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Abstract

Resistance to motion often includes a dry frictional term independent of
the speed of an object and a fluid drag term varying linearly with speed in
the viscous limit. (At higher speeds, quadratic drag can also occur.) Here,
measurements are performed for an aluminium disc mounted on bearings that
is given an initial twist and allowed to spin until it comes to a stop. It is found
that a sum of both the dry and fluid resistive terms are needed to accurately fit
the entire data. However, the speed-independent term alone suffices over any
suitably limited range of motion, permitting one to use the standard kinematic
equations for constant angular acceleration. The measurements and theory are
appropriate for an introductory physics laboratory at the college level.

(Some figures may appear in colour only in the online journal)

In a recent paper, the rotational dynamics of a large cylindrical disc mounted on bearings were
investigated [1]. A ‘let it roll’ experiment was used to quantify the frictional torque 7 s by
measuring the decrease in the angular speed w of the disc as a function of time ¢ after giving
it an initial spin w,. Based on a previous paper [2], it was assumed that the resistive torque
varies linearly with the speed,

‘L’f = ba), (1)
where b is a constant coefficient. Using the rotational form of Newton’s second law,
Ida) @)
Tr=—]—,
f dr
equation (1) is separated and integrated to obtain
w(t) = wyexp(—bt/I). 3)

To test this model for the drag, In(w) was plotted versus ¢, resulting in a linear fit to the
experimental data with an intercept of In(wy) and a slope of —b/I. That straight-line fit has
been reproduced as the solid curve in figure 1 over the same horizontal and vertical axis ranges
used in [1].

However, in another recent paper [3] which referenced previous work on the damping of
a physical pendulum [4], the frictional torque at an axle was instead assumed to be constant,
independent of the angular speed of motion,

Tr=a (4)
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Figure 1. Natural logarithm of the angular speed as a function of time. The solid blue curve
reproduces the fit to equation (3) from figure 4 of [I] using wy = 11.65 rad s~! and
b/I = 0.1432 s~!. The dashed red curve is a plot of equation (5) using wy = 11.60 rad s~!
and a/I = 1.489 572,

for as long as the system is rotating. If this expression is substituted into equation (2), one
deduces

w(t) = wy — at/l 5

instead of equation (3). Equations (1) and (4) can be compared by setting a = bwyye.
The average angular speed over the linearized vertical range of the data in figure 1 is
Wave = 10.4 rad s™'. The fit values b = 6.50 x 1075 kg - m? s~' and I = 4.54 x 10~* kg - m?
from [1] then imply a/I = 1.489 s=2. A plot of equation (5) has been overlaid onto figure 1
as the dashed curve using this value of a/I. The difference between the solid blue and dashed
red curves is much smaller than the jitter in the experimental data in figure 4 of [1]. Thus
either a model of purely linear Stokes drag (equation (1)) or of purely constant dry friction
(equation (4)) gives an acceptable fit to the 1.6 s range of data. To experimentally distinguish
between these (or other) assumed forms of the resistive torque, less noisy measurements are
required and over a longer timescale.

For this purpose, a standard ‘centripetal force apparatus’ (Sargent—Welch model CP93000)
was used, consisting of a vertical rotating shaft to which a small metal flag was attached that
passes through a photogate once each revolution. An aluminium disc was bolted to the top
of the shaft; the disc had a mass of M = 1246 4+ 1g and a diameter of 2R = 152.5 =+
0.5 mm, so that its moment of inertia is / = 3 MR? = 3.62 £ 0.03 g - m?. The photogate was
connected to a computer running LoggerPro via a LabPro interface, and the times ¢; that the
leading edge of the flag crossed the light beam were recorded for revolutions i = 1, 2, 3, ....
The angular speed (averaged over a revolution) was then determined from the time interval
between adjacent crossings, At; i+ = tiy] — 4, a8 w; ;11 = 27 /At; ;4. That angular speed is
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Figure 2. Measured values of the angular speed of the disc as a function of time are indicated by
the red dots, one per revolution. Best fits of these data points to equations (3) and (5) are indicated
by the solid blue and dashed green curves, respectively.

plotted versus time t = (¢, + t;)/2, averaged over the same interval, as the dots in figure 2
after giving the disc a vigorous initial spin by hand.

Equations (3) and (5) have been respectively fit to these data as exponential and linear
trendlines in Excel, shown in figure 2. One sees that the equations give comparable but poor
fits to the experimental points. In contrast, an excellent fit is achieved by assuming that both
dry friction and fluid drag are simultaneously acting on the disc, so that

Ty =a+ bo, (6)

where a and b are constants. Setting the right-hand sides of equations (2) and (6) equal to each
other gives

o(t) = (wo + a/b)exp(—bt/I) —a/b 7
after separating variables and integrating. The blue curve in figure 3 is a plot of this equation
with the fitted values wy = 34.94 + 0.06 rad s~!, a/l = 0.08804 £ 0.000 15 s72, and
b/I=0.009565 4 0.000010 s~'. (This nonlinear fit can be performed directly in LoggerPro,
making it accessible to introductory physics students.) The blue curve passes right through
the red data points in figure 3. The residuals, computed by subtracting the fit value from
each experimental point, are plotted in green. One sees from them that the experimental and
theoretical angular speeds agree to better than 0.1 rad s~! across the entire range of data. There
is no systematic trend in the residuals, which would indicate quadratic Newtonian drag or
other simple damping terms are missing from equation (6).

Equation (7) by inspection reduces to equation (3) if one sets a = 0. It is slightly trickier
to see how equation (7) reduces to (5) when b = 0. One easy way to proceed is to assume
|bt/I| < 1 so that exp(—bt/I) =~ 1 — bt/I, expand the product of that pair of terms with
wo + a/b, subtract off a/b, and then finally set b = 0.
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Figure 3. Graph of the angular speed of the disc as a function of time (left-hand vertical axis): the
experimental measurements indicated by the red dots repeat the data presented in figure 2, while
the continuous blue line is a fit to equation (7). The difference between the experimental and fitted
values of the angular speeds are plotted as the green dots, one per revolution, on the scale of the
right-hand vertical axis.

An alternative to the nonlinear fit of the data to equation (7) is to instead plot the angular
acceleration o« = dw/dt versus the angular speed . Combining equations (2) and (6) implies

a b
=——_Zo. 8
=TT T¢ ®)

One thus expects a simple linear trend, where the intercept and slope directly give the two
resistive coefficients and one can immediately see if either term can be neglected on the scale
of the scatter in the data. Recalling that w; ;1 = 2w /At; ;41 where At; ;41 = tiy1 — t;, the
angular acceleration is computed as o« = 2(wjt1,i+2 — wi.i+1)/(tiy2 — t;) and plotted against
® = (wWit1,i+2 + wiiy1)/2 as the red dots in figure 4. The blue curve is a fit of equation
(8) to these experimental points. The resulting coefficients are a/I = 0.0852 £ 0.0024 s—2
and b/I = 0.00977 4 0.000 11 s~!, similar to those listed following equation (7) above, but
with substantially larger uncertainties. One can see that the scatter in the data is much larger
than in figure 3, as a result of computing the second-order time derivative «. Hence, from a
numerical point of view, it is preferable to perform the nonlinear fit of figure 3. Nevertheless,
linearizing the data as in figure 4 has the advantage that one can immediately evaluate the
relative importance of the two drag coefficients by eye.

By examining equation (6), one can see that the linear damping term proportional to
b can be neglected compared to the speed-independent term a over some range of angular
speeds Aw of interest if Aw < a/b. For example, in figure 3 any data interval for which the
angular speed changes by significantly less than 9 rad s~! will be well fit using equation (4).
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Figure 4. Experimental values (red dots) of « versus w and a linear best fit (blue curve) of them to
equation (8). The correlation coefficient for the fitis R = 0.981.

This reasoning explains why figure 1, in which  decreases by only 2.5 rad s, is accurately
fit by equation (5).

In conclusion, frictional torque terms proportional to both the first and zeroth powers of
the angular speed are needed to accurately fit the deceleration of an undriven wheel rotating
to rest (as evidenced by figures 2 and 3). However, over a limited range of angular speeds
(such as in figure 1), it suffices to include only the speed-independent term. This simplified
form for the resistive torque is analogous to the speed-independent model of the kinetic
frictional force conventionally used for an unlubricated object translationally sliding to rest
on a solid surface. It enables use of the standard constant angular acceleration equations of
rotational kinematics. By using those equations and starting at a moderate angular speed (say
5 rad s~! for the apparatus used here), the damping coefficient can be quickly estimated as

a/l = 2040p/toep 9)

by measuring the time f,, and number of revolutions Nyop = Og0p/27 that it takes for the disc
to come to a full stop. One can then proceed to more interesting experiments of the motion of
the system driven by a string wrapped around the shaft and connected to a hanging weight over
a pulley. In contrast, equation (3) would imply that the disc does not suddenly cease rotating
but instead gradually tails off to slower and slower speeds, unlike what one actually observes.

References

[1] Eadkhong T, Rajsadorn R, Jannual P and Danworaphong S 2012 Rotational dynamics with Tracker
Eur. J. Phys. 33 615-22

[2] Alam J, Hassan H, Shamim S, Mahmood W and Anwar M S 2011 Precise measurement of velocity dependent
friction in rotational motion Eur. J. Phys. 32 1367-75

[3] Mungan C E 2012 Rolling friction on a wheeled laboratory cart Phys. Educ. 47 288-92

[4] Simbach J C and Priest J 2005 Another look at a damped physical pendulum Am. J. Phys. 73 1079-80



