REPORT DOCUMENTATION PAGE

The purpose of this project is to develop in vitro, cell based biosensors for environmental toxins. By using ArunA’s neural cell lines derived from both human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), our goal is to provide a human neural cell based biosensor that is a more biologically relevant model of human physiology.

This report focused on the differentiation of hESC- and hiPSC-derived neural progenitor cells and describes progress in these major areas: (1) characterization of induced pluripotent stem cell derived neural progenitor cells, (2) directed differentiation of hESC- and hiPSC-derived progenitor cells into dopaminergic neurons, (3) directed differentiation of neural progenitor cells into astrocytes and (4) cell culture medium development for the maintenance and differentiation of ArunA’s neural cell lines as sensor elements for neurotoxicity.

16. SECURITY CLASSIFICATION OF:
- a. REPORT: Unclassified
- b. ABSTRACT: Unclassified
- c. THIS PAGE: Unclassified

17. LIMITATION OF ABSTRACT
UU

18. NUMBER OF PAGES
4

19. NAME OF RESPONSIBLE PERSON
Steven L. Stice

19b. TELEPHONE NUMBER (Include area code)
706-583-0071

REPORT DATE (DD-MM-YYYY)
07/05/2012

REPORT TYPE
Quarterly Technical Report

DATES COVERED (From - To)
04/01/2012 - 06/30/2012
Quarterly Report
Human Neural Cell-Based Biosensor

Date: July 5, 2012
Reporting Period: April 1, 2012–June 30, 2012

Prepared for:
Office of Naval Research (ONR)
Director, Naval Research Lab
Attn: Code 5596
4555 Overlook Avenue, SW
Washington, D.C. 20375-5320

Contract Number: N00014-11-C-0011, Amendment/Modification P00001

Submitted by:
Dr. Steven L. Stice, Principle Investigator
ArunA Biomedical, Inc.
425 River Road
Athens, GA 30602
Phone: 706-583-0071
Fax: 706-262-2821
Email: sstice@arunabiomedical.com

Distribution Statement A:
Approved for public release; distribution is unlimited.
Distribution of Quarterly Report

<table>
<thead>
<tr>
<th>ADDRESS</th>
<th>DODAAC CODE</th>
<th>REPORT ENCLOSED</th>
<th>UNCLASSIFIED/UNLIMITED</th>
<th>UNCLASSIFIED/LIMITED AND CLASSIFIED</th>
</tr>
</thead>
</table>
| Program Officer: Dr. Laura Kienker
ONR Code: 342
E-Mail: laura.kienker@navy.mil | N00014 | Full technical report | 1 | 1 |
| Administrative Contracting Officer:
Office of Naval Research
ONR 0254: Russelle Dunson
875 North Randolph St.
Arlington, VA 22203-1995
E-mail: russelle.dunson@navy.mil | S1103A | SF 298 only | 1 | 1 |
| Director, Naval Research Lab
Attn: Code 5596
4555 Overlook Avenue, SW
Washington, D.C. 20375-5320
E-mail: reports@library.nrl.navy.mil | N00173 | Full technical report | 1 | 1 |
| Defense Technical Information Center
8725 John J. Kingman Road
STE 0944
Ft. Belvoir, VA 22060-6218
E-mail: tr@dtic.mil | HJ4701 | Full technical report | 2 | 2 |
Summary

The purpose of this project is to develop in vitro, cell based biosensors for environmental toxins. By using ArunA’s neural cell lines derived from both human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), our goal is to provide a human neural cell based biosensor that is a more biologically relevant model of human physiology.

This report focused on the differentiation of hESC- and hiPSC-derived neural progenitor cells and describes progress in these major areas: (1) characterization of induced pluripotent stem cell derived neural progenitor cells, (2) directed differentiation of hESC- and hiPSC-derived progenitor cells into dopaminergic neurons, (3) directed differentiation of neural progenitor cells into astrocytes and (4) cell culture medium development for the maintenance and differentiation of ArunA’s neural cell lines as sensor elements for neurotoxicity.

(1) Characterization of human induced pluripotent stem cell (iPSC) derived neural progenitor cells

In our previous Q1 progress report, we had completed our first production run of our new hiPSC-derived neural progenitor cells. Since then, we have finished their characterization, including karyotype. hiPSC-derived neural progenitor cells were also able to differentiate into pan neuronal cultures positive for markers of mature neurons.

(2) Directed differentiation into dopaminergic neurons

We have been able to successfully differentiate hESC-derived neural progenitor cells into mature neuronal populations demonstrating positive protein expression of dopaminergic markers. We have evaluated multiple media formulations, and we have now repeated dopaminergic differentiation multiple times with reproducible results. Additionally we have conducted real-time PCR on our dopaminergic neuron cultures for genes relevant to Parkinson’s disease. We are now in the process of evaluating our cultures for dopamine release. Preliminary work has also begun on translating dopaminergic neuron differentiation protocols to hiPSC-derived neural progenitor cells. Based on our results, we are now in the process of developing a new dopaminergic progenitor cell line and dopaminergic differentiation kit for commercial release. We are currently testing different kit configurations.

(3) Directed differentiation into astrocytes

We have differentiated hESC-derived neural progenitor cells into astrocytes using different media, as well as additional supplements over our previously tested protocols, and for longer differentiation periods, in an attempt to improve yield and quality. Gene expression profiles obtained were favorable, but need repeating due to technical issues with real-time PCR. We also tested whether the astrocytic progenitor cells can be cryopreserved and thawed with acceptable levels of replating, and whether post thaw they can be co-cultured with neurons. Functional network based electrophysiological studies have also been initiated to characterize network behavior of our neurons in these co-culture systems.

(4) Cell culture medium development

We have developed a new basal medium to propagate both hESC- and hiPSC-derived neural progenitor cells enhance their differentiation into different mature neural cell types. We are currently evaluating neural progenitor proliferation and neural marker expression of cells cultured in this new medium. In initial differentiation studies to test our new basal medium, we have been assessing the ability to differentiate neural progenitor cells into pan neuronal cultures and astrocytes.