated materials (FGM) benefited from its coverage over a wide spectrum of functional op-
eration principles have been under development world-widely in recent years. The various functional effects
obtained by drawing advantages from FGM principles make it addressing a large variety of application fields,
such as graded thermoelectrics and dielectrics, piezoelectrically graded materials applied for ultrasonic trans-
ducers, and tungsten-copper composites for high current connectors and diverter plates, to name but a few.1,2

One widely analyzed FGM, typically used for constructing panels in aerospace systems, is made of a mixture
of ceramics and metals and characterized by a continuously changing of its mechanical properties due to a
smooth change in volume fraction of the constituent materials from one surface of the material to the other.
The surface with high ceramic constituents can provide superior thermal-resistance for high temperature
environments while the surface with high metal constituents offers strong mechanical performance, which
reduces the risk of catastrophic fracture under extreme environments.

The promising application of FGM and piezoelectric materials in advanced aerospace structures has
attracted great attentions from researchers who are seeking to develop efficient yet accurate models for the
design and analysis of light-weight structures such as FGM plates and shells. It is interesting to note that
such structures are all characterized by one of their dimensions (the thickness) being much smaller than
the other two. Although all structures made of FGM and smart materials can be described using three-
dimensional (3D) continuum formulation, exact solution exist only for a few specific problems with very
idealized material types, geometry, and boundary conditions.3–5 For more generalized cases, where exact
solutions do not exist, one have to rely on 3D numerical simulation tools such as ANSYS and ABAQUS to
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find numerical solutions. However, this approach is labor intensive and the prohibitive computational cost of
3D simulations makes that they are only justifiable for detailed analysis during the final design. By taking
advantage of the fact that the thickness dimension is small, analysis of such structures can be simplified
using two-dimensional (2D) models. Although many 2D models have been developed to analyze FGM plates
and shells treating different topics, most of them rely on some a priori kinematic assumptions. Examples
may be found in the application of classic Kirchhoff hypothesis in thermal residual stress and free vibration
analyses,6,7 the utilization of the first-order shear-deformation theory (FSDT) in active control analysis,8 and
the implementation of the third-order shear-deformation theory(TSDT) in bending and buckling analyses.9

Classical lamination theory (CLT) ignores transverse shear effects and can provide reasonable results only for
very thin plates. Moreover, in CLT, both the plain strain and plain stress assumptions are invoked which are
conflicting with each other. A number of shear deformation theories have been developed to overcome some
drawbacks of CLT, with the simplest of which being FSDT (equivalent to Reissner-Mindlin theory for plates
made of isotropic homogeneous materials), where a constant distribution of shear strain through the thickness
is assumed and a shear correction factor is required to account for the deviation of the real shear strain from
the assumed constant one. The dependence of shear correction factor on the plate’s geometric parameters as
well as its material constituents make it hard to guarantee the accuracy of FSDT. By expanding the transverse
displacement field of the plate using some assumed higher-order polynomials, higher order shear deformation
plate theories are developed, which can account for both transverse normal and shear deformations, with
no requirements on shear correction factors. However, as indicated by Bian et. al,10 for laminated plates
and shells, even higher-order theories cannot give satisfactory stress estimation. By extending a generalized
refined theory (referred as Soldatos plate theory11,12) which incorporates shape functions to guarantee the
continuousness of transverse shear stress at interfaces, these authors provides analytical solutions for single
and multiply spanned functionally graded plated under cylindrical bending. Higher-order shear deformation
theories have also been coupled with finite element method (FEM) to analyze functionally graded plates. As
a recent example, Gilhooley et. al., by combining a messless local Petrov-Galerkin and a higher-order shear
deformation plate theory, provide a numerical investigation of a two-constituent metal-ceramic thick plate.13

Despite of successfulness of the aforementioned methods in analyzing many functional and laminated plate
problems, this type of approaches has two major disadvantages: (1) the a priori assumptions which are
naturally extended from the analysis of isotropic homogeneous structures cannot not be easily justified for
heterogeneous and anisotropic structures, such as FGM plates; (2) it is difficult for an analyst to determine
the accuracy of the result and which assumption should be chosen for efficient yet accurate analysis of a
particular problem.

Recently, the variational asymptotic method (VAM)14 was used to develop a series of rigorous Ressner-
Mindlin plate models for heterogeneous and anisotropic composite plates and smart plates.15–20 These models
have been proved to have excellent compromise between the efficiency and accuracy. In this paper, we
expand this method to construct an efficient high-fidelity, geometrically exact model for FGM plates where
the major challenge lies in that for current analysis the material properties become continuous functions of
the transverse location while their values are piecewise constant in previous work. Some derivations have
been further simplified to improve the efficiency of this plate model.

In present plate model, the 3D displacement field of an arbitrary material point of the plate are expressed
in the most generalized form by introducing a deformed reference coordinate frame and three warping
functions subject to certain constrains. The purposes of introducing these constrains on warping functions
are two folds: (1) to eliminate redundancy in kinematic equations; and (2) to define the location and
orientation of the reference coordinate frame. No a priori kinematic assumption has been invoked. The
original 3D elasticity problem is then cast in an intrinsic form so that the theory can accommodate arbitrary
large deformation and global rotation with the restriction that that the strain is small. By taking advantage
of the small parameter h/l, with h denoting the thickness of the plate and l denoting the characteristic
wavelength of the plate deformation, VAM is applied to systematically reduce the original 3D model to a
series of 2D models in terms of h/l, resulting the rigorous splitting of the original nonlinear 3D problem into
a linear one-dimensional (1D) through-the-thickness analysis and a 2D nonlinear plate analysis. To avoid
the overwhelming complexity relates to the direct construction of plate model using asymptotic methods,
the final form of the plate model has been transferred to a Reissner-Mindlin model with the transverse shear
stiffness being calculated through a least square scheme.

In this work, two examples, i.e., the cylindrical bending of an isotropic plate and the deformation of
a thick simply supported two-constituent metal-ceramic functionally grated rectangular plate, have been
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analyzed and results are compared with 3D exact elasticity solutions.

Three-dimension Formulation

The elastodynamic behavior of a solid is governed by the Hamilton principle:
∫ t2

t1

[
δ(K − U + δW)

]
dt = 0, (1)

where t1 and t2 are arbitrary fixed times, K is the kenetic energy, U denotes the strain energy, and δW
represents the virtual work of the applied loads. The overbar is used to indicate that the virtual work needs
not be the variations of a functional.

A point in the plate can be described by its Cartesian coordinates xi, see Figure 1, where xα are two
orthogonal lines in the reference surface and x3 is the normal coordinate originating from the middle of the
thickness (Here and throughout the paper, Greek indices assume values 1 and 2 while Latin indices assume
1, 2, and 3. Repeated indices are summed over their range except where explicitly indicated). Letting bi

denote the unit vector along xi for the undeformed plate, we can then describe the position of any material
point in the undeformed configuration by its position vector r̂ from a fixed point O, such that

r̂ = r(x1, x2) + x3b3, (2)

where r is the position vector from O to the point located by xa on the reference surface. When the reference
surface of the undeformed plate coincides with its middle surface, we have

〈r̂(x1, x2, x3)〉 = hr(x1, x2), (3)

where the angle brackets denote the definite integral through the thickness of the plate.

Undeformed State Deformed State

b3 b2

b1

O

B1 1 2( , )x x

B2 1 2( , )x xB3 1 2( , )x x

w x x x x xi i( , , ) ( , )1 2 3 1 2B

r( , )x x1 2

�


�


R( , )x x1 2

u( , )x x1 2 


ˆ
r(x
1
, x

2
, x

3
)




ˆ
R(x
1
, x

2
, x

3
)

Figure 1. Schematic of plate deformation

When the plate deforms, the particle that had position vector r̂ in the undeformed state now has position
vector R̂ in the deformed plate. The latter can be uniquely determined by the deformation of the 3D body.
We introduce another orthonormal triad Bi for the deformed configuration so that:

Bi = Cijbj , Cij = Bi · bj , (4)

subjecting to the requirement that Bi is coincident with bi when the structure is undeformed. The direction
cosines matrix C(x1, x2) represents the possible arbitrary rotation between Bi and bi.

After deformation, the position vector R̂ in the deformed state can be expressed as

R̂(x1, x2, x3) = R(x1, x2) + x3B3(x1, x2) + wi(x1, x2, x3)Bi(x1, x2), (5)
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where R is the position vector of the reference surface for the deformed plate and wi(x1, x2, x3) are the
warping functions which are introduced to accommodate all possible deformations. Equation (5) can be
considered as a change of variable for R̂ in terms of R, Bi, and wi and it is six times redundant. The
redundancy can be removed by choosing proper definitions for R and Bi. Similar to equation (3), the
reference surface defined by R can be chosen as being the average (along x3) surface of the plate. It follows
that the warping functions must satisfy the three constrains

〈wi(x1, x2, x3)〉 =

{
c‖
0

}
, with c‖ =

{
c1

c2

}
, (6)

where ci are arbitrary functions of the in-plane coordinates xα, introduced for providing free variables for the
construction of an optimal Reissner-Mindlin model which will be described later. Another two constraints
can be specified by taking B3 as the normal to the reference surface of the deformed plate. It should be noted
that this choice has nothing to do with the well-known Kirchhoff hypothesis. In the Kirchhoff assumption,
no local deformation of the transverse normal is allowed. However, in present derivation we allow all possible
deformation using the warping functions. Because Bα can freely rotate around B3, we can introduce the
last constraint as

B1 ·R,2 = B2 ·R,1, (7)

where ( ),α = ∂( )/∂xα.
Based on the concept of decomposition of rotation tensor,21,22 the Jauman-Biot-Cauchy strain components

for small local rotation are given by

Γij =
1
2
(Fij + Fji)− δij , (8)

where Fij is the mixed-basis component of the deformation gradient tensor such that

Fij = Bi ·Gkgk · bj . (9)

Here Gi = ∂R̂/∂xi is the covariant basis vector of the deformed configuration and gk the contravariant base
vector of the undeformed configuration and gk = gk = bk. One can obtain Gk with the help of the following
definition of 2D generalized strains:

R,α = Bα + εαβBβ (10)

and
Bi,α = (−KαβBβ ×B3 + Kα3B3)×Bi, (11)

where εαβ and Kαβ are the 2D generalized strains. For geometrically nonlinear analysis, we can assume that
both the 3D and 2D strains are small when compared to the unity and from which we can also conclude
that warpings are of the order of the stain or smaller. Neglecting the products between warping and strain,
one can express the 3D strain field as

Γe = ε + x3κ + I1w‖,1 + I2w‖,2
2Γs = w′‖ + e1w3,1 + e2w3,2

Γt = w′3

(12)

where ()′ = ∂()
∂x3

, ()‖ = b()1 ()2cT , and

Γe = bΓ11, 2Γ12 Γ22cT , 2Γs = b2Γ13 2Γ23cT , Γt = Γ33,

ε = bε11 2ε12 ε22cT , κ = bK11 K12 + K21 K22cT ,
(13)

I1 =




1 0
0 1
0 0


 , I2 =




0 0
1 0
0 1


 , e1 =

{
1
0

}
, e2 =

{
0
1

}
. (14)

Up to this stage we have formulated the kinematics of the plate structure. With the knowledge of the elastic
strain, the strain energy can be expressed as

U =
∫

Ω

1
2

〈



Γe

2Γs

Γt





T 


Ce Ces Cet

Ces
T Cs Cst

Cet
T Cst

T Ct




T 



Γe

2Γs

Γt





〉
dΩ ≡

∫

Ω

UAdΩ (15)
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where Ce, Ces, Cet, Cs, Cst, Ct are the corresponding partition matrices of the 3D 6×6 material matrix which
are functions of positions for functionally graded materials. Here for simplicity, we restrict ourselves to FGM
plates having material properties as functions of x3 only.

To calculate the kinetic energy, the absolute velocity (measured in the inertia frame) of a generic point
in the structure is obtained by taking a time derivative of Eq. (5), resulting

v = V + ω̃(ξ + w) + ẇ, (16)

where ˙( ) is the partial derivative with respect to time; V is the absolute velocity of a point in the deformed
reference surface; ω is the inertial angular velocity of Bi bases; and the notation (̃ ) forms an antisymmetric
matrix from a vector according to (̃ )ij = −eijk( )k using the permutation symbol eijk. In Eq. (16), the
symbols v, V, ω, w denote column matrices containing the components of corresponding vectors in Bi bases,
and ξ = b0 0 x3cT . The kinetic energy of the plate structure can be obtained by

K =
1
2

∫

V
ρvT vdV = K2D +K∗ (17)

with ρ denoting the mass density and

K2D =
1
2

∫

Ω

(µ̄V T V + 2ωT µ̃ξ̄V + ωT jω)dΩ (18)

K∗ =
1
2

∫

V
ρ

[
(ω̃w + ẇ)T (ω̃w + ẇ) + 2(V + ω̃ξ)T (ω̃w + ẇ)

]
dV, (19)

where µ̄, µξ̄, and j are inertial constants commonly used in plate dynamics, which can be trivially obtained
through simple integral operations taking over the thickness as:

µ̄ = 〈ρ〉 µξ = b0 0 〈x3ρ〉cT j =




〈
x2

3ρ
〉

0 0
0

〈
x2

3ρ
〉

0
0 0 0


 (20)

The virtual work of the structure can be calculated as

δW =
∫

Ω

(〈
φ · δR̂

〉
+ τ · δR̂+ + β · δR̂−

)
dΩ +

∫

∂Ω

〈
Q · δR̂

〉
ds (21)

where ∂Ω denotes the boundary of the reference surface; ( )± = ( )|x3=±h/2; φ = φiBi is the applied body
force; τ , β are tractions applied on the top and bottom surfaces, respectively; Q = QiBi is the applied
tractions along the lateral surfaces. δR̂ is the Lagrangian variation of the displacement field which can be
expressed as

δR̂ = δqiBi + x3δB3 + δwiBi + wjδBj , (22)

in which the virtual displacement and rotation are defined by

δqi = δR ·Bi, δBi = (−δψ2B1 + δψ1B2 + δψ3B3)×Bi, (23)

where δqi and δψi contain the components of the virtual displacement and rotation in the Bi system,
respectively. Since the warping functions are small, one may safely ignore products of the warping and
virtual rotation in δR̂ and obtain the virtual work due to applied loads as

δW = δW2D + δW∗
, (24)

where

δW2D =
∫

Ω

(
fiδqi + mαδψα

)
dΩ +

∫

∂Ω

(〈Qi〉 δqi + 〈x3Qα〉 δψα

)
ds, (25)

δW∗
=

∫

Ω

(〈φiδwi〉+ τiδw
+
i + βiδw

−
i

)
dΩ +

∫

∂Ω

〈Qiδwi〉 ds, (26)
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with the generalized forces fi and moments mα defined as

fi = 〈φi〉+ τi + βi, mα = 〈x3φα〉+
h

2
(τα − βα). (27)

The second integration in Eq. (26) accounts for virtual work done through warping functions along the lateral
boundaries of the plate. This term is necessary for the edge-zone problem, which is an important subject in
its own right and beyond the scope of the present paper. For simplicity, we will drop this term hereafter.
With the knowledge of Eqs. (17), (15), and (24), the Hamilton’s principle in Eq. (1) becomes

∫ t2

t1

[
δ(K2D +K∗ − U) + δW2D + δW∗]

dt = 0 (28)

So far, we have presented a 3D formulation for the plate structure in terms of 2D displacements (represented
by R− r), rotations (represented by bi and Bi), and 3D warping functions (wi). If we attempt to solve this
problem directly, we will meet the same difficulty as solving any full 3D problem with the additional difficulty
coming from the anisotropy and heterogeneity of functional graded materials. The main complexity comes
from the unknown 3D warping functions wi. A common practice in the literature is to assume wi to be, a
priori, in terms of 2D displacements and rotations to straightforwardly reduce the original 3D continuum
model into a 2D plate model. However, for plates made with general anisotropic and heterogeneous materials
such as functionally graded materials, the imposition of such assumptions may introduce significant errors.
Fortunately, VAM provides a useful technique to obtain wi through an asymptotical analysis of the variational
statement in Eq. (28) in terms of small parameters inherent in the problem which will be described in the
next section.

Dimensional Reduction

The dimensional reduction from the original 3D formulation to a 2D plate model can only be done approx-
imately. One way to accomplish this is to take the advantage of the small parameters in the formulation to
construct a 2D formulation so that the reduced model can achieve the minimum accuracy loss in comparison
to the original 3D formulation.

In order to apply the methodology of VAM, we first need to assess the order of quantities in terms of
small parameters. As mentioned previously, the ratio of the plate thickness to the characteristic wavelength
of the deformation of the reference surface is much smaller than 1, which means h/l ¿ 1 with l representing
the characteristic wavelength of the deformation of the reference surface. The strain is also small if we only
interest on a geometrically nonlinear but physically linear 2D theory, i.e., εαβ ∼ hκαβ ∼ η ¿ 1. From the
plate equations of equilibrium, we can estimate the orders of the following quantities corresponding to the
order of strains:

hP3 ∼ τ3 ∼ β3 ∼ µ(h/l)2η, hPα ∼ τα ∼ βα ∼ µ(h/l)η,

Qα ∼ µη, Q3 ∼ µ(h/l)η, (29)

with µ denoting the characteristic magnitude of the elastic constants. We can choose the characteristic scale
of change of the displacements and warping functions in time in such a way that K∗ is much smaller than
other terms in Eq. (28), which is valid for most realistic structural applications.

Zeroth-order approximation

To clearly illustrate the application of VAM for FGM plates, we first construct a classical FGM plate model.
By applying VAM, the zeroth-order approximation of the variational statement in Eq. (28) can be obtained
as ∫ t2

t1

[
δ(K2D −

∫

Ω

UA0dΩ) + δW2D

]
dt = 0 (30)

where UA0 can be obtained from Eq. (15) by dropping the derivatives with respect to xα in Equation (12),
resulting

2UA0 =2
〈
(ε + x3κ)T (Cesw‖′ + Cetw3

′) + w‖′T Cstw3
′〉

+
〈
(ε + x3κ)T Ce(ε + x3κ) + w‖′T Csw‖′ + w3

′Ctw3
′〉 (31)
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It is obvious that the warping functions wi can be obtained by solving the following variational statement

δUA0 = 0, (32)

along with the constraint equation expressed in Eq. (6). This results in the following Euler-Lagrange equa-
tions:

[
(ε + x3κ)T Cet + w0

‖
′T

Cst + w0
3
′
Ct

]′
= λ3,

[
(ε + x3κ)T Ces + w0

‖
′T

Cs + w0
3
′
CT

st

]′
= λ‖, (33)

where λ‖ and λ3 are Lagrange multipliers corresponding to the constraint components of w‖ and w3, re-
spectively in Eq. (6). The expressions within the square brackets in Eq. (33) should vanish on the top and
bottom surfaces of the FGM plate because the warping functions wi are free to vary at those two surfaces.
They should also be continuous on the interfaces if the FGM is formed by multiple layers as wi must be
continuous on this locations. From these conditions, we can solve wi

′ as

w′‖
T = −(ε + x3κ)T ĈesC

−1
s ,

w′3 = −(ε + x3κ)T ĈetĈ
−1
t , (34)

with the hatted quantities being expressed as:

Ĉes = Ces − ĈetC
T
st/Ct, Ĉet = Cet − CesC

−1
s Cst,

Ĉt = Ct − CT
stC

−1
s Cst. (35)

Substituting Eq. (34) into Eq. (31), the first approximation of the strain energy can be expressed as

2UA0 =

{
ε

κ

}T [
Â B̂

B̂T D̂

]{
ε

κ

}
, (36)

with

Â =
〈
Ĉe

〉
, B̂ =

〈
x3Ĉe

〉
, D̂ =

〈
x2

3Ĉe

〉
, Ĉe = Ce − CesC

−1
s ĈT

es − CetĈ
T
et/Ĉt. (37)

With the knowledge of UA0 expressed in Eq. (36), the original 3D problem in Eq. (1) has been rigorously
reduced to a 2D formulation in Eq. (30) which approximates the original problem asymptotically correct to
the order of

(
h
l

)0
. If we define the force resultants N and moment resultants M in conjugate to ε and κ by

N =
∂UA0

∂ε
, M =

∂UA0

∂κ
(38)

we obtain a 2D constitutive model for the classical plate analysis of FGM plates, expressed as
{
N
M

}
=

[
Â B̂

B̂T D̂

]{
ε

κ

}
(39)

It is clear that although the plate is made of functionally gradient materials, the 2D plate model of the
zeroth-order remains the same with the exception that the material properties are functions of x3. Despite
the similarity with the classical lamination theory (CLT), the present model is asymptotically correct and
has the following features in contrast with CLT:

1. The normal line of undeformed plate does not remain straight and normal to the deformed plate;
rather, it deforms in both the normal and in-plane directions in response to plate deformation (ε and
κ).

2. This model can handle general functionally gradient materials with full anisotropy.
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3. It can be easily observed that neither the normal strain nor the transverse shear strains vanish. The
transverse normal and shear stresses can be shown to vanish, which are not assumed a priori but come
out as a direct consequence from the model derivation.

It worth to emphasize that throughout the process of obtaining this solution no a priori assumptions, such
as setting the transverse normal strain equal to zero, were used.

For the zeroth-order approximation, the 3D strain field can be recovered using Eqs. (12) by neglecting
those terms whose order higher than

(
h
l

)0
, generating

Γ0
e = ε + x3κ 2Γ0

s = w′‖ Γ0
t = w′3 (40)

Up to this stage, the solution for wi in Eq. (34) as well as the 2D strain energy in Eq. (36) are valid for
FGM plates with fully populated 6× 6 material matrix C. As most engineering materials used in practical
applications demonstrate a monoclinic symmetry about their own mid-plane, hereafter, monoclinic material
matrix characterized by 13 independent material properties will be used, indicating Ces = 0 and Cst = 0 for
the rest of derivation. This leads to much simpler expressions for the zeroth-order approximation of warping
function:

w‖ = 0, w3 = C⊥E , (41)

where,

C ′⊥ = b−CT
et/Ct − x3C

T
et/Ctc, E = bε κcT , 〈C⊥〉 = 0. (42)

Note that inter-lamina continuity of C⊥ must be maintained due to the continuity of warping functions to
produce a continuous displacement field. It should also be pointed out that we have constrained warpings
to be zeros (

〈
w‖

〉
= 0) in the zeroth-order approximation and, as a contrast, free constants in Eq. (6) are

introduced for the construction of Reissner-Mindlin model to generate the first order approximation.

First-order approximation

We notice that the zeroth-order warping is of order (h/l)0η. According to the VAM, to accept this as the
zeroth-order approximation, one needs to check whether or not the order of the next approximation is higher
than this one. To obtain the first-order approximation, we simply perturb the zeroth-order result, resulting
in warping functions of the form

w‖ = v‖, w3 = v3 + C⊥E . (43)

Substituting Eq. (43) back into Eq. (12), and then Eqs. (15) (24) and (26), one can obtain the leading terms
for the first-order approximation of variational statement in Eq. (28) as

δΠ∗1 =
〈
v′‖

T
Cs δv′‖ + v′3Ct δv′3 + (ε + x3κ)T C‖Iαδv‖,α + (eαC⊥E,α)T

Csδv
′
‖ − φT

‖ δv‖
〉
− τT

‖ δv+
‖ − βT

‖ δv−‖ ,

(44)
where, C‖ = Ce − CetC

T
et/Ct . It is worth noting that the warping of the first-order approximation is of

order (h/l)η, which is indeed one order higher than the zeroth-order approximation and the total energy Π∗1
is asymptotically correct to the order of O(h/l)2η2.

To carry out the variations of the functional, one should be aware that v‖ may be different functions for
each layer. The continuity conditions on the interfaces can be derived following calculus of variations as:

[v‖] = 0, [Ds(v′‖ + eαC⊥E,α)] = 0 on Ωi, (45)

where Ωi denotes the interfaces between the ith layer and i + 1th layer and i = 1 . . . N − 1 with N as the
total number of layers and the bracket [·] denotes the jump of the enclosed argument on the interface.

It can be easily observed that v3 is decoupled from v‖. Considering the warping constrain in Eq. (6), v3

only has a trivial solution. The Euler-Lagrange equations for the functional given in Eq. (44) are

(Csv
′
‖ + CseαC⊥E,α)′ = D′

αE,α + g′ + λ‖

(Csv
′
‖ + CseαC⊥E,α)+ = τ‖ (46)

(Csv
′
‖ + CseαC⊥E,α)− = −β‖
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where D′
α = −IT

α bC‖ x3C‖c, g′ = −φ‖, and λ‖ are Lagrange multipliers to enforce the constraints applied
on the warping field described in Eq. (6). The inter-lamina continuity on Dα and g are maintained by
taking advantage of the second condition in Eq. (45). It should be mentioned that since the goal is to obtain
an interior solution for the plate without considering edge effects, integration by parts with respect to the
in-plane coordinates is used hereafter and throughout the rest of the paper, whenever it is convenient for
the derivation.

Solving Eq. (46) along with (6), one obtains the following warping functions

v‖ = (Dα + Lα)E,α + g, (47)

with

D
′
α = C−1

s D∗
α,

〈
Dα

〉
= 0, g′ = C−1

s g∗, 〈g〉 = 0, LαE,α = c‖/h,

D∗
α = Dα +

x3

h
D∓

α −
1
2
D±

α − CseαC⊥, (48)

g∗ = g +
x3

h
g∓ − 1

2
g± +

(
x3

h
+

1
2

)
τ‖ +

(
x3

h
− 1

2

)
β‖,

where, the notation ( )± = ( )+ + ( )− and ( )∓ = ( )− − ( )+.
Now we are ready to obtain an expression for the total energy that is asymptotically correct through the

order of µ(h/l)2ε, viz.,

2Π1 = ET AE + ET
,1BE,1 + 2ET

,1CE,2 + ET
,2DE,2 − 2ET F, (49)

where,

A =

[ 〈
C‖

〉 〈
x3C‖

〉
〈
x3C‖

〉 〈
x2

3C‖
〉
]

,

B =
〈
Cs11C

T
⊥C⊥ −D∗T

1 C−1
s D∗

1

〉
+ LT

1 〈D′
1〉+ 〈D′

1〉T L1,

C =
〈
Cs12C

T
⊥C⊥ −D∗T

1 C−1
s D∗

2

〉
+ LT

1 〈D′
2〉+ 〈D′

1〉L2,

D =
〈
Cs22C

T
⊥C⊥ −D∗T

2 C−1
s D∗

2

〉
+ LT

2 〈D′
2〉+ 〈D′

2〉L2,

F = C+T
⊥ τ3 + C−T

⊥ β3 +
〈
CT
⊥φ3

〉−
〈
D∗

α
T C−1

s g∗,α
〉
− LT

α

(
τ‖ + β‖ +

〈
φ‖

〉)
,α

. (50)

Eq. (49) is an energy functional expressed in terms of 2-D variables which can approximate the original 3D
energy asymptotically. It is noted that quadratic terms in the applied loads, are neglected as they will not
affect the 2D model.

Transforming into a Reissner-Mindlin Model

Although Eq. (49) is asymptotically correct through the second order and straightforward use of this
strain energy is possible, it involves more complicated boundary conditions than necessary since it contains
derivatives of the generalized strain measures. To obtain an energy functional that is of practical use, one
can transform Eq. (49) into a Reissner-Mindlin model. In a Reissner-Mindlin model, there are two additional
degrees of freedom, which are the transverse shear strains incorporated into the rotation of transverse normal.
We introduce another triad B∗

i for the deformed plate, so that the definition of 2D strains becomes

R,α = B∗
α + ε∗αβB∗

β + 2γα3B∗
3

B∗
i,α = (−K∗

αβB∗
β ×B∗

3 + K∗
α3B

∗
3)×B∗

i (51)

where the transverse shear strains are γ = b2γ13 2γ23cT . Since B∗
i is uniquely determined by Bi and γ, one

can derive the following kinematic identity between the strains measures R of Reissner-Mindlin plate and E

E = R−Dαγ,α (52)
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where

D1 =

[
0 0 0 1 0 0
0 0 0 0 1 0

]T

D2 =

[
0 0 0 0 1 0
0 0 0 0 0 1

]T

R = bε∗11 2ε∗12 ε∗22 K∗
11 K∗

12+K∗
21 K∗

22cT (53)

Now one can express the strain energy asymptotically correct to the second order in terms of strains of the
Reissner-Mindlin model as

2Π1 = RT AR− 2RT AD1γ,1 − 2RT AD2γ,2

+RT
,1BR,1 + 2RT

,1CR,2 +RT
,2DR,2 − 2RT F (54)

The generalized Reissner-Mindlin model is of the form

2ΠR = RT AR+ γT Gγ − 2RT FR − 2γT Fγ (55)

To find an equivalent Reissner-Mindlin model Eq. (55) for Eq. (54), one has to eliminate all partial derivatives
of the strain. Here equilibrium equations are used to achieve this purpose. From the two equilibrium
equations balancing bending moments, one can obtain the following formula

Gγ − Fγ = DT
αAR,α +

{
m1

m2

}
(56)

where FR,α is dropped because they are high order terms. Substituting Eq. (56) into Eq. (54), one can show
that FR = F and Fγ = 0. Finally one can rewrite Eq. (54) as

2Π1 = RT AR+ γT Gγ − 2RT F + U∗ (57)

where
U∗ = RT

,1BR,1 + 2RT
,1CR,2 +RT

,2DR,2 (58)

and

B = B + AD1G
−1DT

1 A

C = C + AD1G
−1DT

2 A

D = D + AD2G
−1DT

2 A (59)

If we can drive U∗ to be zero for any R, then we have found an asymptotically correct Reissner-Mindlin plate
model. For general anisotropic plates, this term will not be zero; but we can minimize the error to obtain a
Reissner-Mindlin model that is as close to the asymptotically correct one as possible. The accuracy of the
Reissner-Mindlin model depends on how close to zero one can drive this term. In other words, one needs to
seek an optimal set of the 27 unknowns (3 unknowns for G and 24 unknowns Lα) so that the value of the
quadratic form in Eq. (58) is as close to be zero as possible for arbitrary generalized strain measures. We let
the distinct 78 terms in the symmetric 12×12 coefficient matrix equal to zeros to formulate 78 equations. It
is a linear system with 27 unknowns. Then we used the least square technique to solve the overdetermined
system for the constants as done in Ref. [15]. Mathematically, the overdetermined system (78 equations
with 27 unknowns, indicated by MX = b) may demonstrate singularities for some material properties. For
example, the rank of MT M is only 26 for single layered isotropic and orthotropic plates. In this situation,
singular value decomposing technique can be applied to solve this least square problem. Moreover, for an
accurate estimation of the transverse shear matrix, a nondimensional scheme is used to guarantee that each
of the the 78 equations having the same physical unit.

After driving of U∗ to be close to zero, we found the “best”, from the asymptotic point of view, Reissner-
Mindlin model to be used for 2D plate analysis in the following form

2ΠR = RT AR+ γT Gγ − 2RT F (60)
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with A, G, F capturing the material and geometric information eliminated in the reduced 2D plate analysis.
It is worthy to emphasize that although the 2D constitutive model is constructed in a way dramatically
different from traditional Reissner-Mindlin models, the plate analysis remains the same, with on changes in
the governing equations and essential and natural boundary conditions except that the strain measures are
now defined equivalently as in Eqs. (51).

Recovery 3D Fields

From the above, we have obtained an optimized Reissner-Mindlin model for FGM plates being asymptot-
ically correct in the sense of matching the total potential energy. This model can be carried out for various
analyses on FGM plates, spanning from static, dynamic, buckling, to aeroelastic analyses. In many appli-
cations, however, the capability of predicting accurate 2D displacement fields of FGM plates is inadequate.
Ultimately, the fidelity of a reduced-order model like this developed in current work should be evaluated
based upon how well it can predict the 3D displacement/strain/stress fields for the original 3D problem.
Therefore, it is necessary to provide recovery relations to complete the theory so that the results is com-
parable to those of the original 3D model. By referring to recovery relations, we mean expressions for 3D
displacement, strain, and stress fields in terms of 2D quantities and x3.

Using Eqs. (2), (4) and (5), one can recover the 3D displacement field through the first-order as

Ui = ui + x3(C3i − δ3i) + Cjiwj , (61)

where wα = vα, w3 = C⊥E , Ui and ui are, respectively, 3D displacements and their 2D counterparts expressed
in bi coordinate frame. From Eq. (12), the 3D strain field can be recovered up to the first-order as

Γe = ε + x3κ, 2Γs = v′‖ + eαC⊥E,α, Γt = C ′⊥E . (62)

Consequently, 3D stresses σij , can be obtained by applying the 3D constitutive relations. Since we have
obtained an optimum estimation of the shear stiffness matrix G, the recovered 3D results up to the first order
are better than CLT and the conventional FSDT. However, the transverse normal stress (σ33) is a second-
order small quantity with its magnitude being O((h/l)2η) thus cannot be estimated during the first-order
approximation. Despite that its magnitude is usually much smaller than those of other stress components,
σ33 is critical for predicting some structural failure phenomenon such as layer delamination. In order to
obtain a reasonable recovery for the transverse normal stress, VAM procedure is applied once more to find
the warping functions with the second-order accuracy, i.e. warping are pursued to the order of (h/l)2η. By
using similar procedures described in previous sections, the warping functions can be expressed as

ŵ‖ = v‖ + y‖, ŵ3 = C⊥E + y3, (63)

where, y‖ and y3 are second order warping functions. Consequently, it can be shown that the in-plane
components y‖ vanishes and the Euler-Lagrangian equation on y3 is

(Cty
′
3 + CT

etIαv‖,α)′ + eT
β Cs(v′‖ + eαC⊥E,α),β + φ3 = λ3,

(Cty
′
3 + CT

etIαv‖,α)+ = τ3,

(Cty
′
3 + CT

etIαv‖,α)− = −β3,

[y3] = 0 [Cty
′
3 + CT

etIαv‖,α] = 0, on Ωi (64)

where λ3 is the Lagrange multiplier to enforce the constraint 〈y3〉 = 0. The solution of y3 is given by

y3 = EαβE,αβ + S, (65)

with

E
′
αβ = C−1

t E∗
αβ ,

〈
Eαβ

〉
= 0, S

′
= C−1

t S∗,
〈
S

〉
= 0,

E∗
αβ = Eαβ +

x3

h
E∓

αβ −
1
2
E±

αβ − CT
etIα(Dβ + Lβ), S′ = − (

eT
β g∗,β + φ3

)
, (66)

S∗ = S +
x3

h
S∓ − 1

2
S± +

(
x3

h
+

1
2

)
τ3 +

(
x3

h
− 1

2

)
β3 − CT

etIαg,α.
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By finding y3, we have obtained an energy expression asymptotically corrected up to the order of
O((h/l)4η2). Because such energy expression is too complicate to be used in practice, we will still rely
on the previous derived Reissner-Mindlin model to carry out 2D plate analysis and use y3 for the second-
order prediction of the 3D displacement/strain/stress field. As will be shown latter, this approach generates
excellent accuracy on predicting 3D stresses even though only the Reissner-Mindlin plate model is used for
2D analysis.

Finally, we can write the recovery relations for the 3D displacement field as

Ui = ui + x3(C3i − δ3i) + Cjiwj + δ3iC3iy3 (67)

and the strains as

Γe = ε + x3κ + Iαv‖,α, 2Γs = v′‖ + eαC⊥E,α, Γt = C ′⊥E + y′3. (68)

At last, the recovered 3D stress field take the form of

σe ≡ bσ11 σ12 σ22cT = C‖(ε + x3κ) + Cety
′
3 + CeIαv‖,α,

σs ≡ bσ13 σ23cT = Cs(v′‖ + eαC⊥E,α),

σt ≡ σ33 = CT
etIαv‖,α + Ct y′3. (69)

Validation Examples

Although the above formulation is general enough to treat multilayer plate made of arbitrary functionally
graded materials with the properties as functions of x3. We specify our formulation to deal with single-layer
plates to valid our theory.

The first example is the cylindrical bending of an isotropic homogeneous plate which is infinitely long
along x2 with a width a along x1. The top surface at x3 = h/2 is subjected to a sinusoidally distributed
pressure (q3 = q0 sin(πx1/L) ), the bottom surface is traction free, and no body force exist in the structure.
To facility our comparison, the physical quantities are nondimensionlized by following relations:

Ūα =
100Eh2Uα

q0a3
, Ū3 =

100Eh3U3

q0a4
,

σ̄αβ =
10h2σαβ

q0a2
, σ̄α3 =

10hσα3

q0a
, σ̄33 =

σ33

q0
.

where E is the Young’s modulus of the material and the Poisson’s ratio is assumed to be 0.3.
Figures 2 and 3 depict the through-the-thickness variation of nondimensional transverse deflection (U3),

longitudinal stress (σ11), transverse shear stress (σ13), and transverse normal stress (σ33) for an isotropic
plate under cylindrical bending with length to the thickness ratio being a/h = 5 and a/h = 2, respectively.
For a fairly think plate a/h = 5, all the recovered stress components matches pretty well with the exact 3D
solutions. It is hard to distinguish the difference between these two sets of results for in-plane stress σ11

and the transverse normal stress σ33. The maximum difference occurs for transverse shear stress σ13 but
still less than 1.5%. The transverse displacement component demonstrates a slight offset form the 3D exact
solution, with the maximum difference less than 1.5%. This may be attributed to that our plate model is
reduced from the original 3D model and some information which cannot be captured by a 2D model are lost
during the dimensional reduction process, which might cause the constant displacement shift of the present
approach. Figure 3 demonstrates results for a extremely thick isotropic plate with a/h = 2. Again, the
in-plane stress σ11 and the transverse normal stress σ33 matches well with the exaction solutions. Relatively
large differences occur for transverse shear stress σ13 and transverse displacement U3, with the maximum
errors being 6% and 1%, respectively, for this extreme case.

The second example is a simply supported Ai/SiC functionally graded square plate. The top surface of
the FGM plate is ceramic rich and the bottom surface is metal rich. The region between the two surfaces
is made of the mixture of ceramic-metal materials with continually varying of the volume fraction of the
ceramic and metal. Based upon the power law distribution, the variation of the volume fraction of the
ceramics Vc versus the thickness coordinate (x3) with its origin placed at the middle of the thickness can be
expressed as

Vc = V −
c +

(
V +

c − V −
c

) (
1
2

+
x3

h

)p

, p ≥ 0,
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Figure 2. Nondimensional transverse deflection, longitudinal stress, transverse shear stress, transverse normal
stress distributions along thickness direction for an isotropic plate under cylindrical bending, ν = 0.3, a/h = 5.
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Figure 3. Nondimensional transverse deflection, longitudinal stress, transverse shear stress, transverse normal
stress distributions along thickness direction for an isotropic plate under cylindrical bending, ν = 0.3, a/h = 2.
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where V +
c and V −

c are the volume fractions of the ceramic on the top and the bottom surfaces, p is the volume
fraction index, and h the thickness of the plate. The effective elastic moduli of the functionally grated metal-
ceramic material are estimated by the Mori-Tanaka scheme, a technique which is capable of taking account
for the interaction among constituents thus well suitable for estimating the effective moduli for regions of
the graded microstructure that have well-defined continuous matrix and a discontinuous particulate phase.
According to the Mori-Tanaka scheme, the effective bulk modulus K and the effective shear modulus µ can
be determined by 




K −Km

Kc −Km
=

Vc

1 + (1− Vc)
Kc −Km

Km +
4
3
µm

µ− µm

µc − µm
=

Vc

1 + (1− Vc)
µc − µm

µm + s1

, (70)

where, s1 = µm(9Km + 8µm)/(6(Km + 2µm)), Km; µm represent the bulk and shear modulus of the metal
material and Kc, µc represent the bulk and shear modulus of the ceramic material.5,13 The through-thickness
varying Young’s modulus and Poisson’s ratio at each material point are related to effective bulk and shear
moduli by

K(x3) =
E(x3)

3[1− 2ν(x3)]
, µ(x3) =

E(x3)
2[1 + ν(x3)]

. (71)

For the purpose of illustration, we choose the constituent materials for functionally graded plate to be Al
and SiC with following material properties. For Al: Em = 70 GPa, νm = 0.3. For SiC: Ec = 427 GPa, νc =
0.17. Figure 4 reveals the through-thickness variation of effective Young’s modulus and Poission’s ratio (E, ν)
for various materials index p.

z

E

(a) variation of Young’s modulus E

z

ν

(b) variation of Poisson’s ratio ν

Figure 4. Through-the-thickness variation of effective Young’s modulus E and Poisson’s ratio ν estimated by
Mori-Tanaka scheme for different values of p.

The FGM plate is subjected to a sinusoidally distributed pressure on the top surface, described by:

σi3(x1, x2, h/2) = δi3q0 sin(πx1/a) sin(πx2/a)

Again there is no body force and the bottom surface is traction free.
Table 1 provides a detailed comparison of displacement and stress components with exact 3D solution5

at various critical locations of the Al/SiC functionally graded plates. Results in the top part of Table 1
(V −

c = 0, V +
c = 0.5, p = 2) indicate the effect of a/h on displacement and stress components. It shows an

excellent match between these two results. The maximum percentage error occurs for a/h = 5 and σ13, which

15 of 18

American Institute of Aeronautics and Astronautics



Table 1. Comparison of displacements and stress at specific locations with 3D elasticity solutions for Al/SiC
functionally grated square plates (sinusoidal pressure, Mori-Tanaka scheme).

V −
c = 0, V +

c = 0.5, p = 2

a/h = 5 a/h = 10 a/h = 40

Variable ext present ext present ext present

Ū1(0, b/2, t/2) -2.9129 -2.9124 -2.8997 -2.8987 -2.8984 -2.8983

Ū3(0, b/2, 0) 2.5748 2.5716 2.2266 2.2256 2.1163 2.1163

Ū3(0, b/2, t/2) 2.5559 2.5524 2.2148 2.2139 2.1155 2.1154

σ̄11(a/2, b/2, t/2) 2.7562 2.7558 2.6424 2.6415 2.6093 2.6092

σ̄12(0, 0, t/2) -1.5600 -1.5597 -1.5529 -1.5524 -1.5522 -1.5521

σ̄13(0, b/2, 0) 2.3100 2.2749 2.3239 2.3150 2.3281 2.3276

σ̄33(a/2, b/2, t/4) 0.8100 0.8117 0.8123 0.8127 0.8129 0.8129

V −
c = 0, p = 2, a/h = 5

V +
c = 0.2 V +

c = 0.6 V +
c = 1.0

Variable ext present ext present ext present

Ū1(0, b/2, t/2) -3.6982 -3.6966 -2.6708 -2.6697 -1.7421 -1.7359

Ū3(0, b/2, 0) 3.0254 3.0215 2.4326 2.4293 1.8699 1.8634

Ū3(0, b/2, t/2) 2.9852 2.9808 2.4196 2.4160 1.8767 1.8702

σ̄11(a/2, b/2, t/2) 2.3285 2.3273 2.9359 2.9347 4.1042 4.0899

σ̄12(0, 0, t/2) -1.2163 -1.2158 -1.7106 -1.7099 -2.8534 -2.8433

σ̄13(0, b/2, 0) 2.3516 2.3065 2.2918 2.2604 2.1805 2.1683

σ̄33(a/2, b/2, t/4) 0.8300 0.8284 0.8024 0.8047 0.7623 0.7675

has an error of 1.5%, with the percentage errors for the rest components being less than 0.38%. The effect
of volume fraction of the ceramic constituent for a thick functionally graded plate (V −

c = 0, p = 2, a/h = 5)
is provided in the bottom half of table 1. Again, all stress and displacement results matches very well the
the exact solutions.

Further comparisons are also made for a thick FGM plate with V −
c = 0, V +

c = 1, p = 1, a/h = 5. The
results are plotted in Figure 5. Both magnitude and trend match very well with exaction solutions, which
again demonstrates that our present model can be used to model FGM plates to get accurate prediction of
the 3D fields.

Conclusions

In present work a geometrically exact efficient high-fidelity plate model for functionally graded plate
has been developed using the variational asymptomatic method (VAM). By taking advantage of the small
parameter h/l, VAM is applied to systematically reduce the original nonlinear 3D model to a series of 2D
models in terms of h/l, resulting the rigorous splitting of the original nonlinear 3D problem into a linear 1D
through thickness analysis and a 2D nonlinear plate analysis. The theory is applicable to functionally graded
plates whose material properties changes continuously through the plate thickness. Although the resulting
plate theory is as simple as a single-layer FSDT, the recovered 3D displacement, strain, and stress results
have excellent accuracy in comparison with the 3D elasticity solutions. The present paper has built on the
second author’s previous work in15,17 with the following new contributions:

1. The present work treats material properties as functions of transverse locations while in previous work
these properties are constants for each layer;

2. Simplifications have been made in deriving B, C, D matrices, making the present model computation-
ally more efficient;

3. Explicit analytical solutions for the second-order approximation of warping functions have been pro-
vided;
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Figure 5. Nondimensional transverse deflection, longitudinal stress, transverse shear stress, transverse normal
stress distributions along thickness direction for a Ai/Sic FGM square plate under sinusoidal pressure on the
top surface, V −c = 0, V +

c = 1.0, p = 1, a/h = 5.
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4. A nondimensional scheme has been applied on solving the least square problem resulting a more
accurate estimation of the transverse shear stiffness matrix.
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The accuracy of the Variational Asymptotic Plate and Shell Analysis (VAPAS) is as-
sessed against several higher order, zig zag and layerwise theories generated by using the
invariant axiomatic framework denoted as Generalized Unified Formulation (GUF). All the
axiomatic and asymptotic theories are also compared against the elasticity solution devel-
oped for the case of a sandwich structure with high Face to Core Stiffness Ratio. GUF
allows to use an infinite number of axiomatic theories (Equivalent Single Layer theories
with or without zig zag effects and Layerwise theories as well) with any combination of or-
ders of the displacements and it is an ideal tool to precisely assess the range of applicability
of the Variational Asymptotic Plate and Shell Analysis or other theories in general. In fact,
all the axiomatic theories generated by GUF are obtained from the kernels or fundamental
nuclei of the Generalized Unified Formulation and changing the order of the variables is
“naturally” and systematically done with GUF. It is demonstrated that VAPAS achieves
accuracy comparable to a fourth (or higher) order zig-zag theory. The computational ad-
vantages of VAPAS are then demonstrated. The differences between the axiomatic Zig-zag
models and VAPAS are also assessed. Range of applicability of VAPAS will be discussed
in detail and guidelines for new developments based on GUF and VAPAS are provided.

I. Introduction

A. Background and Motivation

MOST of the aerospace structures can be analyzed using shell and plate models. Accurate theoretical
formulations that minimize the CPU time without penalties on the quality of the results are then of

fundamental importance.
The so-called axiomatic models present the advantage that the important physical behaviors of the

structures can be modeled using the “intuition” of eminent scientists. The drawback of this approach is
that some cases are not adequately modeled because the starting apriori assumptions might fail. Also,
each existing approach presents a range of applicability and when the hypotheses used to formulate the
theory are no longer valid the approach has to be replaced with another one usually named as “refined
theory” or “improved theory”. In the framework of the mechanical case the Classical Plate Theory (CPT),
also known as Kirchoff theory,1 has the advantage of being simple and reliable for thin plates. However,
if there is strong anisotropy of the mechanic properties, or if the composite plate is relatively thick, other
advanced models such as First-order Shear Deformation Theory (FSDT) are required.2–4 Higher-order Shear
Deformation Theories (HSDT) have also been used,5–7 giving the possibility to increase the accuracy of
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numerical evaluations for moderately thick plates. But even these theories are not sufficient if local effects
are important or accuracy in the calculation of transverse stresses is sought. Therefore, more advanced plate
theories have been developed to include zig-zag effects.8–19 In some challenging cases the previous type of
theories are not sufficiently accurate. Therefore, the so-called Layerwise theories20–30 have been introduced.
In these theories the quantities are layer-dependent and the number of required Degrees of Freedom is much
higher than the case of Equivalent Single Layer Models.

The first author introduced an invariant methodology named as Generalized Unified Formulation31 in which
an infinite number of axiomatic models can be included in just one formulation. All the combinations
of orders (for example cubic order for the in-plane displacements and parabolic order for the out-of-plane
displacement) are possible. Equivalent Single Layer Models (with or without zig-zag effects) and layerwise
models can be analyzed. All these formulations derive from the expansion of six 1 × 1 arrays which are
invariant with respect to the type of theory (e.g. Equivalent Single Layer or Layerwise) and orders adopted
for the displacement variables. This fact makes the Generalized Unified Formulation an ideal tool to test and
compare other possible formulations. In particular, this paper assesses the Variational Asymptotic Plate and
Shell Analysis (VAPAS) introduced by the second author and compares it with some of the infinite theories
that can be generated from the six invariant arrays of the Generalized Unified Formulation. All the results
are compared against the elasticity solution developed by the first author. A sandwich plate is analyzed.
Different aspect ratios are considered. Different Face to Core Stiffness ratios (FCSRs) are adopted. It is
demonstrated that VAPAS gives accurate results at least as a fourth-order axiomatic zig-zag theory but with
a much smaller number of Degrees of Freedom. The range of applicability of the various theories generated
with GUF and VAPAS is discussed.

II. Variational Asymptotic Plate and Shell Analysis (VAPAS): Main Concepts

Mathematically, the approximation in the process of constructing a plate theory stems from elimination
of the thickness coordinate as an independent variable of the governing equations, a dimensional reduction
process. This sort of approximation is inevitable if one wants to take advantage of the relative smallness of the
thickness to simplify the analysis. However, other approximations that are not absolutely necessary should
be avoided, if at all possible. For example, for geometrically nonlinear analysis of plates, it is reasonable to
assume that the thickness, h, is small compared to the wavelength of deformation of the reference plane, l.
However, it is unnecessary to assume a priori some displacement field, although that is the way most plate
theories are constructed. As pointed out by Ref. [32], the attraction of a priori hypotheses is caused by our
inability to extract the necessary information from the 3D energy expression.

According to this line of logic, Yu and his co-workers adopted the variational asymptotic method (VAM),32

to develop a new approach to modeling composite laminates.33–36 These models are implemented in a com-
puter program named VAPAS. In this approach, the original 3D anisotropic elasticity problem is first cast
in an intrinsic form, so that the theory can accommodate arbitrarily large displacement and global rota-
tion subject only to the strain being small. An energy functional can be constructed for this nonlinear 3D
problem in terms of 2D generalized strain measures and warping functions describing the deformation of the
transverse normal:

Π = Π(ε11, ε12, ε22, κ11, κ12, κ22, w1, w2, w3) (1)

Here ε11, ε12, ε22, κ11, κ12, κ22 are the so-called 2D generalized strains37 and w1, w2, w3 are unknown 3D
warping functions, which characterize the difference between the deformation represented by the 2D variables
and the actual 3D deformation for every material point within the plate. It is emphasized here that the
warping functions are not assumed a priori but are unknown 3D functions to be solved using VAM. Then
we can employ VAM to asymptotically expand the 3D energy functional into a series of 2D functionals in
terms of the small parameter h/l, such that

Π = Π0 + Π1
h

l
+ Π2

h2

l2
+ o(

h2

l2
) (2)

where Π0, Π1, Π2 are governing functionals for different orders of approximation and are functions of 2D
generalized strains and unknown warping functions. The unknown warping functions for each approximation
can be obtained in terms of 2D generalized strains corresponding to the stationary points of the functionals,
which are one-dimensional (1D) analyses through the thickness. Solutions for the warping functions can be
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obtained analytically as shown in Ref. [33] and Ref. [36]. After solving for the unknown warping functions,
one can substitute them back into the energy functionals in Eq. (1) to obtain 2D energy functionals for 2D
plate analysis. For example, for the zeroth-order approximation, the 2D plate model of VAPAS is of the
form

Π0 = Π0(ε11, ε12, ε22, κ11, κ12, κ22) (3)

It should be noted that the energy functional for the zeroth-order approximation, Π0, coincides to that of
CLT but without invoking the Kirchhoff hypothesis and the transverse normal is flexible during deformation.

Higher-order approximations can be used to construct refined models. For example, the approximation
through second order (h2/l2) should be used to handle transverse shear effects. However, there are two
challenging issues associated with the second-order approximation:

• The energy functional asymptotically correct up through the second order is in terms of the CLT
generalized strains and their derivatives. This form is not convenient for plate analysis because the
boundary conditions cannot be readily associated with quantities normally specified on the boundary
of plates.

• Only part of the second-order energy corresponds to transverse shear deformation, and no physical
interpretation is known for the remaining terms.

VAPAS uses exact kinematical relations between derivatives of the generalized strains of CLT and the
transverse shear strains along with equilibrium equations to meet these challenges. Minimization techniques
are then applied to find the transverse shear energy that is closest to the asymptotically correct second-order
energy. In other words, the loss of accuracy between the asymptotically correct model and a generalized
Reissner-Mindlin model is minimized mathematically. For the purpose of establishing a direct connection
between 2D Reissner-Mindlin plate finite element analysis, the through-thickness analysis is implemented
using a 1D finite element discretization in the computer program VAPAS, which has direct connection with
the plate/shell elements in commercial finite element packages and can be conveniently used by application-
oriented engineers.

In comparison to most existing composite plate modeling approaches, VAPAS has several unique features:

• VAPAS adopts VAM to rigorously split the original geometrically-exact, nonlinear 3D problem into
a linear, 1D, through-the-thickness analysis and a geometrically-exact, nonlinear, 2D, plate analysis.
This novel feature allows the global plate analysis to be formulated exactly and intrinsically as a
generalized 2D continuum over the reference plane and routes all the approximations into the through-
the-thickness analysis, the accuracy of which is guaranteed to be the best by use of the VAM. The
optimization procedure minimizes the loss of information in recasting the model to the generalized
Reissner-Mindlin form.

• No kinematical assumptions are invoked in the derivation. All deformation of the normal line element
is correctly described by the warping functions within the accuracy of the asymptotic approximation.

• VAPAS does not rely on integration of the 3D equilibrium equations through the thickness to obtain
accurate distributions of transverse normal and shear strains and stresses.

• VAPAS exactly satisfies all continuity conditions, including those on both displacement and stress, at
the interfaces as well as traction conditions on the top and bottom surfaces.

III. Generalized Unified Formulation: Main Concepts

A. Classification of the Theories Obtained Using GUF

The main feature of the Generalized Unified Formulation is that the descriptions of Layerwise Theories,
Higher-order Shear Deformation Theories and Zig-Zag Theories of any combination of orders do not show
any formal differences and can all be obtained from six invariant kernels. So, with just one theoretical model
an infinite number of different approaches can be considered. For example, in the case of moderately thick
plates a higher order theory could be sufficient but for thick plates layerwise models may be required. With
GUF the two approaches are formally identical because the kernels are invariant with respect to the type of
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theory.

In the present work the concepts of type of theory and class of theories are introduced. The following
types of displacement-based theories are discussed. The first type is named as Advanced Higher-order Shear
Deformation Theories (AHSDT). These theories are Equivalent Single Layer models because the displace-
ment field is unique and independent of the number of layers. The effects of the transverse normal strain
εzz are retained.
The second type of theories is named as Advanced Higher-order Shear Deformation Theories with Zig-Zag
effects included (AHSDTZ). These theories are Equivalent Single Layer models and the so called Zig-Zag
form of the displacements is taken into account by using Murakami’s Zig-Zag Function (MZZF). The effects
of the transverse normal strain εzz are included. The third type of theories is named Advanced LayerWise
Theories (ALWT). These theories are the most accurate ones because all the displacements have a layerwise
description. The effects of the transverse normal strain εzz are included as well. These models are necessary
when local effects need to be described. The price is of course (in FEM applications) in higher computa-
tional time. An infinite number of theories which have a particular logic in the selection of the used orders of
expansion is defined as class of theories. For example, the infinite layerwise theories which have the displace-
ments ux, uy and uz expanded along the thickness with a polynomial of order N are a class of theories. The
infinite theories which have the in-plane displacements ux and uy expanded along the thickness with order
N , the out of plane displacement expanded along the thickness with order N−1 are another class of theories.

B. Basic Idea and Theoretical Formulation

Both layerwise and Equivalent Single Layer models are axiomatic approaches if the unknowns are expanded
along the thickness by using a chosen series of functions.
When the Principal of Virtual Displacements is used, the unknowns are the displacements ux, uy and uz.
When other variational statements are used the unknowns may also be all or some of the stresses and other
quantities as well (multifield case).
The Generalized Unified Formulation is introduced here considering a generic layer k of a multilayered plate
structure. This is the most general approach and the Equivalent Single Layer theories, which consider the
displacement unknowns to be layer-independent, can be derived from this formulation with some simple
formal techniques.31 Consider a theory denoted as Theory I, in which the displacement in x direction uk

x has

Figure 1. Multilayered plate: notations and definitions.

four Degrees of Freedom. Here by Degrees of Freedom it is intended the number of unknown quantities that
are used to expand a variable. In the case under examination four Degrees of Freedom for the displacement
uk

x means that four unknowns are considered. Each unknown multiplies a known function of the thickness
coordinate z. Where the origin of the coordinate z is measured is not important. However, from a practical
point of view it is convenient to assume that the middle plane of the plate is also the plane with z = 0. This
assumption does not imply that there is a symmetry with respect to the plane z = 0. The formulation is
general.
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For layer k the following relation holds: zbotk
≤ z ≤ ztopk

. zbotk
is the global coordinate z of the bottom

surface of layer k and ztopk
is the global coordinate z of the top surface of layer k (see Figure 1). hk =

ztopk
− zbotk

is the thickness of layer k and h is the thickness of the plate.
In the case of Theory I, uk

x is expressed as follows:

uk
x (x, y, z) =

known︷ ︸︸ ︷
fk
1 (z) ·

unknown#1︷ ︸︸ ︷
uk

x1
(x, y) +

known︷ ︸︸ ︷
fk
2 (z) ·

unknown#2︷ ︸︸ ︷
uk

x2
(x, y)

+ fk
3 (z)︸ ︷︷ ︸

known

· uk
x3

(x, y)︸ ︷︷ ︸
unknown#3

+ fk
4 (z)︸ ︷︷ ︸

known

· uk
x4

(x, y)︸ ︷︷ ︸
unknown#4

zbotk
≤ z ≤ ztopk

(4)

The functions fk
1 (z), fk

2 (z), fk
3 (z) and fk

4 (z) are known functions (axiomatic approach). These functions
could be, for example, a series of trigonometric functions of the thickness coordinate z. Polynomials (or even
better orthogonal polynomials) could be selected. In the most general case each layer has different functions.
For example, fk

1 (z) 6= fk+1
1 (z). The next formal step is to modify the notation.

The following functions are defined:

xF k
t (z) = fk

1 (z) xF k
2 (z) = fk

2 (z)

xF k
3 (z) = fk

3 (z) xF k
b (z) = fk

4 (z)
(5)

The logic behind these definitions is the following. The first function fk
1 (z) is defined as xF k

t . Notice the
superscript x. It was added to clarify that the displacement in x direction, uk

x, is under investigation. The
subscript t identifies the quantities at the “top” of the plate and, therefore, are useful in the assembling of
the stiffness matrices in the thickness direction (see Ref. [31]).
The last function fk

4 (z) is defined as xF k
b . Notice again the superscript x. The subscript b means “bottom”

and, again, its utility is discussed in Ref. [31].
The intermediate functions fk

2 (z) and fk
3 (z) are defined simply as xF k

2 and xF k
3 . To be consistent with the

definitions of equation 5, the following unknown quantities are defined:

uk
xt

(x, y) = uk
x1

(x, y) uk
xb

(x, y) = uk
x4

(x, y) (6)

Using the definitions reported in equations 5 and 6, equation 4 can be rewritten as

uk
x (x, y, z) =

known︷ ︸︸ ︷
xF k

t (z) ·
unknown#1︷ ︸︸ ︷
uk

xt
(x, y) +

known︷ ︸︸ ︷
xF k

2 (z) ·
unknown#2︷ ︸︸ ︷
uk

x2
(x, y)

+ xF k
3 (z)︸ ︷︷ ︸

known

· uk
x3

(x, y)︸ ︷︷ ︸
unknown#3

+ xF k
b (z)︸ ︷︷ ︸

known

· uk
xb

(x, y)︸ ︷︷ ︸
unknown#4

zbotk
≤ z ≤ ztopk

(7)

It is supposed that each function of z is a polynomial. The order of the expansion is then 3 and indicated as
Nk

ux
. Each layer has in general a different order. Thus, in general Nk

ux
6= Nk+1

ux
. If the functions of z are not

polynomials (for example, this is the case if trigonometric functions are used) then Nk
ux

is just a parameter
related to the number of terms or Degrees of Freedom used to describe the displacement uk

x in the thickness
direction. The expression representing the displacement uk

x (see equation 7) can be put in a compact form
typical of the Generalized Unified Formulation presented here. In particular it is possible to write:

uk
x (x, y, z) = xF k

αux
(z) · uk

xαux
(x, y) αux = t, l, b; l = 2, ..., Nk

ux
(8)

where, in the example, Nk
ux

= 3. The thickness primary master index α has the subscript ux. This subscript
from now on will be called slave index. It is introduced to show that the displacement ux is considered.
Figure 2 explains these definitions. Consider another example. Suppose that the displacement uk

x of a
particular theory is expressed with 3 Degrees of Freedom. In that case it is possible to write:

uk
x (x, y, z) =

known︷ ︸︸ ︷
fk
1 (z) ·

unknown#1︷ ︸︸ ︷
uk

x1
(x, y) +

known︷ ︸︸ ︷
fk
2 (z) ·

unknown#2︷ ︸︸ ︷
uk

x2
(x, y) +

known︷ ︸︸ ︷
fk
3 (z) ·

unknown#3︷ ︸︸ ︷
uk

x3
(x, y) (9)
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Figure 2. Generalized Unified Formulation. Master and slave indices.

By adopting the definitions earlier used for the case of 4 Degrees of Freedom it is possible to rewrite equation
9 in the following equivalent form:

uk
x (x, y, z) =

known︷ ︸︸ ︷
xF k

t (z) ·
unknown#1︷ ︸︸ ︷
uk

xt
(x, y) +

known︷ ︸︸ ︷
F k

2 (z) ·
unknown#2︷ ︸︸ ︷
uk

x2
(x, y) +

known︷ ︸︸ ︷
xF k

b (z) ·
unknown#3︷ ︸︸ ︷
uk

xb
(x, y) (10)

which can be put again in the form shown in equation 8 with Nk
ux

= 2. In general Nk
ux

is DOF k
ux
− 1, where

DOF k
ux

is the number of Degrees of Freedom (at layer level) used for the displacement uk
x. In the case of

Zig-Zag theories it is possible to demonstrate that Nk
ux

= DOF k
ux
−2 because one Degree of Freedom is used

for the Zig-Zag function.
The minimum number of Degrees of Freedom is chosen to be 2. This is a choice used to facilitate the
assembling in the thickness direction. In fact, the “top” and “bottom” terms will be always present. In the
case in which DOF k

ux
= 2 the Generalized Unified Formulation is simply

uk
x (x, y, z) = xF k

αux
(z) · uk

xαux
(x, y) αux = t, b (11)

In this particular case the “l ” term of equation 8 is not present.
An infinite number of theories can be included in equation 8. It is in fact sufficient to change the value of
Nk

ux
. It should be observed that formally there is no difference between two distinct theories (obtained by

changing Nk
ux

). It is deduced that ∞1 theories can be represented by equation 8.
The other displacements uk

y and uk
z can be treated in a similar fashion. The Generalized Unified Formulation

for all the displacements is the following:

uk
x = xFtu

k
xt

+ xFlu
k
xl

+ xFbu
k
xb

= xFαux
uk

xαux
αux = t, l, b; l = 2, ..., Nux

uk
y = yFtu

k
yt

+ yFmuk
ym

+ yFbu
k
yb

= yFαuy
uk

yαuy
αuy = t,m, b; m = 2, ..., Nuy

uk
z = zFtu

k
zt

+ zFnuk
zn

+ zFbu
k
zb

= zFαuz
uk

zαuz
αuz = t, n, b; n = 2, ..., Nuz

(12)

In equation 12, for simplicity it is assumed that the type of functions is the same for each layer and that
the same number of terms is used for each layer. This assumption will make it possible to adopt the same
Generalized Unified Formulation for all types of theories, and layerwise and equivalent single layer theories
will not show formal differences. This concept means, for example, that if displacement uy is approximated
with five terms in a particular layer k then it will be approximated with five terms in all layers of the
multilayered structure.
Each displacement variable can be expanded in ∞1 combinations. In fact, it is sufficient to change the
number of terms used for each variable. Since there are three variables (the displacements ux, uy and uz),
it is concluded that equation 12 includes ∞3 different theories. In equation 12 the quantities are defined in
a layerwise sense but it can be shown that the same concept is valid for the Equivalent Single Layer cases
too (see Ref. [31]).
It can be shown that when a theory generated by using GUF has the orders of the expansions of all the
displacements equal to each other, the results are numerically identical to the ones that can be obtained by
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using Carrera’s Unified Formulation (see Ref. [30]).

C. Acronyms Used to Identify a Generic Theory Obtained by Using GUF

Three types of displacement-based theories can be obtained. As stated above, the first type is named
Advanced Higher-order Shear Deformation Theories (AHSDT). A AHSDT theory with orders of expansion
Nux

, Nuy
and Nuz

for the displacements ux, uy and uz respectively, is denoted as EDNux Nuy Nuz
. “E” stands

for “Equivalent Single Layer” and “D” stands for “Displacement-based” theory.
With similar logic, it is possible to define acronyms for the second type (Advanced Higher-order Shear
Deformation Theories with Zig-Zag effects included (AHSDTZ)) and for the third type of theories (Advanced
LayerWise Theories (ALWT)). The acronyms are EDZNux Nuy Nuz

and LDNux Nuy Nuz
(more details can be

found in Ref. [31]). For example, a AHSDTZ theory with cubic orders for all the displacements is indicated
as EDZ333 whereas a ALWT theory with parabolic orders for all the displacements is indicated as LD222.

IV. Results

Figure 3. Test Case 2. Geometry of the plate sandwich structure.

The multilayered structure is a sandwich plate (see Figure 3) made of two skins and a core [hlower skin =
h/10; hupper skin = 2h/10; hcore = (7/10)h]. It is also Elower skin

Eupper skin
= 5/4. The plate is simply supported and

the load is a sinusoidal pressure applied at the top surface of the plate (m = n = 1). Different cases are
proposed here:

• Face-to-Core Stiffness Ratio = FCSR = Elower skin
Ecore

= 101; a/h = 4, 10, 100

• Face-to-Core Stiffness Ratio = FCSR = Elower skin
Ecore

= 105; a/h = 4, 100

As far as Poisson’s ratio is concerned, the following values are used: υlower skin = υupper skin = υcore = υ =
0.34. In all cases b = 3a. In this test case there is no symmetry with respect the plane z = 0. The following
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non-dimensional quantities are introduced:

ûx = ux
Ecore

zP th( a
h )3 ; ûy = uy

Ecore
zP th( a

h )3 ; ûz = uz
100Ecore
zP th( a

h )4 ;

σ̂zx = σzx
zP t( a

h ) ; σ̂zy = σzy

zP t( a
h ) ; σ̂zz = σzz

zP t ;

σ̂xx = σxx

zP t( a
h )2 ; σ̂yy = σyy

zP t( a
h )2 ; σ̂xy = σxy

zP t( a
h )2 ;

(13)

All the results have been compared with the solution obtained by solving the “exact” problem.38 The exact
value is indicated with the terminology “elasticity” and is the reference value corresponding to the solution
of the differential equations that govern the problem. The details of this elasticity solution are here omitted
for brevity.

Tables 1 and 2 compare a ALWT, AHSDT, AHSDTZ and VAPAS with VAPAS0 denotes the zeroth-
order approximation of VAPAS according to Eq. (3). As shown in Table 1, VAPAS0 has a similar prediction
for transverse deflection as ED111 for a thick plate (a/h = 4) for both FCSR = 10 and FCSR = 105.
It is noted that ED111 is very similar to CLT with a flexible transverse normal. For thin plates with
mild modulus contrast, VAPAS0 has an accuracy similar to higher-order theories without zigzag effects
(ED444, ED555, ED777). For thin plates with big modulus contrast (FCSR = 105), VAPAS0 has an accuracy
similar to ED444. VAPAS results for the deflection prediction are generally better than VAPAS0 and has
an accuracy comparable to higher-order theories with zig-zag effects such as EDZ444 and higher. The only
anomaly case is that for thick plates with the big modulus contrast, VAPAS results are not meaningful.
This could be explained that VAPAS is not constructed for such an extreme case. Note in Eq. (2), only
the geometrical small parameter h/a is used for the asymptotical expansion, yet for this extreme case, the
modulus contrast is a much smaller parameter than h/a. Hence, it is suggested that VAPAS is not suitable
for thick sandwich plates with huge modulus contrast. Note for the sandwich plate with a/h = 100 and
FCSR = 105, VAPAS predicts reasonably well. Later we will use more examples to demonstrate that for
moderate modulus contrast, VAPAS actually has a very good prediction. Similar observations can be made
about the stress prediction as shown in Table 2. It is worthy to point out that VAPAS plate model only uses
three DOFs for its zeroth-order approximation and five DOFs for its first-order approximation. The 2D plate
element of VAPAS is the same as a FOSDT and is more efficient than all the theories listed in the tables.
In other words, VAPAS presents a great compromise between the accuracy of the results and the number of
DOFs. Tables 3-11 present a relatively thick sandwich plate with FCSR = 10. The out-of-plane stresses
are not unknowns of the displaced-based theories based on GUF (this is not the case if a mixed variational
theorem is used). Therefore, they can be calculated a posteriori by using Hooke’s law or by integrating
the equilibrium equations. The first approach is usually not satisfactory for ESL theories. Therefore, all
the axiomatic results presented in this work report the transverse stresses calculated by integrating the
equilibrium equations. In all cases it is possible to see that VAPAS has an accuracy comparable or superior
to AHSDTZ. For this particular case we tested, VAPAS has a similar accuracy as, or for most cases better,
than EDZ555 for displacement prediction and in-plane stress and transverse normal stress prediction and
its accuracy is similar to LD222. For transverse shear stresses, VAPAS predicts similar values as EDZ555.
However, if integration through the thickness is not used to obtain such values, ED555 will be expected
to be worse than VAPAS results. For moderate FCSR values and thick plates (a/4 = 4, see Figures 4-
7, VAPAS presents results that can be comparable of the results obtained by using the axiomatic zig-zag
theory EDZ777. This is particularly evident in figure 7. However, the VAPAS plate model only requires five
DOFs, which is only less than 20% of the computational cost one would need for EDZ777 (27 DOFs). It is
also noted, VAPAS plate model remains the same as the well-known Reissner-Mindlin elements universally
available in all commercial finite element packages.
The Equivalent Single Layer and Layerwise axiomatic theories presented in this paper and a virtually infinite
number of other theories can be implemented in a single FEM code based on the Generalized Unified
Formulation. Accuracy and CPU time requirements can be easily met with an appropriate selection of the
type of theory and the orders used in the expansions of the displacements.
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a/h 4 100
FCSR = 101

Elasticity 3.01123 Err.% 1.51021 Err.% DOF

LD111 2.98058 (−1.02) 1.47242 (−2.50) 12
LD222 3.00982 (−0.05) 1.51021 (0.00) 21
LD555 3.01123 (0.00) 1.51021 (0.00) 48
ED111 1.58218 (−47.5) 1.10845 (−26.6) 6
ED444 2.79960 (−7.03) 1.50989 (−0.02) 15
ED555 2.84978 (−5.36) 1.50996 (−0.02) 18
ED777 2.86875 (−4.73) 1.50999 (−0.01) 24
EDZ111 2.34412 (−22.2) 1.15866 (−23.3) 9
EDZ444 2.97886 (−1.07) 1.51017 (0.00) 18
EDZ555 2.98737 (−0.79) 1.51018 (0.00) 21
EDZ777 2.99670 (−0.48) 1.51019 (0.00) 27
V APAS0 1.5136 (−49.7) 1.50788 (−0.15) 3
V APAS 3.0198 (0.28) 1.5102 (0.00) 5

FCSR = 105

Elasticity 1.31593 · 10−02 Err.% 2.08948 · 10−03 Err.%
LD111 9.79008 · 10−03 (−25.6) 1.96509 · 10−03 (−5.95) 12
LD222 1.31471 · 10−02 (−0.09) 2.08948 · 10−03 (0.00) 21
LD555 1.31593 · 10−02 (0.00) 2.08949 · 10−03 (0.00) 48
ED111 1.79831 · 10−04 (−98.6) 1.19941 · 10−04 (−94.3) 6
ED444 1.16851 · 10−03 (−91.1) 1.64835 · 10−04 (−92.1) 15
ED555 4.29224 · 10−03 (−67.4) 1.73120 · 10−04 (−91.7) 18
ED777 1.08119 · 10−02 (−17.8) 2.96304 · 10−04 (−85.8) 24
EDZ111 8.36735 · 10−04 (−93.6) 1.63329 · 10−04 (−92.2) 9
EDZ444 1.26288 · 10−02 (−4.03) 1.16305 · 10−03 (−44.3) 18
EDZ555 1.30409 · 10−02 (−0.90) 1.78411 · 10−03 (−14.6) 21
EDZ777 1.31363 · 10−02 (−0.17) 2.02060 · 10−03 (−3.30) 27
V APAS0 1.6421 · 10−04 (−98.7) 1.6314 · 10−04 (−92.2) 3
V APAS 1.49076 (> 100) 2.4667 · 10−03 (18.0) 5

Table 1. Comparison of various theories to evaluate the transverse displacements amplitude (center plate

deflection) buz = uz
100Ecore
zP th( a

h )4
in z = zupper skin

bottom = 3
10

h, x = a/2, y = b/2.
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a/h 4 Err. 100 Err.

FCSR = 101

Elasticity 0.32168 Err.% 0.33176 Err.% DOF

LD111 0.31730 (−1.36) 0.32345 (−2.50) 12
LD222 0.32142 (−0.08) 0.33176 (0.00) 21
LD555 0.32168 (0.00) 0.33176 (0.00) 48
ED111 0.33178 (+3.14) 0.33178 (+0.01) 6
ED444 0.33240 (+3.33) 0.33178 (+0.01) 15
ED555 0.32884 (+2.23) 0.33178 (+0.01) 18
ED777 0.32707 (+1.68) 0.33177 (0.00) 24
EDZ111 0.34184 (+6.27) 0.34497 (+3.98) 9
EDZ444 0.32913 (+2.32) 0.33178 (+0.01) 18
EDZ555 0.32755 (+1.82) 0.33177 (0.00) 21
EDZ777 0.32530 (+1.12) 0.33177 (+0.00) 27
V APAS0 0.33178 (+3.14) 0.33178 (+0.01) 3
V APAS 0.31037 (−3.5) 0.33175 (+0.00) 5

FCSR = 105

Elasticity 5.40842 · 10−04 Err.% 0.27797 Err.%
LD111 1.05700 · 10−04 (−80.5) 0.26143 (−5.95) 12
LD222 5.37740 · 10−04 (−0.57) 0.27797 (0.00) 21
LD555 5.40842 · 10−04 (0.00) 0.27797 (0.00) 48
ED111 0.33242 (> 100) 0.33242 (+19.6) 6
ED444 0.30529 (> 100) 0.33238 (+16.6) 15
ED555 0.21639 (> 100) 0.33214 (+19.5) 18
ED777 3.96907 · 10−02 (> 100) 0.32865 (+18.2) 24
EDZ111 0.30971 (> 100) 0.33077 (+19.0) 9
EDZ444 6.84336 · 10−03 (> 100) 0.30392 (+9.34) 18
EDZ555 1.87520 · 10−03 (> 100) 0.28655 (+3.09) 21
EDZ777 8.02443 · 10−04 (+48.4) 0.27994 (+0.71) 27
V APAS0 0.33242 (> 100) 0.33242 (+19.6) 3
V APAS 0.30592 (> 100) 0.33238 (+16.6) 5

Table 2. Comparison of various theories to evaluate the transverse shear stress bσzx = σzx
zP t( a

h )
in z = zupper skin

bottom =

3
10

h, x = 0, y = b/2. The indefinite equilibrium equations have been integrated along the thickness.
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a/h 10
FCSR = 101

Elasticity −0.11087 · 10−01 Err.% DOF

LD111 −0.10800 · 10−01 (−2.59) 12
LD222 −0.11085 · 10−01 (−0.01) 21
LD333 −0.11087 · 10−01 (−0.00) 30
LD444 −0.11087 · 10−01 (−0.00) 39
ED111 −0.08627 · 10−01 (−22.2) 6
ED222 −0.11736 · 10−01 (+5.85) 9
ED333 −0.11358 · 10−01 (+2.45) 12
ED444 −0.11316 · 10−01 (+2.07) 15
ED555 −0.11242 · 10−01 (+1.40) 18
EDZ111 −0.08696 · 10−01 (−21.6) 9
EDZ222 −0.11161 · 10−01 (+0.67) 12
EDZ333 −0.11166 · 10−01 (+0.71) 15
EDZ444 −0.11164 · 10−01 (+0.69) 18
EDZ555 −0.11146 · 10−01 (+0.53) 21
V APAS −0.111009 · 10−01 (+0.13) 5

Table 3. Comparison of various theories to evaluate the in-plane displacement bux = ux
Ecore

zP th( a
h )3

in z =

zupper skin
bottom = 3

10
h, x = 0, y = b/2.

a/h 10
FCSR = 101

Elasticity −0.36956 · 10−02 Err.% DOF

LD111 −0.36000 · 10−02 (−2.59) 12
LD222 −0.36952 · 10−02 (−0.01) 21
LD333 −0.36956 · 10−02 (−0.00) 30
LD444 −0.36956 · 10−02 (−0.00) 39
ED111 −0.28757 · 10−02 (−22.2) 6
ED222 −0.39120 · 10−02 (+5.85) 9
ED333 −0.37860 · 10−02 (+2.45) 12
ED444 −0.37721 · 10−02 (+2.07) 15
ED555 −0.37473 · 10−02 (+1.40) 18
EDZ111 −0.28986 · 10−02 (−21.6) 9
EDZ222 −0.37204 · 10−02 (+0.67) 12
EDZ333 −0.37220 · 10−02 (+0.71) 15
EDZ444 −0.37213 · 10−02 (+0.69) 18
EDZ555 −0.37153 · 10−02 (+0.53) 21
V APAS −0.37003 · 10−02 (+0.13) 5

Table 4. Comparison of various theories to evaluate the in-plane displacement buy = uy
Ecore

zP th( a
h )3

in z =

zupper skin
bottom = 3

10
h, x = a/2, y = 0.
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a/h 10
FCSR = 101

Elasticity 1.74265 Err.% DOF

LD111 1.70908 (−1.93) 12
LD222 1.74247 (−0.01) 21
LD333 1.74265 (−0.00) 30
LD444 1.74265 (−0.00) 39
ED111 1.18207 (−32.2) 6
ED222 1.58561 (−9.01) 9
ED333 1.70006 (−2.44) 12
ED444 1.71032 (−1.85) 15
ED555 1.71796 (−1.42) 18
EDZ111 1.34741 (−22.7) 9
EDZ222 1.73669 (−0.34) 12
EDZ333 1.73805 (−0.26) 15
EDZ444 1.73836 (−0.25) 18
EDZ555 1.73938 (−0.19) 21
V APAS 1.74265 (+0.00) 5

Table 5. Comparison of various theories to evaluate the transverse displacements amplitude (center plate

deflection) buz = uz
100Ecore
zP th( a

h )4
in z = zupper skin

bottom = 3
10

h, x = a/2, y = b/2.

a/h 10
FCSR = 101

Elasticity 0.33146 Err.% DOF

LD111 0.26290 (−20.7) 12
LD222 0.33169 (+0.07) 21
LD333 0.33144 (−0.00) 30
LD444 0.33146 (+0.00) 39
ED111 0.36049 (+8.76) 6
ED222 0.35272 (+6.41) 9
ED333 0.34357 (+3.65) 12
ED444 0.34649 (+4.54) 15
ED555 0.34260 (+3.36) 18
EDZ111 0.35807 (+8.03) 9
EDZ222 0.32847 (−0.90) 12
EDZ333 0.33559 (+1.25) 15
EDZ444 0.33753 (+1.83) 18
EDZ555 0.33678 (+1.60) 21
V APAS 0.33364 (+0.66) 5

Table 6. Comparison of various theories to evaluate the in-plane normal stress bσxx = σxx
zP t( a

h )2
in z = zupper skin

bottom =

3
10

h, x = a/2, y = b/2. Note that this stress is not a continuous function on the thickness direction. Hooke’s law
has been used.
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a/h 10
FCSR = 101

Elasticity 0.14662 Err.% DOF

LD111 0.08285 (−43.5) 12
LD222 0.14688 (+0.17) 21
LD333 0.14660 (−0.01) 30
LD444 0.14662 (+0.00) 39
ED111 0.21666 (+47.8) 6
ED222 0.15706 (+7.12) 9
ED333 0.15421 (+5.18) 12
ED444 0.15783 (+7.64) 15
ED555 0.15518 (+5.84) 18
EDZ111 0.21309 (+45.3) 9
EDZ222 0.14239 (−2.88) 12
EDZ333 0.14943 (+1.92) 15
EDZ444 0.15141 (+3.27) 18
EDZ555 0.15095 (+2.95) 21
V APAS 0.14758 (+0.65) 5

Table 7. Comparison of various theories to evaluate the in-plane normal stress bσyy =
σyy

zP t( a
h )2

in z = zupper skin
bottom =

3
10

h, x = a/2, y = b/2. Note that this stress is not a continuous function on the thickness direction. Hooke’s law
has been used.

a/h 10
FCSR = 101

Elasticity −0.69314 · 10−01 Err.% DOF

LD111 −0.67520 · 10−01 (−2.59) 12
LD222 −0.69305 · 10−01 (−0.01) 21
LD333 −0.69314 · 10−01 (−0.00) 30
LD444 −0.69314 · 10−01 (−0.00) 39
ED111 −0.53936 · 10−01 (−22.2) 6
ED222 −0.73372 · 10−01 (+5.85) 9
ED333 −0.71010 · 10−01 (+2.45) 12
ED444 −0.70749 · 10−01 (+2.07) 15
ED555 −0.70283 · 10−01 (+1.40) 18
EDZ111 −0.54366 · 10−01 (−21.6) 9
EDZ222 −0.69779 · 10−01 (+0.67) 12
EDZ333 −0.69808 · 10−01 (+0.71) 15
EDZ444 −0.69795 · 10−01 (+0.69) 18
EDZ555 −0.69684 · 10−01 (+0.53) 21
V APAS −0.69775 · 10−01 (+0.67) 5

Table 8. Comparison of various theories to evaluate the in-plane shear stress bσxy =
σxy

zP t( a
h )2

in z = zupper skin
bottom =

3
10

h, x = 0, y = 0. Note that this stress is not a continuous function on the thickness direction. Hooke’s law has
been used.
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a/h 10
FCSR = 101

Elasticity 0.32998 Err.% DOF

LD111 0.32242 (−2.29) 12
LD222 0.32994 (−0.01) 21
LD333 0.32998 (−0.00) 30
LD444 0.32998 (−0.00) 39
ED111 0.33178 (+0.55) 6
ED222 0.33210 (+0.64) 9
ED333 0.33081 (+0.25) 12
ED444 0.33178 (+0.54) 15
ED555 0.33117 (+0.36) 18
EDZ111 0.34444 (+4.38) 9
EDZ222 0.33154 (+0.47) 12
EDZ333 0.33140 (+0.43) 15
EDZ444 0.33124 (+0.38) 18
EDZ555 0.33096 (+0.30) 21
V APAS 0.32836 (−0.50) 5

Table 9. Comparison of various theories to evaluate the transverse shear stress bσzx = σzx
zP t( a

h )
in z = zupper skin

bottom =

3
10

h, x = 0, y = b/2. The indefinite equilibrium equations have been integrated along the thickness for all the
theories except VAPAS.

a/h 10
FCSR = 101

Elasticity 0.10999 Err.% DOF

LD111 0.10747 (−2.29) 12
LD222 0.10998 (−0.01) 21
LD333 0.10999 (−0.00) 30
LD444 0.10999 (−0.00) 39
ED111 0.11059 (+0.55) 6
ED222 0.11070 (+0.64) 9
ED333 0.11027 (+0.25) 12
ED444 0.11059 (+0.54) 15
ED555 0.11039 (+0.36) 18
EDZ111 0.11481 (+4.38) 9
EDZ222 0.11051 (+0.47) 12
EDZ333 0.11047 (+0.43) 15
EDZ444 0.11041 (+0.38) 18
EDZ555 0.11032 (+0.30) 21
V APAS 0.10945 (−0.49) 5

Table 10. Comparison of various theories to evaluate the transverse shear stress bσzy =
σzy

zP t( a
h )

in z = zupper skin
bottom =

3
10

h, x = a/2, y = 0. The indefinite equilibrium equations have been integrated along the thickness for all the
theories except VAPAS.
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a/h 10
FCSR = 101

Elasticity 0.87231 Err.% DOF

LD111 0.87081 (−0.17) 12
LD222 0.87233 (+0.00) 21
LD333 0.87231 (+0.00) 30
LD444 0.87231 (−0.00) 39
ED111 0.51236 (−41.3) 6
ED222 0.58831 (−32.6) 9
ED333 0.77221 (−11.5) 12
ED444 0.78478 (−10.0 15
ED555 0.81517 (−6.55) 18
EDZ111 0.51803 (−40.6) 9
EDZ222 0.83586 (−4.18) 12
EDZ333 0.83769 (−3.97) 15
EDZ444 0.83847 (−3.88) 18
EDZ555 0.84631 (−2.98) 21
V APAS 0.87354 (+0.14) 5

Table 11. Comparison of various theories to evaluate the transverse normal stress bσzz = σzz
zP t in z = zupper skin

bottom =
3
10

h, x = a/2, y = b/2. The indefinite equilibrium equations have been integrated along the thickness for all the
theories except VAPAS.

Figure 4. Comparison of various theories to evaluate the in-plane normal stress bσxx = σxx
zP t( a

h )2
in x = a/2,

y = b/2. Note that this stress is not a continuous function on the thickness direction. Hooke’s law has been
used.
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Figure 5. Comparison of various theories to evaluate the in-plane normal stress bσxx = σxx
zP t( a

h )2
in x = a/2,

y = b/2 (upper-skin). Hooke’s law has been used.

Figure 6. Comparison of various theories to evaluate the transverse shear stress bσzx = σzx
zP t( a

h )
in x = 0, y = b/2.

The indefinite equilibrium equations have been integrated along the thickness.
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Figure 7. Comparison of various theories to evaluate the transverse displacements amplitude (center plate

deflection) buz = uz
100Ecore
zP th( a

h )4
in x = a/2, y = b/2.
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V. Conclusion

The accuracy of the Variational Asymptotic Plate and Shell Analysis (VAPAS) is assessed against several
higher order, zig zag and layerwise theories generated by using the invariant axiomatic framework denoted
as Generalized Unified Formulation (GUF). Both the axiomatic models generated by GUF and VAPAS are
also compared against the elasticity solution developed for the case of a sandwich structure with high Face
to Core Stiffness Ratio. It has been shown that the fact that GUF allows to use an infinite number of
axiomatic theories (Equivalent Single Layer theories with or without zig zag effects and Layerwise theories
as well) with any combination of orders of the displacements provides an ideal tool to precisely assess the
range of applicability of the Variational Asymptotic Plate and Shell Analysis or other theories in general. It
is demonstrated that VAPAS achieves accuracy comparable to a fourth (or higher) order zig-zag theory or
lower-order layerwise theories, while the plate model uses the least number degrees of freedom. Hence, in
comparison to the axiomatic theories, VAPAS has achieved an excellent compromise between accuracy and
efficiency. Except for extreme cases of thick sandwich with huge modulus contrast, VAPAS can be used as
an effective alternative to avoid expensive 3D finite element analysis for design and analysis of composite
laminated plates.
GUF can be implemented in a single FEM code and can generate a virtually infinite number of theories with
accuracy that range from the low-order equivalent single-layer to the high-order layerwise theories and is
the ideal tool for comparisons and assessments of different theories or for the creation of adaptive structural
codes in optimization and probabilistic studies.
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Asymptotical Construction of Geometrically Nonlinear

Plate Model for Functionally Graded

Magneto-Electro-Elastic Laminates
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Wenbin Yu†
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This paper aims at constructing a geometrically nonlinear model using the variational
asymptotic method for analyzing magneto-electro-elastic composite laminates. By taking
advantage of the inherent small parameter characterized by the ratio of the thickness to
the in-plane dimension of the plate, we systematically reduced the original multiphysically
coupled three-dimensional model to a series of two-dimensional plate models. A companion
one-dimensional through-the-thickness analysis provides the necessary constitutive models
needed for the plate analysis. For practical uses, we also fit the asymptotically correct
second-order electromagnetic enthalpy into a generalized Reissner-Mindlin model. The
three-dimensional displacement/strain/stress fields as well as the electric/magnetic poten-
tials and fluxes of the plate are obtained through recovery relations of the one-dimensional
through-the-thickness analysis. Without introducing any a priori kinematic, electric, or
magnetic assumptions in the derivation, the present plate model is rigorously derived to
capture geometrical nonlinearity and is valid for large deformations and global rotations.
The efficiency and the accuracy of the proposed method has been validated by comparing
results with three-dimensional exact solutions for several problems featuring electromag-
netic and elastic coupling.

Introduction

As an analogy with the exhibition of electromechanical coupling by piezoelectric materials, magnetic
materials respond to an externally applied magnetic field (H) by exhibiting a shape change which is known
as magnetostriction, demonstrating the Joule effect. On the other hand, these magnetic materials also
demonstrate the Villari effect indicated by changing their magnetization and consequently the magnetic
induction (B) in response to the applied stress. Moreover, for composites containing piezoelectric phases and
piezomagnetic phases there exists a magnetoelectric coupling effect. This capability of interactive transfer of
magnetic, electric and mechanical energies from one type to another, has received considerable and increasing
attentions for developing smart or active structures.1–4 Application of this kind of smart composite materials
spans from electronic package materials, magneto-electric-mechanical actuators and transducers, coil-less
magnetic force control devices, to nuclear fusion reactor components. The new concept of multifunctional
materials/structures featuring interactive elastic, electric, and magnetic fields is also likely to bring a new
dimension to the development of advanced light-weighted multi-functional aerospace structures with many
critical thin-walled components taking the form of beams, plates, shells, and stiffened panels.

The promising application of piezoelectric and piezomagnetic composites makes it imperative to develop
new methods and analysis tools for better understanding the mechanisms and behavior of such structures
which are under interactive actions among mechanical, electric and magnetic fields. Recently, increasing
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researches have been started on studying static and dynamic behavior of smart plates. Various forms of
constitutive equations for magneto-electro-elastic solids were derived in Ref. [5]. Pan et. al. developed a
series of three-dimensional (3D) exact benchmark solutions to analyze the static behavior of multilayered
anisotropic piezoelectric and piezomagnetic composite plates under cylindrical bending and simply supported
boundary conditions.6–8 These solutions are highly valuable for illustrating the complicated multiphysics
nature of the interactive fields, however, they are restricted to a few specific problems with idealized material
types, geometry and boundary conditions.

To overcome this limitation, a number of more generalized methods have been developed to explore
the 3D behavior of the magnetoelectroelastic laminates. Most of these methods are constructed from the
layerwise or discrete-layer laminate theory, utilizing various approximations to split the through-thickness
behavior and the planar behavior of the laminate into separate functions. In Refs. [9,10], Heyliger et. al. use
an approximate discrete-layer model to investigate the through-thickness variation of the elastic, electric, and
magnetic fields of laminates composed of elastic, piezoelectric, and magnetostrictive layers. Semi-analytical
approximation solutions to the weak form of the governing equations of equilibrium, charge, and magnetic flux
are obtained for infinitely long laminates under cylindrical bending and rectangular laminates with arbitrary
edge boundary conditions. By using a state space formulation, Chen and Lee constructed an alternative
solution approach to investigate the nonhomogeneous megnetoelectric plates, where elastic displacements
and electric/magnetic potentials as well as the transverse stresses, electric displacement, and magnetic flux
are introduced as state variables.11 Methods based upon the combination of layerwise plate theory with
finite element method (FEM) have also been used to analyze the linear static and dynamic performance of
multilayer smart plates. Examples include a layerwise FEM for analyzing piezoelectric composite plates12

and a quasi-analytical through-thickness FEM for functionally graded magneto-electric-elastic plates.13 In
contrast to the classical FEM based on the principle of virtual displacements, layerwise mixed finite element
formulation is built on Reissner mixed variational theorem (RMVT), where transverse stress assumptions are
made in the framework of RMVT and the resulting finite elements describes a priori interlaminar continuous
transverse shear and normal stresses. A detailed review on Reissner variational principle can be found in
Ref. [14]. Recently, the layerwise mixed finite element formulation has been has been extended to analyze
coupled magneto-electro-elastic problems. Related work has been reported for a partially mixed finite element
formulation15 and a layerwise modelling of magneto-electro-elastic plates.16 To avoid the computational cost
and complexity associated layerwise approaches, various simplified plate models have been developed to
model smart plates. A simplified plate model based on the third-order shear-deformation theory (TOSDT)
is developed to model the piezoelectric composite laminates.17 Mitchell and Reddy presented a hybrid plate
plate formulation for piezoelectric composite laminates, where an equivalent single-layer TOSDT is used for
the mechanical displacement field and the electric potential is modeled using a layerwise discretization in the
thickness direction.18 Plane stress assumption is adopted during the modeling. Because results obtained by
these two methods are only compared with those of the classical plate theory (CPT) and/or the first-order
shear-deformation theory (FOSDT), their accuracy cannot be determined without extensive 3D validations.
In Ref.[19], an analytic solution is developed for cylindrical bending of a piezoelectric laminate with elastic
displacement terms being assumed taking the form of TOSDT and the electric potential being obtained by
solving a second order differential equation. More complicated models have been developed for nonlinear
dynamic analysis. By combining CPT with an energy-based statistical magneomechanical model, Datta et.
al. studied the nonlinear dynamical response of a unimorph structure having a magnetostrictive iron-gallium
patch to a non-magnetic aluminum substrate.20 Several underlying assumptions were made on the total energy
function as well as kinematic relations. Hasanyan et. al. have developed a geometrically nonlinear model
for fully coupled magneto-thermo-elastic kinetics of laminated composite plates, with its kinematic relations
constructed by the injection of the FOSDT with von-Kámán strain definition.21 Despite of successfulness of
the aforementioned simplified plate models in analyzing many multi-physically coupled plate problems, these
approaches have two major disadvantages: (1) a priori assumptions on kinematics and the electromagnetic
potentials introduced by these methods are naturally extended from the analysis of isotropic homogeneous
elastic problems. They may not be justified for the multiphysically coupled, heterogeneous, and anisotropic
structures; (2) it is difficult for an analyst to determine the accuracy of the result and which assumption
should be chosen for efficient yet accurate analysis of a particular problem.

Recently, based on the variational asymptotic method (VAM), the authors and their co-workers have
developed a series of rigorous Reissner-Mindlin plate models for heterogeneous and anisotropic functionally
graded composite laminates and piezoelectric plates.22–26 These models have been proven to have excellent

2 of 29

American Institute of Aeronautics and Astronautics



compromise between the efficiency and accuracy. In the present research, we extend our previous work
to asymptotically construct a geometrical nonlinear plate model for smart composite laminates under the
interactive actions of magneto-electric-elastic fields. Taking advantage of the small parameter h/l (with h
denoting the thickness of the plate and l denoting the characteristic wavelength of the plate deformation), the
3D multiphysically coupled magneto-electric-elastic coupled problem is systematically reduced using VAM,
resulting in a series of efficient high-fidelity 2D models asymptotically correct to different orders of h/l.
The original 3D magneto-electric-elastic problem is then cast in an intrinsic form so that the theory can
accommodate arbitrary large deformation and global rotation with the restriction that the strains are small.
No a priori assumptions on the kinematics or electric or magnetic variables have been invoked. Continuity for
primary variables such as elastic displacements, electric and magnetic potentials as well as for the secondary
variables like transverse stresses, transverse electric displacement, and transverse magnetic induction are
automatically satisfied in this model.

Three-dimensional Formulation

The dynamic behavior of smart composite laminates is governed by the extended Hamilton principle:
∫ t2

t1

[
δ(K − U) + δW]

dt = 0, (1)

where t1 and t2 are arbitrary fixed times, K is the kenetic energy, U is a term related with the total internal
potential energy, and δW represents the virtual work of the applied loads, electric charge, and magnetic
induction. The overbar is used to indicate that the virtual work δW dose not necessary to represent the
variation of a functional W. For a smart composite plate made of piezoelectric and piezomagnetic materials,
U turns out to be the electromagnetic enthalpy which contains contributions from mechanical, electric, and
magnetic fields and the coupling effect between them.

U =
1
2

∫

V

(
Γ : CE,H : Γ−E · εΓ,H

d ·E −H · µΓ,E ·H
−2E · eH : Γ− 2H · qE : Γ− 2E ·αΓ ·H

)
dV

(2)

where Γ, E and H are the strain, electric field and magnetic field tensors, respectively; eH , qE , and αΓ

are piezoelectric tensor (measured at constant magnetic field), piezomagnetic tensor (measured at constant
electric field), and magnetoelectric tensor (measured at constant strain), respectively; CE,H , εd

Γ,H , µΓ,E

are elastic tensor (measured at constant electric and magnetic field), dielectric tensor (measured at constant
strain and magnetic field), magnetic permeability tensor (measured at constant strain and electric field),
respectively; V is the space occupied by the structure.

It is worth noting that although the above equation refers directly to piezoelectric and piezomagnetic
structures, the present formulation is equally applicable to smart structures made of other smart materials
characterized by a constitutive model with the same mathematical structure as Eq. (2).

A point in the plate can be described by its Cartesian coordinates xi, see Figure 1, where xα are two
orthogonal lines in the reference surface and x3 is the normal coordinate originating from the middle of the
thickness. Throughout the analysis, Greek indices assume values 1 and 2 while Latin indices assume 1, 2,
and 3; repeated indices are summed over their range except where explicitly indicated. Letting bi denote
the unit vector along xi for the undeformed plate, we can then describe the position of any material point
in the undeformed configuration by its position vector r̂ from a fixed point O, such that

r̂(x1, x2, x3, t) = r(x1, x2, t) + x3b3, (3)

where r is the position vector from O to the point located by xa on the reference surface at a specific time
t. When the reference surface of the undeformed plate coincides with its middle surface, we have

〈r̂(x1, x2, x3, t)〉 = hr(x1, x2, t), (4)

where the angle brackets denote the definite integral through the thickness of the plate and h is the plate
thickness.
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Undeformed State Deformed State

b₃
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wi (x₁, x₂,x₃) Bi
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B₁ (x₁ x₂)

B₂ (x₁ x₂)B₃ (x₁ x₂)

u (x₁ x₂)

r (x₁ x₂ x₃)
∧

R (x₁ x₂ x₃)
∧

r (x₁ x₂)

R (x₁ x₂)

Figure 1. Schematic of plate deformation

When the plate deforms, the particle that had position vector r̂ in the undeformed state now has position
vector R̂ in the deformed plate. The latter can be uniquely determined by the deformation of the 3D body.
We introduce another orthonormal triad Bi for the deformed configuration so that:

Bi = Cijbj , Cij = Bi · bj , (5)

subjecting to the requirement that Bi is coincident with bi when the structure is undeformed. The direction
cosine matrix C(x1, x2) represents the possible arbitrary rotation between Bi and bi.

After deformation, the position vector R̂ in the deformed state can be expressed as

R̂(x1, x2, x3, t) = R(x1, x2, t) + x3B3(x1, x2, t) + wi(x1, x2, x3, t)Bi(x1, x2, t), (6)

where R is the position vector of the reference surface for the deformed plate and wi(x1, x2, x3, t) are the
warping functions which are introduced to accommodate all possible deformations. Equation (6) can be
considered as a change of variable for R̂ in terms of R, Bi, and wi. Proper definitions of R and Bi are
needed to introduce six constraints to ensure a one-to-one mapping of this change of variables. We can
introduce the following three constraints for the warping functions:

〈wi(x1, x2, x3, t)〉 =

{
c‖
0

}
, with c‖ =

{
c1

c2

}
, (7)

where ci are functions of the in-plane coordinates xα and time t, introduced for providing free variables for
the construction of an optimal Reissner-Mindlin model which will be described later. Two other constraints
can be specified by taking B3 as the normal to the reference surface of the deformed plate. It should be noted
that this choice has nothing to do with the well-known Kirchhoff hypothesis. In the Kirchhoff assumption,
no local deformation of the transverse normal is allowed. However, in present derivation we allow all possible
deformation using the warping functions. Because Bα can freely rotate around B3, we can introduce the
last constraint as

B1 ·R,2 = B2 ·R,1, (8)

where ( ),α = ∂( )/∂xα.
Based on the concept of decomposition of rotation tensor,27,28 the Jauman-Biot-Cauchy strain components

for small local rotation are given by

Γij =
1
2
(Fij + Fji)− δij , (9)
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with
Fij = Bi ·Gkbk · bj . (10)

Here Gi = ∂R̂/∂xi is the covariant basis vector of the deformed configuration. The details for obtaining
this concise expression for the Jauman-Biot-Cauchy strain tensor can be found in Ref. [27]. To express the
3D strain field in terms of 2D plate strains, we can define the 2D generalized strains following Ref. [29] as:

R,α = Bα + εαβBβ (11)

and
Bi,α = (−KαβBβ ×B3 + Kα3B3)×Bi, (12)

where εαβ and Kαβ are the 2D generalized strains. Using this definition, one can show that Eq. (8) implies
ε12 = ε21. The expressions for 2D generalized strained in terms of plate displacements and rotations can be
found in Ref. [29].

For geometrically nonlinear analysis, we can assume that both the 3D and 2D strains are small when
compared to the unity and from which we can also conclude that warpings are of the order of the stain or
smaller. Neglecting the products between warping and strain (because of small strain), one can express the
3D strain field as

Γe = ε + x3κ + Iαw‖,α
2Γs = w′‖ + eαw3,α

Γt = w′3

(13)

where ()′ = ∂()
∂x3

, ()‖ = b()1 ()2cT , and

Γe = bΓ11, 2Γ12 Γ22cT , 2Γs = b2Γ13 2Γ23cT , Γt = Γ33,

ε = bε11 2ε12 ε22cT , κ = bK11 K12 + K21 K22cT ,
(14)

I1 =




1 0
0 1
0 0


 , I2 =




0 0
1 0
0 1


 , e1 =

{
1
0

}
, e2 =

{
0
1

}
. (15)

Up to this stage we have formulated the kinematics of the plate structure. However, a complete description
of the smart plate requires not only the elastic field but also the electric and magnetic fields defined by using
the electric potential φ(xi) and magnetic poential ψ(xi) as commonly used in literature:

{
Es = bE1 E2cT = −bφ,1 φ,2cT , Et = E3 = −φ′;
Hs = bH1 H2cT = −bψ,1 ψ,2cT , Ht = H3 = −ψ′.

(16)

It worth noting that Eqs. (16) implicitly assume that electric and magnetic fields are irrotational which
is equivalent to ignoring the effect of free current and the time variation of electric displacement D and
magnetic induction B, i.e. the first two Maxwell equations corresponding to Faraday’s law and Ampere’s
law become ∇× E = 0 and ∇×H = 0.

In present study, we will focus on investigating common situations where at least one of the surfaces
(or interfaces) of the composite plate is electroded and applied with prescribed electric and/or magnetic
potentials. The prescribed electric potential and magnetic potential can be applied to different surfaces. It
is also assumed that externally prescribed magnetic field is applied vertically to the plate. The most general
situation for the applied electric and magnetic potentials is illustrated by Eq.(17).

φ(x1, x2, zi) = φi, ψ(x1, x2, zj) = φj , (17)

where, φi and ψj are prescribed electric and magnetic potentials at x3 = zi and x3 = zj surfaces, re-
spectively. If there exist a boundary surface with no electric/magnetic potential specified, this surface is
electric/magnetic free, i.e. electric displacement or magnetic induction is zero (Dz = 0 or Bz = 0). Without
losing generality, we will focus our investigation on piezoelectric and piezomagnetic laminated composites
in which each lamina exhibits a monoclinic symmetry about its mid-plane. This allows the orthotropic
piezoelectric and piezomagnetic materials in each layer being arranged at arbitrary lay-up angles as it is the
case in most practical applications.
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With the knowledge of the elastic strain and electric and magnetic fields, the electromagnetic enthalpy
from equation (2) can be expressed as

U =
∫

Ω

HdΩ, (18)

with Ω denoting the domain of the reference surface and

2H =

〈



Γe

2Γs

Γt





T 


Ce 0 Cet

0 Cs 0
CT

et 0 Ct








Γe

2Γs

Γt





〉
−

〈{
Es

Et

}T [
εds 0
0 εdt

]{
Es

Et

}〉

−
〈{

Hs

Ht

}T [
µs 0
0 µt

]{
Hs

Ht

}〉
− 2

〈



Γe

2Γs

Γt





T 


0 eet

es 0
0 et




{
Es

Et

}〉
(19)

−2

〈



Γe

2Γs

Γt





T 


0 qet

qs 0
0 qt




{
Hs

Ht

}〉
− 2

〈{
Es

Et

}T [
αs 0
0 αt

]{
Hs

Ht

}〉
,

where Ce, Cet, Cs, and Ct are the corresponding partition matrices of the 6 × 6 elastic material matrix;
εds and εt are the corresponding partition matrices of the 3 × 3 dielectric coefficient matrix; µs and µt

are the corresponding partition matrices of the 3 × 3 magnetic permeability coefficient matrix; eet, es, and
et are the corresponding partition matrices of the 6 × 3 piezoelectric coefficient matrix; qet, qs, and qt

are the corresponding partition matrices of the 6 × 3 piezomagnetic coefficient matrix; αs and αt are the
corresponding partition matrices of the 3× 3 magnetoelectric coupling coefficient matrix.

To calculate the kinetic energy, the absolute velocity (measured in the inertia frame) of a generic point
in the structure is obtained by taking a time derivative of Eq. (6), resulting

v = V + ω̃(ξ + w) + ẇ, (20)

where ˙( ) is the partial derivative with respect to time; V is the absolute velocity of a point in the deformed
reference surface; ω is the inertial angular velocity of Bi bases; and the notation (̃ ) forms an antisymmetric
matrix from a vector according to (̃ )ij = −eijk( )k using the permutation symbol eijk. In Eq. (20), the
symbols v, V, ω, w denote column matrices containing the components of corresponding vectors in Bi bases,
and ξ = b0 0 x3cT . The kinetic energy of the plate structure can be obtained by

K =
1
2

∫

V
ρvT vdV = K2D +K∗ (21)

with ρ denoting the mass density and

K2D =
1
2

∫

Ω

(µ̄V T V + 2ωT µ̃ξ̄V + ωT jω)dΩ (22)

K∗ =
1
2

∫

V
ρ

[
(ω̃w + ẇ)T (ω̃w + ẇ) + 2(V + ω̃ξ)T (ω̃w + ẇ)

]
dV, (23)

where µ̄, µξ̄, and j are inertial constants commonly used in plate dynamics, which can be trivially obtained
by taking integral operations through the thickness direction:

µ̄ = 〈ρ〉 µξ = b0 0 〈x3ρ〉cT j =




〈
x2

3ρ
〉

0 0
0

〈
x2

3ρ
〉

0
0 0 0


 (24)

If no electric charges and magnetic induction applied on the surfaces or inside the body, the virtual work
of the structure can be calculated as

δW =
∫

Ω

(〈
P · δR̂

〉
+ τ · δR̂+ + β · δR̂−

)
dΩ +

∫

∂Ω

〈
Q · δR̂

〉
ds (25)
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where ∂Ω denotes the boundary of the reference surface; ( )± = ( )|x3=±h/2; P = PiBi is the applied body
force; τ , β are tractions applied on the top and bottom surfaces, respectively; Q = QiBi is the applied
tractions along the lateral surfaces. δR̂ is the Lagrangian variation of the displacement field which can be
expressed as

δR̂ = δqiBi + x3δB3 + δwiBi + wjδBj , (26)

in which the virtual displacement and rotation are defined by

δqi = δR ·Bi, δBi = (−δψ2B1 + δψ1B2 + δψ3B3)×Bi, (27)

where δqi and δψi contain the components of the virtual displacement and rotation in the Bi system,
respectively. Since the warping functions are small, one may safely ignore products of the warping and
virtual rotation in δR̂ and obtain the virtual work due to applied loads as

δW = δW2D + δW∗
, (28)

where

δW2D =
∫

Ω

(
fiδqi + mαδψα

)
dΩ +

∫

∂Ω

(〈Qi〉 δqi + 〈x3Qα〉 δψα

)
ds, (29)

δW∗
=

∫

Ω

(〈Piδwi〉+ τiδw
+
i + βiδw

−
i

)
dΩ +

∫

∂Ω

〈Qiδwi〉 ds, (30)

with the generalized forces fi and moments mα defined as

fi = 〈Pi〉+ τi + βi, mα = 〈x3Pα〉+
h

2
(τα − βα). (31)

The second integration in Eq. (30) accounts for virtual work done through warping functions along the lateral
boundaries of the plate. This term is necessary for the edge-zone problem, which is an important subject in
its own right and beyond the scope of the present paper. For simplicity, we will drop this term hereafter.
With the knowledge of Eqs. (21), (19), and (28), the extended Hamilton’s principle in Eq. (1) becomes

∫ t2

t1

[
δ(K2D +K∗ − U) + δW2D + δW∗]

dt = 0 (32)

So far, we have presented a 3D formulation for the electro-magneto-elastic problem of smart plates in terms
of 2D displacements (represented by R − r), rotations (represented by bi and Bi), electric and magnetic
potentials (φ, ψ), and 3D warping functions (wi). If we attempt to solve this problem directly, we will
meet the same difficulty as solving any full 3D problem. The main complexity comes from the unknown 3D
warping functions wi as well as the coupled 3D potentials φ and ψ. A common practice in the literature is the
direct expression of wi,φ and ψ in terms of 2D displacements, rotations, and electric and magnetic potentials
based on some a priori assumptions to straightforwardly reduce the original 3D continuum model into a 2D
plate model. However, for composite laminates made with general anisotropic and heterogeneous materials,
the imposition of such assumptions may introduce significant errors. This is especially true for problems
involving multi-field coupling. Fortunately, VAM provides a useful technique to obtain wi, φ, ψ through an
asymptotical analysis of the variational statement in Eq. (32) in terms of small parameters inherent in the
problem which will be described in the next section.

Dimensional Reduction

The dimensional reduction from the original 3D formulation to a 2D plate model can only be done approx-
imately. One way to accomplish this is to take the advantage of the small parameters in the formulation to
construct a 2D formulation so that the reduced model can achieve the minimum accuracy loss in comparison
to the original 3D formulation.

In order to apply VAM, we first need to assess the order of quantities in terms of small parameters. As
mentioned previously, the ratio of the plate thickness to the characteristic wavelength of the deformation
of the reference surface is much smaller than 1, which means h/l ¿ 1. The strains are also small for a
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geometrically nonlinear but physically linear 2D theory, i.e., εαβ ∼ hκαβ ∼ η ¿ 1. From the plate equations
of equilibrium, we can estimate the orders of the following quantities corresponding to the order of strains:

hP3 ∼ τ3 ∼ β3 ∼ ξ(h/l)2η, hPα ∼ τα ∼ βα ∼ ξ(h/l)η,

Qα ∼ ξη, Q3 ∼ ξ(h/l)η, (33)

with ξ denoting the characteristic magnitude of the elastic constants. We can choose the characteristic scale
of change of the displacements and warping functions with respect to time in such a way that K∗ is much
smaller than other terms in Eq. (32). In other words, here we are only interested the accurate description of
low frequency dynamic problems.

Zeroth-order reduction

To clearly illustrate the application of VAM for the multi-physically coupled magneto-electro-elastic problem,
we first construct a classical smart plate model. By applying VAM and in view of the order assessments in
Eqs. (33), we can obtain the leading terms of the variational statement in Eq. (32) by neglecting smaller
terms to get ∫ t2

t1

[
δ(K2D −

∫

Ω

H0dΩ) + δW2D

]
dt = 0, (34)

where the zeroth-order approximation of the magnetoelectric enthalpy density H0 can be calculated from
Eq. (19) by dropping derivatives with respect to xα in Eqs. (13) and (16), resulting in

2H0 =
〈
(ε + x3κ)T Ce(ε + x3κ) + w′T‖ Csw

′
‖ + w′3Ctw

′
3 − φ′εdtφ

′ − ψ′µtψ
′
〉

+2
〈
(ε + x3κ)T (Cetw

′
3 + eetφ

′ + qetψ
′)

〉
+ 2 〈w′3etφ

′ + w′3qtψ
′ − φ′αtψ

′〉 (35)

The warping functions wi, electric potential φ, and magnetic potential ψ in H0 can be obtained by solving
the following simple variational statement:

δH0 = 0 (36)

along with the constraint equation in Eq. (7), with c‖ = b0, 0cT for the zeroth-order approximation. To carry
out the variations of the functional, one should be aware that functions w‖, w3, φ, and ψ may differ from
layer to layer. The continuity conditions on the interfaces can be derived from the calculus of variations to
give:

[
w′T‖ Cs

]
= 0,

[
(ε + x3κ)T Cet + Ctw

′
3 + etφ

′ + qtψ
′] = 0,

[
(ε + x3κ)T eet + etw

′
3 − εdtφ

′ − αtψ
′] =

[
(ε + x3κ)T qet + qtw

′
3 − αtφ

′ − µtψ
′] = 0, on Ωi, (37)

where Ωi denotes the interface between the ith layer and i+1th layer and i = 1 . . . N −1 with N as the total
number of layers; the bracket [·] denotes the jump of the enclosed argument on the interface. The boundary
conditions and Euler-Lagrange equations derived from Eqs. (36) take the form of:

(
w′T‖ Cs

)+

= 0,
[
(ε + x3κ)T Cet + Ctw

′
3 + etφ

′ + qtψ
′]+ = 0,

(
w′T‖ Cs

)−
= 0,

[
(ε + x3κ)T Cet + Ctw

′
3 + etφ

′ + qtψ
′]− = 0,

δφ+/− = 0, or
[
(ε + x3κ)T eet + etw

′
3 − εdtφ

′ − αtψ
′]+/−

= 0, (38)

δψ+/− = 0, or
[
(ε + x3κ)T qet + qtw

′
3 − αtφ

′ − µtψ
′]+/−

= 0,

and
(
w′T‖ Cs

)′
= λT

‖ ,

[
(ε + x3κ)T Cet + Ctw

′
3 + etφ

′ + qtψ
′]′ = λ3,[

(ε + x3κ)T eet + etw
′
3 − εdtφ

′ − αtψ
′]′ = 0, (39)

[
(ε + x3κ)T qet + qtw

′
3 − αtφ

′ − µtψ
′]′ = 0,
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respectively. λ‖ and λ3 are Lagrange multipliers introduced to enforce the constraints applied on the warping
field described in Eq. (7) with c‖ = b0, 0cT . The interlamina continuity conditions for transverse stresses
and transverse electric displacement and magnetic flux have been automatically derived, Eq. (37). The last
two equations in Eq. (38) indicate that electric and magnetic potentials can either be prescribed at the top
or bottom boundary surfaces or be free to vary at these surfaces. In the latter case the boundary conditions
are determined by free electric displacement (D3 = 0) and/or free magnetic induction (B3 = 0).

Solving the Euler-Lagrange equations along with the boundary conditions in Eq. (38), the continuity
conditions in (37), and the constraints in (7), one can show that λ‖ = λ3 = w‖ = 0. The solution for the
rest of unknowns (w3, φ, ψ) can be expressed as

Ctw
′
3 + etφ

′ + qtψ
′ = −(ε + x3κ)T Cet

etw
′
3 − εdtφ

′ − αtψ
′ = −(ε + x3κ)T eet + Pe (40)

qtw
′
3 − αtφ

′ − µtψ
′ = −(ε + x3κ)T qet + Pm,

where Pe and Pm are integration constants for electric potential φ and magnetic potential ψ, respectively.
Because material properties may vary from layer to layer, one may intuitively expect Pe and Pm to be
different for different layers. However, as we will prove later, they are constants. w′3, φ′, and ψ′ for each
layer can be solved from Eq. (40) as

w′3 = C∗et
T C∗t

−1(ε + x3κ) + (PeM
∗
12 + PmM∗

13)C
∗
t
−1,

φ′ = e∗et
T C∗t

−1(ε + x3κ) + (PeM
∗
22 + PmM∗

23)C
∗
t
−1, (41)

ψ′ = q∗et
T C∗t

−1(ε + x3κ) + (PeM
∗
23 + PmM∗

33)/C∗t
−1,

with

C∗et = −(CetM
∗
11 + eetM

∗
12 + qetM

∗
13), e∗et = −(CetM

∗
12 + eetM

∗
22 + qetM

∗
23),

q∗et = −(CetM
∗
13 + eetM

∗
23 + qetM

∗
33), C∗t = det(M),

M =




Ct et qt

et −εdt −αt

qt −αt −µt


 , (42)

where M∗
ij is the cofactor of matrix M defined as the subdeterminant of the element mij multiplied by the

sign factor (−1)i+j , e.g., M12 = (etµt − qtαt).
Although the explicit expressions of Pe and Pm can only be determined with the knowledge of the actual

construction of the smart plate, their most general expressions must take the form as:

Pe = εTPeε + κTPeκ + Pe0,

Pm = εTPmε + κTPmκ + Pm0.
(43)

Substituting Eq. (41) into Eq. (35), we can obtain the first approximation of the electric enthalpy as

2H0 =

{
ε

κ

}T [
A∗ B∗

B∗T D∗

] {
ε

κ

}
+ 2

{
ε

κ

}T {
Sε

Sκ

}
(44)

with

A∗ =

〈
C∗e + bPeε PmεcM∗∗

{
PT

eε

PT
mε

}〉
, B∗ =

〈
x3C

∗
e + bPeε PmεcM∗∗

{
PT

eκ

PT
mκ

}〉

D∗ =

〈
x2

3C
∗
e + bPeκ PmκcM∗∗

{
PT

eκ

PT
mκ

}〉
, M∗∗ =

1
C∗t

[
M22 M23

M23 M33

]
(45)

Sε =

〈
bPeε PmεcM∗∗

{
Pe0

Pm0

}〉
, Sκ =

〈
bPeκ PmκcM∗∗

{
Pe0

Pm0

}〉

C∗e = Ce + (CetC
∗
et

T + eete
∗
et

T + qetq
∗
et

T )/C∗t
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In Eq. (44), a quadratic term relating only to the prescribed electric and magnetic potentials is dropped
because it will not affect the derivation of the 2D model. It is obvious that the stiffness matrices (A∗, B∗,
and D∗) depend not only on elastic, piezoelectric, and piezomagnetic materials properties but also on the
externally applied electric and magnetic potentials. Additional contributions to the electromagnetic enthalpy
from the generalized electric and magnetic forces Sε and Sκ will, in general, exist except for some specifical
boundary conditions.

With the knowledge of H0 expressed in Eq. (44), the original 3D problem in Eq. (1) has been rigorously
reduced to a 2D formulation in Eq. (34) which approximates the original problem asymptotically correct to
the order of (h

l )0. If the force resultants N and moment resultants M are defined as follows

N =
∂H0

∂ε
, M =

∂H0

∂κ
, (46)

the 2D constitutive model for the zero-th order analysis of smart plates takes the form as
{
N
M

}
=

[
A∗ B∗

B∗T D∗

] {
ε

κ

}
+

{
Sε

Sκ

}
. (47)

It is clear that the zeroth-order 2D analysis of the smart magnetoelectric plate is similar to the thermal
analysis of the plate using the classic plate theory except for the necessity of updating matrices A∗, B∗, C∗

to account for magnetoelectric effects and replacing the thermal resultants with the generalized electric
and magnetic forces. Despite its similarity to the classical lamination theory (CLT), the present model is
asymptotically correct and perserves the following features:

1. The normal line of undeformed plate does not remain straight or normal to the deformed plate; rather,
it is free to deform in the normal in response to plates deformations (ε and κ) as well as the prescribed
electric and magnetic actuations.

2. It can be easily observed that the normal strain does not vanish. Although it can be prove that the
transverse normal and shear stresses do vanish, this result is a direct outcome from the the mathematical
derivation and not taken as a priori assumptions.

For the zeroth-order approximation, the 3D strain field and electric field can be recovered using Eqs. (13)
and (16) with higher-order terms neglected as

Γ0
e = ε + x3κ, 2Γ0

s = w0
‖
′ = 0, Γ0

t = w0
3
′
,

E0
s = H0

s = 0, E0
t = −φ0′, H0

t = −ψ0′.
(48)

The 3D multiphysical fields for stress, electric displacement, and magnetic induction can be calculated by
using the 3D constitutive relations based on Eq. (19) as:





σe

σs

σ33





=




Ce 0 Cet

0 Cs 0
CT

et 0 Ct








Γ0
e

2Γ0
s

Γ0
t




−





eetE
0
t

0
etE

0
t




−





qetH
0
t

0
qtH

0
t





{
Ds

D3

}
=

[
0 es

T 0
eet

T 0 et

] 



Γ0
e

2Γ0
s

Γ0
t





+

{
0

εdtE
0
t

}
+

{
0

αtH
0
t

}
(49)

{
Bs

B3

}
=

[
0 qs

T 0
qet

T 0 qt

] 



Γ0
e

2Γ0
s

Γ0
t





+

{
0

µtH
0
t

}
+

{
0

αtE
0
t

}

with
σe = bσ11 σ12 σ22cT , σs = bσ13 σ23cT , Ds = bD1 D2cT , Bs = bB1 B2cT .

where σij , Di, and Bi are 3D stresses, electric displacements, and magnetic inductions, respectively. In
view of Eq. (40), it can be concluded that σs and σ33 are identically zero regardless the material properties,
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indicating that the zeroth-order approximation (similar to the classical plate model) can not predict out-of-
plane stresses. Eq. (40) also reveals that the transverse electric displacement D3 and magnetic induction B3

are identically equal to Pe and Pm, respectively. By considering the continuity conditions on interfaces Eq.
(37), it can be easily deducted that Pe and Pm are indeed constants throughout the thickness, independent
of layer-up configurations. In order to predict the out-of-plane stresses, one more step is necessary to carry
out the asymptotic expansion of the 3D variational statement in Eq. (1) into a higher order. This will be
presented in the next section.

The zeroth-order approximation of warping functions w3, electric φ, and magnetic potentials ψ can be
solved from equation (41) along with the continuity conditions on the interfaces in Eq. (37) as well as the
constraints expressed in Eq. (7), given:

w0
3 = C⊥E + w0

3em, φ0 = CφE + φ0
em, ψ0 = CψE + ψ0

em, (50)

with

E = bε, κcT ,

C ′⊥ = bC
∗
et

T + M∗
12PT

eε + M∗
13PT

mε

C∗t
,
x3C

∗
et

T + M∗
12PT

eκ + M∗
13PT

mκ

C∗t
c, w0′

3em =
M∗

12Pe0 + M∗
13Pm0

C∗t
,

C ′φ = be
∗
et

T + M∗
22PT

eε + M∗
23PT

mε

C∗t
,
x3e

∗
et

T + M∗
22PT

eκ + M∗
23PT

mκ

C∗t
c, φ0′

em =
M∗

22Pe0 + M∗
23Pm0

C∗t
,

C ′ψ = bq
∗
et

T + M∗
23PT

eε + M∗
33PT

mε

C∗t
,
x3q

∗
et

T + M∗
23PT

eκ + M∗
33PT

mκ

C∗t
c, ψ0′

em =
M∗

23Pe0 + M∗
33Pm0

C∗t
.

First-order approximation

To obtain the first-order approximation, we simply perturb the warping functions and electric and mag-
netic potentials as:

w‖ = v‖ + o
(

h
l η

)
, w3 = w0

3 + v3 + o
(

h
l η

)
,

φ = φ0 + φ̃ + o
(

h
l η

)
, ψ = ψ0 + ψ̃ + o

(
h
l η

)
.

(51)

Substituting Eq. (51) back into Eq. (13), then using Eqs. (19), (28), and (30), one can obtain the leading
terms for the first-order approximation of the variational statement in Eq. (32) as

δΠ1 =
〈[

(ε + x3κ)T C∗e − (Pee
∗
et

T + Pmq∗et
T )C∗t

−1
]
Iαδv‖,α +

[
(v′‖ + eαw0

3,α)T Cs + φ0
,‖e

T
s

+ ψ0
,‖q

T
s

]
δv′‖ + (v′3Ct + φ̃′et + ψ̃′qt)δv′3 + (Pe + v′3et − φ̃′εdt − ψ̃′αt)δφ̃′ (52)

+(Pm + v′3qt − φ̃′αt − ψ̃′µt)δψ̃′
〉
−

〈
PT
‖ δv‖

〉
− τT

‖ δv+
‖ − βT

‖ δv−‖ ,

where φ0
,‖ = bφ0

,1, φ
0
,2cT and ψ0

,‖ = bψ0
,1, ψ

0
,2cT . With warping functions as well as electric and magnetic

potentials being expressed in the order of O(h/l)η, the first-order approximation of the total electromagnetic
enthalpy is asymptotically correct to the order of O(h/l)2η2. It can be observed from the above functional
that v‖ is decoupled from v3,φ̃, and ψ̃ and can be solved separately. It is also worth noting that terms〈
Peδφ̃

′ + Pmδψ̃′
〉

will vanish for all possible boundary conditions (with top and bottom surfaces either being
prescribed with electric/magnetic potential(s) or being subjected to free electric displacement/magnetic flux).
To carry out the variations of the functional, one needs to be aware that v‖ as well as v3,φ̃, and ψ̃ may be
different for each layer. The continuity conditions on the interface can be derived by following variational
calculus, resulting:

[
Cs(v′‖ + eαw0

3,α) + esφ
0
,‖ + qsψ

0
,‖

]
= τ‖,

[
Ctv

′
3 + etφ̃

′ + qtψ̃
′
]

= 0, on Ωi,
[
etv

′
3 − εdtφ̃

′ − αtψ̃
′
]

= 0,
[
qtv

′
3 − αtφ̃

′ − µtψ̃
′
]

= 0, on Ωi.
(53)
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Boundary conditions take the form of
[
Cs(v′‖ + eαw0

3,α) + esφ
0
,‖ + qsψ

0
,‖

]+

= τ‖;
[
Cs(v′‖ + eαw0

3,α) + esφ
0
,‖ + qsψ

0
,‖

]−
= β‖;(

Ctv
′
3 + etφ̃

′ + qtψ̃
′
)+

= 0;
(
Ctv

′
3 + etφ̃

′ + qtψ̃
′
)−

= 0;

δφ+ = 0, or
(
etv

′
3 − εdtφ̃

′ − αtψ̃
′
)+

= 0; δφ− = 0, or
(
etv

′
3 − εdtφ̃

′ − αtψ̃
′
)−

= 0;

δψ+ = 0, or
(
qtv

′
3 − αtφ̃

′ − µtψ̃
′
)+

= 0; δψ− = 0, or
(
qtv

′
3 − αtφ̃

′ − µtψ̃
′
)−

= 0.

(54)

And the Euler-Lagrange equations are given by:
[
Cs(v′‖ + eαw0

3,α) + esφ
0
,‖ + qsψ

0
,‖

]′
= D′

αE,α + g′ + λ̄‖,(
Ctv

′
3 + etφ̃

′ + qtψ̃
′
)′

= λ̄3,(
etv

′
3 − εdtφ̃

′ − αtψ̃
′
)′

= 0,(
qtv

′
3 − αtφ̃

′ − µtψ̃
′
)′

= 0,

(55)

where, λ̄‖ and λ̄3 are Lagrange multipliers for the first-order approximation to enforce the constraints applied
on the warping fields described in Eq. (7); D′

α and g′ are given by

D′
α = −IT

α bC∗e −
e∗etPT

eε + q∗etPT
mε

C∗t
, x3

(
C∗e −

e∗etPT
eκ + q∗etPT

mκ

C∗t

)
c

g′ = IT
α (Pe0e

∗
et + Pm0q

∗
et),αC∗t

−1 − P‖.

The boundary and inter-lamina continuity conditions on transverse components of stresses, electric displace-
ment and magnetic induction are specified explicitly in Eqs. (53) and (54). It should be mentioned that
since the goal is to obtain an interior solution for the plate without considering the edge effect, integration
by parts with respect to the in-plane coordinates is used hereinafter and throughout the rest of the paper,
whenever it is convenient for the derivation.

By taking through-thickness integration and considering the warping constrain in Eq. (7), it can be
shown that λ̄3 = 0 and the last three equations in Eq. (55) can be further simplified as:

Ctv
′
3 + etφ̃

′ + qtψ̃ = 0,

etv
′
3 − εdtφ̃

′ − αtψ̃
′ = P̃e, (56)

qtv
′
3 − αtφ̃

′ − µtψ̃
′ = P̃m,

where, P̃e and P̃m are integration coefficients for the last two equations in Eq. (55), respectively. v3, φ̃, and
ψ̃ can be solved by integrating Eq. (56) while in the mean time taking account of the warping constraints
in Eq (7). After a careful analysis, it can be proved that P̃e and P̃m vanish for all possible combinations of
boundary conditions. Therefore, for the first-order approximation, v3, φ̃, and ψ̃ are all zeros, indicating that
first-order approximation provides no further information for w3, φ, and ψ.

As v‖ is decoupled with v3, φ̃, and ψ̃, it can be solved separately. Solving the first equation in Eq. (55),
one obtained the following in-plane warping functions:

v‖ = (Dα + Lα)E,α + g, (57)

with,

D
′
α = C−1

s D∗
α, < Dα >= 0, g′ = C−1

s g∗, < gα >= 0, LαE,α = c‖/h,

D∗
α = Dα +

x3

h
D∓

α −
1
2
D±

α − (CseαC⊥ + eseαCφ + qseαCψ) ,

g∗ = g +
x3

h
g∓ − 1

2
g± − (

w0
3emCs + φ0

emes + ψ0
emqs

)
,α

eα +
(

x3

h
+

1
2

)
τ‖ +

(
x3

h
− 1

2

)
β‖,

where, ( )± = ( )+ + ( )−, ( )∓ = ( )− − ( )+; Lα are integration coefficients that will be determined in the
next section through a least square approach by transferring the first-order approximation of magnetoelectric
enthalpy into a Reissner-Mindlin Model.
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With the first approximation of v‖ given in Eq. (57) and v3 = φ̃ = ψ̃ = 0, now we are ready to obtain an
expression for the total energy that is asymptotically correct to order of O

(
(h

l )2η2
)
, viz.,

2Π1 = ET AE + ET
,1BE,1 + 2ET

,1CE,2 + ET
,2DE,2 − 2ET F, (58)

where,

A =

[
A∗ B∗

B∗T D∗

]
, Sεκ =

{
Sε

Sκ

}
,

B =

〈
Cs(11)C

T
⊥C⊥ −D∗T

1 C−1
s D∗

1 −
∑

I=1,2

∑

J=1,2

JIJ(11)CθI
T CθJ

+
∑

I=1,2

GI(11)

(
CθI

T C⊥ + C⊥T CθI

)
〉

+ LT
1 〈D′

1〉+ 〈D′
1〉T L1,

C =

〈
Cs(12)C

T
⊥C⊥ −D∗T

1 C−1
s D∗

2 −
1
2

∑

I=1,2

∑

J=1,2

(JIJ(12)CθI
T CθJ + JIJ(21)CθJ

T CθI

)

+
∑

I=1,2

(GI(21)CθI
T C⊥ + GI(12)C⊥

T CθI

)
〉

+ LT
1 〈D′

2〉+ 〈D′
1〉T L2, (59)

D =

〈
Cs(22)C

T
⊥C⊥ −D∗T

2 C−1
s D∗

2 −
∑

I=1,2

∑

J=1,2

JIJ(22)CθI
T CθJ

+
∑

I=1,2

GI(22)

(
CθI

T C⊥ + C⊥T CθI

)
〉

+ LT
2 〈D′

2〉+ 〈D′
2〉T L2,

F = −Sεκ +
〈
CT
⊥P3

〉
+ C+T

⊥ τ3 + C−T
⊥ β3 −

〈
D∗

α
T C−1

s g∗,α
〉
− LT

α

(
τ‖ + β‖ − 〈g′〉

)
,α

,

+

〈
Cs(αβ)C

T
⊥w0

3em − 1
2

∑

I=1,2

∑

J=1,2

JIJ(αβ)

(
CT

θIθ
0
Jem + CT

θJθ0
Iem

)

+
∑

I=1,2

GI(βα)

(
CT

θIw
0
3em + CT

⊥θ0
Iem

)



,αβ

〉
,

with

θ0
1 = φ0, θ0

2 = ψ0, G1 = es, G2 = qs,

J11 = εds, J12 = αs, J21 = αT
s , J22 = µs,

Cθ1 = Cφ, Cθ2 = Cψ, θ0
1em = φ0

em, θ0
2em = ψ0

em,

and notation ( )(αβ) indicating the α, βth element of matrix ( ). Eq. (58) is an energy (enthalpy) functional
expressed in terms of 2D variables which can asymptotically approximate the original 3D energy. It is noted
that quadratic terms which are not functions of the 2D general strain E are dropped because they do not
affect the 2D model.

Transforming into the Reissner-Mindlin Model

Although Eq. (58) is asymptotically correct through the second order and the straightforward use of this
magnetoelectric enthalpy is possible, it involves more complex boundary conditions than necessary since it
contains derivatives of the generalized strain measures. To obtain a magnetoelectric enthalpy functional that
is convenient for practical use, an alternative choice is to transform Eq. (58) into the Reissner-Mindlin model.
In the Reissner-Mindlin model, there are two additional degree of freedoms, i.e. the transverse shear strains
incorporated into the rotation of transverse normal. By introducing another triad B∗

i for the deformed plate,

13 of 29

American Institute of Aeronautics and Astronautics



the definition of 2D strains becomes

R,α = B∗
α + ε∗αβB∗

β + 2γα3B∗
3,

B∗
i,α = (−K∗

αβB∗
β ×B∗

3 + K∗
α3B

∗
3)×B∗

i , (60)

where the transverse shear strains are γ = b2γ13 2γ23cT . Since B∗
i is uniquely determined by Bi and γ, one

can derive the following kinematic identity between the strains measures R of Reissner-Mindlin plate and E .

E = R−Dαγ,α, (61)

where

D1 =

[
0 0 0 1 0 0
0 0 0 0 1 0

]T

D2 =

[
0 0 0 0 1 0
0 0 0 0 0 1

]T

(62)

R = bε∗11 2ε∗12 ε∗22 K∗
11 K∗

12+K∗
21 K∗

22cT

Now it is possible to express the magnetoelectric enthalpy asymptotically correct to the second order in
terms of strains of the Reissner-Mindlin model as

2Π1 = RT AR− 2RT AD1γ,1 − 2RT AD2γ,2

+RT
,1BR,1 + 2RT

,1CR,2 +RT
,2DR,2 − 2RT F. (63)

The generalized Reissner-Mindlin model takes the form of

2ΠR = RT AR+ γT Gγ − 2RT FR − 2γT Fγ . (64)

To find an equivalent expression of Eq. (63) for the Reissner-Mindlin model Eq. (64), it is necessary to
eliminate all partial derivatives of the 2D strain. This is achieved by applying equilibrium equations. From
the two equilibrium equations relating with the equilibrium of bending moments,30 the following formula can
be obtained

Gγ − Fγ = DT
αAR,α −DT

αFR,α +

{
m1

m2

}
. (65)

where FR,α is dropped because they are high order terms. By substituting Eq. (65) into Eq. (63), it can be
shown that FR = F and Fγ = −DT

αSεκ,α. Finally Eq. (63) can be rewritten as

2Π1 = RT AR+ γT Gγ − 2RT F + U∗, (66)

with
U∗ = RT

,1BR,1 + 2RT
,1CR,2 +RT

,2DR,2, (67)

and

B = B + AD1G
−1DT

1 A,

C = C + AD1G
−1DT

2 A,

D = D + AD2G
−1DT

2 A. (68)

If we can drive U∗ to be zero for any R, then we have found an asymptotically correct Reissner-Mindlin
plate model. For smart plates with anisotropic material properties, this term in general will not be zero.
However, we can minimize the nonzero U∗ term to obtain a Reissner-Mindlin model for multiphysically
coupled smart plates to be as asymptotically correct as possible. The accuracy of the Reissner-Mindlin
model depends on how close U∗ can be driven to zero. In other words, our task is to seek an optimal set
of the 27 unknowns (3 unknowns for G and 24 unknowns for Lα) so that the value of the quadratic form
in Eq. (67) is as close to zero as possible for arbitrary multiphysically coupled generalized strain measures.

14 of 29

American Institute of Aeronautics and Astronautics



This is achieved by letting 78 distinct coefficients in B, C, and D matrices equal to zero to obtain 78
equations. The obtained equations construct a linear system with 27 unknowns. A least square technique
is implemented to solve the overdetermined system to obtain 27 unknowns. From a Mathematical point of
view, the overdetermined system (78 equations with 27 unknowns, indicated by MX = b) may be singular for
some material properties. For example, the rank of MT M is only 26 for single-layer isotropic and orthotropic
piezoelectric and piezomagnetic plates. Under this situation, Singular Value Decomposing technique can be
applied to solve this least square problem. Moreover, for an accurate estimation of the transverse shear
matrix, a nondimensional scheme is used to guarantee that each of the 78 equations has the same physical
unit.

By driving U∗ to zero, we obtain the “best” Reissner-Mindlin model which will be used for the 2D
magneto-electro-elastic plate analysis:

2ΠR = RT AR+ γT Gγ − 2RT F, (69)

where A, G, F capture the necessary material and geometric information obtained from the dimensional
reduction process. It is worthy to emphasize that although the 2D constitutive model is constructed in a
way dramatically different from the traditional Reissner-Mindlin model, the plate analysis remains the same,
with no changes in the governing equations except that the effect of electric and magnetic couplings have
already been taken into account in matrices A, B, C, D and strain measures are now defined using Eqs. (60).

The Recovery of 3D Multiphysics Fields

Thus far, we have obtained a generalized Reissner-Mindlin model based on the asymptotically correct
second-order magnetoelectric enthalpy for magneto-electric-elastic plates. This model can be used for var-
ious analyses of smart plates, spanning from static, dynamic, buckling, to aeroelastic analyses. In many
applications, however, the capability of predicting accurate 2D displacement fields of the magnetic, electric,
and elastic coupling plates is not sufficient. Ultimately, the fidelity of a reduced-order model should be
evaluated based on how well it can predict the 3D mechanical fields (displacements and stresses) and electric
and magnetic fields (magnetic and electric potentials, electric displacements, magnetic inductions) for the
original 3D problem. Therefore, it is necessary to provide recovery relations to express the aforementioned
3D multiphysics fields in terms of 2D quantities and x3.

By using Eqs. (3), (5) and (6), the 3D displacement field can be recovered to the first order of accuracy:

Ui = ui + x3(C3i − δ3i) + Cjiwj , (70)

where wα = vα, w3 = w0
3. The electric and magnetic potentials are given by φ = φ0 and ψ = ψ0.

Consequently, the 3D stresses σij , electric displacements Di, and magnetic induction Bi can be obtained
by applying the 3D constitutive relations. Since we have obtained an optimal estimation of the shear stiffness
matrix G, the recovered 3D results up to the first order are better than CLT and FSDT. However, because
the first-order approximation can only provide a linear prediction of the multiphysics fields and some stress,
electric displacement, and magnetic induction components may require higher order functions for a better
description their 3D behaviors, it is necessary to derive a more refined recovery procedure with reasonable
accuracy. The transverse normal stress (σ33) servers well as a suitable illustrative example and this have
been described in Refs. [25, 26] for analyzing multilayered composite plates: σ33 is a second-order quantity
and it cannot be predicted by the first-order approximation; a better prediction of this quantity requires the
perturbation of the warping functions to the second-order of accuracy.

A similar 3D recovery procedure is developed here for the investigation of the multiphysics problem.
To obtain a reasonable accurate estimation of elastic stresses, electric displacements, and magnetic fluxes,
VAM is applied one step further to find the warping functions and electric/magnetic potentials with the
second-order of accuracy. The second-order perturbation of the warping functions as well as the lelectric
and magnetic potentials is

w‖ = v‖ + y‖ + o

(
(
h

l
)2η

)
, w3 = w0

3 + y3 + o

(
(
h

l
)2η

)
,

φ = φ0 + ˜̃
φ + o

(
(
h

l
)2η

)
, ψ = ψ0 + ˜̃

ψ + o

(
(
h

l
)2η

)
, (71)
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where, y‖ and y3 are the second-order warping functions; ˜̃
φ and ˜̃

ψ are the second-order electric and magnetic
potentials.

By substituting these expressions into the 3D strain as well as the electric and magnetic fields then into
magnetoelectric enthalpy and applying the similar procedure introduced in the first-order approximation, it
can be shown that the second-order in-plane components y‖ vanish. The continuity and boundary conditions
for the second-order transverse normal stress σt, electric displacement Dt, and magnetic inductions Bt are
given by:

[
Cty

′
3 + CT

etIαv‖,α + et
˜̃
φ + qt

˜̃
ψ

]
= 0, on Ωi,

[
ety

′
3 + eT

etIαv‖,α − εdt
˜̃
φ− αt

˜̃
ψ

]
= 0, on Ωi, (72)

[
qty

′
3 + qT

etIαv‖,α − αt
˜̃
φ− µt

˜̃
ψ

]
= 0, on Ωi,

and
[
Cty

′
3 + CT

etIαv‖,α + et
˜̃
φ + qt

˜̃
ψ

]+

= τ3,

[
Cty

′
3 + CT

etIαv‖,α + et
˜̃
φ + qt

˜̃
ψ

]−
= β3,

[
ety

′
3 + eT

etIαv‖,α − εdt
˜̃
φ− αt

˜̃
ψ

]+/−
= 0, or ˜̃

φ+/− = 0, (73)
[
qty

′
3 + qT

etIαv‖,α − αt
˜̃
φ− µt

˜̃
ψ

]+/−
= 0, or ˜̃

ψ+/− = 0,

The Euler-Lagrange equations governing y3,
˜̃
φ and ˜̃

ψ take the form of
(
Cty

′
3 + CT

etIαv‖,α + et
˜̃
φ + qt

˜̃
ψ

)′
= E′

αβE,αβ + S′ + Λ3,

(
ety

′
3 + eT

etIαv‖,α − εdt
˜̃
φ− αt

˜̃
ψ

)′
= E′

φαβE,αβ + S′φ (74)
(
qty

′
3 + qT

etIαv‖,α − αt
˜̃
φ− µt

˜̃
ψ

)′
= E′

ψαβE,αβ + S′ψ,

with Λ3 representing the Lagrange multiplier for the second-order approximation and

E′
αβ = −(eT

β D∗
α + Cs(βα)C⊥ + es(βα) + qs(βα)Cψ

),

E′
φαβ = −eT

β eT
s C−1

s D∗
α − es(αβ)C⊥ +

1
2
(εds(αβ) + εds(βα))Cφ + αs(βα)Cψ,

E′
ψαβ = −eT

β qT
s C−1

s D∗
α − qs(αβ)C⊥ +

1
2
(µs(αβ) + µs(βα))Cψ + αs(αβ)Cφ,

S′ = − [
eT
β g∗,β + (Cs(βα)w

0
3em + es(βα)φ

0
em + qs(βα)ψ

0
em),αβ + P3

]
,

S′φ = −eT
β eT

s C−1
s g∗,β +

[
−es(αβ)w

0
3em +

1
2
(εds(αβ) + εds(βα))φ

0
em + αs(βα)ψ

0
em

]

,αβ

,

S′ψ = −eT
β qT

s C−1
s g∗,β +

[
−qs(αβ)w

0
3em +

1
2
(µs(αβ) + µs(βα))ψ

0
em + αs(αβ)φ

0
em

]

,αβ

.

y3,
˜̃
φ, and ˜̃

ψ can be solved from Eq. (74) in conjunction with Eqs. (72) and (73).
Although the successful prediction of y3,

˜̃
φ, and ˜̃

ψ enables us to obtain an magnetoelectric enthalpy
expression asymptotically corrected up to the order of O((h/l)4η2), such an enthalpy expression is too
complex for practical uses. We will still use the Reissner-Mindlin model to carry out the 2D plate analysis
while use y3 for the second-order prediction of the 3D displacement/strain/stress fields and use ˜̃

φ and ˜̃
ψ

for the second-order predictions of electric fields/displacements and magnetic fields/inductions. As will be
shown latter, this approach can achieve a good accuracy for moderate thick plates even though only the
equivalent single-layer Reissner-Mindlin plate model is used for the 2D plate analysis.
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To this stage, we can recover the 3D displacements, electric and magnetic potentials up to the second
order as

Ûi = ui + x3(C3i − δ3i) + Cjiwj + δ3iC3iy3,

φ̂ = φ0 + ˜̃
φ, (75)

ψ̂ = ψ0 + ˜̃
ψ.

The second-order estimation of elastic strains as well as electric and magnetic fields then becomes

Γ̂e = ε + x3κ + Iαv‖,α, 2Γ̂s = v′‖ + eαw0
3,α, Γ̂t = w0

3
′
+ y′3,

Ês = −φ0
,‖, Êt = −(φ0′ + ˜̃

φ′), (76)

Ĥs = −ψ0
,‖, Ĥt = −(ψ0′ + ˜̃

ψ′),

Finally, we can recover the 3D multiphysstress field up to the second order as




σe

σs

σt





=




Ce 0 Cet

0 Cs 0
CT

et 0 Ct








Γ̂e

2Γ̂s

Γ̂t




−




0 eet

es 0
0 et




{
Ês

Êt

}
−




0 qet

qs 0
0 qt




{
Ĥs

Ĥt

}
,

{
Ds

Dt

}
=

[
0 es 0

eet 0 eT
t

] 



Γ̂e

2Γ̂s

Γ̂t





+

[
εds 0
0 εdt

]{
Ês

Êt

}
+

[
αs 0
0 αt

]{
Ĥs

Ĥt

}
,

{
Bs

Bt

}
=

[
0 qs 0

qet 0 qT
t

] 



Γ̂e

2Γ̂s

Γ̂t





+

[
αT

s 0
0 αt

]{
Ês

Êt

}
+

[
µs 0
0 µt

]{
Ĥs

Ĥt

}
.

(77)

Validation Examples

We have derived a general formulation to treat smart plates made of piezoelectric and magnetostrictive
materials with properties as functions of x3. In the following, we will use several examples to demonstrate
the performance of the present theory. The primary focus of this study is to evaluate the capability of the
present asymptotic plate model on predicting multi-physics components for different smart plates subjected
to various boundary and load (mechanical, electric, and magnetic) combinations.

To validate of the present model initially, results are compared with 3D exact solutions. 3D exact solution
approaches are developed by following the methodology described by Pan et. al. in Refs. [7, 8]. However,
some modifications have been made to enable the solution procedure suitable for more general eigenvalue
problems (complex, real, and imaginary) so that it can be used for more general material types. Two different
materials are used in the validation examples. The first is the magnetostrictive material CoFe2O4 and the
second is the much studied piezoelectric material PZT-4. Material properties of these two materials are
listed in Table 1. For all validation examples, the plate is infinitely long along the x1 direction and two edges
parallel to x2 are subjected to simply supported boundary conditions (i.e. u3 = φ = ψ = σ33 = D3 = B3 = 0
along the edge length).

Magnetostrictive Plate Under Mechanical Loading

The first example considered is a magnetostrictive (CoFe2O4) plate with width b and thickness h subjected
to a sinusoidally distributed normal traction on the top surface of the plate: τ3(x2) = q0 sin(πx2/b). All
other tractions are zero on top and bottom surfaces. Zero electric and magnetic potentials are specified on
the bottom surface while the top surface is maintained to be electrically and magnetically free (zero electric
displacement and magnetic flux).

To facilitate our comparison, the physical quantities for this example are nondimensionlized by the
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Table 1. Material properties for two materials used in validation examples (ε0 = 8.8541× 10−12C2/(Nm2) is the
dielectric constant of vacuum)

Material properties for PZT − 4 Material properties for CoFe2O4

E1 = E2 [Gpa] 81.3 E3 [Gpa] 64.5 C11 = C22 [Gpa] 286.0 C33 [Gpa] 269.5

G13 = G23 [Gpa] 25.6 G12 [Gpa] 30.6 C13 = C23 [Gpa] 170.5 C12 [Gpa] 173

ν13 = ν23 0.432 ν12 0.329 C44 = C55 [Gpa] 45.3 C66 [Gpa] 56.5

e31 = e32 e33 q31 = q32 q33

[C/m2] -5.2 [C/m2] 15.08 [N/(Am)] 580.3 [N/(Am)] 699.7

e24 = e15 ε11/ε0 = ε22/ε0 q24 = q15 ε11 = ε22

[C/m2] 12.72 (/) 1475 [N/(Am)] 550 [C2/(Nm2)] 8.0× 10−11

ε33/ε0 µ11 = µ22 ε33 µ11 = µ22

(/) 1300 [Ns2/C2] 5.0× 10−6 [C2/(Nm2)] 9.3× 10−11 [Ns2/C2] −5.9× 10−4

ε33 ε33

[Ns2/C2] 10.0× 10−6 [Ns2/C2] 1.57× 10−4

following relations:

Ūi =
C11h

3Ui

q0b4
, σ̄ij =

σij

q0
, φ̄ =

e31φ

q0b
,

ψ̄ =
q31ψ

q0b
, D̄i =

C11Di

e31q0
, B̄i =

C11Bi

q31q0
.

(78)

Figures 2, 3, and 4 depict the through-the-thickness variation of the maximum values of nondimensional
displacements (Ui), stresses (σij), magnetic potential (ψ), and magnetic fluxes Bi for two moderate thick
magnetostrictive plates with length to thickness ratios b/h being 10 and 15. Throughout this paper,z̄ = x3/h
indicates the nondimensional x3 coordinate. As there is no magnetoelectric coupling (αij = 0), electric
components are all zeros. All elastic variables (displacements and stresses) matches excellently well with the
3D solutions as evidenced by the override of the two solution curves for all these components except for σ23,
of which the maximum relative errors are still within 0.18% and 0.41% for b/h = 15 and 10 respectively. In
fact, the tendency of this excellent match of elastic variables are maintained for a wide range of the width to
thickness ratio, up to b/h = 2.5 (see Table 2). For this example, the accuracy of present model is majorally
determined by the passively induced magnetic components, i.e. the magnetic potential φ and fluxes B2, B3.
Out of all 9 components compared, the maximum relative error occurs for the transverse magnetic flux
B3. The maximum errors of φ and fluxes B2, B3 take values of 1.31%, 4.99%, and 6.62%, respectively for
the moderate aspect ratio of 15, while for b/h = 10 these errors become relatively large, taking values of
10.16%, 11.45%, and 14.87%, respectively.

It is well known that in nearly all plate theories the behavior of field variables changes dramatically as
the aspect ratio varies. This aspect ratio influence is illustrated in Table 2 where the maximum value of
various field variables evaluated at appropriate (x2, x3) locations are compared with their 3D counterparts
for plates with different b/hs. Because for this example in-plane displacement and stress fields can always
be calculated more accurately than the transverse elastic components, they are not listed in Table 2.

It can be observed from Table 2 that the present plate model can provide an excellent prediction of
elastic components for plates varying from thin to extremely thick (up to b/h = 2.5), however, the accurate
prediction of magnetic components (ψ, B2, and B3) can only be achieved for thin and moderate thick plates
(up to b/h = 15). These passively induced magnetic fields demonstrate stronger 3D behavior than those
elastic components which exhibit more plate like behavior. 3D exact simulations show that as the plate
becomes thicker the curves of these passively induced variables take more complicated forms, indicating
the accurate 3D behavior of these magnetic fields can only be captured by higher order functions. This
phenomena will be further explained in example 3.

Piezoelectric Plate Under Mechanical Loading

The second example is related to a piezoelectric plate subjected to the same sinusoidally distributed normal
traction on the top surface of the plate: τ3(x2) = q0 sin(πx2/b). The major difference between this example
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(c) longitudinal displacement Ū2, x2 = 0, b/h = 15
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(d) longitudinal displacement Ū2, x2 = 0, b/h = 10
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(e) magnetic potential ψ̄, x2 = b/2, b/h = 15

z

Exact (3D)
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ϕ

Max error 10.16%

(f) magnetic potential ψ̄, x2 = b/2, b/h = 10

Figure 2. Variation of maximum nondimensional transverse deflection, longitudinal displacement, and magnetic
potential along the thickness direction for a cylindrically bent magnetostrictive (CoFe2O4) plate subjected to
a sinusoidal pressure on the top surface (moderate thick plates with b/h = 10 and 15).
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(d) in-plane normal stress σ̄22, x2 = b/2, b/h = 10
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(e) transverse shear stress σ̄23, x2 = 0, b/h = 15
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Max error 0.41%

(f) transverse shear stress σ̄23, x2 = 0, b/h = 10

Figure 3. Variation of maximum nondimensional in-plane normal and transverse shear stresses along the
thickness direction for a cylindrically bent magnetostrictive (CoFe2O4) plate subjected to a sinusoidal pressure
on the top surface (moderate thick plates with b/h = 10 and 15).
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Exact (3D)

Present

z

B₂

Max error 11.45%
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(e) transverse magnetic induction B̄3, x2 = 0, b/h = 15
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(f) transverse magnetic induction B̄3, x2 = 0, b/h = 10

Figure 4. Variation of maximum nondimensional transverse normal stress and magnetic inductions along the
thickness direction for a cylindrically bent magnetostrictive (CoFe2O4) plate subjected to a sinusoidal pressure
on the top surface (moderate thick plates with b/h = 10 and 15).
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Table 2. Influence of aspect ratio for mechanically loaded magnetostrictive plates with one surface subjected
to zero electric and magnetic potentials and the other being electric and magnetic free.

b/h U3(b/2, 0) ψ(b/2, 0) σ23(0, 0) σ33(b/2, 0) B2(0, 0) B3(b/2,−h/2)

present 3D present 3D present 3D present 3D present 3D present 3D

20 0.199 0.199 -7.848E-03 -7.820E-03 9.537 9.547 0.500 0.500 43.702 44.955 -4.575 -4.752

18 0.200 0.200 -6.910E-03 -6.870E-03 8.581 8.591 0.500 0.500 39.313 40.716 -4.572 -4.792

15 0.201 0.201 -5.464E-03 -5.393E-03 7.145 7.158 0.500 0.500 32.723 34.441 -4.566 -4.889

12 0.202 0.202 -3.939E-03 -3.795E-03 5.709 5.725 0.500 0.500 26.123 28.353 -4.554 -5.079

10 0.204 0.204 -2.845E-03 -2.582E-03 4.750 4.769 0.500 0.500 21.713 24.520 -4.540 -5.333

8 0.208 0.208 -1.637E-03 -1.072E-03 3.789 3.813 0.500 0.500 17.288 21.148 -4.514 -5.878

5 0.224 0.224 6.500E-04 4.875E-03 2.337 2.377 0.500 0.500 10.580 21.809 -4.403 -10.751

2.5 0.303 0.305 3.778E-03 -5.282E-03 1.094 1.172 0.500 0.497 4.738 -1.207 -3.853 2.888

b/h Error % Error % Error % Error % Error % Error %

20 0.01 0.37 0.10 0.00 2.79 3.72

18 0.01 0.58 0.13 0.00 3.45 4.60

15 0.01 1.31 0.18 0.00 4.99 6.62

12 0.02 3.80 0.29 0.00 7.86 10.33

10 0.03 10.16 0.41 0.00 11.45 14.87

8 0.04 52.72 0.64 0.01 18.26 23.20

5 0.01 86.67 1.65 0.05 51.49 59.05

2.5 0.72 171.53 6.68 0.58 492.62 233.41

and the previous one is that in the current situation all electric and magnetic potentials are specified to be
zero on both top and bottom surfaces of the plate. All other boundary conditions are the same as example 1
except that the material of the plate is now changed to be PZT-4. Similar to example 1, physical quantities
for this example are nondimensionlized according to Eq. (78).

Figures 5 and 6 provide a complete comparison of all 9 nonzero multiphysics fields obtained by using
present plate model with their corresponding 3D solutions for a extremely thick plate with b/h = 2.5.
Through-thickness variation of the maximum values of all these variables are plotted. Because no magneto-
electric coupling exists for the PZT-4 material (αij = 0), all magnetic components in this example are all
identically zeros. Unlike the previous example, the present plate model provides an excellent prediction of
all 9 multiphysics field variables for an extremely thick piezoelectric plate with (b/h = 2.5). The maximum
relative error among elastic components occurs for σ23 which takes the value of 5.04%, while the maximum
relative error among electric variables is 1.89%, corresponding to D3. As usual, this model provides a better
prediction of in-plane multiphysics components than the transverse components, consisting with the fact that
high order perturbation and recovery procedures are required for obtaining transverse components during
the theoretical derivation.

To illustrate the influence of the aspect ratio on multiphysics fields, a detailed comparison with the
3D exact solutions is given in Table 3. As expected, the accuracy of the present model increases as b/h
increases. For this particular example, an excellent accuracy of 5.04% can be achieved even for an extremely
thick plate (b/h = 2.5). This example also pointed out an important fact, i.e., a systematical comparison
with 3D solutions for carefully selected load and boundary combinations is required for a true validation and
estimation of a specific plate theory, especially for problems with coupled multiphysics fields. Comparisons
made only on some specific cases may not be enough to guarantee the accuracy of the developed theory.

Piezoelectric Plate Subjected to Electric Potentials

To complete the systematical evaluation of the present plate theory, the third example under investigation
is a PZT-4 piezoelectric plate subjected to sinusoidally distributed electric potential on both the top and

bottom surface of the plate, with φ(x2, h/2) =
φ0

2
sin(

πx2

b
), φ(x2,−h/2) = −φ0

2
sin(

πx2

b
), and zero magnetic

potentials ψ(x2, h/2) = ψ(x2,−h/2) = 0. In addition, on both of these boundary surfaces the plate is traction
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(e) in-plane normal stress σ̄22, x2 = b/2, b/h = 2.5

Exact (3D)

Present

z

σ₂₃

Max error 5.04%

(f) transverse shear stress σ̄23, x2 = 0, b/h = 2.5

Figure 5. Variation of maximum nondimensional elastic displacements, electric potential, in-plane normal
stresses, and transverse shear stress along the thickness direction for a cylindrically bent piezoelectric (PZT-4)
plate subjected to a sinusoidal pressure on the top surface, φ = ψ = 0 at top and bottom surfaces (an extremely
thick plate with b/h = 2.5). 23 of 29
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(a) transverse normal stress σ̄33, x2 = b/2, b/h = 2.5
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(b) in-plane electric displacement D̄2, x2 = b/2, b/h = 2.5
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Max error 1.89%

(c) transverse electric displacement D̄3, x2 = 0, b/h = 2.5

Figure 6. Variation of maximum nondimensional transverse normal stress and electric displacements along
the thickness direction for a cylindrically bent piezoelectric (PZT-4) plate subjected to a sinusoidal pressure
on the top surface, φ = ψ = 0 at top and bottom surfaces (an extremely thick plate with b/h = 2.5).
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Table 3. Influence of aspect ratio for mechanically loaded piezoelectric plates with both top and bottom surface
subjected to zero electric and magnetic potentials.

b/h U3(b/2, h/2) ψ(b/2, 0) σ23(0, 0) D2(0, 0) D3(b/2, h/2)

present 3D present 3D present 3D present 3D present 3D

20 0.160 0.160 -0.162 -0.162 9.539 9.547 -75.945 -75.955 -7.130 -7.132

18 0.160 0.160 -0.146 -0.146 8.583 8.592 -68.334 -68.346 -7.129 -7.131

15 0.161 0.161 -0.122 -0.122 7.149 7.159 -56.913 -56.927 -7.127 -7.130

12 0.161 0.162 -0.098 -0.098 5.713 5.726 -45.484 -45.502 -7.123 -7.127

10 0.163 0.163 -0.081 -0.081 4.755 4.770 -37.855 -37.877 -7.118 -7.124

8 0.165 0.165 -0.065 -0.065 3.795 3.814 -30.214 -30.242 -7.108 -7.119

5 0.174 0.175 -0.041 -0.041 2.348 2.378 -18.694 -18.744 -7.069 -7.096

2.5 0.230 0.235 -0.021 -0.021 1.115 1.174 -8.878 -9.021 -6.872 -7.005

b/h Error % Error % Error % Error % Error %

20 0.04 0.03 0.08 0.01 0.02

18 0.04 0.04 0.10 0.02 0.03

15 0.06 0.06 0.14 0.03 0.04

12 0.10 0.09 0.22 0.04 0.06

10 0.14 0.13 0.31 0.06 0.09

8 0.22 0.19 0.49 0.09 0.15

5 0.53 0.38 1.26 0.27 0.39

2.5 1.76 0.55 5.04 1.58 1.89

free. Physical quantities in this example are normalized as follows:

Ūi =
C11h

3Ui

e31b3φ0
, σ̄ij =

σijb

e31φ0
, φ̄ =

φ

φ0
,

ψ̄ =
q31ψ

e31φ0
, D̄i =

C11Dib

e2
31φ0

, B̄i =
C11Bib

q31e31φ0
.

(79)

Similar to previous examples, a detailed comparison of all 9 nonzero electric and mechanical components
with their 3D counterparts for an extremely thick PZT-4 piezoelectric plate (b/h = 2.5) subjected to the
action of a sinusoidal electric potential difference prescribed on the top and bottom surfaces is shown Figures
7 and 8. Again, all plots reveal the through-thickness variation of the maximum values of these multiphysics
variables. On the country to example 1 where mechanically loaded magnetostrictive plates with the fixed-free
magnetic and electric boundary conditions on top and bottom surfaces are analyzed, in this example (with
fixed-fixed electric and magnetic boundaries), all electric fields (φ ,D2, and D3) predicted by the current
plate model demonstrate excellent accuracies, however, some mechanical components (σ23 and σ33) exhibit
a strong 3D behavior. Among 3 electric field variables, D2 has the maximum relative error of 5.56% which
occurs at z̄ ≈ 0.3. Among the remaining 4 elastic components (excluding of σ23 and σ33), the maximum
relative error is 17.97% and occurs for σ22. In Figure 7(a), the passively induced transverse displacement U3

clearly demonstrates a 3D movement rather than the regular bending movement as studied in many elastic
examples, indicating that the passively induced mechanical components demonstrate strong 3D behaviors.
This is further evidenced by the curves of σ23 and σ33 plotted in 7(f) and 8(a)), where the shapes of the
transverse normal and shear stresses become more complicated than those can be obtained in pure elastic
studies. Figures 7(f) and 8(a) show that the σ23 and σ33 predicted by the current plate model are identically
zero. And these results are also identically zeros for all other aspect ratios. A Taylor expansion of the 3D
exact solution of σ23 and σ33 with respect to x3 reveals that the dominated part in the series of σ23 is the
x3

3 term while dominated part for σ33 is the term related to x4
3. As previously indicated in the theoretical

derivation, the recovered transverse shear stress (σ23) is of the first-order accuracy (to the order of x2
3) while

the transverse normal stress (σ33) is asymptotically correct to the second order (to order of x3
3). For this

reason, it is not surprising to explain why the present plate model and in general all other currently available
plate theories based on the equivalent single-layer model cannot capture σ23 and σ33. From above analysis
it is clear that it is necessary to push the recovery procedure one step further to obtain a better prediction
of σ23 and σ33. However, this is beyond the scope of the this paper and will be studied in our future work.
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Figure 7. Variation of maximum nondimensional elastic deflections, electric potential, in-plane normal stresses,
and transverse shear stress along the thickness direction for a cylindrically bent piezoelectric (PZT-4) plate
subjected to sinusoidal electric potentials on top and bottom surfaces, φ = 1
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Figure 8. Variation of maximum nondimensional transverse normal stress and electric displacements along
the thickness direction for a cylindrically bent piezoelectric (PZT-4) plate subjected to sinusoidal electric
potentials on top and bottom surfaces, φ = 1
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Concluding Remarks

This paper provides a novel asymptotically correct and geometrically nonlinear plate model for piezon-
electric and magnetostrictive smart plates. Unlike most prevailing plate theories which rely on a priori
assumptions on describing the 3D elastic, electric, and magnetic fields, the present model is derived based on
a variational asymptotical approach with no assumptions invoked for any multiphysics fields. The simplified
2D plate model is obtained by a systematic dimensional reduction approach so that the resulting variational
statement is asymptotically correct to different orders of h/l. The original 3D magneto-electric-elastic prob-
lem is then cast in an intrinsic form so that the theory can accommodate arbitrary large deformation and
global rotation with the restriction that the strains are small.

The accuracy of the present model has been validated by comparing results with 3D exact solutions.
Its capability and limitation have also been systematically investigated by analyzing three carefully selected
examples, namely, a mechanically loaded magnetostrictive plate with fix-free electric and magnetic boundary
conditions, a mechanically loaded piezoelectric plate with zero electric and magnetic potentials specified on
top and bottom surfaces, and a piezoelectric plate subjected to the prescribed electric potential difference.
As the development of this asymptotical plate model follows a mathematically rigorous derivation, most
conclusions drawn upon here are applicable for other plate theories developed based upon the equivalent
single-layer model.

For mechanical loading cases, the present plate model can, in general, provide excellent accuracy for
smart plates with moderate thickness. Although under some particular situations (e.g. with both boundary
surfaces specified with zero electric and magnetic potentials) this plate model can achieve excellent accuracy
for an extremely thick plate (b/h = 2.5), the prediction capability is limited by the plate subjected to the
electric/magnetic fix-free boundary condition, for which good accuracy can only be achieved for thin and
moderate thick plates.

For smart plates subjected to pure electric or magnetic potential differences, excellent accuracy can
be achieved for all electric/magnetic components (electric potential and displacements, magnetic potential
and fluxed) as well all elastic displacements and in-plane stresses even though the plate becomes extremely
thick. However, because the transverse shear and normal stresses demonstrate strong 3D behaviors and their
behaviors are dominated by high order terms, the current plate model with the second-order stress recovery
cannot capture these two fields. In the future, we plan to push our recovery procedure one step further to
improve the prediction capability of the current plate model.
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The variational asymptotic method is used to construct a new model for composite
plates which could have in-plane heterogeneity due to both geometry and material. We
first formulate the original three-dimensional problem in an intrinsic form which is suitable
for geometrically nonlinear analysis. Taking advantage of smallness of the plate thickness
and heterogeneity, we use the variational asymptotic method to systematically obtain an
effective plate model unifying a homogenization process and a dimensional reduction pro-
cess. This approach is implemented in the computer code VAPAS using the finite element
method for the purpose of dealing with real heterogeneous plates in application. A few
examples are used to demonstrate the capability of this new model.

I. Introduction

Along with the rapidly increasing popularity of composite materials and structures, research on accurate
and general modeling of structures made of them has remained as a very active field in the last several
decades. Moreover the increased knowledge and fabrication techniques of them are possible to manufacture
new materials and structures with optimized microstructures to achieve the ever-increasing performance
requirements. Although it is logically sound to use the well-established finite element method (FEM) to
analyze such materials and structures by meshing all the details of constituent microstructures, it is not a
practical and efficient way, which requires an inordinate number of degree of freedom (i.e., computing cost)
to capture the micro-scale behavior.

Fortunately, most composite materials exhibit statistical homogeneity1 so that we can define a represen-
tative volume element (RVE), which is entirely typical of the whole mixture on average and contains a suffi-
cient number of inclusions for the apparent overall properties to be effectively independent of the boundary
conditions.2 Although different definitions are given for an RVE in the literature,3 we give a practice-oriented
definition for an RVE as any block of material the analyst wants to use for the micromechanical analysis to
find the effective properties and replace it with an equivalent homogeneous material. The term unit cell (UC)
is also used extensively in the literature and defined as the building block of the heterogeneous material. In
our work, we define UC as the smallest RVE. In other words, one RVE could contain several UCs. These
definitions essentially imply that it is the analyst’s judgement to determine what should be contained in an
RVE or UC. To be consistent with statistical homogeneity, a well-formulated micromechanics model should
not depend on the size of an RVE, which means the effective properties obtained from an RVE containing
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multiple UCs should be the same as those obtained from a UC. In this sense, we consider the heterogeneous
structure as a periodic assembly of many UCs.

If the size of UC (d) is much smaller than the size of the structure (L) (i.e. η = d/L ¿ 1), it is possible to
homogenize the heterogeneous UC with a set of effective material properties through a micromechanical anal-
ysis of the UC. With these effective properties, the analyst can replace the original heterogeneous structure
with a homogeneous one and carry out structural analysis for global behavior. In the past several decades,
numerous micromechanical approaches have been suggested in the literature, such as the self-consistent
model,4–6 the variational approach,7,8 the method of cells,9–12 recursive cell method,13 mathematical homoge-
nization theories,14–16 finite element approaches using conventional stress analysis of a representative volume
element,17 variational asymptotic method for unit cell homogenization (VAMUCH),18,19 and many others
(see Ref. [20–22] for reviews of the field).

In real applications, many composite structures are dimensionally reducible structures23 with one or two
dimensions much smaller than others. For example, many load bearing components are flat panels with the
thickness h much smaller than the in-plane dimensions (i.e. e = h/L ¿ 1) and they can be effectively
modeled using plate models. If there are still many unit cells along the thickness direction (i.e. η ¿ e),
we can use the traditional two-step approach that performs homogenization using micromechanics first to
obtain effective properties of the heterogeneous material, then performs a dimensional reduction to construct
a plate model for structural analysis. Usually, composite plates do not have many unit cells along the
thickness direction. For example, for plates made of textiles, the textile microstructure might be as large as
the plate thickness. That is, the periodicity is exhibited only in-plane and we have either e ¿ η or e ∼ η.
As pointed out by Kohn and Vogelius,24 if e ¿ η, the order of the aforementioned two-step approach should
be reversed. That is, we need to carry out the dimensional reduction to construct plate models first, then
homogenize the heterogeneous surface with periodically varying plate properties. If e ∼ η, the two steps in
the two-step approach should be performed at the same time, that is, both small parameters (e and η) should
be considered during modeling of such structures. And several studies have shown that models considering
e and η simultaneously also give accurate results for the case e ¿ η.25,26

In recent years, the formal asymptotic method has been used to study this problem.24,25,27–29 It is a
modification to the asymptotic homogenization method which is a direct application of the formalism of two
scales to the original three-dimensional (3D) equations governing the plate structure. However, although
these models are mathematically elegant and rigorous without introducing ad hoc assumptions, it is not easy
to relate the equations derived using this method with simple engineering models and extend this approach
to geometrical nonlinear problems. Sometimes, the displacement field predicted using this approach is not
compatible with the stress field. For example, the displacement field in Eqs. (1.3.5) of Ref. [29] implies
zero transverse normal strain which further implies nonzero normal stress due to Poisson’s effect, which is
not compatible with the stress field given in Eq. (1.3.6) of Ref. [29]. Last but not least, it is difficult to
implement these theories numerically.

As a remedy to the shortcomings of formal asymptotic method, we propose to use the variational asymp-
totic method (VAM)30 to carry out simultaneous homogenization and dimensional reduction to construct a
model suitable for plates made of heterogeneous materials. First, the 3D anisotropic elasticity problem is
formulated in an intrinsic form suitable for geometrically nonlinear analysis. Then, considering both e and
η, we use VAM to rigorously decouple the original 3D anisotropic, heterogeneous problem into a nonlinear
two-dimensional (2D) surface analysis (i.e. plate analysis) on the macroscopic level and a linear microme-
chanical analysis. The micromechanical analysis can be easily implemented using the finite element method
for numerically obtaining the effective plate constants for the 2D plate analysis and recovering the local
displacement, strain, and stress fields based on the macroscopic behavior. Several examples are used to
demonstrate the application and accuracy of this new model and the companion code VAPAS.

II. Three-Dimensional Formulation

A plate may be considered geometrically as a smooth 2D reference plane ω surrounded by a layer of
matter with thickness h to form a 3D body with one dimension much smaller than the other two. In general,
a point in the plate can be represented mathematically by its Cartesian coordinates xi, where xα are two
orthogonal lines in the reference plane and x3 is the normal coordinates (Here and throughout the paper,
Greek indices assume values 1 and 2 while Latin indices assume 1, 2, and 3. Repeated indices are summed
over their range except where explicitly indicated). Without loss of generality, we choose the middle of the
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plate as the origin of x3. Let us now consider a heterogeneous plate formed by many UCs (Ω) in the reference
plane (see Fig. 1). To describe the rapid change in the material characteristics in the in-plane directions, we
need to introduce two so-called ‘fast’ coordinates yα parallel to xα. These two sets of coordinates are related
as yα = xα/η.

Figure 1. A heterogeneous plate with representative periodicity cell

If the UC is a cuboid as depicted in Fig. 1, we can describe the domain (Ω) occupied by the UC using
yα and x3 as

Ω =
{

(y1, y2, x3)
∣∣∣∣−

d1

2
< y1 <

d1

2
,−d2

2
< y2 <

d2

2
,−h

2
< x3 <

h

2

}
(1)

As our goal is to homogenize the heterogenous material, we need to assume that the exact solution of the
field variables have volume averages over Ω. For example, if ui(x1, x2, x3; y1, y2) are the exact displacements
within the UC, there exists vi(x1, x2) such that

vi =
1
Ω

∫

y1

∫

y2

∫

x3

uidy1dy2dx3 =
1
Ω

∫

Ω

uidΩ ≡ 〈ui〉 (2)

Due to the existence of a distinct scale separation between two types of spatial variations described by
yα and xα, the derivative of a function, ui, defined in Ω can be evaluated as

∂ui(x1, x2, x3; y1, y2)
∂xα

=
∂ui

∂xα
|yα=const +

1
η

∂ui

∂yα
|xi=const ≡ ui,α +

1
η
ui|α (3)

Note that in real derivation, η is not a number but denoting the order of the term it is associated with.
Letting bi denote a unit vector along xi for the undeformed plate, one can then describe the position of

any material point in the undeformed configuration by its position vector r̂ relative to a point O fixed in an
inertial frame, such that

r̂(x1, x2, x3) = r(x1, x2) + x3b3 (4)

where r is the position vector from O to the point located by xα on the reference plane.
When the plate deforms, the particle that had position vector r̂ in the undeformed state now has position

vector R̂ in the deformed configuration. The latter can be uniquely determined by the deformation of the
3D body. To this end, we need to introduce a new triad Bi for the deformed plate as unit vectors to express
vectors and tensors in their component form during the derivation. The relation between Bi and bi can be
specified by an arbitrary large rotation in terms of the matrix of direction cosines C(x1, x2) so that

Bi = Cijbj with Cij = Bi · bj (5)
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subject to the requirement that Bi is coincident with bi when the structure is undeformed. Following Hodges
at el.31 and Yu at el.,32 the position vector R̂ can be represented as

R̂(xi; yα) = R (x1, x2) + x3B3(x1, x2) + wi(x1, x2, x3; y1, y2)Bi(x1, x2) (6)

where R denotes the position vector describing the deformed reference surface and wi denotes the warping
functions describing the deformation not captured by R and Bi. Because of the way we introduce ‘fast’
coordinates, wi are periodic functions in yα, that is

wi(x1, x2, x3; d1/2, y2) = wi(x1, x2, x3;−d1/2, y2)
wi(x1, x2, x3; y1, d2/2) = wi(x1, x2, x3; y1,−d2/2)

(7)

Eq. (6) can be considered as a change of variable and six constraints are needed to ensure a one-to-one
mapping between R̂ and (R, Bi, wi). If we define R =

〈
R̂

〉
, then we have the following three constraints

〈wi〉 = 0 (8)

The other three constraints can be obtained by a proper definition of Bi. Two constraints can be specified
by defining B3 as the normal to the reference surface of the deformed plate. The last constraint can be
specified by the rotation of Bα around B3 such that

B1 · ∂R
∂x2

= B2 · ∂R
∂x1

(9)

Following Ref. [33], the plate strains can be defined using R and Bi as

∂R
∂xα

= Bα + εαβBβ (10)

and
∂Bi

∂xα
= (−καβBβ ×B3 + κα3B3)×Bi (11)

It can be shown that the last constraint in Eq. (9) actually implies that symmetry of in-plane strains
(εαβ = εβα).

Based on the concept of decomposition of rotation tensor,34 the Jauman-Biot-Cauchy strain components
for small local rotation are given by

Γij =
1
2

(Fij + Fji)− δij (12)

where δij is the Kronecker symbol, and Fij is the mixed-basis component of the deformation gradient tensor
such that

Fij = Bi ·Gkgk · bj (13)

Here gi is the contravariant base vector of the undeformed configuration and in a plate case, gi = gi = bi,
while Gi is the 3D covariant basis vectors of the deformed configuration, which can be obtained in the
following way:

Gα = ∂R̂
∂xα

= R̂,α +
1
η
R̂|α

G3 = ∂R̂
∂x3

≡ R̂|3
(14)

With the assumption that the plate strains are small compared to unity which is sufficient for geometrical
nonlinear analysis, we can neglect all the terms that are products of the warping and the generalized strains
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and obtain the 3D strain field as

Γ11 = ε11 + x3κ11 + w1,1 +
1
η
w1|1

2Γ12 = 2ε12 + x3 (κ12 + κ21) + w1,2 + w2,1 +
1
η

(
w1|2 + w2|1

)

Γ22 = ε22 + x3κ22 + w2,2 +
1
η
w2|2

2Γ13 = w1|3 + w3,1 +
1
η
w3|1

2Γ23 = w2|3 + w3,2 +
1
η
w3|2

Γ33 = w3|3

(15)

Especially, for use in our computational procedure later, one can express the 3D strain field in matrix form
from Eq. (15) as:

Γ = Γhw + Γεε + ΓLα
w,α (16)

where Γ = bΓ11 2Γ12 Γ22 2Γ13 2Γ23 Γ33cT , w = bw1 w2 w3cT , ε = bε11 2ε12 ε22 κ11 κ12 + κ21 κ22cT , and

Γh =




∂
∂y1

0 0
∂

∂y2

∂
∂y1

0
0 ∂

∂y2
0

∂
∂x3

0 ∂
∂y1

0 ∂
∂x3

∂
∂y2

0 0 ∂
∂x3




Γε =




1 0 0 x3 0 0
0 1 0 0 x3 0
0 0 1 0 0 x3

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




ΓL1 =




1 0 0
0 1 0
0 0 0
0 0 1
0 0 0
0 0 0




ΓL2 =




0 0 0
1 0 0
0 1 0
0 0 0
0 0 1
0 0 0




(17)
The strain energy stored in the heterogeneous plate can be obtained as:

U =
1
2

∫

x1

∫

x2

〈
ΓT DΓ

〉
dx1dx2 =

1
2

∫

ω

〈
ΓT DΓ

〉
dω (18)

where D(x3; y1, y2) is the 3D 6× 6 material matrix, which consists of elements of the fourth-order elasticity
tensor expressed in the local in-plane coordinate system yα and the thickness coordinate system x3.

To deal with the applied loads, we follow Yu et al .32 At first, we will leave open the existence of a
potential energy and alternatively develop the virtual work of the applied loads. The virtual displacement
is taken as the Lagrangean variation of the displacement field, such that

δR̂ = δqBi
Bi + x3δψBi

Bi ×B3 + δwiBi + δψBi
Bi × wjBj (19)

where the virtual displacement of the reference surface is given by

δqBi
= δu ·Bi (20)

and the virtual rotation of the reference surface is defined such that

δBi = δψBj
Bj ×Bi (21)

Because of small strain assumption, we may safely ignore products of the warping and the loading in the
virtual rotation term. Then, the work done through a virtual displacement due to the applied loads τiBi at
the top surface (S+) and βiBi at the bottom surface (S−) and body force φiBi is

δW =
(
τ i + βi + 〈φi〉

)
δqBi

+ δψBα

[
h

2
(
τα − βα

)
+ 〈x3φα〉

]

+ δ
(
τ iw

+
i + βiw

−
i + 〈φiwi〉

) (22)
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with
τ i =

1
S+

∫

S+
τidS+ and βi =

1
S−

∫

S−
βidS− (23)

or in the matrix form
δW = δq

T
f + δψ

T
m + δ

(
τT w+ + β

T
w− +

〈
φT w

〉)
(24)

with

f = τ + β + 〈φ〉

m =





h

2
(
τ1 − β1

)
+ 〈x3φ1〉

h

2
(
τ2 − β2

)
+ 〈x3φ2〉

0





(25)

where τi, βi, and φi are taken to be independent of the deformation and ()+ = ()
∣∣
x3=h/2 and ()− =

()
∣∣
x3=−h/2 .
Now, the complete statement of the problem can be presented in terms of the principle of virtual work,

such that
δU − δW = 0 (26)

In spite of the possibility of accounting for nonconservative forces in Eq. (26), the problem that governs the
3D unknown warping functions is conservative. Thus, one can pose the problem that governs the warping
as the minimization of a total potential functional

Π = U + W (27)

so that
δΠ = 0 (28)

in which only the warping displacement is varied, subject to the constraints in Eqs. (7) and (8). This implies
that the potential of the applied loads for this potion of the problem is given by

W = −τT w+ − βT w− − 〈
φT w

〉
(29)

Below, for simplicity of terminology, we will refer to Π as the total potential energy, or the total energy.
By principle of minimum total potential energy, one can solve the unknown warping functions by mini-

mizing the functional in Eq. (27) subject to the constraints of Eq. (8) and periodic boundary conditions Eq.
(7). Up to this point, this is simply an alternative formulation of the original 3D elasticity problem. If we
attempt to solve this problem directly, we will meet the same or even more difficulty as solving any full 3D
nonlinear elasticity problem. Fortunately, as shown in Refs. [18, 19, 32], VAM can be used to calculate the
3D unknown functions asymptotically. Although, the minimization problem can be solved analytically as
shown in Refs. [18, 32], the procedure becomes very tedious, even with the help of the power of present day
computers and very sophisticated software packages such MathematicaTM and MatlabTM. For general cases
we need to turn to numerical techniques such as FEM for approximate solutions. To this end, we need to
express w using shape functions defined over Ω as

w(x1, x2, x3; y1, y2) = S(y1, y2, x3)V (x1, x2) (30)

where S represents the shape functions and V a column matrix of the nodal values of the warping functions.
Substituting Eq. (30) into Eq. (16), one can express the total energy in discretized form as

2ΠΩ = V T EV + 2V T (Dhεε + DhLαV,α) + εT Dεεε

+ V,α
T DLαLβ

V,β + 2V,α
T DLαεε + 2V T L

(31)

where L contains the load related terms such that

L = −S
+T

τ − S
−T

β −
〈
S

T
φ
〉

(32)
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The new matrix variables carry the properties of both geometry and material:

E =
〈[

ΓhS
]T

D
[
ΓhS

]〉

DhLα =
〈[

ΓhS
]T

D
[
ΓLαS

]〉

DLαLβ
=

〈[
ΓLαS

]T
D

[
ΓLβ

S
]〉

Dhε =
〈[

ΓhS
]T

D [Γε]
〉

Dεε =
〈
Γε

T DΓε

〉

DLαε =
〈[

ΓLαS
]T

DΓε

〉 (33)

The discretized forms of Eq. (8) is
V T Hψ = 0 (34)

where H =
〈
S

T
S

〉
and ψ is the normalized kernel matrix of E such that ψT Hψ = I. Now our problem is

transformed to minimize Eq. (31) numerically, subject to the periodic boundary conditions in Eq. (7) and
the constraints in Eq. (34).

III. Dimensional Reduction

To rigorously reduce the original 3D problem to a 2D plate model, one must attempt to reproduce the
energy stored in the 3D structure in a 2D formulation. The best one can do is to accomplish it asymptotically
taking advantage of the small parameters inherent in the structure. As pointed out previously we have two
small parameters in our problem: e denoting the smallness of the thickness and η denoting the smallness of
heterogeneity. Following Ref. [25,26], we also assume that these two small parameters are of the same order
as models constructed this way also give accurate results when e ¿ η.

In this paper, VAM will be used to mathematically reduce the 3D problem to a 2D plate model. To
proceed by this method, first one has to assess and keep track of the orders of all the quantities in the
formulation. Following Sutyrin,35 the quantities of interest have the following orders:

εαβ ∼ hκαβ ∼ ε̂ f3 ∼ µ (h/L)2 ε̂ fα ∼ µ (h/L) ε̂ mα ∼ µh (h/L) ε̂ (35)

where ε̂ is the order of the plate strains and µ is the order of the material constants (all of which are assumed
to be of the same order). It is noted that m3 = 0.

The VAM requires one to find the leading terms of the functional according to the different orders. For
the zeroth-order approximation, these leading terms of Eq. (31) are

2Π0
Ω = V T EV + 2V T Dhεε + εT Dεεε (36)

The periodic constraints in Eq. (7) and the average constraints in Eq. (34) can be easily handled as
normally done in FEM through assembly for obtaining the functional in Eq. (36). Minimizing Π0

Ω in Eq.
(36), gives us the following linear system

EV = −Dhεε (37)

It is clear that V will linearly depend on the 2D plate strains ε, which means it is unnecessary to assign
values to ε (even 1’s and 0’s as in common practice), and they can be treated as symbols without entering
the computation. The solution can be symbolically written as

V = V 0ε ≡ V0 (38)

Substituting Eq. (38) back into Eq. (36), we can calculate the energy functional storing in the UC, asymp-
totically correct through the order of µε̂2 as

2Π0
Ω = εT

(
V

T

0 Dhε + Dεε

)
ε ≡ εT Aε (39)

where A is the effective plate stiffness to be used for the classical plate theory (CPT). However, unlike the
standard procedure of CPT, the effective plate stiffness are calculated from knowledge of complex geometric
and material characteristics in a representative UC at the microscopic level considering the smallness of both
thickness and heterogeneity.

Here we notice that the zeroth-order warping is of order hε̂. According to the VAM, to accept this as
the zeroth-order approximation, one needs to check whether or not the order of the next approximation is
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higher than this one. To obtain the first-order approximation, we simply perturb the zeroth-order result,
resulting in warping functions of the form

V = V0 + V1 (40)

Substituting Eq. (40) back into Eq. (16) and then into Eq. (31), one can obtain the leading terms for the
first-order approximation as

2Π1∗
Ω = V1

T EV1 + 2V1
T Dαε,α + 2V1

T L (41)

where
Dα =

(
DhLα −DT

hLα

)
V 0 −DLαε (42)

Similarly as in the zeroth-order approximation, one can solve the first-order warping field as

V1 = V11ε,1 + V12ε,2 + V1L (43)

and obtain a total energy that is asymptotically correct up to the order of µ (h/L)2 ε̂2

2Π1
Ω = εT Aε + ε,1

T Bε,1 + 2ε,1
T Cε,2 + ε,2

T Dε,2

+ 2εT Fε,1 + 2εT Jε,2 + 2εT M + N
(44)

where

A = V
T

0 Dhε + Dεε

B = V
T

0 DL1L1V 0 + V T
11D1

C = V
T

0 DL1L2V 0 + 0.5
(
V T

11D2 + DT
1 V12

)

D = V
T

0 DL2L2V 0 + V T
12D2

F = V
T

0 DhL1V 0 + DT
L1εV 0

J = V
T

0 DhL2V 0 + DT
L2εV 0

M = V
T

0 L− 0.5
(
DT

1 V1L,1 + V T
11L,1 + DT

2 V1L,2 + V T
12L,2

)

N = V T
1LL

(45)

It is noted that N is a quadratic term involving applied loads that cannot be varied in the 2D model. When
there is no load, this term vanishes. It comes from the applied load and the warping of refined approximations
introduced by the applied load. The applied loads should not vary rapidly over the plate surface; otherwise,
N will not be of sufficiently high order to meet the requirement of asymptotical correctness.

IV. Transforming into Reissner-Mindlin Model

Although Eq. (44) is asymptotically correct through the second-order and straightforward use of this
strain energy is possible, it involves more complicated boundary conditions than necessary since it contains
derivatives of the generalized strain measures. To obtain an energy functional that is of practical use, one
can transform the present approximation into a Reissner-Mindlin model.

In a Reissner-Mindlin model, there are two additional degrees of freedom, which are the transverse shear
strains incorporated into the rotation of transverse normal. We introduce another triad B∗

i for the deformed
plate, so that the definition of 2D strains becomes

R,α = B∗
α + ε∗αβB∗

β + 2γα3B∗
3 (46)

and
B∗

i,α = (−κ∗αβB∗
β ×B∗

3 + κ∗α3B
∗
3)×B∗

i (47)

where the transverse shear strains are γ = b2γ13 2γ23cT . Using the procedures listed in Ref. [32], one can
express the classical strain measures ε in terms of the strain measures R and the transverse shear strains γ
of the Reissner-Mindlin plate model:

ε = R−Dαγ,α (48)
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where

D1 =

[
0 0 0 1 0 0
0 0 0 0 1 0

]T

D2 =

[
0 0 0 0 1 0
0 0 0 0 0 1

]T

R = bε∗11 2ε∗12 ε∗22 κ∗11 κ∗12+κ∗21 κ∗22cT

(49)

Now one can express the strain energy, Eq. (44), asymptotically correct to the second order, in terms of
strains of the Reissner-Mindlin model as

2Π1
Ω = RT AR− 2RT ADαγ,α +R,1

T BR,1 + 2R,1
T CR,2 +R,2

T DR,2

+ 2RT FR,1 + 2RT JR,2 + 2RT M + N
(50)

The generalized Reissner-Mindlin model used in many practical 2D analysis is of the form

2ΠR = RT XR+ γT Gγ + 2RT FR + 2γT Fγ (51)

To find an equivalent Reissner-Mindlin model Eq. (51) for Eq. (50), one has to eliminate all partial derivatives
of the strain measure. Here equilibrium equations are used to achieve this purpose. From the two equilibrium
equations balancing bending moments with applied moments mα which is calculated from Eq. (25), one can
obtain the following formula

Gγ + Fγ = DT
αAR,α +

{
m1

m2

}
(52)

Using Eq. (52), one can rewrite Eq. (50) as

2Π1 = RT XR+ γT Gγ + 2RT M + N̂ + U∗ (53)

where
U∗ = RT

,1B̂R,1 + 2RT
,1ĈR,2 +RT

,2D̂R,2 + 2RT F̄R,1 + 2RT J̄R,2 (54)

and

X = A

B̂ = B + XD1G
−1DT

1

(
2A−X

)

Ĉ = C + 0.5
[(

2A−X
)D1G

−1DT
2 X + XD1G

−1DT
2

(
2A−X

)]

D̂ = D + AD2G
−1DT

2

(
2A−X

)

N̂ = N −
{

m1

m2

}T

G−1

{
m1

m2

}
(55)

If we can drive U∗ to be zero for any R, then we have found an asymptotically correct Reissner-Mindlin
plate model. For general anisotropic plates, this term will not be zero; but we can minimize the error to
obtain a Reissner-Mindlin model that is as close to asymptotical correctness as possible. The accuracy of
the Reissner-Mindlin model depends on how close to zero one can drive this term of the energy.32

One could proceed with the optimization at this point, but the problem will require a least squares
solution for 3 unknowns (the shear stiffness matrix G) from a linear system of 78 equations (12×12 and
symmetric). This optimization problem is too rigid. The solution will be better if we can bring more
unknowns into the problem. As stated in Ref. [35], there is no unique plate theory of a given order. One can
relax the constraints in Eq. (8) to be 〈wi〉 = const and still obtain an asymptotically correct strain energy.
Since the zeroth-order approximation gives us an asymptotic model corresponding to classical plate theory,
we only relax the constraints for the first-order approximation. This relaxation will modify the warping field
to be

V 1 = V11ε,1 + V12ε,2 + V1L + L1ε,1 + L2ε,2 (56)
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where L1, L2 consist of 24 constants. The remaining energy U∗ will also be modified to be

U∗ = RT
,1B̂

∗R,1 + 2RT
,1Ĉ

∗R,2 +RT
,2D̂

∗R,2 + 2RT F̄R,1 + 2RT J̄R,2 (57)

and

B̂∗ = B̂ + 2LT
1 D1

Ĉ∗ = Ĉ +
(
LT

1 D2 + DT
1 L2

)

D̂∗ = D̂ + 2LT
2 D2

(58)

Since now we have 27 unknowns, the optimization is much more flexible. It can give us a more optimal
solution for the shear stiffness matrix G to fit the second-order, asymptotically-correct energy into a Reissner-
Mindlin model. In other words, here we have found the Reissner-Mindlin model that describes as closely as
possible the 2D energy that is asymptotically correct through the second order in h/L. Let us recall, that the
Reissner-Mindlin theory that has been constructed only ensures a good fit with the asymptotically correct
3D strain field (thus stress field) of the first order (while energy is approximated to the second order). Thus,
in order to obtain recovering relations that are valid to the same order as the energy, the VAM iteration
needs to be applied one more time. Using the same procedure, the second-order warping can be obtained
and expressed symbolically as

V2 = V21ε,11 + V22ε,12 + V23ε,22 (59)

Here Eq. (59) is obtained by taking the original first-order warping V1 to be the result of the first-order
approximation. It is clear that V2 is one order higher than V1 which confirms that V1 is the first-order
approximation.

Finally after minimizing U∗, the total energy to be used for the 2D plate solver can be expressed as:

2ΠR = RT AR+ γT Gγ + 2RT M (60)

The quadratic term of loads N̂ is dropped from Eq. (53) because it will not affect the 2D governing equations.
It should be noted that the load-related terms in M are a new feature in the present development. One must
slightly modify traditional Reissner-Mindlin plate solvers to accommodate these terms.

V. Recovering Relations

If the local fields within the UC are of interest, we can recover those fields based on the 2D global
displacements u2d, 2D global strains ε, and the 3D local warping functions wi. From Eqs. (4) and (6), we
can obtain the 3D displacement field through the second-order as:

U3d = R̂− r̂ = R− r + x3(B3 − b3) + wiBi (61)

which can also be expressed in the following matrix form as

U3d = u2d + x3




C31

C32

C33 − 1


 + CT S

(
V0 + V 1 + V2

)
(62)

where U3d is the column matrix containing 3D displacement components in the bi basis and u2d is the column
matrix containing the 2D plate displacements in the bi basis. C is the direction-cosine matrix relating Bi

and bi, given in Eq. (5).
From Eqs. (16), one can recover the 3D local strain field Γ through the second-order as

Γ = ΓhS
(
V0 + V 1 + V2

)
+ Γεε

+ ΓL1S
(
V0,1 + V 1,1

)
+ ΓL2S

(
V0,2 + V 1,2

) (63)

Finally, the local 3D stress field σ can be recovered straightforwardly using the original 3D constitutive
relations as

σ = DΓ (64)
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We just derived the model for heterogeneous plates with the UC periodically varying along both x1 and
x2. It is easy to deduce that it is also applicable to degenerated cases such as the UC is only periodically
varying along one direction. For example if it is periodic along x1, then the partial derivative with respect
to y1 vanishes in Γh operator of Eq. (16). That is, we only need to solve a 2D problem in y2 and x3. If the
plate is uniform in plane, then the partial derivatives with respect to y1 and y2 both vanish and the theory
reduces to a 1D through-the-thickness as that of the classical plate theory derived using VAM as in Ref. [32].
The present theory is implemented in the computer code VAPAS (Variational Asymptotic Plate and Shell
Analysis). In the following section, we are going to use a few examples to assess the validity of the present
theory and the companion code VAPAS.

VI. Validation Examples

First, we investigate plates made of binary composites. The effective plate stiffness obtained by the
present theory and VAPAS is compared to those obtained from conventional two-step approach. Second,
heterogeneous plates having more complex UCs with different geometric and material characteristics at the
microscopic level are used to demonstrate the accuracies and capabilities of the new theory and the differences
between the conventional two-step approach and the present approach.

A. Plates made of binary composites

First, let us consider plates made of N binary composites each of which is formed by two different orthotropic
layers with the material axes the same as the global coordinates xi. Overall, there are 2N layers in the plate.
The material is uniform in the xα plane and varies along x3 direction. Let ϕ1 and ϕ2 denote the volume
fractions of the bottom layer and top layer, respectively, and we have ϕ1 + ϕ2 = 1. The plate structure can
be considered periodic along x1 and/or x2 directions. Using the present theory, we can either model it using
three approaches: (1) as a one-dimensional (1D) UC with no periodicity; (2) as a 2D UC with periodicity
either in x1 or x2; (3) as a 3D unit cell with periodicity in both x1 and x2. Each UC will have N same
binary composites along the thickness. We have verified that all these three modeling approaches yield the
same effective plate stiffness which can be written in the following matrix form:

D̄ =




d̄11 0 d̄13 d̄14 0 d̄16

0 d̄22 0 0 d̄25 0
d̄13 0 d̄33 d̄16 0 d̄36

d̄14 0 d̄16 d̄44 0 d̄46

0 d̄25 0 0 d̄55 0
d̄16 0 d̄36 d̄46 0 d̄66




(65)

Particularly, modeling it as a 1D UC with no periodicity can be carried out analytically and the result
is the same as classical plate model derived using VAM considering the plate is made of 2N layers.32

To analyze this structure using the two-step approach (TSA), the analyst needs to first homogenize the
binary composites to obtain effective 3D material properties which can be expressed in the following matrix

D̄3D =




c̄11 0 c̄13 0 0 c̄16

0 c̄22 0 0 0 0
c̄13 0 c̄33 0 0 c̄36

0 0 0 c̄44 0 0
0 0 0 0 c̄55 0

c̄16 0 c̄36 0 0 c̄66




(66)

Here for the sake of saving space, the expressions for c̄ij are not listed here. Interested users can refer to
Yu18 for analytical expressions of all the terms in Eq. (66) with a rearrangement to be consistent with the
ordering of 3D strains used in this paper. Then, the analyst needs to carry out a dimensional reduction to

11 of 17

American Institute of Aeronautics and Astronautics



obtain the classical plate model, of which the corresponding stiffness terms based on Eq. (66) are

d̄11 = 〈c∗11〉x3
d̄13 = 〈c∗13〉x3

d̄22 = 〈c̄22〉x3
d̄33 = 〈c∗33〉x3

d̄14 = 〈x3c
∗
11〉x3

d̄16 = 〈x3c
∗
13〉x3

d̄25 = 〈x3c̄22〉x3
d̄36 = 〈x3c

∗
33〉x3

d̄44 =
〈
x2

3c
∗
11

〉
x3

d̄46 =
〈
x2

3c
∗
13

〉
x3

d̄55 =
〈
x2

3c̄22

〉
x3

d̄66 =
〈
x2

3c
∗
33

〉
x3

(67)

with 〈a〉x3
=

∫ h/2

−h/2
adx3 and

c∗11 = c̄11 − c̄2
16

c̄66
c∗13 = c̄13 − c̄16c̄36

c̄66
c∗33 = c̄33 − c̄2

36

c̄66

We can prove that the present theory and TSA predict the same extensional stiffness, D̄ij(i = 1, 2, 3, j =
1, 2, 3) (A matrix in CPT). The present theory will predict different coupling stiffness D̄ij(i = 1, 2, 3, j =
4, 5, 6) (B matrix in CPT) as the coupling stiffness according to TSA always remains zero. The coupling
stiffness B predicted by the present theory is:

B =
h2

2N
ϕ1ϕ2D

∗ (68)

with

D∗ =




ĉ
(2)
11 − ĉ

(1)
11 0 ĉ

(2)
13 − ĉ

(1)
13

0 ĉ
(2)
22 − ĉ

(1)
22 0

ĉ
(2)
13 − ĉ

(1)
13 0 ĉ

(2)
33 − ĉ

(1)
33




where the subscripts denote which layer the value evaluated for. For example ĉ
(2)
11 denotes ĉ11 evaluated for

the top layer of the binary composite. The hatted quantities are calculated as

ĉ11 = c11 − c2
16

c66
ĉ13 = c13 − c16c36

c66
ĉ33 = c33 − c2

36

c66
(69)

where cij are the stiffness components of the stiffness matrix arranged from the fourth-order elasticity for
each constituent material of the binary composite. Only if these hatted quantities are the same for both
layers, the coupling stiffness B in Eq. (68) predicted by the present theory will vanish as that predicted by
TSA.

The present theory will also predict different bending stiffness D̄ij(i = 4, 5, 6, j = 4, 5, 6) (D matrix in
CPT). If we use D and DTSA to denote the bending stiffness predicted by the present theory and TSA,
respectively, we have

D −DTSA =
h3

6N2
ϕ1ϕ2(ϕ1 − ϕ2)D∗ (70)

If the hatted quantities in Eq. (69) are the same for both layers, the present theory will predict the same
bending stiffness as TSA. Even if the hatted quantities in Eq. (69) are different for each layer, the present
theory will predict the same bending stiffness as TSA if ϕ1 = ϕ2 (i.e. the two layers of the binary composites
are of equal thickness).

From Eqs. (68) and (70), we observe for a large N , the differences between the present approach and TSA
become negligible which is expected as TSA is only valid when there are many UCs along the thickness. In
real situations, this plate can only be made of a finite number of binary composites. For a finite number N ,
the error caused by TSA for bending stiffness decreases proportionally to 1/N2 which is much faster than
the coupling stiffness which decreases proportionally to 1/N .

B. Plates made of unidirectional composites

The second example is a plate made of a single layer of unidirectional composites as sketched in Figure 2
with d1 = h = 10µm studied in Ref. [36]. The unidirectional composite has a E-glass fiber (Ef = 70 GPa,
νf = 0.2), and an epoxy matrix (Em = 3.5 GPa, νm = 0.35). The volume fraction of matrix is φm = 0.4.
The fiber direction is along x2 and the plate is periodically varying along x1. The effective plate stiffness
predicted by different approaches are listed in Table 1, where SAM, FEM, and TSA results are directly
taken from Table 6 of Ref. [36] with SAM denoting the results obtained by a selective averaging method,

12 of 17

American Institute of Aeronautics and Astronautics



⊗

3
x

1 1
,x y

2 2
,x y

Fiber

Matrix

1
d

h ⊗

3
x

1 1
,x y

2 2
,x y

Fiber

Matrix

⊗

3
x

1 1
,x y

2 2
,x y

Fiber

Matrix

1
d

h

Figure 2. A unit cell for a unidirectional fiber reinforced composite

Table 1. Effective plate constants of unidirecitonal composite plates predicted by different methods

SAM FEM TSA VAPAS
d̄11(106N/m) 0.443 0.452 0.444 0.443
d̄13(106N/m) 0.074 0.062 0.039 0.035
d̄22(106N/m) 0.040 0.114 0.045 0.047
d̄33(106N/m) 0.261 0.285 0.151 0.145
d̄44(10−6Nm) 2.308 2.256 3.702 2.246
d̄46(10−6Nm) 0.446 0.224 0.328 0.176
d̄55(10−6Nm) 0.195 0.568 0.371 0.547
d̄66(10−6Nm) 1.799 0.873 1.262 0.653
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FEM denoting the results obtained by 3D FEA with periodic displacement and traction boundary conditions
imposed on opposite surfaces of the unit cell, and TSA denoting the results obtained a the two-step approach
with elastic constants obtained using Halpin-Tsai equations.

Significant differences are observed among the results predicted by different approaches. The best way
to tell which set of plate constants is accurate is to use these constants to carry out the corresponding plate
analysis and compare the global plate behavior with those predict by a different 3D finite element analysis
of the original plate structure. Suppose a square plate composed of 20 UCs is under a uniform pressure and
is simply supported at the four edges. Because of symmetry, only 1/4 of the structures needs to be analyzed;
see Figure 3 for sketches for the geometry and finite element model of this structure. We found out that the
max deflection using VAPAS constants is only 0.5% off from the direct 3D FEA analysis, while that using
SAM constants is 5% off, and by FEM is 7.0% off, and TSA is 23%. Clearly the plate analysis based on
VAPAS can accurately reproduce the original 3D FEA direct analysis.

Figure 3. Direct 3D FEA model of plate made of unidirectional composites

C. Model integrated thermal protection system as a heterogeneous plate

The third example is to model a corrugated-core sandwich panel, a concept used for Integrated Thermal
Protection System (ITPS) studied in Ref. [37]. The ITPS panel along with the details of the unit cell is
sketched in Figure 4. The geometry parameters are tT = 1.2 mm, tB = 7.49 mm, tW = 1.63 mm, p = 25
mm, d = 70 mm, and θ = 85◦. Both materials are isotropic with E1 = 109.36 GPa, ν1 = 0.3, E2 = 209.482
GPa, ν2 = 0.063. Although a 3D UC is needed for the study in Ref. [37], only a 2D UC is necessary for
VAPAS as it is uniform along one of the in-plane directions. The results obtained in Ref. [37] are compared
with VAPAS in Tables 2, 3 and 4. VAPAS predictions agree very well with those in Ref. [37] with the
biggest difference (around 1%) appearing for the extension-bending coupling stiffness (d̄14). However, the
present approach is much more efficient than that in Ref. [37] because one needs to carry out six analyses of
a 3D unit cells under six different sets of boundary conditions and load conditions and postprocess the 3D
stresses to compute the plate stress resultants, while using the present approach, one only needs to carry
out one analysis of a 2D UC and postprocessing computing is not needed.
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Figure 4. Sketch of the ITPS panel and its unit cell

Table 2. Effective extension stiffness (109N/m ) of ITPS

d̄11 d̄13 d̄22 d̄33

Ref. [37] 2.83 0.18 1.07 2.33
VAPAS 2.80 0.18 1.08 2.33

Table 3. Effective bending stiffness (106Nm) of ITPS

d̄44 d̄46 d̄55 d̄66

Ref. [37] 3.06 0.22 1.32 2.85
VAPAS 3.03 0.22 1.32 2.87

Table 4. Effective coupling stiffness (106N) of ITPS

d̄14 d̄16 d̄25 d̄36

Ref. [37] -71.45 -3.36 -34.05 -71.45
VAPAS -70.67 -3.31 -34.06 -71.42
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We also analyzed a simply supported square panel under uniform pressure with the ITPS microstructure.
We find out that with 20 UCs along the width, the max deflection predicted by the plate analysis using the
effective plate constants is about 55% off the direct 3D FEA analysis. The difference will decreases with
increased number of UCs; for example if the plate is composed of 30 UCs, the difference is 48% and if the
plate is composed of 40 UCs, the difference is 42%. The fact that big differences exist even if the plate is very
thin (the aspect ratio of the 40 UC plate is around 7:200) is because transverse shear deformation of this type
of structure, which is neglected in CPT, is significant. A refined plate theory, such as the Reissner-Mindlin
model, which is capable of capturing the shear deformation should be used. The present theory and the
VAPAS code is also used to compute the Reissner-Mindlin plate model with the effective transverse shear
stiffness listed in Table 5. Using a shear-deformation plate theory plus the plate constants given in Table ??
and Table 5, we found out that the max deflection using the refined plate theory is only 4.76% off the direct
3D FEA analysis.

Table 5. Effective transverse shear stiffness N/m of ITPS

ḡ11(108N/m) ḡ22(105N/m)
VAPAS 1.97 4.05

VII. Conclusions

The variational asymptotic method is used to construct a new model for composite plates with in-plane
heterogeneity. This model serves as a rigorous link between the original 3D problem of plate structures made
of materials with complex microstructures and the simple engineering plate models such as the Kirchhoff
plate model and the Reissner-Mindlin plate model. This model not only computes the effective plate stiffness
needed for the engineering plate models but also can recover the local displacement, strain, and stress fields
based on the global behavior obtained from the plate analysis. The resulting plate model is also suitable for
geometrical nonlinear analysis as only small strain assumption is used for obtaining the kinematics. This new
model is implemented in the computer code VAPAS using the finite element method. VAPAS can be used as
an alterative of the 3D FEA for efficient yet accurate analysis of composite plates with or without in-plane
heterogeneity. The validity and capability of this new model are demonstrated using a few examples.
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1 Introduction

1.1 Background and Motivation

Most of the aerospace structures can be analyzed using shell and plate mod-
els. Accurate theoretical formulations that minimize the CPU time without
penalties on the quality of the results are then of fundamental importance.

The so-called axiomatic models present the advantage that the important
physical behaviors of the structures can be modeled using the “intuition” of
eminent scientists. The drawback of this approach is that some cases are not
adequately modeled because the starting apriori assumptions might fail. Also,
each existing approach presents a range of applicability and when the hy-
potheses used to formulate the theory are no longer valid the approach has
to be replaced with another one usually named as “refined theory” or “im-
proved theory”. In the framework of the mechanical case the Classical Plate
Theory (CPT), also known as Kirchoff theory[21], has the advantage of being
simple and reliable for thin plates. However, if there is strong anisotropy of
the mechanic properties, or if the composite plate is relatively thick, other
advanced models such as First-order Shear Deformation Theory (FSDT) are
required[30, 25, 24]. Higher-order Shear Deformation Theories (HSDT) have
also been used[34, 20, 40], giving the possibility to increase the accuracy of nu-
merical evaluations for moderately thick plates. But even these theories are not
sufficient if local effects are important or accuracy in the calculation of trans-
verse stresses is sought. Therefore, more advanced plate theories have been de-
veloped to include zig-zag effects [26, 22, 4, 3, 1, 2, 31, 32, 13, 9, 23, 17]. In some
challenging cases the previous type of theories are not sufficiently accurate.
Therefore, the so-called Layerwise theories[12, 27, 33, 29, 8, 6, 7, 35, 18, 28, 10]
have been introduced. In these theories the quantities are layer-dependent and
the number of required Degrees of Freedom is much higher than the case of
Equivalent Single Layer Models.

The first author introduced an invariant methodology named as Generalized
Unified Formulation[15] in which an infinite number of axiomatic models can
be included in just one formulation. All the combinations of orders (for ex-
ample cubic order for the in-plane displacements and parabolic order for the
out-of-plane displacement) are possible. Equivalent Single Layer Models (with
or without zig-zag effects) and layerwise models can be analyzed. All these
formulations derive from the expansion of six 1× 1 arrays which are invariant
with respect to the type of theory (e.g. Equivalent Single Layer or Layerwise)
and orders adopted for the displacement variables. This fact makes the Gen-
eralized Unified Formulation an ideal tool to test and compare other possible
formulations. In particular, this paper assesses the Variational Asymptotic
Plate and Shell Analysis (VAPAS) introduced by the second author and com-
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pares it with some of the infinite theories that can be generated from the six
invariant arrays of the Generalized Unified Formulation. All the results are
compared against the elasticity solution developed by the first author. A sand-
wich plate is analyzed. Different aspect ratios are considered. Different Face
to Core Stiffness ratios (FCSRs) are adopted. It is demonstrated that VAPAS
gives accurate results at least as a fourth-order axiomatic zig-zag theory but
with a much smaller number of Degrees of Freedom. The range of applicability
of the various theories generated with GUF and VAPAS is discussed.

2 Considered Asymptotic Approach: Variational Asymptotic Plate
and Shell Analysis

Mathematically, the approximation in the process of constructing a plate the-
ory stems from elimination of the thickness coordinate as an independent
variable of the governing equations, a dimensional reduction process. This sort
of approximation is inevitable if one wants to take advantage of the relative
smallness of the thickness to simplify the analysis. However, other approxima-
tions that are not absolutely necessary should be avoided, if at all possible.
For example, for geometrically nonlinear analysis of plates, it is reasonable
to assume that the thickness, h, is small compared to the wavelength of de-
formation of the reference plane, l. However, it is unnecessary to assume a
priori some displacement field, although that is the way most plate theories
are constructed. As pointed out by Ref. [5], the attraction of a priori hypothe-
ses is caused by our inability to extract the necessary information from the
3D energy expression.

According to this line of logic, Yu and his co-workers adopted the variational
asymptotic method (VAM)[5], to develop a new approach to modeling com-
posite laminates[38, 39, 37, 36]. These models are implemented in a computer
program named VAPAS. In this approach, the original 3D anisotropic elastic-
ity problem is first cast in an intrinsic form, so that the theory can accom-
modate arbitrarily large displacement and global rotation subject only to the
strain being small. An energy functional can be constructed for this nonlinear
3D problem in terms of 2D generalized strain measures and warping functions
describing the deformation of the transverse normal:

Π = Π(ϵ11, ϵ12, ϵ22, κ11, κ12, κ22, w1, w2, w3) (1)

Here ϵ11, ϵ12, ϵ22, κ11, κ12, κ22 are the so-called 2D generalized strains [19] and
w1, w2, w3 are unknown 3D warping functions, which characterize the differ-
ence between the deformation represented by the 2D variables and the actual
3D deformation for every material point within the plate. It is emphasized
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here that the warping functions are not assumed a priori but are unknown 3D
functions to be solved using VAM. Then we can employ VAM to asymptoti-
cally expand the 3D energy functional into a series of 2D functionals in terms
of the small parameter h/l, such that

Π = Π0 +Π1
h

l
+Π2

h2

l2
+ o(

h2

l2
) (2)

where Π0, Π1, Π2 are governing functionals for different orders of approxima-
tion and are functions of 2D generalized strains and unknown warping func-
tions. The unknown warping functions for each approximation can be obtained
in terms of 2D generalized strains corresponding to the stationary points of the
functionals, which are one-dimensional (1D) analyses through the thickness.
Solutions for the warping functions can be obtained analytically as shown in
Ref. [38] and Ref. [36]. After solving for the unknown warping functions, one
can substitute them back into the energy functionals in Eq. 1 to obtain 2D
energy functionals for 2D plate analysis. For example, for the zeroth-order
approximation, the 2D plate model of VAPAS is of the form

Π0 = Π0(ϵ11, ϵ12, ϵ22, κ11, κ12, κ22) (3)

It should be noted that the energy functional for the zeroth-order approx-
imation, Π0, coincides to that of CLT but without invoking the Kirchhoff
hypothesis and the transverse normal is flexible during deformation.

Higher-order approximations can be used to construct refined models. For
example, the approximation through second order (h2/l2) should be used to
handle transverse shear effects. However, there are two challenging issues as-
sociated with the second-order approximation:

• The energy functional asymptotically correct up through the second order
is in terms of the CLT generalized strains and their derivatives. This form
is not convenient for plate analysis because the boundary conditions cannot
be readily associated with quantities normally specified on the boundary of
plates.

• Only part of the second-order energy corresponds to transverse shear defor-
mation, and no physical interpretation is known for the remaining terms.

VAPAS uses exact kinematical relations between derivatives of the general-
ized strains of CLT and the transverse shear strains along with equilibrium
equations to meet these challenges. Minimization techniques are then applied
to find the transverse shear energy that is closest to the asymptotically cor-
rect second-order energy. In other words, the loss of accuracy between the
asymptotically correct model and a generalized Reissner-Mindlin model is min-
imized mathematically. For the purpose of establishing a direct connection be-
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tween 2D Reissner-Mindlin plate finite element analysis, the through-thickness
analysis is implemented using a 1D finite element discretization in the com-
puter program VAPAS, which has direct connection with the plate/shell ele-
ments in commercial finite element packages and can be conveniently used by
application-oriented engineers.

In comparison to most existing composite plate modeling approaches, VAPAS
has several unique features:

• VAPAS adopts VAM to rigorously split the original geometrically-exact,
nonlinear 3D problem into a linear, 1D, through-the-thickness analysis and
a geometrically-exact, nonlinear, 2D, plate analysis. This novel feature al-
lows the global plate analysis to be formulated exactly and intrinsically as
a generalized 2D continuum over the reference plane and routes all the ap-
proximations into the through-the-thickness analysis, the accuracy of which
is guaranteed to be the best by use of the VAM. The optimization procedure
minimizes the loss of information in recasting the model to the generalized
Reissner-Mindlin form.

• No kinematical assumptions are invoked in the derivation. All deformation
of the normal line element is correctly described by the warping functions
within the accuracy of the asymptotic approximation.

• VAPAS does not rely on integration of the 3D equilibrium equations through
the thickness to obtain accurate distributions of transverse normal and shear
strains and stresses.

• VAPAS exactly satisfies all continuity conditions, including those on both
displacement and stress, at the interfaces as well as traction conditions on
the top and bottom surfaces.

• The resulting plate/shell analysis is geometrically exact, far beyond von-
Karman type nonlinearity commonly used in the literature, needed for
highly flexible applications.

3 Considered Axiomatic Plate Theories: the Generalized Unified
Formulation

3.1 Classification of the Theories

The main feature of the Generalized Unified Formulation (GUF) is that the
descriptions of Layerwise Theories, Higher-order Shear Deformation Theories
and Zig-Zag Theories of any combination of orders do not show any formal
differences and can all be obtained from six invariant kernels. So, with just
one theoretical model an infinite number of different approaches can be consid-
ered. For example, in the case of moderately thick plates a higher order theory
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could be sufficient but for thick plates layerwise models may be required. With
GUF the two approaches are formally identical because the kernels are invari-
ant with respect to the type of theory.

In the present work the concepts of type of theory and class of theories are
introduced. The following types of displacement-based theories are discussed.
The first type is named as Advanced Higher-order Shear Deformation The-
ories (AHSDT). These theories are Equivalent Single Layer models because
the displacement field is unique and independent of the number of layers. The
effects of the transverse normal strain εzz are retained.
The second type of theories is named as Advanced Higher-order Shear Defor-
mation Theories with Zig-Zag effects included (AHSDTZ). These theories are
Equivalent Single Layer models and the so called Zig-Zag form of the displace-
ments is taken into account by using Murakami’s Zig-Zag Function (MZZF).
The effects of the transverse normal strain εzz are included. The third type
of theories is named Advanced LayerWise Theories (ALWT). These theories
are the most accurate ones because all the displacements have a layerwise de-
scription. The effects of the transverse normal strain εzz are included as well.
These models are necessary when local effects need to be described. The price
is of course (in FEM applications) in higher computational time. An infinite
number of theories which have a particular logic in the selection of the used
orders of expansion is defined as class of theories. For example, the infinite
layerwise theories which have the displacements ux, uy and uz expanded along
the thickness with a polynomial of order N are a class of theories. The infinite
theories which have the in-plane displacements ux and uy expanded along the
thickness with order N , the out of plane displacement expanded along the
thickness with order N − 1 are another class of theories.

3.2 Basic Idea and Theoretical Formulation

Both layerwise and Equivalent Single Layer models are axiomatic approaches
if the unknowns are expanded along the thickness by using a chosen series of
functions.
When the Principal of Virtual Displacements is used, the unknowns are the
displacements ux, uy and uz. When other variational statements are used the
unknowns may also be all or some of the stresses and other quantities as well
(multifield case).
The Generalized Unified Formulation is introduced here considering a generic
layer k of a multilayered plate structure. This is the most general approach
and the Equivalent Single Layer theories, which consider the displacement
unknowns to be layer-independent, can be derived from this formulation with
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Fig. 1. Multilayered plate: notations and definitions.

some simple formal techniques[15]. Consider a theory denoted as Theory I, in
which the displacement in x direction uk

x has four Degrees of Freedom. Here
by Degrees of Freedom it is intended the number of unknown quantities that
are used to expand a variable. In the case under examination four Degrees of
Freedom for the displacement uk

x means that four unknowns are considered.
Each unknown multiplies a known function of the thickness coordinate z.
Where the origin of the coordinate z is measured is not important. However,
from a practical point of view it is convenient to assume that the middle plane
of the plate is also the plane with z = 0. This assumption does not imply
that there is a symmetry with respect to the plane z = 0. The formulation is
general.
For layer k the following relation holds: zbotk ≤ z ≤ ztopk . zbotk is the global
coordinate z of the bottom surface of layer k and ztopk is the global coordinate
z of the top surface of layer k (see Figure 1). hk = ztopk −zbotk is the thickness
of layer k and h is the thickness of the plate.
In the case of Theory I, uk

x is expressed as follows:

uk
x (x, y, z)=

known︷ ︸︸ ︷
fk
1 (z) ·

unknown#1︷ ︸︸ ︷
uk
x1
(x, y)+

known︷ ︸︸ ︷
fk
2 (z) ·

unknown#2︷ ︸︸ ︷
uk
x2
(x, y)

+ fk
3 (z)︸ ︷︷ ︸
known

·uk
x3
(x, y)︸ ︷︷ ︸

unknown#3

+ fk
4 (z)︸ ︷︷ ︸
known

·uk
x4
(x, y)︸ ︷︷ ︸

unknown#4

zbotk ≤ z ≤ ztopk (4)

The functions fk
1 (z), f

k
2 (z), f

k
3 (z) and fk

4 (z) are known functions (axiomatic
approach). These functions could be, for example, a series of trigonometric
functions of the thickness coordinate z. Polynomials (or even better orthogonal
polynomials) could be selected. In the most general case each layer has different
functions. For example, fk

1 (z) ̸= fk+1
1 (z). The next formal step is to modify

the notation.
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The following functions are defined:

xF k
t (z) = fk

1 (z)
xF k

2 (z) = fk
2 (z)

xF k
3 (z) = fk

3 (z)
xF k

b (z) = fk
4 (z)

(5)

The logic behind these definitions is the following. The first function fk
1 (z)

is defined as xF k
t . Notice the superscript x. It was added to clarify that the

displacement in x direction, uk
x, is under investigation. The subscript t iden-

tifies the quantities at the “top” of the plate and, therefore, are useful in the
assembling of the stiffness matrices in the thickness direction (see Ref. [15]).
The last function fk

4 (z) is defined as xF k
b . Notice again the superscript x. The

subscript b means “bottom” and, again, its utility is discussed in Ref. [15].
The intermediate functions fk

2 (z) and fk
3 (z) are defined simply as xF k

2 and
xF k

3 . To be consistent with the definitions of equation 5, the following unknown
quantities are defined:

uk
xt
(x, y) = uk

x1
(x, y) uk

xb
(x, y) = uk

x4
(x, y) (6)

Using the definitions reported in equations 5 and 6, equation 4 can be rewritten
as

uk
x (x, y, z)=

known︷ ︸︸ ︷
xF k

t (z) ·
unknown#1︷ ︸︸ ︷
uk
xt
(x, y) +

known︷ ︸︸ ︷
xF k

2 (z) ·
unknown#2︷ ︸︸ ︷
uk
x2
(x, y)

+ xF k
3 (z)︸ ︷︷ ︸

known

·uk
x3
(x, y)︸ ︷︷ ︸

unknown#3

+ xF k
b (z)︸ ︷︷ ︸

known

·uk
xb
(x, y)︸ ︷︷ ︸

unknown#4

zbotk ≤ z ≤ ztopk (7)

It is supposed that each function of z is a polynomial. The order of the ex-
pansion is then 3 and indicated as Nk

ux
. Each layer has in general a different

order. Thus, in general Nk
ux

̸= Nk+1
ux

. If the functions of z are not polynomials
(for example, this is the case if trigonometric functions are used) then Nk

ux
is

just a parameter related to the number of terms or Degrees of Freedom used
to describe the displacement uk

x in the thickness direction. The expression rep-
resenting the displacement uk

x (see equation 7) can be put in a compact form
typical of the Generalized Unified Formulation presented here. In particular
it is possible to write:

uk
x (x, y, z) =

xF k
αux

(z) · uk
xαux

(x, y) αux = t, l, b; l = 2, ..., Nk
ux

(8)

where, in the example, Nk
ux

= 3. The thickness primary master index α has
the subscript ux. This subscript from now on will be called slave index. It is
introduced to show that the displacement ux is considered. An infinite number
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of theories can be included in equation 8. It is in fact sufficient to change
the value of Nk

ux
. It should be observed that formally there is no difference

between two distinct theories (obtained by changing Nk
ux
). It is deduced that

∞1 theories can be represented by equation 8.
The other displacements uk

y and uk
z can be treated in a similar fashion. The

Generalized Unified Formulation for all the displacements is the following:

uk
x = xFtu

k
xt
+ xFlu

k
xl

+ xFbu
k
xb

= xFαux
uk
xαux

αux = t, l, b; l = 2, ..., Nux

uk
y =

yFtu
k
yt +

yFmu
k
ym + yFbu

k
yb
= yFαuy

uk
yαuy

αuy = t,m, b; m = 2, ..., Nuy

uk
z =

zFtu
k
zt +

zFnu
k
zn + zFbu

k
zb
= zFαuz

uk
zαuz

αuz = t, n, b; n = 2, ..., Nuz

(9)

In equation 9, for simplicity it is assumed that the type of functions is the
same for each layer and that the same number of terms is used for each layer.
This assumption will make it possible to adopt the same Generalized Unified
Formulation for all types of theories, and layerwise and equivalent single layer
theories will not show formal differences. This concept means, for example,
that if displacement uy is approximated with five terms in a particular layer k
then it will be approximated with five terms in all layers of the multilayered
structure.
Each displacement variable can be expanded in ∞1 combinations. In fact, it is
sufficient to change the number of terms used for each variable. Since there are
three variables (the displacements ux, uy and uz), it is concluded that equation
9 includes ∞3 different theories. In equation 9 the quantities are defined in
a layerwise sense but it can be shown that the same concept is valid for the
Equivalent Single Layer cases too (see Ref. [15]).
It can be shown that when a theory generated by using GUF has the orders
of the expansions of all the displacements equal to each other, the results
are numerically identical to the ones that can be obtained by using Carrera’s
Unified Formulation (see Ref. [10]). This is a logical consequence of the fact
that GUF can be considered as an extension and generalization of CUF (see
more details in Ref. [16]).

3.3 Acronyms Used to Identify a Generic Theory Obtained by Using GUF

Three types of displacement-based theories can be obtained. As stated above,
the first type is named Advanced Higher-order Shear Deformation Theories
(AHSDT). A AHSDT theory with orders of expansion Nux , Nuy and Nuz for
the displacements ux, uy and uz respectively, is denoted as EDNuxNuyNuz

. “E”
stands for “Equivalent Single Layer” and “D” stands for “Displacement-based”
theory.
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Fig. 2. Test Case 1. Geometry of the plate sandwich structure.

With similar logic, it is possible to define acronyms for the second type (Ad-
vanced Higher-order Shear Deformation Theories with Zig-Zag effects included
(AHSDTZ)) and for the third type of theories (Advanced LayerWise Theories
(ALWT)). The acronyms are EDZNuxNuyNuz

and LDNuxNuyNuz
(more details

can be found in Ref. [15]). For example, a AHSDTZ theory with cubic orders
for all the displacements is indicated as EDZ333 whereas a ALWT theory with
parabolic orders for all the displacements is indicated as LD222.

4 Results

Two test cases are analyzed in this work.

4.1 Description of Test Case 1

Test case 1 is a sandwich plate (see Figure 2) made of two skins and a core
[hlower skin = h/10; hupper skin = 2h/10; hcore = (7/10)h]. It is also Elower skin

Eupper skin
=

5/4. The plate is simply supported and the load is a sinusoidal pressure applied
at the top surface of the plate (m = n = 1). Different Face-to-Core Stiffness
Ratio (FCSR) are proposed here:

• Face-to-Core Stiffness Ratio = FCSR = Elower skin

Ecore
= 101; a/h = 4, 10, 100

• Face-to-Core Stiffness Ratio = FCSR = Elower skin

Ecore
= 105; a/h = 4, 100
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Fig. 3. Test Case 2 (see also [11])

As far as Poisson’s ratio is concerned, the following values are used: υlower skin =
υupper skin = υcore = υ = 0.34. The middle plane of the plate is a rectangle with
b = 3a. In this test case there is no symmetry with respect the plane z = 0.

4.2 Description of Test Case 2

This test case is represented by a symmetric sandwich structure. The case has
been taken from reference [11].

4.3 Test Case 1: Numerical Results and Discussion

The following non-dimensional quantities are introduced:

ûx = ux
Ecore

zP th( a
h)

3 ; ûy = uy
Ecore

zP th( a
h)

3 ; ûz = uz
100Ecore

zP th( a
h)

4 ;

σ̂zx = σzx
zP t( a

h)
; σ̂zy =

σzy

zP t( a
h)
; σ̂zz =

σzz
zP t ;

σ̂xx = σxx

zP t( a
h)

2 ; σ̂yy =
σyy

zP t( a
h)

2 ; σ̂xy =
σxy

zP t( a
h)

2 ;

(10)

All the results have been compared with the solution obtained by solving
the “exact” problem[14]. The exact value is indicated with the terminology
“elasticity” and is the reference value corresponding to the solution of the
differential equations that govern the problem. The details of this elasticity
solution are here omitted for brevity. The relative error Err% used in the

11



tables is defined as follows:

Err% = 100 · Result current theory − Result elasticity solution

Result elasticity solution
(11)

Tables 1 and 2 compare a ALWT, AHSDT, AHSDTZ and VAPAS with VA-
PAS0 denotes the zeroth-order approximation of VAPAS according to Eq. 3.
As shown in Table 1, VAPAS0 has a similar prediction for transverse deflection
as ED111 for a thick plate (a/h = 4) for both FCSR = 10 and FCSR = 105.
It is noted that ED111 is very similar to CLT with a flexible transverse normal.
For thin plates with mild modulus contrast, VAPAS0 has an accuracy similar
to higher-order theories without zigzag effects (ED444, ED555, ED777). For thin
plates with big modulus contrast (FCSR = 105), VAPAS0 has an accuracy
similar to ED444. VAPAS results for the deflection prediction are generally
better than VAPAS0 and has an accuracy comparable to higher-order theo-
ries with zig-zag effects such as EDZ444 and higher. The only anomaly case
is that for thick plates with the big modulus contrast, VAPAS results are not
meaningful. This could be explained that VAPAS is not constructed for such
an extreme case. Note in Eq. 2, only the geometrical small parameter h/a is
used for the asymptotical expansion, yet for this extreme case, the modulus
contrast is a much smaller parameter than h/a. Hence, it is suggested that
VAPAS is not suitable for thick sandwich plates with huge modulus contrast.
Note for the sandwich plate with a/h = 100 and FCSR = 105, VAPAS pre-
dicts reasonably well. Later we will use more examples to demonstrate that for
moderate modulus contrast, VAPAS actually has a very good prediction. Sim-
ilar observations can be made about the stress prediction as shown in Table 2.
It is worthy to point out that VAPAS plate model only uses three DOFs for its
zeroth-order approximation and five DOFs for its first-order approximation.
The 2D plate element of VAPAS is the same as a FOSDT and is more efficient
than all other theories listed in the tables. In other words, VAPAS presents
a great compromise between the accuracy of the results and the number of
DOFs. Tables 3-11 present a relatively thick sandwich plate with FCSR = 10.
The out-of-plane stresses are not unknowns of the displaced-based theories
based on GUF (this is not the case if a mixed variational theorem is used).
Therefore, they can be calculated a posteriori by using Hooke’s law or by
integrating the equilibrium equations. The first approach is usually not satis-
factory for ESL theories. Therefore, all the axiomatic results presented in this
work report the transverse stresses calculated by integrating the equilibrium
equations. In all cases it is possible to see that VAPAS has an accuracy compa-
rable or superior to AHSDTZ. For this particular case we tested, VAPAS has
a similar accuracy as, or for most cases better, than EDZ555 for displacement
prediction and in-plane stress and transverse normal stress prediction and its
accuracy is similar to LD222. For transverse shear stresses, VAPAS predicts
similar values as EDZ555. However, if integration through the thickness is not
used to obtain such values, EDZ555 will be expected to be worse than VAPAS

12



a/h 4 100

Elower skin
Ecore

≡ FCSR = 101

Elasticity 3.01123 Err.% 1.51021 Err.% DOF

LD111 2.98058 (−1.02) 1.47242 (−2.50) 12

LD222 3.00982 (−0.05) 1.51021 (0.00) 21

LD555 3.01123 (0.00) 1.51021 (0.00) 48

ED111 1.58218 (−47.5) 1.10845 (−26.6) 6

ED444 2.79960 (−7.03) 1.50989 (−0.02) 15

ED555 2.84978 (−5.36) 1.50996 (−0.02) 18

ED777 2.86875 (−4.73) 1.50999 (−0.01) 24

EDZ111 2.34412 (−22.2) 1.15866 (−23.3) 9

EDZ444 2.97886 (−1.07) 1.51017 (0.00) 18

EDZ555 2.98737 (−0.79) 1.51018 (0.00) 21

EDZ777 2.99670 (−0.48) 1.51019 (0.00) 27

V APAS0 1.5136 (−49.7) 1.50788 (−0.15) 3

V APAS 3.0198 (0.28) 1.5102 (0.00) 5

Elower skin
Ecore

≡ FCSR = 105

Elasticity 1.31593 · 10−02 Err.% 2.08948 · 10−03 Err.%

LD111 9.79008 · 10−03 (−25.6) 1.96509 · 10−03 (−5.95) 12

LD222 1.31471 · 10−02 (−0.09) 2.08948 · 10−03 (0.00) 21

LD555 1.31593 · 10−02 (0.00) 2.08949 · 10−03 (0.00) 48

ED111 1.79831 · 10−04 (−98.6) 1.19941 · 10−04 (−94.3) 6

ED444 1.16851 · 10−03 (−91.1) 1.64835 · 10−04 (−92.1) 15

ED555 4.29224 · 10−03 (−67.4) 1.73120 · 10−04 (−91.7) 18

ED777 1.08119 · 10−02 (−17.8) 2.96304 · 10−04 (−85.8) 24

EDZ111 8.36735 · 10−04 (−93.6) 1.63329 · 10−04 (−92.2) 9

EDZ444 1.26288 · 10−02 (−4.03) 1.16305 · 10−03 (−44.3) 18

EDZ555 1.30409 · 10−02 (−0.90) 1.78411 · 10−03 (−14.6) 21

EDZ777 1.31363 · 10−02 (−0.17) 2.02060 · 10−03 (−3.30) 27

V APAS0 1.6421 · 10−04 (−98.7) 1.6314 · 10−04 (−92.2) 3

V APAS 1.49076 (> 100) 2.4667 · 10−03 (18.0) 5

Table 1
Test Case 1. Comparison of various theories to evaluate the transverse displacements
amplitude (center plate deflection) ûz = uz

100Ecore

zP th( a
h)

4 in z = zupper skinbottom = 3
10h, x =

a/2, y = b/2. 13



a/h 4 Err. 100 Err.

Elower skin
Ecore

≡ FCSR = 101

Elasticity 0.32168 Err.% 0.33176 Err.% DOF

LD111 0.31730 (−1.36) 0.32345 (−2.50) 12

LD222 0.32142 (−0.08) 0.33176 (0.00) 21

LD555 0.32168 (0.00) 0.33176 (0.00) 48

ED111 0.33178 (+3.14) 0.33178 (+0.01) 6

ED444 0.33240 (+3.33) 0.33178 (+0.01) 15

ED555 0.32884 (+2.23) 0.33178 (+0.01) 18

ED777 0.32707 (+1.68) 0.33177 (0.00) 24

EDZ111 0.34184 (+6.27) 0.34497 (+3.98) 9

EDZ444 0.32913 (+2.32) 0.33178 (+0.01) 18

EDZ555 0.32755 (+1.82) 0.33177 (0.00) 21

EDZ777 0.32530 (+1.12) 0.33177 (+0.00) 27

V APAS0 0.33178 (+3.14) 0.33178 (+0.01) 3

V APAS 0.31037 (−3.5) 0.33175 (+0.00) 5

Elower skin
Ecore

≡ FCSR = 105

Elasticity 5.40842 · 10−04 Err.% 0.27797 Err.%

LD111 1.05700 · 10−04 (−80.5) 0.26143 (−5.95) 12

LD222 5.37740 · 10−04 (−0.57) 0.27797 (0.00) 21

LD555 5.40842 · 10−04 (0.00) 0.27797 (0.00) 48

ED111 0.33242 (> 100) 0.33242 (+19.6) 6

ED444 0.30529 (> 100) 0.33238 (+16.6) 15

ED555 0.21639 (> 100) 0.33214 (+19.5) 18

ED777 3.96907 · 10−02 (> 100) 0.32865 (+18.2) 24

EDZ111 0.30971 (> 100) 0.33077 (+19.0) 9

EDZ444 6.84336 · 10−03 (> 100) 0.30392 (+9.34) 18

EDZ555 1.87520 · 10−03 (> 100) 0.28655 (+3.09) 21

EDZ777 8.02443 · 10−04 (+48.4) 0.27994 (+0.71) 27

V APAS0 0.33242 (> 100) 0.33242 (+19.6) 3

V APAS 0.30592 (> 100) 0.33238 (+16.6) 5

Table 2
Test Case 1. Comparison of various theories to evaluate the transverse shear stress
σ̂zx = σzx

zP t( a
h)

in z = zupper skinbottom = 3
10h, x = 0, y = b/2. The indefinite equilibrium

equations have been integrated along the thickness.14



results. For moderate FCSR values and thick plates (a/h = 4, see Figures
4-7, VAPAS presents results that can be comparable of the results obtained
by using the axiomatic zig-zag theory EDZ777. This is particularly evident in
Figure 7. However, the VAPAS plate model only requires five DOFs, which
is only less than 20% of the computational cost one would need for EDZ777

(27 DOFs). It is also noted, VAPAS plate model remains the same as the
well-known Reissner-Mindlin elements universally available in all commercial
finite element packages.
The Equivalent Single Layer and Layerwise axiomatic theories presented in
this paper and a virtually infinite number of other theories can be imple-
mented in a single FEM code based on the Generalized Unified Formulation.
Accuracy and CPU time requirements can be easily met with an appropriate
selection of the type of theory and the orders used in the expansions of the
displacements.

a/h 10

Elower skin
Ecore

≡ FCSR = 101

Elasticity −0.11087 · 10−01 Err.% DOF

LD111 −0.10800 · 10−01 (−2.59) 12

LD222 −0.11085 · 10−01 (−0.01) 21

LD333 −0.11087 · 10−01 (−0.00) 30

LD444 −0.11087 · 10−01 (−0.00) 39

ED111 −0.08627 · 10−01 (−22.2) 6

ED222 −0.11736 · 10−01 (+5.85) 9

ED333 −0.11358 · 10−01 (+2.45) 12

ED444 −0.11316 · 10−01 (+2.07) 15

ED555 −0.11242 · 10−01 (+1.40) 18

EDZ111 −0.08696 · 10−01 (−21.6) 9

EDZ222 −0.11161 · 10−01 (+0.67) 12

EDZ333 −0.11166 · 10−01 (+0.71) 15

EDZ444 −0.11164 · 10−01 (+0.69) 18

EDZ555 −0.11146 · 10−01 (+0.53) 21

V APAS −0.111009 · 10−01 (+0.13) 5

Table 3
Test Case 1. Comparison of various theories to evaluate the in-plane displacement
ûx = ux

Ecore

zP th( a
h)

3 in z = zupper skinbottom = 3
10h, x = 0, y = b/2.

15



a/h 10

Elower skin
Ecore

≡ FCSR = 101

Elasticity −0.36956 · 10−02 Err.% DOF

LD111 −0.36000 · 10−02 (−2.59) 12

LD222 −0.36952 · 10−02 (−0.01) 21

LD333 −0.36956 · 10−02 (−0.00) 30

LD444 −0.36956 · 10−02 (−0.00) 39

ED111 −0.28757 · 10−02 (−22.2) 6

ED222 −0.39120 · 10−02 (+5.85) 9

ED333 −0.37860 · 10−02 (+2.45) 12

ED444 −0.37721 · 10−02 (+2.07) 15

ED555 −0.37473 · 10−02 (+1.40) 18

EDZ111 −0.28986 · 10−02 (−21.6) 9

EDZ222 −0.37204 · 10−02 (+0.67) 12

EDZ333 −0.37220 · 10−02 (+0.71) 15

EDZ444 −0.37213 · 10−02 (+0.69) 18

EDZ555 −0.37153 · 10−02 (+0.53) 21

V APAS −0.37003 · 10−02 (+0.13) 5

Table 4
Test Case 1. Comparison of various theories to evaluate the in-plane displacement
ûy = uy

Ecore

zP th( a
h)

3 in z = zupper skinbottom = 3
10h, x = a/2, y = 0.

4.4 Test Case 2: Numerical Results and Discussion

The dimensionless displacements used for this study are defined as

ûx = ux
Eskin

zP th
(
a
h

)3 ; ûz = uz
100Eskin

zP th
(
a
h

)4 (12)

Notice the formal difference with the dimensionless quantities introduced in
test case 1: here the elastic modulus used for the non-dimensional quantities
is the elastic modulus of the skin and not the one of the core. The results
are compared against the elasticity solution (see [14] and [16]). Tables 12, 13,
14, and 15 report some results obtained in reference [11] for thick, moderately
thick and thin sandwich structures. The available results have been enriched
with the new case of a/h = 2 and with the elasticity solution. The findings

16



Fig. 4. Test Case 1. Comparison of various theories to evaluate the in-plane normal
stress σ̂xx = σxx

zP t( a
h)

2 in x = a/2, y = b/2. Note that this stress is not a continuous

function on the thickness direction. Hooke’s law has been used.

Fig. 5. Test Case 1. Comparison of various theories to evaluate the in-plane normal
stress σ̂xx = σxx

zP t( a
h)

2 in x = a/2, y = b/2 (upper-skin). Hooke’s law has been used.

17



a/h 10

Elower skin
Ecore

≡ FCSR = 101

Elasticity 1.74265 Err.% DOF

LD111 1.70908 (−1.93) 12

LD222 1.74247 (−0.01) 21

LD333 1.74265 (−0.00) 30

LD444 1.74265 (−0.00) 39

ED111 1.18207 (−32.2) 6

ED222 1.58561 (−9.01) 9

ED333 1.70006 (−2.44) 12

ED444 1.71032 (−1.85) 15

ED555 1.71796 (−1.42) 18

EDZ111 1.34741 (−22.7) 9

EDZ222 1.73669 (−0.34) 12

EDZ333 1.73805 (−0.26) 15

EDZ444 1.73836 (−0.25) 18

EDZ555 1.73938 (−0.19) 21

V APAS 1.74265 (+0.00) 5

Table 5
Test Case 1. Comparison of various theories to evaluate the transverse displacements
amplitude (center plate deflection) ûz = uz

100Ecore

zP th( a
h)

4 in z = zupper skinbottom = 3
10h, x =

a/2, y = b/2.

of reference [11] have been confirmed: the equivalent single layer theories are
not indicated to analyze very challenging sandwich structures especially if the
face-to-core stiffness ratio is very high and the aspect ratio is small (thick
plates). This result is also confirmed in figures 8, 9, and 10. In particular, it is
clear from Figure 10 (which presents several AHSDTZ theories) that even zig
zag theories with considerably high order for the expansion of the variables
present significant error especially in the core region. As previously discussed
for Test Case 1, VAPAS provides excellent results for low values of FCSR.
If FCSR is increased, the error becomes larger. This suggests that VAPAS
presents superior performances with respect to the classical equivalent single
layer models (including zig zag effects) only if FCSR is moderate.
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a/h 10

Elower skin
Ecore

≡ FCSR = 101

Elasticity 0.33146 Err.% DOF

LD111 0.26290 (−20.7) 12

LD222 0.33169 (+0.07) 21

LD333 0.33144 (−0.00) 30

LD444 0.33146 (+0.00) 39

ED111 0.36049 (+8.76) 6

ED222 0.35272 (+6.41) 9

ED333 0.34357 (+3.65) 12

ED444 0.34649 (+4.54) 15

ED555 0.34260 (+3.36) 18

EDZ111 0.35807 (+8.03) 9

EDZ222 0.32847 (−0.90) 12

EDZ333 0.33559 (+1.25) 15

EDZ444 0.33753 (+1.83) 18

EDZ555 0.33678 (+1.60) 21

V APAS 0.33364 (+0.66) 5

Table 6
Test Case 1. Comparison of various theories to evaluate the in-plane normal stress
σ̂xx = σxx

zP t( a
h)

2 in z = zupper skinbottom = 3
10h, x = a/2, y = b/2. Note that this stress is

not a continuous function on the thickness direction. Hooke’s law has been used.
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a/h 10

Elower skin
Ecore

≡ FCSR = 101

Elasticity 0.14662 Err.% DOF

LD111 0.08285 (−43.5) 12

LD222 0.14688 (+0.17) 21

LD333 0.14660 (−0.01) 30

LD444 0.14662 (+0.00) 39

ED111 0.21666 (+47.8) 6

ED222 0.15706 (+7.12) 9

ED333 0.15421 (+5.18) 12

ED444 0.15783 (+7.64) 15

ED555 0.15518 (+5.84) 18

EDZ111 0.21309 (+45.3) 9

EDZ222 0.14239 (−2.88) 12

EDZ333 0.14943 (+1.92) 15

EDZ444 0.15141 (+3.27) 18

EDZ555 0.15095 (+2.95) 21

V APAS 0.14758 (+0.65) 5

Table 7
Test Case 1. Comparison of various theories to evaluate the in-plane normal stress
σ̂yy =

σyy

zP t( a
h)

2 in z = zupper skinbottom = 3
10h, x = a/2, y = b/2. Note that this stress is

not a continuous function on the thickness direction. Hooke’s law has been used.
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a/h 10

Elower skin
Ecore

≡ FCSR = 101

Elasticity −0.69314 · 10−01 Err.% DOF

LD111 −0.67520 · 10−01 (−2.59) 12

LD222 −0.69305 · 10−01 (−0.01) 21

LD333 −0.69314 · 10−01 (−0.00) 30

LD444 −0.69314 · 10−01 (−0.00) 39

ED111 −0.53936 · 10−01 (−22.2) 6

ED222 −0.73372 · 10−01 (+5.85) 9

ED333 −0.71010 · 10−01 (+2.45) 12

ED444 −0.70749 · 10−01 (+2.07) 15

ED555 −0.70283 · 10−01 (+1.40) 18

EDZ111 −0.54366 · 10−01 (−21.6) 9

EDZ222 −0.69779 · 10−01 (+0.67) 12

EDZ333 −0.69808 · 10−01 (+0.71) 15

EDZ444 −0.69795 · 10−01 (+0.69) 18

EDZ555 −0.69684 · 10−01 (+0.53) 21

V APAS −0.69775 · 10−01 (+0.67) 5

Table 8
Test Case 1. Comparison of various theories to evaluate the in-plane shear stress
σ̂xy =

σxy

zP t( a
h)

2 in z = zupper skinbottom = 3
10h, x = 0, y = 0. Note that this stress is not a

continuous function on the thickness direction. Hooke’s law has been used.
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a/h 10

Elower skin
Ecore

≡ FCSR = 101

Elasticity 0.32998 Err.% DOF

LD111 0.32242 (−2.29) 12

LD222 0.32994 (−0.01) 21

LD333 0.32998 (−0.00) 30

LD444 0.32998 (−0.00) 39

ED111 0.33178 (+0.55) 6

ED222 0.33210 (+0.64) 9

ED333 0.33081 (+0.25) 12

ED444 0.33178 (+0.54) 15

ED555 0.33117 (+0.36) 18

EDZ111 0.34444 (+4.38) 9

EDZ222 0.33154 (+0.47) 12

EDZ333 0.33140 (+0.43) 15

EDZ444 0.33124 (+0.38) 18

EDZ555 0.33096 (+0.30) 21

V APAS 0.32836 (−0.50) 5

Table 9
Test Case 1. Comparison of various theories to evaluate the transverse shear stress
σ̂zx = σzx

zP t( a
h)

in z = zupper skinbottom = 3
10h, x = 0, y = b/2. The indefinite equilib-

rium equations have been integrated along the thickness for all the theories except
VAPAS.
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a/h 10

Elower skin
Ecore

≡ FCSR = 101

Elasticity 0.10999 Err.% DOF

LD111 0.10747 (−2.29) 12

LD222 0.10998 (−0.01) 21

LD333 0.10999 (−0.00) 30

LD444 0.10999 (−0.00) 39

ED111 0.11059 (+0.55) 6

ED222 0.11070 (+0.64) 9

ED333 0.11027 (+0.25) 12

ED444 0.11059 (+0.54) 15

ED555 0.11039 (+0.36) 18

EDZ111 0.11481 (+4.38) 9

EDZ222 0.11051 (+0.47) 12

EDZ333 0.11047 (+0.43) 15

EDZ444 0.11041 (+0.38) 18

EDZ555 0.11032 (+0.30) 21

V APAS 0.10945 (−0.49) 5

Table 10
Test Case 1. Comparison of various theories to evaluate the transverse shear stress
σ̂zy =

σzy

zP t( a
h)

in z = zupper skinbottom = 3
10h, x = a/2, y = 0. The indefinite equilib-

rium equations have been integrated along the thickness for all the theories except
VAPAS.
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a/h 10

Elower skin
Ecore

≡ FCSR = 101

Elasticity 0.87231 Err.% DOF

LD111 0.87081 (−0.17) 12

LD222 0.87233 (+0.00) 21

LD333 0.87231 (+0.00) 30

LD444 0.87231 (−0.00) 39

ED111 0.51236 (−41.3) 6

ED222 0.58831 (−32.6) 9

ED333 0.77221 (−11.5) 12

ED444 0.78478 (−10.0 15

ED555 0.81517 (−6.55) 18

EDZ111 0.51803 (−40.6) 9

EDZ222 0.83586 (−4.18) 12

EDZ333 0.83769 (−3.97) 15

EDZ444 0.83847 (−3.88) 18

EDZ555 0.84631 (−2.98) 21

V APAS 0.87354 (+0.14) 5

Table 11
Test Case 1. Comparison of various theories to evaluate the transverse normal stress
σ̂zz = σzz

zP t in z = zupper skinbottom = 3
10h, x = a/2, y = b/2. The indefinite equilibrium

equations have been integrated along the thickness for all the theories except VA-
PAS.
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Fig. 6. Test Case 1. Comparison of various theories to evaluate the transverse shear
stress σ̂zx = σzx

zP t( a
h)

in x = 0, y = b/2. The indefinite equilibrium equations have

been integrated along the thickness.

Fig. 7. Test Case 1. Comparison of various theories to evaluate the transverse dis-
placements amplitude (center plate deflection) ûz = uz

100Ecore

zP th( a
h)

4 in x = a/2, y = b/2.
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a/h 2 4 10 100

E11 skin
E11 core

≡ FCSR = 7.3× 101

Elasticity 0.227330 Err% 0.198251 Err% 0.190084 Err% 0.188542 Err%

LM4 [11] NA NA 0.1982 −0.03 0.1901 +0.01 0.1885 −0.02

ED4 [11] NA NA NA |1.61|† NA |0.79|† NA |1.22|†

EMZC3[11] NA NA NA |1.66|† NA |0.74|† NA |1.17|†

LD1 [11] NA NA NA |1.06|† NA |0.16|† NA |0.05|†

LD4 [11] NA NA NA |0.00|† NA |0.00|† NA |0.00|†

EDZ555 0.246804 +8.57 0.201527 +1.65 0.188663 −0.75 0.186228 −1.23

LD222 0.219334 −3.52 0.195992 −1.14 0.189710 −0.20 0.188538 −0.00

LD555 0.227331 +0.00 0.198251 +0.00 0.190084 +0.00 0.188542 +0.00

V APAS 0.191717 −15.67 0.192759 −2.77 0.189362 −0.38 0.188535 −0.00

Table 12
Test Case 2. E11 skin

E11 core
≡ FCSR = 7.3×101. Comparison of various theories to evaluate

the transverse displacements amplitude (center plate deflection) ûz = uz
100E22 skin

zP th( a
h)

4

in x = a/2, y = b/2, z = 0.
†In Reference [11] the percentage error Err% is calculated with respect to the LM4
theory. In reference [11] it was not specified the formula used for the percentage
error. Therefore, in this table the absolute value is used for the errors reported
in reference [11]. The present error evaluations are calculated with respect to the
present elasticity solution (see equation 11).
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a/h 2 4 10 100

E11 skin
E11 core

≡ FCSR = 7.3× 104

Elasticity 45.6531 Err% 15.4835 Err% 7.03601 Err% 5.44237 Err%

LM4 [11] NA NA 15.483 −0.00 7.0360 −0.00 5.4424 +0.00

ED4 [11] NA NA NA |7.45|† NA |3.70|† NA |1.58|†

EMZC3[11] NA NA NA |0.60|† NA |4.06|† NA |5.56|†

LD1 [11] NA NA NA |0.91|† NA |0.23|† NA |0.14|†

LD4 [11] NA NA NA |0.00|† NA |0.00|† NA |0.00|†

EDZ555 46.3445 +1.51 15.5229 +0.25 6.96904 −0.95 5.35853 −1.54

LD222 45.6580 +0.01 15.4824 −0.01 7.03572 −0.00 5.44237 −0.00

LD555 45.6531 −0.00 15.4835 +0.00 7.03601 +0.00 5.44237 −0.00

V APAS 46.0669 +0.91 15.4066 −0.50 7.01576 −0.29 5.44215 −0.00

Table 13
Test Case 2. E11 skin

E11 core
≡ FCSR = 7.3×104. Comparison of various theories to evaluate

the transverse displacements amplitude (center plate deflection) ûz = uz
100E22 skin

zP th( a
h)

4

in x = a/2, y = b/2, z = 0.
†In Reference [11] the percentage error Err% is calculated with respect to the LM4
theory. In reference [11] it was not specified the formula used for the percentage
error. Therefore, in this table the absolute value is used for the errors reported
in reference [11]. The present error evaluations are calculated with respect to the
present elasticity solution (see equation 11).
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a/h 2 4 10 100

E11 skin
E11 core

≡ FCSR = 7.3× 106

Elasticity 1089.86 Err% 590.538 Err% 149.696 Err% 7.18809 Err%

LM4 [11] NA NA 590.54 +0.00 149.70 +0.00 7.1881 +0.00

ED4 [11] NA NA NA |82.8|† NA |85.2|† NA |20.0|†

EMZC3[11] NA NA NA |12.5|† NA |3.22|† NA |0.03|†

LD1 [11] NA NA NA |14.3|† NA |3.93|† NA |0.19|†

LD4 [11] NA NA NA |0.00|† NA |0.00|† NA |0.00|†

EDZ555 980.437 −10.04 581.360 −1.55 149.543 −0.10 7.19023 +0.03

LD222 1089.20 −0.06 590.446 −0.02 149.695 −0.00 7.18809 +0.00

LD555 1089.86 −0.00 590.538 −0.00 149.696 −0.00 7.18809 +0.00

V APAS 4125.04 > 100% 1017.25 +72.26 166.073 +10.94 7.18898 +0.00

Table 14
Test Case 2. E11 skin

E11 core
≡ FCSR = 7.3×106. Comparison of various theories to evaluate

the transverse displacements amplitude (center plate deflection) ûz = uz
100E22 skin

zP th( a
h)

4

in x = a/2, y = b/2, z = 0.
†In Reference [11] the percentage error Err% is calculated with respect to the LM4
theory. In reference [11] it was not specified the formula used for the percentage
error. Therefore, in this table the absolute value is used for the errors reported
in reference [11]. The present error evaluations are calculated with respect to the
present elasticity solution (see equation 11).
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a/h 2 4 10 100

E11 skin
E11 core

≡ FCSR = 7.3× 108

Elasticity 1469.50 Err% 1370.58 Err% 1260.31 Err% 149.506 Err%

LM4 [11] NA NA 1370.6 1260.3 149.51

ED4 [11] NA NA NA |91.8|† NA |98.1|† NA |96.1|†

EMZC3[11] NA NA NA |24.7|† NA |22.5|† NA |3.10|†

LD1 [11] NA NA NA |27.4|† NA |25.2|† NA |3.82|†

LD4 [11] NA NA NA |0.00|† NA |0.00|† NA |0.00|†

EDZ555 1283.34 −12.67 1323.09 −3.47 1251.11 −0.73 149.464 −0.03

LD222 1468.29 −0.08 1370.09 −0.04 1260.23 −0.01 149.507 +0.00

LD555 1469.50 −0.00 1370.58 −0.00 1260.31 +0.00 149.507 +0.00

V APAS 412009 > 100% 101187 > 100% 16120.2 > 100% 166.591 +11.43

Table 15
Test Case 2. E11 skin

E11 core
≡ FCSR = 7.3×108. Comparison of various theories to evaluate

the transverse displacements amplitude (center plate deflection) ûz = uz
100E22 skin

zP th( a
h)

4

in x = a/2, y = b/2, z = 0.
†In Reference [11] the percentage error Err% is calculated with respect to the LM4
theory. In reference [11] it was not specified the formula used for the percentage
error. Therefore, in this table the absolute value is used for the errors reported
in reference [11]. The present error evaluations are calculated with respect to the
present elasticity solution (see equation 11).
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Fig. 8. Test Case 2. Dimension-less displacement ûx = ux
Eskin

zP th( a
h)

3 ;.

E11 skin
E11 core

≡ FCSR = 7.3 × 104. Comparison between AHSDT, AHSDTZ, VAPAS,
and the elasticity solution.

Fig. 9. Test Case 2. Dimension-less displacement ûx = ux
Eskin

zP th( a
h)

3 ;.

E11 skin
E11 core

≡ FCSR = 7.3 × 108. Comparison between AHSDT, AHSDTZ, ALWT,
VAPAS, and the elasticity solution.
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Fig. 10. Test Case 2. Dimension-less displacement ûx = ux
Eskin

zP th( a
h)

3 ;.

E11 skin
E11 core

≡ FCSR = 7.3×108. Comparison between various zig-zag theories AHSDTZ
and the elasticity solution.
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5 Conclusion

The accuracy of the Variational Asymptotic Plate and Shell Analysis (VA-
PAS) is assessed against several higher-order, zig-zag and layerwise theories
generated by using the invariant axiomatic framework denoted as Generalized
Unified Formulation (GUF). Both the axiomatic models generated by GUF
and VAPAS are also compared against the elasticity solution developed for
the case of a sandwich structure with high Face to Core Stiffness Ratio. It
has been shown that the fact that GUF allows to use an infinite number of
axiomatic theories (Equivalent Single Layer theories with or without zig-zag
effects and Layerwise theories as well) with any combination of orders of the
displacements provides an ideal tool to precisely assess the range of applica-
bility of the Variational Asymptotic Plate and Shell Analysis or other theories
in general. It is demonstrated that VAPAS achieves accuracy comparable to a
fourth (or higher) order zig-zag theory or lower-order layerwise theories, while
the plate model uses the least number degrees of freedom. Hence, in compar-
ison to the axiomatic theories, VAPAS has achieved an excellent compromise
between accuracy and efficiency. Except for extreme cases of thick sandwich
with huge modulus contrast, VAPAS can be used as an effective alternative to
avoid expensive 3D finite element analysis for design and analysis of compos-
ite laminated plates. This assessment also points out the need that material
small parameter needs to be considered to generalize the VAPAS modeling
approach to deal with realistic sandwich structures.
GUF can be implemented in a single FEM code and can generate a virtu-
ally infinite number of theories with accuracy that range from the low-order
equivalent single-layer to the high-order layerwise theories and is the ideal
tool for comparisons and assessments of different theories or for the creation
of adaptive structural codes in optimization and probabilistic studies.
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a b s t r a c t

The variational asymptotic method is used to construct a new model for composite plates which could
have in-plane heterogeneity due to both geometry and material. We first formulate the original three-
dimensional problem in an intrinsic form which is suitable for geometrically nonlinear analysis. Taking
advantage of smallness of the plate thickness and heterogeneity, we use the variational asymptotic
method to rigorously construct an effective plate model unifying a homogenization process and a dimen-
sional reduction process. This approach is implemented in the computer code VAPAS using the finite ele-
ment technique for the purpose of dealing with realistic heterogeneous plates. A few examples are used
to demonstrate the capability of this new model.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Along with the rapidly increasing popularity of composite
materials and structures, research on accurate and general model-
ing of structures made of them has remained as a very active field
in the last several decades. Moreover the increased knowledge and
fabrication techniques of them are possible to manufacture new
materials and structures with optimized microstructures to
achieve the ever-increasing performance requirements. Although
it is logically sound to use the well-established finite element anal-
ysis (FEA) to analyze such materials and structures by meshing all
the details of constituent microstructures, it is not a practical and
efficient way, which requires an inordinate number of degrees of
freedom (i.e., computing cost) to capture the micro-scale behavior.

Fortunately, most composite materials exhibit statistical homo-
geneity (Hashin, 1983) so that we can define a representative vol-
ume element (RVE), which is entirely typical of the whole mixture
on average and contains a sufficient number of inclusions for the
apparent overall properties to be effectively independent of the
boundary conditions (Hill, 1963). Although different definitions
are given for an RVE in the literature (Nemat-Nasser and Hori,
1993), we give a practice-oriented definition for an RVE as any
block of material the analyst wants to use for the micromechanical
analysis to find the effective properties and replace it with an
equivalent homogeneous material. The term unit cell (UC) is also
used extensively in the literature and defined as the building block
of the heterogeneous material. In our work, we define UC as the

smallest RVE. In other words, one RVE could contain several UCs.
These definitions essentially imply that it is the analyst’s judge-
ment to determine what should be contained in an RVE or UC. To
be consistent with statistical homogeneity, a well-formulated
micromechanics model should not depend on the size of an RVE,
which means the effective properties obtained from an RVE con-
taining multiple UCs should be the same as those obtained from
a UC. In this sense, we consider the heterogeneous structure as a
periodic assembly of many UCs.

If the size of UC (d) is much smaller than the size of the struc-
ture (L) (i.e., g = d/L� 1), it is possible to homogenize the heter-
ogeneous UC with a set of effective material properties through
a micromechanical analysis of the UC. With these effective prop-
erties, the analyst can replace the original heterogeneous struc-
ture with a homogeneous one and carry out structural analysis
for global behavior. In the past several decades, numerous micro-
mechanical approaches have been suggested in the literature,
such as the self-consistent model (Hill, 1965; Dvorak and Bahei-
El-Din, 1979; Accorsi and Nemat-Nasser, 1986), the variational
approach (Hashin and Shtrikman, 1962; Milton, 2001), the meth-
od of cells (Aboudi, 1982, 1989; Paley and Aboudi, 1992; Wil-
liams, 2005), recursive cell method (Banerjee and Adams, 2004),
mathematical homogenization theories (Bensoussan et al., 1978;
Sanchez-Palencia, 1980; Murakami and Toledano, 1990), finite
element approaches using conventional stress analysis of a repre-
sentative volume element (Sun and Vaidya, 1996), variational
asymptotic method for unit cell homogenization (VAMUCH) (Yu,
2005; Yu and Tang, 2007), and many others (see, e.g. Hollister
and Kikuchi (1992), Kalamkarov et al. (2009), Kanouté et al.
(2009) for a review).
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In real applications, many composite structures are dimension-
ally reducible structures (Yu, 2002) with one or two dimensions
much smaller than others. For example, many load bearing compo-
nents are flat panels with the thickness h much smaller than the in-
plane dimensions (i.e., e = h/L� 1) and they can be effectively
modeled using plate models. If there are still many unit cells along
the thickness direction (i.e., g� e), we can use the traditional two-
step approach that performs homogenization using micromechan-
ics first to obtain effective properties of the heterogeneous mate-
rial, then performs a dimensional reduction to construct a plate
model for structural analysis. Usually, composite plates do not
have many unit cells along the thickness direction. For example,
for plates made of textiles, the textile microstructure might be as
large as the plate thickness. That is, the periodicity is exhibited
only in-plane and we have either e� g or e � g. As pointed out
by Kohn and Vogelius (1984), if e� g, the order of the aforemen-
tioned two-step approach should be reversed. That is, we need to
carry out the dimensional reduction to construct plate models first,
then homogenize the heterogeneous surface with periodically
varying plate properties. If e � g, the two steps in the two-step ap-
proach should be performed at the same time, that is, both small
parameters (e and g) should be considered during modeling of
such structures. And several studies have shown that models con-
sidering e and g simultaneously also give accurate results for the
case e� g (Lewiński, 1991; Buannic and Cartraud, 2001).

In recent years, the formal asymptotic method has been used to
study this problem (Caillerie, 1984; Kohn and Vogelius, 1984; Le-
wiński, 1991; Kalamkarov, 1992; Kalamkarov and Kolpakov,
1997). It is a modification to the asymptotic homogenization meth-
od which is a direct application of the formalism of two scales to
the original three-dimensional (3D) equations governing the plate
structure. However, although these models are mathematically
elegant and rigorous without introducing ad hoc assumptions, it
is not easy to relate the equations derived using this method with
simple engineering models and extend this approach to geometri-
cal nonlinear problems. Sometimes, the displacement field pre-
dicted using this approach is not compatible with the stress field.
For example, the displacement field in Eqs. (1.3.5) of Kalamkarov
and Kolpakov (1997) implies zero transverse normal strain which
further implies nonzero normal stress due to Poisson’s effect,
which is not compatible with the stress field given in Eq. (1.3.6)
of Kalamkarov and Kolpakov (1997). Last but not least, it is difficult
to implement these theories numerically.

As a remedy to the shortcomings of formal asymptotic method,
we propose to use the variational asymptotic method (VAM)
(Berdichevsky, 1979) to carry out simultaneous homogenization
and dimensional reduction to construct a model suitable for plates

made of heterogeneous materials. First, the 3D anisotropic elastic-
ity problem is formulated in an intrinsic form suitable for geomet-
rically nonlinear analysis. Then, considering both e and g, we use
VAM to rigorously decouple the original 3D anisotropic, heteroge-
neous problem into a nonlinear two-dimensional (2D) surface
analysis (i.e., plate analysis) on the macroscopic level and a linear
micromechanical analysis. The micromechanical analysis is imple-
mented in the computer code VAPAS (Variational Asymptotic Plate
and Shell analysis) using the finite element technique for numeri-
cally obtaining the effective plate constants for the 2D plate anal-
ysis and recovering the local displacement, strain, and stress
fields based on the macroscopic behavior. Several examples are
used to demonstrate the application and accuracy of this new
model and the companion code VAPAS.

2. Three-dimensional formulation

A plate may be considered geometrically as a smooth 2D ref-
erence plane x surrounded by a layer of matter with thickness
h to form a 3D body with one dimension much smaller than
the other two. In general, a point in the plate can be represented
mathematically by its Cartesian coordinates xi, where xa are two
orthogonal lines in the reference plane and x3 is the normal coor-
dinates. (Here and throughout the paper, Greek indices assume
values 1 and 2 while Latin indices assume 1, 2, and 3. Repeated
indices are summed over their range except where explicitly indi-
cated.) Without loss of generality, we choose the middle of the
plate as the origin of x3. Let us now consider an heterogeneous
plate formed by many UCs (X) in the reference plane (see
Fig. 1). To describe the rapid change in the material characteris-
tics in the in-plane directions, we need to introduce two so-called
‘fast’ coordinates ya parallel to xa. These two sets of coordinates
are related as ya = xa/g.

If the UC is a cuboid as depicted in Fig. 1, we can describe the
domain (X) occupied by the UC using ya and x3 as

X ¼ ðy1; y2; x3Þ �
d1

2
< y1 <

d1

2
;� d2

2
< y2 <

d2

2
;� h

2
< x3 <

h
2

����
� �

ð1Þ

As our goal is to homogenize the heterogenous material, we need to
assume that the exact solution of the field variables have volume
averages over X. For example, if ui(x1,x2,x3;y1,y2) are the exact dis-
placements within the UC, there exists vi(x1,x2) such that

v i ¼
1
X

Z
y1

Z
y2

Z
x3

ui dy1 dy2 dx3 ¼
1
X

Z
X

ui dX � uih i ð2Þ

Fig. 1. A heterogeneous plate with representative periodicity cell.
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Due to the existence of a distinct scale separation between two
types of spatial variations described by ya and xa, the derivative
of a function, ui, defined in X can be evaluated as

@uiðx1; x2; x3; y1; y2Þ
@xa

¼ @ui

@xa

����
ya¼const

þ 1
g
@ui

@ya

����
xi¼const

� ui;a þ
1
g

uija ð3Þ

Note that in real calculation, g is not a number but denoting the or-
der of the term it is associated with.

Letting bi denote a unit vector along xi for the undeformed plate,
one can then describe the position of any material point in the
undeformed configuration by its position vector r̂ relative to a
point O fixed in an inertial frame, such that

r̂ðx1; x2; x3Þ ¼ rðx1; x2Þ þ x3b3 ð4Þ

where r is the position vector from O to the point located by xa on
the reference plane.

When the plate deforms, the particle that had position vector r̂
in the undeformed state now has position vector bR in the deformed
configuration. The latter can be uniquely determined by the defor-
mation of the 3D body. To this end, we need to introduce a new
triad Bi for the deformed plate as unit vectors to express vectors
and tensors in their component form during the derivation. The
relation between Bi and bi can be specified by an arbitrary large
rotation in terms of the matrix of direction cosines C(x1,x2) so that

Bi ¼ Cijbj with Cij ¼ Bi � bj ð5Þ

subject to the requirement that Bi is coincident with bi when the
structure is undeformed. Following Hodges et al. (1993) and Yu
et al. (2002), the position vector bR can be represented as

bRðxi; yaÞ ¼ Rðx1; x2Þ þ x3B3ðx1; x2Þ
þwiðx1; x2; x3; y1; y2ÞBiðx1; x2Þ ð6Þ

where R denotes the position vector describing the deformed refer-
ence surface and wi denotes the warping functions describing the
deformation not captured by R and Bi. Because of the way we intro-
duce ‘fast’ coordinates, wi are periodic functions in ya, that is

wiðx1; x2; x3; d1=2; y2Þ ¼ wiðx1; x2; x3;�d1=2; y2Þ
wiðx1; x2; x3; y1;d2=2Þ ¼ wiðx1; x2; x3; y1;�d2=2Þ

ð7Þ

Eq. (6) can be considered as a change of variable and six constraints
are needed to ensure a one-to-one mapping between bR and
(R,Bi,wi). If we define R ¼ hbRi, then we have the following three
constraints

wih i ¼ 0 ð8Þ

The other three constraints can be obtained by a proper definition of
Bi. Two constraints can be specified by defining B3 as the normal to
the reference surface of the deformed plate. The last constraint can
be specified by the rotation of Ba around B3 such that

B1 �
@R
@x2
¼ B2 �

@R
@x1

ð9Þ

Following Atilgan and Hodges (1992), the plate strains can be de-
fined using R and Bi as

@R
@xa
¼ Ba þ eabBb ð10Þ

and

@Bi

@xa
¼ �jabBb � B3 þ ja3B3
� �

� Bi ð11Þ

It can be shown that the last constraint in Eq. (9) actually implies
that symmetry of in-plane strains (eab = eba).

Based on the concept of decomposition of rotation tensor (Dan-
ielson and Hodges, 1987), the Jauman–Biot–Cauchy strain compo-
nents for small local rotation are given by

Cij ¼
1
2

Fij þ Fji
� �

� dij ð12Þ

where dij is the Kronecker symbol, and Fij the mixed-basis compo-
nent of the deformation gradient tensor such that

Fij ¼ Bi � Gkgk � bj ð13Þ

Here gi are the contravariant base vector of the undeformed config-
uration and in a plate case, gi = gi = bi, while Gi are the 3D covariant
basis vectors of the deformed configuration, which can be obtained
in the following way:

Ga ¼
@ bR
@xa
¼ bR ;a þ

1
g
bR ja

G3 ¼
@ bR
@x3
� bR j3

ð14Þ

With the assumption that the plate strains are small compared to
unity which is sufficient for geometrical nonlinear analysis, we
can neglect all the terms that are products of the warping and the
generalized strains and obtain the 3D strain field as

C11 ¼ e11 þ x3j11 þw1;1 þ
1
g

w1j1

2C12 ¼ 2e12 þ x3ðj12 þ j21Þ þw1;2 þw2;1 þ
1
g
ðw1j2 þw2j1Þ

C22 ¼ e22 þ x3j22 þw2;2 þ
1
g

w2j2

2C13 ¼ w1j3 þw3;1 þ
1
g

w3j1

2C23 ¼ w2j3 þw3;2 þ
1
g

w3j2

C33 ¼ w3j3

ð15Þ

The strain energy stored in the heterogeneous plates can be ob-
tained as:

U ¼
Z

x1

Z
x2

CT DC
D E

dx1dx2 ¼
Z

x
CT DC
D E

dx ð16Þ

where C = bC112C12C222C132C23C33cT and D(x3;y1,y2) is the 3D
6 � 6 material matrix, which consists of elements of the fourth-or-
der elasticity tensor expressed in the local in-plane coordinate sys-
tem ya and the thickness coordinate system x3.

To deal with the applied loads, we follow Yu et al. (2002). At
first, we will leave open the existence of a potential energy and
alternatively develop the virtual work of the applied loads. The vir-
tual displacement is taken as the Lagrangian variation of the dis-
placement field, such that

dbR ¼ dqBi
Bi þ x3dwBi

Bi � B3 þ dwiBi þ dwBi
Bi �wjBj ð17Þ

where the virtual displacement of the reference surface is given by

dqBi
¼ du � Bi ð18Þ

and the virtual rotation of the reference surface is defined such that

dBi ¼ dwBj
Bj � Bi ð19Þ

Because of small strain assumption, we may safely ignore products
of the warping and the loading in the virtual rotation term. Then,
the work done through a virtual displacement due to the applied
loads si Bi at the top surface (S+) and biBi at the bottom surface
(S�) and body force /iBi is
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dW ¼ ð�si þ �bi þ h/iiÞdqBi
þ dwBa

h
2

�sa � �ba
� �

þ hx3/ai
� �

þ dð�siwþi þ �biw�i þ h/iwiiÞ ð20Þ

with

�s ¼ 1
Sþ

Z
Sþ

sidSþ and �bi ¼
1
S�

Z
S�

bidS�

Eq. (20) can also be written in a matrix form as:

dW ¼ dqT f þ dwT mþ dð�sT wþ þ �bT w� þ h/T wiÞ ð21Þ

with

f ¼ �sþ �bþ h/i

m ¼

h
2 ð�s1 � �b1Þ þ hx3/1i
h
2 ð�s2 � �b2Þ þ hx3/2i

0

8><
>:

9>=
>;

ð22Þ

where si, bi, and /i are taken to be independent of the deformation
and ðÞþ ¼ ðÞjx3¼h=2 and ðÞ� ¼ ðÞjx3¼�h=2.

Now, the complete statement of the problem can be presented
in terms of the principle of virtual work, such that

dU � dW ¼ 0 ð23Þ

In spite of the possibility of accounting for nonconservative forces in
Eq. (23), the problem that governs the 3D unknown warping func-
tions is conservative. Thus, one can pose the problem that governs
the warping as the minimization of a total potential functional

P ¼ U þW ð24Þ

so that

dP ¼ 0 ð25Þ

in which only the warping displacement is varied, subject to the
constraints in Eqs. (7) and (8). This implies that the potential of
the applied loads for this portion of the problem is given by

W ¼ ��sT wþ � �bT w� � h/T wi ð26Þ

Below, for simplicity of terminology, we will refer to P as the total
potential energy, or the total energy.

By principle of minimum total potential energy, one can solve
the unknown warping functions by minimizing the functional in
Eq. (24) subject to the constraints of Eq. (8) and periodic boundary
conditions Eq. (7). Up to this point, this is simply an alternative for-
mulation of the original 3D elasticity problem. If we attempt to
solve this problem directly, we will meet the same or even more
difficulty as solving any full 3D nonlinear elasticity problem. Fortu-
nately, as shown in Yu et al. (2002), Yu (2005), Yu and Tang (2007),
VAM can be used to calculate the 3D unknown functions
asymptotically.

3. Effective plate model

To rigorously reduce the original 3D problem to a 2D plate mod-
el, one must attempt to reproduce the energy stored in the 3D
structure in a 2D formulation. The best one can do is to accomplish
it asymptotically taking advantage of the small parameters inher-
ent in the structure. As pointed out previously we have two small
parameters in our problem: e denoting the smallness of the thick-
ness and g denoting the smallness of heterogeneity. Following Le-
wiński (1991) and Buannic and Cartraud (2001), we also assume
that two small parameters are of the same order as models con-
structed based on this assumptions also give accurate results when
e� g.

In this paper, VAM will be used to mathematically reduce the
3D problem to a 2D plate model. To proceed by this method, first
one has to assess and keep track of the orders of all the quantities
in the formulation. Following Sutyrin (1997), the quantities of
interest have the following orders:

eab � hjab � ê f 3 � lðh=LÞ2ê f a � lðh=LÞê ma � lhðh=LÞê
ð27Þ

where ê is the order of the plate strains and l is the order of the
material constants (all of which are assumed to be of the same
order).

According to the order analysis in Eq. (27), the applied loads are
of higher order, and the work done by the external forces is negli-
gible in the zeroth-order approximation of energy. Thus, the total
potential functional can be expressed as:

dP ¼ 0 with dU ¼ 0 ð28Þ

The VAM requires one to find the leading terms of the functional
according to the different orders. For the zeroth-order approxima-
tion, the corresponding 3D strain field can be expressed in the fol-
lowing matrix in view of Eq. (15)

C ¼ Chwþ Cee ð29Þ

where w = bw1 w2 w3cT, e = be11 2e12 e22 j11 j12 + j21 j22cT, and

Ch ¼

@
@y1

0 0
@
@y2

@
@y1

0

0 @
@y2

0
@
@x3

0 @
@y1

0 @
@x3

@
@y2

0 0 @
@x3

2
666666666664

3
777777777775

Ce ¼

1 0 0 x3 0 0
0 1 0 0 x3 0
0 0 1 0 0 x3

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

2
666666664

3
777777775

ð30Þ

For general cases we need to turn to numerical techniques such as
FEM for approximate solutions. To this end, we need to express w
using shape functions defined over X as

wðx1; x2; x3; y1; y2Þ ¼ Sðy1; y2; x3ÞVðx1; x2Þ ð31Þ

where S represents the shape functions and V a column matrix of
the nodal values of the warping functions.

Substituting Eq. (31) into Eq. (29) then into Eq. (28), we obtain
the leading terms for the zeroth-order approximation in the fol-
lowing discretized form as

PX ¼
1

2X
ðVT EV þ 2VT Dheeþ eT DeeeÞ ð32Þ

where

E ¼
Z

X
ðChSÞT DðChSÞdX Dhe ¼

Z
X
ðChSÞT DCe dX

Dee ¼
Z

X
CT

e DCe dX ð33Þ

The periodic constraints in Eq. (7) and the average constraints in Eq.
(8) can be easily handled as normally done in FEM through assem-
bly for obtaining the functional in Eq. (32). Minimizing PX in Eq.
(32), gives us the following linear system

EV ¼ �Dhee ð34Þ

It is clear that V will linearly depend on the 2D plate strains e, which
means it is unnecessary to assign values to e (even 1’s and 0’s as in
common practice), and they can be treated as symbols without
entering the computation. The solution can be symbolically written
as

V ¼ V0e ð35Þ
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Substituting Eq. (35) back into Eq. (32), we can calculate the energy
functional storing in the UC, asymptotically correct through the or-
der of lê2 as

PX ¼
1

2X
eTðVT

0Dhe þ DeeÞe �
1
2
eT De ð36Þ

D is the effective plate stiffness to be used for the classical plate the-
ory (CPT). However, unlike the standard procedure of CPT, the effec-
tive plate stiffness are calculated from knowledge of complex
geometric and material characteristics in a representative UC at
the microscopic level considering the smallness of both thickness
and heterogeneity. This microstructurally informed D can be used
in CPT to predict the global structural behavior. If the local fields
within the UC are of interest, we can recover those fields based
on the 2D global displacements u2d, 2D global strains e, and the
3D local warping functions wi.

From Eqs. (4) and (6), we can obtain the 3D displacement field
as:

U3d ¼ bR � r̂ ¼ R � rþ x3ðB3 � b3Þ þwiBi ð37Þ

which can also be expressed in the following matrix form as

U3d ¼ u2d þ x3

C31

C32

C33 � 1

2
64

3
75þ CT SV0e ð38Þ

where U3d is the column matrix containing 3D displacement com-
ponents in the bi basis and u2d is the column matrix containing
the 2D plate displacements in the bi basis. C is the direction-cosine
matrix relating Bi and bi, given in Eq. (5).

From Eq. (29), one can recover the 3D local strain field C
through the zeroth order as

C ¼ Ceeþ ChSV0e ð39Þ

Finally, the local 3D stress field r can be recovered straightfor-
wardly using the original 3D constitutive relations as

r ¼ DC ð40Þ

We just derived the model for heterogeneous plates with the UC
periodically varying along both x1 and x2. It is easy to deduce that
it is also applicable to degenerated cases such as the UC is only peri-
odically varying along one direction. For example if it is periodic
along x1, then the partial derivative with respect to y1 vanishes in
Ch operator of Eq. (29). That is, we only need to solve a 2D problem
in y2 and x3. If the plate is uniform in plane, then the partial deriv-
atives with respect to y1 and y2 both vanish and the theory reduces
to a 1D through-the-thickness as that of the classical plate theory
derived using VAM as in Yu et al. (2002). The present theory is
implemented in the computer code VAPAS (Variational Asymptotic

Plate and Shell Analysis). In the following section, we are going to
use a few examples to assess the validity of the present theory
and the companion code VAPAS.

4. Validation examples

First, we investigate plates made of binary composites. The
effective plate stiffness obtained by the present theory is compared
to that obtained from conventional two-step approach. Second,
heterogeneous plates having more complex UCs with different
geometric and material characteristics at the microscopic level
are used to demonstrate the accuracies and capabilities of the
new theory and the differences between the conventional two-step
approach and the present approach.

4.1. Plates made of binary composites

First, let us consider a plate made of N binary composites each
of which is formed by two different orthotropic layers with the
material axes the same as the global coordinates xi. Overall, there
are 2N layers in the plate. The material is uniform in the xa plane
and varies along x3 direction. Let u1and u2 denote the volume frac-
tions of the bottom layer and top layer, respectively, and we have
u1 + u2 = 1. The plate structure can be considered periodic along x1

and/or x2 directions. Using the present theory, we can model it
using three approaches: (1) as a one-dimensional (1D) UC with
no periodicity; (2) as a 2D UC with periodicity either in x1 or x2;
(3) as a 3D unit cell with periodicity in both x1 and x2. Each UC will
have N binary composites along the thickness. We have verified
that all these three modeling approaches yield the same effective
plate stiffness which can be written in the following matrix form:

D ¼

�d11 0 �d13
�d14 0 �d16

0 �d22 0 0 �d25 0
�d13 0 �d33

�d16 0 �d36
�d14 0 �d16

�d44 0 �d46

0 �d25 0 0 �d55 0
�d16 0 �d36

�d46 0 �d66

2
6666666664

3
7777777775

ð41Þ

Particularly, modeling it as a 1D UC with no periodicity can be car-
ried out analytically and the result is the same as classical plate
model derived using VAM considering the plate is made of 2N layers
(Yu et al., 2002).

To analyze this structure using the two-step approach (TSA), the
analyst needs to first homogenize the binary composites to obtain
effective 3D material properties which can be expressed in the fol-
lowing matrix

Fig. 2. Effective bending stiffness versus number of UCs.

Table 1
Effective plate constants of unidirecitonal composite plates predicted by different
methods.

SAM FEM TSA VAPAS

�d11 0.443 0.452 0.444 0.443
�d13 0.074 0.062 0.039 0.035
�d22 0.040 0.114 0.045 0.047
�d33 0.261 0.285 0.151 0.145
�d44 2.308 2.256 3.702 2.246
�d46 0.446 0.224 0.328 0.176
�d55 0.195 0.568 0.371 0.547
�d66 1.799 0.873 1.262 0.653
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D3D ¼

�c11 0 �c13 0 0 �c16

0 �c22 0 0 0 0
�c13 0 �c33 0 0 �c36

0 0 0 �c44 0 0
0 0 0 0 �c55 0

�c16 0 �c36 0 0 �c66

2
666666664

3
777777775

ð42Þ

Here for the sake of saving space, the expressions for �cij are not
listed here. Interested users can refer to Yu (2005) for analytical
expressions of all the terms in Eq. (42) with a rearrangement to
be consistent with the ordering of 3D strains used in this paper.
Then, the analyst needs to carry out a dimensional reduction to ob-
tain the classical plate model, of which the corresponding stiffness
terms based on Eq. (42) are

�d11 ¼ hc�11ix3
�d13 ¼ hc�13ix3

�d22 ¼ h�c22ix3
�d33 ¼ hc�33ix3

�d14 ¼ hx3c�11ix3
�d16 ¼ hx3c�13ix3

�d25 ¼ hx3�c22ix3
�d36 ¼ hx3c�33ix3

�d44 ¼ hx2
3c�11ix3

�d46 ¼ hx2
3c�13ix3

�d55 ¼ hx2
3�c22ix3

�d66 ¼ hx2
3c�33ix3

ð43Þ

with haix3
¼
R h=2
�h=2 adx3 and

c�11 ¼ �c11 �
�c2

16
�c66

c�13 ¼ �c13 �
�c16�c36

�c66
c�33 ¼ �c33 �

�c2
36

�c66

We can prove that the present theory and TSA predict the same
extensional stiffness, Dijði ¼ 1;2;3; j ¼ 1;2;3Þ (A matrix in CPT).
The present theory will predict different coupling stiffness
Dijði ¼ 1;2;3; j ¼ 4;5;6Þ (B matrix in CPT) as the coupling stiffness
according to TSA always remains zero. The coupling stiffness B pre-
dicted by the present theory is:

B ¼ h2

2N
u1u2D� ð44Þ

with

D� ¼
ĉð2Þ11 � ĉð1Þ11 0 ĉð2Þ13 � ĉð1Þ13

0 ĉð2Þ22 � ĉð1Þ22 0

ĉð2Þ13 � ĉð1Þ13 0 ĉð2Þ33 � ĉð1Þ33

2
664

3
775

where the subscripts denote which layer the value evaluated for.
For example ĉð2Þ11 denotes ĉ11 evaluated for the top layer of the binary
composite. The hatted quantities are calculated as

ĉ11 ¼ c11 �
c2

16

c66
ĉ13 ¼ c13 �

c16c36

c66
ĉ33 ¼ c33 �

c2
36

c66
ð45Þ

where cij are the stiffness components of the stiffness matrix ar-
ranged from the fourth-order elasticity for each constituent mate-
rial of the binary composite. Only if these hatted quantities are
the same for both layers, the coupling stiffness B in Eq. (44) pre-
dicted by the present theory will vanish as that predicted by TSA.

The present theory will also predict different bending stiffness
�Dijði ¼ 4;5;6; j ¼ 4;5;6Þ (D matrix in CPT). If we use D and DTSA to
denote the bending stiffness predicted by the present theory and
TSA, respectively, we have

D� DTSA ¼
h3

6N2 u1u2ðu1 �u2ÞD
� ð46Þ

If the hatted quantities in Eq. (45) are the same for both layers, the
present theory will predict the same bending stiffness as TSA. Even
if the hatted quantities in Eq. (45) are different for each layer, the
present theory will predict the same bending stiffness as TSA if
u1 = u2 (i.e., the two layers of the binary composites are of equal
thickness).

From Eqs. (44) and (46), we observe for a large N, the differences
between the present approach and TSA become negligible which is

expected as TSA is only valid when there are many UCs along the
thickness. In real situations, this plate can only be made of a finite
number of binary composites. For a finite number N, the error
caused by TSA for bending stiffness decreases proportional to 1/
N2 which is much faster than the coupling stiffness which de-
creases proportional to 1/N. For example, let us study the binary
composite case that Poisson’s ratios of both materials are the same,
say 0.3, and the second material is 10 times stiffer than the first
material. For purposes of comparison between TSA and VAPAS
(or CPT), we plot the effective coupling stiffnesses ð�d14Þ with re-
spect to the number of unit cells along the thickness. As one can
observe from Fig. 2 for this particular case, there should be at least
six UCs along the thickness for the difference between TSA and VA-
PAS (or CPT) to be below 10% considering each individual layers for
plates made of binary composites.

4.2. Plates made of unidirectional composites

The second example is a plate made of a single layer of unidirec-
tional composites as sketched in Fig. 3 with d1 = h = 10 lm studied
in Sankar and Marrey (1997). The unidirectional composite has a
E-glass fiber (Ef = 70 GPa, mf = 0.2), and an epoxy matrix (Em = 3.5
GPa, mm = 0.35). The volume fraction of matrix is /m = 0.4. The fiber
direction is along x2 and the plate is periodically varying along x1.
The effective plate stiffness predicted by different approaches are
listed in Table 1, where SAM, FEM, and TSA results are directly ta-
ken from Table 6 of Sankar and Marrey (1997) with SAM denoting
the results obtained by a selective averaging method, FEM denot-
ing the results obtained by 3D FEA with periodic displacement
and traction boundary conditions imposed on opposite surfaces
of the unit cell, and TSA denoting the results obtained by
the two-step approach with elastic constants obtained using
Halpin–Tsai equations.

Significant differences are observed among the results predicted
by different approaches. The best way to tell which set of plate
constants is accurate is to use these constants to carry out the cor-
responding plate analysis and compare the global plate behavior
with those predict by a direct 3D finite element analysis of the ori-
ginal plate structure. Suppose a square plate composed of 20 UCs is
under a uniform pressure and is simply supported at the four
edges. Because of symmetry, only 1/4 of the structures needs to
be analyzed; see Fig. 4 for sketches for the geometry and finite ele-

Fig. 3. A unit cell for a unidirectional fiber reinforced composite.
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ment model of this structure. We found out that the max deflection
using VAPAS constants is only 0.5% off from the direct 3D FEA anal-
ysis, while that using SAM constants is 5% off, and by FEM is 7.0%
off, and TSA is 23%. Clearly the plate analysis based on VAPAS can
accurately reproduce the original 3D FEA direct analysis.

4.3. A three-layer laminated plate

On the macroscopic level, a laminate is a collection of laminae
stacked in the same or different fiber directions to achieve the de-
sired stiffness and thickness. Typically, the fundamental building
block on the mesoscopic scale is a lamina or layer, which represents
a typical sheet of a composite material. For example, a fiber-
reinforced layer commonly consists of many fibers embedded in
a matrix material on the microscale level.

This structure is commonly analyzed using TSA. The analyst
firsts homogenize a generic layer with specific fiber/matrix config-
uration to obtain effective 3D material properties using a 2D UC
(left) as sketched in Fig. 5 with d = 1 m and h = 1 m. We consider
a fiber-reinforced layer made of a transversely isotropic fiber
(EL = 58.61 GPa, ET = 14.49 GPa, GLT = 5.38 GPa, mLT = 0.250, mTT =
0.247) and an isotropic matrix material (E = 3.54 GPa, m = 0.37).
The volume fraction of matrix is /m = 0.4. The effective 3D material
properties were referred to a coordinate system that coincides
with the principal material coordinate system. Since composite
laminates have several layers, each with different orientation of
their material (local) coordinates with respect to the laminate (glo-
bal) coordinates, we need to transfer the 3D materials properties
with different fiber directions (lay-up angles) along the laminate
thickness into the global coordinate system. In our problem, a lam-
inate has three layers with different fibers oriented at 0�, 45� and
90� (top-to-bottom). Then, the analyst carry out a dimensional

Fig. 5. Unit cells for the two-step and the present approaches.

Fig. 4. Direct 3D FEA model of plate made of unidirectional composites.
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reduction to obtain the effective plate stiffness of the composite
laminate based on the transformed 3D effective material proper-
ties for each layer. However, as pointed out previously, such a
two-step approach (homogenization then dimensional reduction)
provides an accurate prediction only if there are many UCs along
the thickness. In this three-layer laminated plate, there are three
UCs along the thickness and all the UCs are different due to differ-

ent layup orientations. We will expect this TSA approach com-
monly used in analysis of laminated plates will introduce
significant errors comparing to a direct 3D FEA of the same struc-
ture by meshing details including the microstructural features of
the fiber reinforced composites (Fig. 6). Specifically, 10-noded tet-
rahedral SOLID92 elements are used to mesh the fibers with a total
of 120,074 elements and the matrix with a total of 992,695 ele-
ments. AESIZE = 0.33 is used to control the element size inside
any area or on the face(s) of a volume. To avoid the loss of accuracy
of the common two-step approach, we instead can use the present
approach to construct an effective plate model using a 2D UC
including all the three layers with different layup orientations
(see Fig. 5(right)).

The effective plate stiffness predicted by TSA and the present
theory implemented in VAPAS are listed in Tables 2–4. Unlike
the binary composite case, the present approach and TSA predict
significantly different extension, bending, and coupling stiffness.
To assess the loss of accuracy of these two modeling approaches,
we consider a square plate with L = 40 m under a uniform pressure
and simply supported at the four edges; see Fig. 7 for sketches for
the geometry and finite element model of this structure. We found
out that the max deflection using the present approach is only 0.6%
off from the direct 3D FEA analysis, while that using TSA is 14% off

Fig. 6. 3D fiber microstructural configuration with different lay-up angles.

Table 2
Effective extension stiffness of a three-layer composite laminate.

�d11
�d12

�d13
�d22

�d23
�d33

TSA 4.117 0.438 1.086 1.059 0.438 4.117
VAPAS 4.101 0.069 0.693 0.641 0.046 2.175

Table 3
Effective bending stiffness of a three-layer composite laminate.

�d44
�d45

�d46
�d55

�d56
�d66

TSA 3.392 0.004 0.510 0.490 0.004 3.392
VAPAS 3.377 0.004 0.433 0.446 0.003 1.585

Table 4
Effective coupling stiffness of a three-layer composite laminate.

�d14
�d16

�d34
�d36

TSA 1.751 0.0 0.0 �1.751
VAPAS 1.608 0.018 0.020 �0.194

Fig. 7. Direct 3D FEA model of plate made of three-layer with different lay-up
angles.

Fig. 8. Unit cell of yarn and matrix for a plain-weave textile composite.
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because of unrealistic underlying assumption of periodicity
(needed for homogenization) along the thickness coordinate in
the TSA approach. This example demonstrates that the plate model
constructed using the present approach can accurately reproduce
the original 3D FEA direct analysis. To the best knowledge of the
authors, such loss of accuracy using the common two-step ap-
proach in analyzing composite laminates has not be disclosed in
the literature to date.

4.4. Plates made of plain-weave textile composites

The fourth example is a plate made of plain-weave textile com-
posites. The plate along with the details of the unit cell made of a

glass/expoxy yarn (left) and epoxy matrix (right) is sketched in
Fig. 8 with d = l = 1.680 mm and h = 0.228 mm studied in Sankar
and Marrey (1997). For the textile composite example the yarn
was assumed to be transversely isotropic (EL = 58.61 GPa,
ET = 14.49 GPa, GLT = 5.38 GPa, mLT = 0.250, mTT = 0.247) and the ma-
trix material is isotropic (E = 3.54 GPa, m = 0.37). The volume frac-
tion of yarn is /Y = 0.26. The effective plate stiffness predicted by
different approaches are listed in Table 5 with LTCC denoting the

Table 5
Effective plate stiffness of textile composite plate predicted by different methods.

SAM FEM LTCC VAPAS

�d11 2.667 2.681 2.783 2.171
�d13 0.446 0.565 0.503 0.627
�d22 0.379 0.489 0.490 0.500
�d33 2.667 2.681 2.783 2.201
�d44 6.017 5.687 12.054 5.131
�d46 1.590 1.518 2.177 1.679
�d55 1.360 1.577 2.124 1.478
�d66 6.017 5.687 12.054 5.223

Fig. 9. Direct 3D FEA model of plate made of plain-weave composites.

Fig. 10. Sketch of the ITPS panel and its unit cell.
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results obtained by the lamination theory using continuum elastic
constants (Sankar and Marrey, 1997).

It is clear that there are significant differences among the results
predicted by different approaches. Again to assess the loss of accu-
racy of different approaches, we carry out a direct 3D finite element
analysis of the plate structure by meshing all the details of the yarn
and matrix. Let us consider a square plate composed of 10 UCs with
simply supported and symmetric boundaries and a uniform pres-
sure is applied on the top surface; see Fig. 9 for sketches for the
geometry and finite element model of this structure. We found
out that the max deflection using VAPAS constants is only 1.3% off
from the direct 3D FEA analysis, while that using SAM constants
is 3.7% off, and by FEM is 4.0% off, and LTCC is 46%. Clearly, the pres-
ent approach has a more accurate prediction than other approaches
in comparison to the results obtained by the direct 3D FEA.

4.5. Integrated thermal protection system

The last example is to model a corrugated-core sandwich panel,
a concept used for Integrated Thermal Protection System (ITPS)
studied in Sharma et al. (2010). The ITPS panel along with the de-
tails of the unit cell is sketched in Fig. 10. The geometry parameters
are tT = 1.2 mm, tB = 7.49 mm, tW = 1.63 mm, p = 25 mm, d =
70 mm, and h = 85�. Both materials are isotropic with E1 =
109.36 GPa, m1 = 0.3, E2 = 209.482 GPa, m2 = 0.063. Although a 3D
UC is needed for the study in Sharma et al. (2010), only a 2D UC
is necessary for VAPAS as it is uniform along one of the in-plane
directions. The results obtained in Sharma et al. (2010) are com-
pared with VAPAS in Tables 6–8. VAPAS predictions agree very well
with those in Sharma et al. (2010) with the biggest difference
(around 1%) appearing for the extension-bending coupling stiffness
ð�d14Þ. However, the present approach is much more efficient be-
cause using the approach in Sharma et al. (2010) one needs to carry
out six analyses of a 3D unit cells under six different sets of bound-
ary conditions and load conditions and postprocess the 3D stresses
to compute the plate stress resultants, while using the present ap-
proach, one only needs to carry out one analysis of a 2D UC without
any postprocessing.

We also analyzed a simply supported square panel under uni-
form pressure with the ITPS microstructure. We find out that with
20 UCs along the width, the max deflection predicted by the plate
analysis using the effective plate stiffness is about 55% off the di-
rect 3D FEA analysis. The difference will decreases with increased
number of UCs; for example if the plate is composed of 30 UCs,

the difference is 48% and if the plate is composed of 40 UCs, the dif-
ference is 42%. The fact that big differences exist even if the plate is
very thin (the aspect ratio of the 40 UC plate is around 7:200) is be-
cause transverse shear deformation of this type of structure, which
is neglected in CPT, is significant. A refined plate theory, such as the
Reissner–Mindlin model, which is capable of capturing the shear
deformation should be used. Development of such a model is be-
yond the scope of the present paper and will be presented in a dif-
ferent paper.

5. Conclusions

The variational asymptotic method is used to construct a new
model for composite plates with in-plane heterogeneity. This mod-
el serves as a rigorous link between the original 3D problem of
plate structures made of materials with complex microstructures
and the simple classical plate theory. This model not only com-
putes the effective plate stiffness needed for the classical plate the-
ory but also can recover the local displacement, strain, and stress
fields based on the global behavior obtained from the plate analy-
sis. The resulting plate model is also suitable for geometrical non-
linear analysis as only small strain assumption is used for
obtaining the kinematics. This new model is implemented in the
computer code VAPAS using the finite element technique. VAPAS
can be used as an alterative of the 3D FEA for efficient yet accurate
analysis of composite plates with or without in-plane heterogene-
ity. The validity and capability of this new model are demonstrated
using a few examples.
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Finite Element Formulation for Dynamics of Moving Plates

Krishnan Chathadi∗ and Dewey H. Hodges†

Georgia Institute of Technology, Atlanta, Georgia 30332-0150

1 Introduction

Plates are flat structures with one dimension much smaller than the other two and are widely used in modeling
structures like aircraft wings. A fully intrinsic formulation, i.e. devoid of displacement and rotation variables,
for the dynamics of a moving composite plate has been presented by Hodges et al. (2009). A variable-order
finite element technique is presented and applied to beams by Patil and Hodges (2011). In this paper, the
idea from the finite element paper is used to develop a solution methodology for the dynamics of moving
plate.

2 Nonlinear, Intrinsic Beam Equations

The nonlinear, fully intrinsic governing equations for the dynamics of a moving plate are given as

N11,1 + (N12 + N), 2 − K13(N12 − N) − K23N22 + Q1K11 + Q2K21 + f1 = Ṗ1 + Ω1P3 − Ω3P2

N22,1 + (N12 + N), 1 − K23(N12 − N) − K13N11 + Q1K12 + Q2K22 + f2 = Ṗ2 + Ω3P1 − Ω2P3

Q1,1 + Q2,2 − K11N11 − K22N22 − (K12 + K21)N12 + (K12 − K21)N+ f3 = Ṗ3 + Ω2P2 − Ω1P1

M11,1 + M12,2 − Q1(1 + ǫ11) − Q2ǫ12 + 2γ13N11 + 2γ23(N12 + N) − M12K13 − M22K23 + m1 = Ḣ1 − Ω3H2 − V1P3 − V3P1

M12,1 + M22,2 − Q1ǫ12 − Q2(1 + ǫ22) + 2γ13(N12 − N) + 2γ23N22 + M11K13 + M12K23 + m2 = Ḣ2 + Ω3H1 − V2P3 − V3P2

(1)

where

(2 + ǫ11 + ǫ22)N = (N22 − N11)ǫ12 + N12(ǫ11 − ǫ22) + M22K21 − M11K12

+M12(K11 − K22) − Ω1H2 + Ω2H1 − V1P2 + V2P1

(2)

( ),α denotes the partial derivative with respect to the two coordinates, which describe the reference plane
of the plate according to 2D plate theory. (Here and throughout the paper Latin indices assume 1,2,3; and
Greek indices assume values 1,2). (˙) denotes the partial derivative with respect to time. Vi and Ωi are
the velocity and angular velocity measures. ǫαβ are the in-plane generalized strains, γα3 are the transverse
shear generalized strains, and Kαj are the curvatures of the deformed surface. Nαβ are generalized in-plane
forces, Qα are generalized shear forces, Mαβ are generalized moments, Pα and Hα are the linear and angular
momenta respectively. fi and mα are the external forces and moments. N is a Lagrange multiplier to enforce
symmetry of in-plane generalized strains.

While solving the above equation, the constitutive equations may be used to replace some of the variables
in terms of others. The stress resultants are written in terms of the strains measures and the generalized
momenta in terms of the six generalized velocities (i.e. the three velocities and three angular velocities). Thus,

∗Graduate Research Assistant, Daniel Guggenheim School of Aerospace Engineering
†Professor, Daniel Guggenheim School of Aerospace Engineering.
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we can write the complete formulation in terms of only 18 unknowns (11 generalized strains, three velocities,
three angular velocities and N), which would be solved using 18 equations. Such a set of equations are formed
using six of the generalized strainvelocity equations complemented by the six compatibility equations, the
five equations of motion and the constraint equation involving N.

As the first step, the plate is assumed to be homogeneous and isotropic, thus eliminating Kα3, N, φ and
Ω3. This would result in the linear dynamic equations.

2.1 Linear dynamic equations

The linear dynamic equations model is derived by removing terms involving Kα3, N, φ and Ω3 from equations
[1 − 5]. There are five equations of motion which are

N11,1 + N12,2 + f1 = µV̇1

N12,1 + N22,2 + f2 = µV̇2

Q1,1 + Q2,2 + f3 = µV̇3

M11,1 + M12,2 + m1 = µr2ω̇1

M12,1 + M22,2 + m2 = µr2ω̇2 (3)

Further, we have the strain-velocity relations

˙ǫ11 − V1,1 = 0 ˙ǫ12 − V2,1 + Ω3 = 0

˙ǫ22 − V2,2 = 0 ˙ǫ21 − V1,2 − Ω3 = 0

˙γ13 − V3,1 − Ω1 = 0 ˙γ23 − V3,2 − Ω2 = 0

Ω2,1 − K̇12 = 0 Ω2,2 − K̇22 = 0

Ω1,1 − K̇11 = 0 Ω1,1 − K̇21 = 0

Ω3,1 − K̇13 = 0 Ω3,2 − K̇23 = 0

K̇12 + K̇21 = Ω2,1 + Ω1,2 (4)

The linear and angular momenta are expressed in terms of velocities and angular velocities as

{

P

H

}

=

[

µ∆ −µξ̃

µξ̃ I

] {

V

Ω

}

(5)

µ, ξ̃, I are, respectively, the mass per unit length, mass center offset (a vector in the cross-section from the
beam reference axis to the cross-sectional mass center), and the cross-sectional inertia matrix consisting of
mass moments of inertia per unit length on the diagonals.

The sectional constitutive law relates the generalized forces (in-plane, shear and moments) are related to
generalized strains using the cross-sectional stiffnesses or flexibilities.







N

M

Q







=





R S 0
ST T 0
0 0 U











ǫ

κ

2γ







(6)

R, S, T and U are the stiffness parameters governed by the material properties and the geometry of the
section.
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Usually, the constitutive laws are used to replace some variables in terms of others. Here it was decided
to express the generalized strains in terms of the cross-section stress resultants, allowing easy specification
of zero flexibility, and the generalized momenta in terms of generalized velocities, allowing easy specification
of zero inertia. Thus, the primary variables of interest are Nαβ , Mαβ , Qα, Vi and Ωα.

Finally the boundary conditions need to be specified. For the rectangular plate, there will be five
boundary conditions along each edge. For the sake of simplicity, the plate is considered to be clamped along
one of the edges (x1=0 edge in this case) and free along the other three edges. Thus, the assumed boundary
conditions are

x1 = 0 : Vi = 0, Ωα = 0

x1 = a : N1α = 0, M1α = 0, Q1 = 0

x2 = 0 : Nα2 = 0, Mα2 = 0, Q1 = 0

x2 = b : Nα2 = 0, Mα2 = 0, Q2 = 0 (7)

3 Finite Element Formulation

The finite element formulation is based on discretizing the plate into m elements along x1 direction and into
n elements x2 direction respectively so that there is a totally of m x n elements. For any element (ith element
along x1 and jth element along x2, denoted by ij), the solution is given by V

ij
k , Ωij

α , N
ij
αβ, M

ij
αβ , Qij

α . In
addition to satisfying the equations of motion, the kinematic equations and the boundary conditions given
above, the solution must also satisfy the continuity equations between adjacent elements along all its edges.
Thus,

V i
1 (Li, x2, t) = V i+1

1 (0, x2, t) N i
11(Li, x2, t) = N i+1

11 (0, x2, t)

V i
2 (Li, x2, t) = V i+1

2 (0, x2, t) N i
12(Li, x2, t) = N i+1

12 (0, x2, t)

V i
3 (Li, x2, t) = V i+1

3 (0, x2, t) M i
11(Li, x2, t) = M i+1

11 (0, x2, t)

Ωi
1(Li, x2, t) = Ωi+1

1 (0, x2, t) M i
12(Li, x2, t) = M i+1

12 (0, x2, t)

Ωi
2(Li, x2, t) = Ωi+1

2 (0, x2, t) Qi
1(Li, x2, t) = Qi+1

1 (0, x2, t) (8)

V
j
1 (x1, Lj, t) = V

j+1

1 (x1, 0, t) N
j
12(x1, Lj, t) = N

j+1

12 (x1, 0, t)

V
j
2 (x1, Lj, t) = V

j+1

2 (x1, 0, t) N
j
22(x1, Lj, t) = N

j+1

22 (x1, 0, t)

V
j
3 (x1, Lj , t) = V

j+1

3 (x1, 0, t) M
j
12(x1, Lj, t) = M

j+1

12 (x1, 0, t)

Ωj
1
(x1, Lj , t) = Ωj+1

1
(x1, 0, t) M

j
22

(x1, Lj, t) = M
j+1

22
(x1, 0, t)

Ωj
2(x1, Lj , t) = Ωj+1

2 (x1, 0, t) Q
j
2(x1, Lj, t) = Q

j+1

2 (x1, 0, t) (9)

The weighting functions are then introduced into the equations of motion, kinematic equations and the
boundary conditions in a way similar to Patil and Hodges (2011):

Z Z

[δV1(N11,1 + N12,2 + f1 − µV̇1) + δV2(N12,1 + N22,2 + f2 − µV̇2) + δV3(Q1,1 + Q2,2 + f3 − µV̇3)

+ δΩ1(M11,1 + M12,2 − Q1 + m1 − µr
2Ω̇1) + δΩ2(M12,1 + M22,2 − Q2 + m2 − µr

2Ω̇2) + δN11(ǫ̇11 − V1,1)

+ δN22(ǫ̇22 − V2,2) + δN12(ǫ̇12 − V1,2 − V2,1) + δM11(K̇11 − Ω1,1) + δM22(K̇22 − Ω2,2)

+ δM12(K̇12 − Ω1,2 − Ω2,1) + δQ1(2γ̇13 − V3,1 − Ω1) + δQ2(2γ̇23 − V3,2 − Ω2)] dx2 dx1 (10)

Finally, each of the 13 variables in the equations is expanded in terms of a trial function. The values of
the variables are assumed to be a function of the nodal values. Let there be m × n elements (i = 1, 2,. . . ,
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m; j = 1, 2, . . . , n) and p nodes (k = 1, 2, . . . , p) within each element and F be a shape function. The
variables now take the form

V i
1 (xi, xj , t) = Fk(xi, xj)vk,i

1 (t) V i
2 (xi, xj , t) = Fk(xi, xj)vk,i

2 (t) V i
3 (xi, xj , t) = Fk(xi, xj)vk,i

3 (t)

Ωi
1(x

i, xj , t) = Fk(xi, xj)ωk,i
1 (t) Ωi

2(x
i, xj , t) = Fk(xi, xj)ωk,i

2 (t)

N i
11(x

i, xj , t) = F
k(xi, xj)nk,i

11 (t) N i
12(x

i, xj , t) = F
k(xi, xj)nk,i

12 (t) N i
22(x

i, xj , t) = F
k(xi, xj)nk,i

22 (t)

M i
11(x

i, xj , t) = Fk(xi, xj)mk,i
11 (t) M i

12(x
i, xj , t) = Fk(xi, xj)mk,i

12 (t) M i
22(x

i, xj , t) = Fk(xi, xj)mk,i
22 (t)

Qi
1(x

i, xj , t) = Fk(xi, xj)qk,i
1 (t) Qi

2(x
i, xj , t) = Fk(xi, xj)qk,i

2 (t) (11)

Thus, the problem reduces to a set of linear algebraic equations of the form

[

A
]

kji

{

X
}

ji
=

[

B
]

kji

{

Ẋ
}

ji
(12)

[

A
]

=

















































∂
∂x1

0 ∂
∂x2

0 0 0 0 0 0 0 0 0 0

0 ∂
∂x2

∂
∂x1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 ∂
∂x1

∂
∂x2

0 0 0 0 0

0 0 0 ∂
∂x1

0 ∂
∂x2

−1 0 0 0 0 0 0

0 0 0 0 ∂
∂x2

∂
∂x1

0 −1 0 0 0 0 0

0 0 0 0 0 0 0 0 ∂
∂x1

0 0 0 0

0 0 0 0 0 0 0 0 0 ∂
∂x2

0 0 0

0 0 0 0 0 0 0 0 ∂
∂x2

∂
∂x1

0 0 0

0 0 0 0 0 0 0 0 0 0 0 ∂
∂x1

0

0 0 0 0 0 0 0 0 0 0 0 0 ∂
∂x2

0 0 0 0 0 0 0 0 0 0 0 ∂
∂x2

∂
∂x1

0 0 0 0 0 0 0 0 0 0 ∂
∂x1

1 0

0 0 0 0 0 0 0 0 0 0 ∂
∂x2

0 1

















































[

B
]

=

























µ 0 0 0 0 0 0 0
0 µ 0 0 0 0 0 0
0 0 µ 0 0 0 0 0
0 0 0 µr2 0 0 0 0
0 0 0 0 µr2 0 0 0
0 0 0 0 0 R S 0
0 0 0 0 0 ST T 0
0 0 0 0 0 0 0 U

























{

X
}

=
{

V1 V2 V3 Ω1 Ω2 N11 N22 N12 M11 M22 M12 Q1 Q2

}T
(13)

[A], [B] and {X} are applied to every element ranging from i=1,2...m and j=1,2...n.

4 Results

The equations were solved using the variable-order FEM for a simple cantilevered plate, fixed along the
x2 = 0 edge with the other edges free.
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Table 1: Plate Properties
Dimensions 1×1×0.01 m

Young’s Modulus 70 GPa
Material density 2700 kg/m3

Poisson’s ratio 0.3

The equations help us to study the bending, stretching and twisting frequencies of a plate. The properties
of the plate are given in Table 1, and the results in Table 2. The results for the bending frequencies are
compared with those from ABAQUS.

Table 2: Plate Structural Frequencies
Mode ABAQUS 1×1 elements 2×2 elements 3×3 elements

Bending 8.5209 14.087 13.6618 13.6375
Twisting − 695.6117 664.4739 613.1459
Stretching − 5091.7507 5525.2714 5663.2779

Because of the differences in the results, work is being carried out in identifying the reasons and also checking
out the alternate Galerkin approach.

5 Conclusions

A finite element solution technique,based on a geometrically-exact, fully intrinsic equations is presented and
applied to an homogeneous, isotropic cantilevered plate. Right now, the reasons for the deviation of the
results compared to the exact solution are being investigated. Future work would involve including the
non-linearities and aeroelastic effects and extending the equations to study the dynamics of a flapping wing.
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