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FINAL REPORT 

 

This final report details the theoretical and experimental work performed on the project 

titled, "A Quantum Electronics Approach to Optical Negative Index Metamaterials 

(NIMS): Homogeneous Negative Index Metamaterials based on Semiconductors from 

May 2008 - October 2011. Section A details the theoretical work and Section B details 

the experimental work. As a result of this work, the following papers have been accepted 

and presented at conferences: 

 

1. Adil-Gerai Kussow and Alkim Akyurtlu, “Electromagnetically induced negative 

refractive index in doped semiconductors at optical frequencies”, Int. J. Mod. Phys. B, 

25, 347-364, March 2011 

2. A. G. Kussow and A. Akyurtlu, “Homogeneous negative refractive index materials,” 

Journal of Nanophotonics, 04(01), 043514, 2011 

3. N. Wongkasem, C. Kamtongdee, A. Akyurtlu and K. A. Marx, “Artificial multiple 

Helices: polarization and EM properties, ” Journal of Optics, 12, 075102, June 2010 

4. N. Wongkasem and A. Akyurtlu, "Light splitting effects in chiral metamaterials," 

Journal of Optics, 12, 035101, January 2010 

5. A. Akyurtlu and A-G. Kussow, "Low-Loss Negative Refractive Index Material Based 

on Doped Semiconductors: Quantum Optics Approach," 2010 IEEE International 

Symposium on Antennas and Propagation and URSI Radio Science Meeting, 

Toronto, Ontario Canada, July 11-17, 2010, accepted. 

6. A. G. Kussow and A. Akyurtlu, "Negative refractive index in doped semiconductors," 

APS March Meeting, Portland, Oregon, March 2010. 

 

A. THEORETICAL DEVELOPMENT OF NOVEL OPTICAL NIM 

 

 

I. INTRODUCTION 

Based on modern advanced methods of Quantum Optics, we discuss here the possibility 

of achieving the negative index of refraction in a semiconductor with donor-like 

impurities. This approach is genuine microscopic, and uses, instead of Maxwell equations 

(homogeneous NIM designs), the Quantum Mechanical methods. This design requires 

several specially prepared laser beams, one probe beam and several support beams, with 

specific intensities, frequencies and polarizations. These laser beams pump energy levels 

and create the desirable density matrix elements of an interest, which, in their turn, 

produce coherent permeability and permittivity responses at frequency of the probe laser 

beam. The quantum states of hydrogen-like donor atom embedded into solid state matrix 

and states of an electron in conduction band constitute a discrete-level atomic medium 

within the optical range. The coherent coupling of an electric dipole transition with a 

magnetic dipole transition leads to resonance-like permeability and permittivity 

responses, which, within some frequency band, ensures the negative refractive index. The 

implementation of this scheme is carried out in Sn-Zn-doped indium oxide, In2-xSnxO3 

:Zn (Zn-doped ITO), and the calculations show feasibility of the effect within a broad 

bandwidth with an extremely high figure of merit ( | Re( ) / Im( ) | 10FOM n n= ≥ ) in the 

THz regime.  



 

The main ideas behind the Quantum Optics approach which have developed recently will 

be described next. Several years ago, Oktel and Mustecaplioglu [1]
 
suggested an elegant 

method to achieve the negative refractive index effect based on Quantum Optics. Despite 

the very different physics, their method is similar to electromagnetically-induced 

transparency formalism (EIT) [2]. Their model suggests the following arguments. The 

main difficulty of reaching the negative refractive index in the optical regime, in a 

homogeneous medium, is the frequency-dependent permeability function, ( )µ ω , which 

in non-ferromagnetics, is close to 1 with no magnetic response. This behavior was 

explained by Landau
 
[3], who showed that, in the optical regime, the projection of the 

magnetic moment, µ
r

, of an individual spin, s, onto the high-frequency magnetic field, 

( )H ω
r

, is almost zero due to the low frequency of the spin precession, 2 /s Bs Hω µ= h  

( Bµ  is the Bohr magneton), compared to the frequency of the e.m. wave,ω . Note, that in 

non-homogeneous situation, this difficulty is avoided (at the expense of high scattering 

losses) due to the effective nature of ( )µ ω  in such a way that the displacement currents 

or Mie resonances cause the considerable magnetic response which is effectively 

equivalent to 1µ ≠ .  

 

We report here solid-state-based negative refractive index, homogeneous, and low-loss 

material. Obviously, as was mentioned in Ref. [1], since N in the solid state can be ~ 3-4 

orders of magnitude larger than N in the gas phase, it would be extremely desirable to 

implement the solid state design. The solid state implementation, in principle, can allow 

for the desirable negative refractive index effect at THz (and higher) frequencies (the gas 

implementation [4-5, 6-9] so far provides the effect within MHz range, and not at THz 

range). Also, since the density of transitions is much higher in the solid state than in the 

gas phase, one might anticipate better parameters of the negative refractive index band in 

terms of the magnitude of the refractive index and the bandwidth.  

 

This solid-state-based negative refractive index material is based on a n-type 

semiconductor doped simultaneously with a transition-metal (TM) with an atomic 

volume density, N, and p-type acceptor, with approximately the same density, N. The 

desirable negative refractive index effect is electromagnetically induced by the adjusted 

support e.m. fields (laser beams) to ensure the coherence of the dielectric and the 

magnetic responses. In accordance with band theory [10-12], the donor atom, or “defect”, 

produces the discrete energy levels within the gap between the valence band and the 

conduction band (CB) (Fig. 1). The appropriate states of a donor can be treated as states 

of the hydrogen–like atom with re-normalized effective mass, *m , of an electron and re-

normalized effective charge, *e , of an electron. Three first lowest-energy donor states are 

supplemented by the additional 4-th electronic state in the conduction band, to couple the 

donor states with the states of a crystal. The required non-zero magnetic moment between 

two hydrogen-like atom states with the same parities, but with mutually orthogonal radial 

wave functions is achieved by the specially oriented additional support beam which acts 

as a perturbation. Consequently, we explore the opportunity, by adjusting the parameters 

of the non-linear system (i.e. the density of the dopants, N, the intensities of e.m. fields of 



the lasers, etc.) to achieve the desirable effect in the THz domain. All of the parameters, 

as we have mentioned above, are implemented for the specific example of tin-Zn doped 

indium oxide, In2-xSnxO3 :Zn (Zn-doped ITO), to demonstrate the feasibility of the 

suggested design. In a detailed theoretical analysis, we have derived the quantum 

Louiville equations for the density matrix elements, ijρ , of the atomic states (indexes i 

and j denote atomic levels). Based on methods of Quantum Optics, these equations were 

solved and the solutions, for non-diagonal matrix elements with appropriate coherences 

are analyzed. Next, we have calculated the relevant dipole moments for the allowed 

dipole transitions between states with different parities. Afterwards, based on 

perturbation theory, we have calculated the induced non-diagonal magnetic moment 

element responsible for the transitions between states with similar parities. All of these 

density matrix elements, and the dipole and magnetic moments are utilized to calculate 

the dielectric response, ( )ε ω , the magnetic response, ( )µ ω , and the refractive index, 

( )n ω .  

 

 

II. Atomic level system 

In accordance with the band theory
 
[10-12], in a n-type doped semiconductor, if the 

density of dopant atoms, N, is not too large, the states of the atoms are mutually 

independent and they correspond to well-isolated discrete energy levels within the band 

gap. The appropriate first 3 energy levels are shown in Fig. 1. The dopant atom, or zero-

order defect, donates electrons of its outer electron shell into the conduction band (CB), 

and consequently, is effectively charged with some integer charge Z (Z =1, 2 or 3), 

depending on the type of the crystal and the type of a defect (dopant). 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 1.  System with discrete energy levels as described in text. 

 

The long-range behavior of the defect potential ( )V r
r

 is described by the Coulomb-like 

potential of the electron with re-normalized effective mass, *

0m m→ , and re-normalized 

electron charge, 0/e e ε→ , ( 0ε  is a static dielectric constant) [10-11] . The appropriate 

Schrodinger equation provides the hydrogen-like wave functions, the Bohr radius, 
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2 * 2

0 /ba Zm eε= h , and the energy levels, 2 * 4 2 2 2

0/ 2nq qE Z m e nε= − h , with 1, 2,3,....qn =  as 

main quantum numbers. We are interested in the first 3 lowest energy states ( 1,2,3qn = ) 

which, in the text, are called 0-state (ground state, 1qn = ), 1-state (second excited state 

3qn = ), and 2-state (first excited state 2qn = ). All energies, iE , of these levels are 

below the bottom of the conduction band as shown in Fig. 1. The orbital quantum 

numbers, il , of these states, which define the parity, ( 1) il

iP = − , are supposed to be: 

0 1 20, 1l l l= = = , to ensure the same parity of 1 and 2 states, which is different from the 

parity of the 0-state. The 4-th energy level (3-state) of our system is an electron energy 

level separated by the same distance from level 1 as level 2 (i.e. 3 1 1 2E E E E− = − ), and it 

has the same parity as the 0-state with 3 0l = . The magnetic quantum numbers of all 

four states are the same (m = 0). The 3-state is inside the conduction band, and this state 

connects the isolated hydrogen-like atom states with the CB states of a solid-state matrix. 

The following electric dipole operators are non-zero: 

0 | |1 0, 0 | | 2 0, 2 | | 3 0d d d< >≠ < >≠ < >≠
r r r

, in accordance with the parities. The 

magnetic dipole operator 1| | 2 0µ< >≠
r

 between 1-state and 2-state can be non-zero, 

since parity rules, but it is actually zero in the undisturbed situation due to the 

orthogonality of the radial wave functions. Next, we introduce the four external 

electromagnetic fields which are to couple with these states. We assume that the probe 

e.m. field (beam 2b ) provides a strong electromagnetic coupling for the electric dipolar 

transition | 0 | 2>→ >  (the standard symbol |n> stands for the state n). This field is 

described by the amplitude, 02E , of the electric field with frequency, 02ω , detuning, 02δ , 

and the Rabi frequency, 02 02 02 /d EΩ =
r r

h . The support e.m. field (beam 1b ) is responsible 

for the weak electromagnetic coupling, 01 01 01 /d EΩ =
r r

h , due to electric dipolar transition 

| 0 |1>→ >  with frequency, 01ω , detuning, ∆ , and the Rabi frequency, 01 01 01 /d EΩ =
r r

h  

( 01 02| | | |Ω << Ω ). The driving e.m. field (beam 3b ) provides the weak electromagnetic 

coupling due to electric dipolar transition | 2 | 3>→ >  between the atomic state and the 

solid-state matrix, with frequency, 23ω , detuning, 23δ , and the Rabi frequency, 

23 23 23 /d EΩ =
r r

h . All these e.m. fields are assumed to posses the same polarizations with 

collinear Poynting vectors, 01 02 23|| ||S S S
r r r

, and mutually parallel electric and magnetic 

fields ( 01 02 23|| ||E E E
r r r

, 01 02 23|| ||H H H
r r r

). 

 

 

III. Density Matrix 

Such a system is described by a Hamiltonian in the form [5]: 

0
ˆ ˆ ˆ

iH H H= +  (1)  

where 0Ĥ  is a field-free Hamiltonian and ˆ
iH  is the interaction with the e.m. fields: 

0
ˆ | |j

j

H E j j= ><∑  (2) 



( )1ˆ| |
2

k li t

i klk H l e
ω ω− −< > = − Ωh  

(3)  

 

Here the Rabi frequencies associated with optical transitions are defined as 

/kl kld EΩ = ⋅
r r

h  where | |kld e k r l= < >
r r

 is the electric dipole operator, e is the charge of 

the electron, and E
r

 is the amplitude of the relevant electric field. In the rotating-wave 

approximation, within the semiclassical theory of optical interactions [1, 5], the density 

matrix, ρ̂ , of the system evolves as required by the Louiville equations: 

 

ˆ 1ˆ ˆ ˆ[ , ] { , }
2

d i
H

dt

ρ
ρ ρ= − − Γ

h
 

(4) 

 

( )

,

ˆ | |k li t

kl

k l

e k l
ω ωρ ρ −= ><∑  (5)  

 

with diagonal elements of the relaxation matrix | | iii i γ< Γ > =  and off-diagonal elements 

defined as | | ( ) / 2ii kki k γ γ< Γ > = + ; the standard simbols [A, B] and {A,B} stand for the 

commutator, and symmetrized product of operators A and B, respectively. The detunings 

are defined by kl l k klE Eδ ω= − −h h  with klω  as the angular frequency of the appropriate 

e.m. field, and the detuning of the support field is called 01δ = ∆ , so there are a total of 

three detunings: 02 23,δ δ  and ∆ . 

 

Next, we need to obtain the solutions for 20 10 12 23, , , ,ρ ρ ρ ρ  and 31ρ  of  Eqs. (4), 

which affect the electric and the magnetic responses, and we will follow the EIT 

approximation [2] which is based on the usage of small parameters: 

01 02 23 01| / | 1; | / | 1Ω Ω << Ω Ω << . The equations for 20 10 12, ,ρ ρ ρ  are split off from 

the rest of Eqs. (4) due to the strong interactions between 0, 1, and 2 levels. The system 

of three equations was solved, and the solutions for 10ρ , 20ρ  and 12ρ are given by: 

 

02 02 02
20 '

32 22

exp[ ( ) ]

( )

i t

i

ω δ
ρ

δ γ
Ω − −

=
∆ − −

 
(6)  

01 12 02 01
10 ' ' 2

11 12 02 02

[ ( )]exp[ ( ) ]

[( )( ( )) | | ]

i i i t

i i

γ δ ω
ρ

γ γ δ
Ω + ∆ − − − ∆

=
+ ∆ + ∆ − + Ω

 
(7)  

*

01 02 02
12 ' ' 2

11 12 02 02

exp[ ( ) ]

[( )( ( )) | | ]

i t

i i

ω δ
ρ

γ γ δ
Ω Ω − ∆ + − ∆

=
+ ∆ + ∆ − + Ω

 
(8)  

' ' '

11 11 00 22 22 00 12 11 22( ) / 2; ( ) / 2; ( ) / 2γ γ γ γ γ γ γ γ γ= + = + = + , 02 2 0( ) /E Eω = − h  (9) 

 

 

and 1 2( ) /E Eω∆ = − h  is the energy difference between level 1 and level 2. These 

solutions lead to the following non-diagonal element of the density matrix, 31ρ : 



*

01 02 23 02 23
31 ' ' 2

13 11 12 02 02

exp[ ( ) ]

( )[( )( ( )) | | ]

i t

i i i

ω δ δ
ρ

ω γ γ γ δ
Ω Ω Ω − ∆ + ∆ − −

=
∆ − + ∆ + ∆ − + Ω

 
(10) 

 

 

Since we need to obtain an electric dipole and a magnetic dipole oscillating at the same 

frequency in order to modify the effective permittivity and permeability responses 

simultaneously, the coherence conditions require synchronization of frequency-dependent 

factors in Eqs. (6, 8, 10): 

02 02 02 02 23ω δ ω δ ω δ δ− = ∆ + − ∆ = ∆ + ∆ − −  (11)  

 

Equation (11) insists that the tunings are actually not independent:  

 

02 022ω ω δ∆ = ∆ − +  (12) 

23 022( )δ δ= ∆ −  (13)  

 

Equations (12)-(13) express tunings ∆ and 23δ  as functions of the tuning of the probe 

beam, 02δ . Eqs. (12-13) correspond to the resonance situation when the e.m. field of the 

probe beam has frequency 2 * 4 3 2

0 023 /8probe Z m eω ε δ= −h  and the e.m. field frequency for 

0-1 transition is equal to the frequency for 2-3 transition, ' '

01 23 2 probeω ω ω= = , and it is 

twice larger than the probeω . Hence, all four of the effective energy levels are equidistant, 

and the support beams and the driving beams are degenerated since they have the same 

frequency. As a result, we will exclude the driving beam and leave only support beam 

with frequency 2 probeω  with substitution 23 01Ω = Ω  into Eq. 10. Also, the probe beam 

causes two additional transitions, one is electric dipolar between levels 1 and 3, and 

another- magnetic dipolar transition between levels 2 and 1. The single tuning, 02δ , 

defines the frequency-dependence of both electric and magnetic responses.  

 

 

IV. Permittivity and permeability functions 

The classical electric dipole, P
r

, is calculated from the general expression
 
[13] as: 

 
ˆˆ{ }P Tr dρ=

r
 (14)  

 

where d̂  is the dipole operator. The amplitude of the electric dipole oscillating at 

frequency '

02ω ω= of the probe e.m. field is defined by the 0-2 and 1-3 transitions: 

 

02 20 13 31P d dρ ρ= +
r rr

 (15)  

 

The effective electric polarizability second rank tensor, eα , is defined by its Fourier 

transformation:  

 



( ) ( ) ( )eP Eω α ω ω=
r r

 (16)  

where E
r

 is the electric field of the probe beam. Since we are interested in a single 

frequency ( '

02ω ω= ), we will drop the ω  dependence, and let ( )e eα ω α= .  Since we will 

consider d̂  parallel to the E
r

 direction, eα  is a scalar calculated from Eqs. (16), (6) and 

(10) as: 
2 2

13 02 01 02

' ' 2 '

13 11 12 02 02 02 22

| |

( )[( )( ( )) | | ] ( )
e

d d d

i i i i
α

ω γ γ γ δ ω ω γ
Ω

= +
∆ − + ∆ + ∆ − + Ω − ∆ −h h

 
(17)  

 

We should mention that the second term in the right part of Eq. (17) does not depend on 

the tuning, 02δ , and this term is much smaller than the first term. We also have included, 

into the expression for the effective permittivity 1 4 Nε πα= + , D Eε=
r r

 (electric 

displacement), the Drude background permittivity, which is due to the free carriers 

(electrons) in the CB: 

 
22

13 02 01

' ' ' 2 2

13 11 12 02 02

4 | |
(1 )

( )[( )( ( )) | | ]

p

p

Nd d

i i i i

ωπ
ε ε

ω γ γ γ δ ω γ ω∞

Ω
= + −

∆ − + ∆ + ∆ − + Ω +h
 

(18) 

 

 

Here the Drude plasmon frequency, 
24 c

p

eff

n e

m

π
ω

ε
∞

= , depends on the concentration, cn , of 

the free carriers in the CB, ~ 0.1p pγ ω , and we use, in our calculations, the following 

concentration: 18 3~ 10 (1/ )cn cm .                                         

 

The effective permeability, µ , is calculated from the classical magnetization, M
r

: 

 

ˆ ˆ{ }M Tr mρ=
r

 (19)  

where m̂  is the magnetic moment operator. Again, we are interested in 12m̂ M=
r

 parallel 

to the magnetic field H
r

of the probe beam, and 12ρ  is the relevant ρ  matrix element in 

Eq.(19). The effective µ , obtained analogous to the procedure described above, is given 

by: 

 
*

12 01 02 01

2 ' ' 2

11 12 02 02

1
[( )( ( )) | | ]

M Nd d E

i i

π
µ

γ γ δ
= +

+ ∆ + ∆ − + Ωh
 

(20)  

 

Here, we assume a standard zero background magnetic response situation since no 

magnetic response to the field H within the optical domain is possible for non-

ferromagnetic situation [3] . 

 

 

 



V. Dipole and magnetic moments 

To calculate the dipole moments, 01 02 13, ,d d d , the wave functions of the atomic states are 

needed. These wave functions, are the products of the radial wave function ( )nlR r and the 

angular wave function ( , )lmY θ ϕ  [13]: 

 

( , , ) ( ) ( , )nlm nl lmr R r Yθ ϕ θ ϕΨ =  (21) 

 

 

The relevant angular wave functions are: 00 1/ 4Y π=  (0-state, 3-state),  

10 ( , ) cos 3/ 4Y iθ ϕ θ π=  (1-state, 2-state), and the radial wave functions are given by: 

 

3 1/ 2 2 1

3

2 ( 1)! 1
( ) {( ) } exp( ) ( )

2 [( )!] 2

l

nl n l

Z n l
R r L

na n n l
ρ ρ+

+

− −
= − −

+
 

(22)  

21
2 1 2 1

0

[( )!]
( ) ( 1)

( 1 )!(2 1 )! !

kn l
l k l

n l

k

n l
L

n l k l k k

ρ
ρ

− −
+ + +

+
=

+
= −

− − − + +∑  
(23)  

 

with ba a=  and 2 /Zr naρ = . The calculation provides the explicit wave functions:  

 

3/ 2

100

1 2
( , , ) ( ) exp( )

8

Z Zr
r

a a
θ ϕ

π
Ψ = −    (0-state) 

(24)  

3/ 2

210 ( , , ) ( ) ( ) exp( )cos
22 8

i Z Zr Zr
r

a a a
θ ϕ θ

π
Ψ = −      (2-state) 

(25)  

3/ 2

310

3 2 2 2
( , , ) ( ) ( )(4 )exp( ) cos

12 4 3 3 3 3

i Z Zr Zr Zr
r

a a a a
θ ϕ θ

π
Ψ = − −     (1-state) 

(26)  

 

The electric dipole operator, d̂ er=
r

, has a ˆ coszd er θ=  component in z-direction 

(spherical system of coordinates) which coincides with the direction of the electric field, 

E
r

, of the probe beam. Consequently, the dipole moments are given by the following 

integrals: 
2

* 3

02 100 210

0 0 0

( , , ) cos ( , , )sind r er r d d dr

π π

θ ϕ θ θ ϕ θ ϕ θ
∞

= Ψ Ψ∫ ∫ ∫  
(27)  

2

* * 3

01 13 100 310

0 0 0

( , , ) cos ( , , ) sind d r er r d d dr

π π

θ ϕ θ θ ϕ θ ϕ θ
∞

= = Ψ Ψ∫ ∫ ∫  
(28)  

 

The dipole moments 01d  and 02d  calculated from Eqs. (21-28) are below: 

*

01 13

81 2

512

biea
d d

Z
= =  

(29)  



5

02

8(2 / 3)

2

biea
d

Z
=  

(30)  

 

The magnetic dipole transitions, due to the parities, are allowed between states 1 and 2 if 

the magnetic dipole moment between these states is non-zero 21 0M ≠  (we assume the 

same spin wave functions 1/ 2χ  for all states):  

 
2

* 2

21 310 210 1/ 2 1/ 2

0 0 0

ˆ2 ( , ) ( , ) sin ( )BM r r r d d dr s

π π

µ θ θ θ ϕ θ χ χ
∞

−= Ψ Ψ∫ ∫ ∫  
(31)  

with the spin factor 1/ 2 1/ 2
ˆ 1/ 2sχ χ = . 

Since states 1 and 2 belong to the different shells, and the radial parts of wave functions, 

210 ( , )r θΨ and 310 ( , )r θΨ , are orthogonal to each other, the r-integral in the right part of 

Eq.(45), and, hence, the magnetic moment, 21M , both are equal to zero. To cope with this 

problem, we will consider the induced magnetic moment, 21M , due to the 

inhomogeneous electric field, E
r

, which causes the dipole moment-type perturbation V̂ : 

 

V̂ erE=
rr

 (32)  

 

Here rE
rr

is the scalar product of vectors. This field is oriented perpendicular to the other 

e.m. fields, in such a way that its electric and magnetic fields, ,E H
r r

, and the Poynting 

vector, S
r

, are mutually perpendicular to 01 01,E H
r r

 and 01S
r

, appropriately. We assume 

that the relevant Fourier component of the electric field has an amplitude, 0E , and the 

fields 0 exp( )E E ikr i tω= +
rr r r

, 0 exp( )H H ikr i tω= +
rr r r

 are at a low frequency compared with 

the probe frequency (i.e. 01ω ω<< ). In the following text, it is convenient to rotate the 

initial system of coordinates (rotation angle ' / 2θ π= ) in such way that the new z-axis is 

perpendicular to the old z quantization axis, and the appropriate e.m. field of the probe 

and the perturbation e.m. field are perpendicular to each other: ,p pE E H H⊥ ⊥
r r r r

. This 

transformation allows for the non-zero magnetic numbers 1, 0, 1m = − − +  in the new 

system of coordinates, and the perturbation is expressed as: 

 

ˆ ( , ) sin ( ) / 2i iV eE r r e eϕ ϕθ θ −= +  (33)  

 

Next, we will expand the long-wavelength perturbation into the series ( 1bka << ) with 

accuracy to two first terms: 

2

0

1
(1 ( ) )

2
E E ikr kr≈ + −

r rr r r r
 

(34)  

We assume the complex wave vector, 
'''k k ik= + , and the relevant part of the 

perturbation which contributes into the matrix element 21M is shown below: 



'' ' 2

0
ˆ ( ) sin cos ( ) / 2i iV eE k ik r e eϕ ϕθ θ −= − − +  (35)  

 

The perturbation above leads to the following matrix element, 12M , between state 1 and 

state 2 in accordance with the perturbation theory
 
[13]

 
: 

 
0

21

1 2
,

( )B ik ki kk

i k

V V M
M

E E

µ +
=

−∑  
(36)  

with three diagonal eigenvalues 0 1,0, 1kkM = − + (magnetic quantum numbers) and 

indexes, i and k, which belong to 1-state and to 2-state, respectively. The calculation of 

ikV  from Eq. 36 with the angular wave function factors 

1,0 1, 1cos 3 / 4 , 3 / 8 sin iY i Y i e ϕθ π π θ ±
±= = m  yields the magnetic moment of an interest: 

 
2 '' '

0
21 2

0.62 ( )b Bea E k ik
M

Z

µ
ω

−
≈ −

∆h
 

(37)  

 

 

VI. Negative refractive index band. 

The complex refractive tuning-dependent index, 02 02 02( ) ( ) ( )n n δ ε δ µ δ= = ± , with the 

correct sign defined by the conditions
  
[14-15] : 

 

(| | Re( ))(| | Re( )) Im( ) Im( )ε ε µ µ ε µ− − >  (38)  

 

is expressed as a function of the probe frequency 02 02probeω ω δ= −  (or tuning 02δ ) with 

the following 02δ -dependence of bothε  and µ : 

 
*

12 01 02 01
02 022

( ) 1 ( )
M Nd d E

F
π

µ δ δ= +
h

 
(39)  

22

13 02 01
02 02' 2

13 02 02 02 02

4 | |
( ) ( ) (1 )

( ) ( ) ( )

p

p

Nd d
F

i i

ωπ
ε δ δ ε

ω γ ω δ γ ω δ∞

Ω
= + −

∆ − − + −h
 

(40)  

 

The resonance-like function 02( )F δ which enters Eqs. (39-40) is given by: 

02 ' ' 2

11 02 02 21 02 02 02

1
( )

[( ( 2 )( ( )) | | ]
F

i i
δ

γ ω ω δ γ ω ω δ
=

+ ∆ − + + ∆ − + + Ω
 

(41)  

 

One can see from Eq. (41) that 02( )F δ  has two resonances at the frequencies 02 resδ δ ±= : 

2 2

02 02 02

3 1 1
( ) ( ) | |

4 16 2
resδ ω ω ω ω± = − ∆ − ± ∆ − + Ω  

(42) 

 



The behavior of the function, Re( ( )F x ) with dimensionless parameter 02 02/ 1x δ δ += −  is 

shown in Fig. 2.  
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Fig. 2. The resonance function Re(F(x)) (Eq. (41)) in dimensionless coordinate of probe tuning 

 

 

One can see that Re ( ( )F x  ) has two resonances. If 02 02| | | |ω ωΩ << ∆ − , the right-wing 

solution 2 * 4 3 2

02 011 / 36res Z m eδ ω ω ε+ = − ∆ = h , and the other two tunings are: 

32, 0resδ δ+∆ = = . This resonance of interest exactly corresponds to the frequency 

2 * 4 3 2

05 / 72res

probe Z m eω ω ε= ∆ = h  of the probe e.m. field equal to the distance between 

levels 1 and 2. Expressions (38)-(42) were utilized to calculate both the real, Re(n), and 

imaginary , Im(n), parts of the refractive index, n, along with the figure of merit, 

FOM=|Re(n)/Im(n)|, as a function of the probe frequency probeω . 

 

The specific material of choice is the transparent conducting tin-Zn-doped indium oxide, 

In2-xSnxO3 :Zn (ITO doped Zn) [16-19], with the following relevant intrinsic parameters: 

Z=1, 0 4.4ε ≈  [18] , * 0.3 em m≈  [19] ( em  is the mass of an electron), and a modest 

concentration of the carriers (electrons) in the CB 18 3~ 10 (1/ )cn cm , the level of doping 

for both In and Zn to be 21 310N cm−= . The level of losses ' ' 8

11 12~ ~ 10γ γ  Hz was taken 

as lowest in gas phase [5], and then it was increased to a much higher level 
' ' 10

11 12~ ~ 10γ γ  Hz, to check the stability negative refractive index effect. The free 

parameter of the calculations was the probe beam laser intensity, Ip , which was changing 

in limits of experimentally established probe laser intensities 
6 2 8 210 / 10 /pW cm I W cm< ≤  [20-21]. First, we calculated the frequency dependence of 

the complex permittivity ( )probeε ω  and the permeability ( )probeµ ω  which are shown in 

Figs. 3-4. 
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Fig. 3.  The real (blue), Re[ ( )]

probe
ε ω , and the imaginary(red), Im[ ( )]

probe
ε ω , parts of the permittivity 

as  a function of the probe frequency probeω . This is high loss situation, 
' ' 10

10
11 12

Hzγ γ= = , with probe 

laser  intensity 
8 2

10 ( / )I W cmp = , and  doping concentration 
21 3

10N cm
−= . 
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Fig. 4.  The real(blue), Re[ ( )]

probe
µ ω , and the imaginary(red), Im[ ( )]

probe
µ ω , parts of the 

permeability as  a function of the probe frequency probeω . This is high loss situation, 

' ' 10
10

11 12
Hzγ γ= = , with probe laser  intensity 

8 2
10 ( / )I W cmp = , and doping concentration 

21 3
10N cm

−= . 

 

Fig. 5 demonstrates the frequency-dependent complex refractive index calculated for the 

probe laser intensities: 8 210 ( / )pI W cm= , which is within the modern limits of laser 

intensities. The negative refractive index band at ~ 12-13 THz is clearly seen with a well 



pronounced real part of the index of refraction (Re(n)~ -1)), and a high FOM >10  (Fig. 

6). 
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Fig. 5. The real (blue), Re( ( ))n ω , and the imaginary (red), Im( ( ))n ω , parts of the refractive index n as 

function of the probe frequency (Sn-Zn-doped indium oxide), all parameters are the same as in Figs. 3-4. 
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Fig. 6. Calculated figure of merit (FOM) as function of the frequency in Sn-Zn-doped indium oxide, all 

parameters are the same as in Figs. 3-4. 

 

 



B.  EXPERIMENTAL DEVELOPMENT 

 

I. Introduction 

The experimental approach to homogeneous NIMs included two different material 

systems: (In1-xSnx)2O3 and Cr doped IO (In2-xCrxO3-δ). Part 1 of this section will include 

the Sn doped IO system and will provide details of the fabrication methods, structural and 

optical characterization. Then it will describe an extraction methodology based on 

Nilsson’s approach [22] on these films. Part 2 will present our most recent results on 

magnetic semiconductor (Cr doped IO) based homogeneous negative index materials. 

This section will provide details on the fabrication, structural, optical and magnetic 

characterization of In2-xCrxO3-δ films, and provide an alternative method for extracting the 

negative index of refraction of these materials based on reflection and transmission 

coefficients measured at multiple angles of incidence.  

 

1. Sn doped IO material system  

 

This section describes the structural and materials physics of the doped semiconductor 

(In1-xSnx)2O3. The report is divided up into three sections 1) a description of the 

fabrication of the (In1-xSnx/2Znx/2)2O3 films and their structural, electronic and 

compositional characterization, 2) a report of the results of electromagnetic properties of 

the materials in the ultra-violet/visible spectral range and the mid-infra-red and 3) The 

computation of the real and complex parts of the refractive index. The real part of the 

refractive index can be pushed into the negative by pump and support laser fields, 

whereby electrical dipole transitions are magnetically coupled to produce a overlapping 

negative regions of dielectric permittivity and magnetic permeability. This produces the 

negative index effect which we look for with a probe laser which optically samples the 

region of the film, wherein the negative refractive index is produced.  

 

The films are, at best, homogeneous polycrystalline smooth slabs of material with carrier 

densities and conductivities similar to those seen observed in n-doped semiconductors. 

We focus on a set of a series of In2O3 (IO) and In2-xSnxO3 (ITO) films,  which serve as 

the basis set of samples for the growth and development of the In2-x(Sn,Zn)xO3. The films 

are characterized by scanning electron beam (SEM) microscopy for homogeneity and 

smoothness,  surface profiling for film thickness, energy dispersive X-ray spectroscopy 

(EDX) for sample composition, Hall measurements for electron concentration, optical 

transmittance by the spectrometry in the UV/Visible spectral region and the mid-infrared 

(mid-IR) spectral region using a Fourier transform infrared interferometer (FTIR).  

 

The optical transmittance data can be fitted to a Drude plasmon model from which the 

high frequency permittivity can be extracted, along with the plasma wavelength, the bulk 

plasmon damping and, in principle, the effective mass.  The transmittance and reflectance 

data are then used for computational extraction of the optical constants – n and k. All thin 

film samples were grown by sputtering on <100> p-Si substrates.  

 

 

 



1.1 Crystal Structure and Film Fabrication  

 

The quality of the sample material and the reproducibility of the observed optical 

properties are critically important to the success of this project. Over the last three 

months, a significant portion of time has been devoted to the development of the material 

sources. The doped (Sn, and Zn in this instance) In2O3 films in a DC and RF sputtering 

system. Several films of both IO and ITO (Sn doped In2O3) have been grown with 

varying Sn concentration and Ar gas pressure.  The Ar gas pressure is used to sputter 

from the target and we have found that a pressure of 24 mT is conducive to the smooth 

and homogeneous films whose thickness lies in the range of several microns. This is ideal 

for the optical transmittance and EDX measurement considerations. 

 

 

 

  

 

 

 

 

 

 

 

 

 
Fig. 2 (a)The cubic bixbyite structure of (II,VI) randomly doped In2O3 

 

The thicknesses are measured by surface profiling and, more accurately, by measuring 

the separation in adjacent Fabry-Perot (FB) interference fringes in the transmittance data. 

These FB oscillations can be observed in the mid-IR range for films of several microns in 

thickness. SEM imagining reveals the surface morphology and smoothness of the films.  

 

The Sn and Zn dopant atoms will be independently controlled in terms of sputtering rates 

and hence the deposition of these atoms into the insulating In2O3 matrix is done in order 

to controllably balance the density of these two atomic species.  

 

 

 

  

 

 

 

 

 

 
Fig. 2  Sputtering chamber photograph showing the  sputtering guns. The calibration curve enables the 

control of the composition of the film with Sn/Zn gun power. The plots 

Show the growth rate calibration for deposition rate Vs. power. 



1.2 Electrical and Compositional Characteristics  

 

The optical scattering and losses are critically dependent upon the carrier density. This 

we measure using a Hall setup, from which the Hall constant and mobility are derived. 

The typical Hall carrier concentrations that are measured in the intrinsic In2O3
 
are in the 

range of 1x10
18

 – 5x10
19

cm
-3

. This concentration is pushed upwards by the addition of Sn 

atoms into the material, as shown in Table 1. 

 

In order to gain an understanding of the composition of the IO and ITO films, we subject 

our films to EDX analysis with a field emission SEM. This beam penetrates a distance of 

about 1 micron into the sample. The accumulated statistics on collected keV dispersive 

energies, reveal the Sn (Z=49) peak, which have had to have been separated from the In 

(Z=50) peak. From these atomic percentages, we calculated the mole ratios, x, and the 

resulting carrier concentrations as measured by the Hall measurements. We find that, in 

general, the carrier density is determined completely by the Sn mole ratio (x) and the 

oxygen mole ratio 3-δ  in the formula In2-xSnxO3+δ.  
 

Table 1. Summary of the EDX material composition analysis of the DC/RF co-sputtered ITO films. The 

carrier concentration is measured by the Hall effect. 

 
 

 

1.3. Optical characterization in the UV/visible 

 

In order to understand the optical characteristics of the IO and ITO films in the visible 

region of the electromagnetic spectrum, we performed transmittance measurements on 

the samples using a broadband halogen and deuterium lamp and an Avantes 3000 

visible/UV spectrometer. We were able to resolve clear Fabry-Perot oscillations in the IO 

films, indicating their smooth and optically homogeneous quality. The UV/Visible 

transmittance measurements also revealed strong and pronounced inter-band absorption  

at around 350nm (see Figure 3 (a)), which is corresponds to a band gap of 3.1-3.55 eV 

(Figure 3 (b)) and the absorption occurs between the between O (2p) and In (5s) states in 

the material.        
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Fig. 3 (a) Transmittance curves of the indium oxide films showing Fabry-Perot oscillations from which the 

thicknesses were extracted. The dips at 350nm indicate interband absorption. (b) Optical transmittance 

curves for the ITO films – showing the suppression of the interband absorption due to scattering losses. (c) 

the band gap estimate linear fit for a typical sputtered IO film . 

 

 

Figure 3(b) shows the plots of the transmittance for the ITO films. These plots 

demonstrate that these films are more lossy, due to the inclusion of the Sn substitutions.  

The interband transitions are screened out, yet the Fabry-Perot oscillations are still 

present, indicating that the films are smooth on the length scales of the probing 

wavelength. These films of ITO are now ready for the doping of the Zn atoms. The Zn 



atoms, unlike the Sn atoms, which donate one electron to the conduction band, are 

acceptors and give two holes to the conduction band. The Zinc atoms are to be used to 

reduce the total carrier concentration while maintaining a Sn doping mole ratio of about 

x=0.05.  

 

1.4  Optical characterization in the mid-IR 

 

We performed transmission measurements on the IO and ITO films using broadband THz 

radiation with a Brueker Optics Vertex 70 FTIR incorporating a room temperature CsI 

DLATGS detector, whose sensitivity falls in the wavelength range 2.5 µm to 30 µm. The 

substrate material p-Si offers a 50 % transmittance in this range. This substrate is used to 

characterize our background signal. \ The optical constants and the parameters of the 

electric permittivity function, are found from the extraction procedure as described by P. 

O. Nilsson using the formalisms developed by Mayer and Heavens. The extraction of the 

Drude parameters are done by fitting the transmittance curves to a Drude model. This 

latter procedure is absolutely necessary to establish whether we have negative 

permittivity in the mid-IR region.  

 

1.5 Drude plasmon fitting 

 

In order to extract the theoretically intractable parameter ε¶, together with the bulk 

plasma wavelength and the plasmonic losses, we fit the mid-IR transmittance data to a 

model of the permittivity function.  This is done by writing the Drude model for the 

dielectric permittivity, as follows:  
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Where ε¶ is the high frequency dielectric permittivity, λp is the plasma wavelength and 

Γ parameterize the losses. The transmittance is then calculated in terms of the Fresnel 

formulae and a fit with the mid-IR transmittance data is done. A typical fit is depicted in 

Figure 4, while the table of fitted parameters are given in Table 2. 



 
 

Fig. 4 A typical fit of the mid-IR transmittance curve for an IO sample in order to extract the 3 Drude 

parameters of the Drude model. The plasmon losses are underestimated here And the long wavelength fit is 

divergent from the data, as are the data in the Fabry-Perot interference region. 

 

 
Table 2. Drude model fits to the transmittance data of a series of indium oxide films. 

.  
 

 

1.6 Numerical extraction of the optical constants  

 

In order to accurately extract the optical constants of the films (the real and imaginary 

parts of the refractive index), we model the optical transmittance and reflectance using 

the methods described in Refs 22-24. The idealized film/substrate/air system as 

considered in the paper can be represented in the following way: 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

The equations which relate the film properties and the measured transmittance and 

reflectance are strongly non-linear and implicitly specified as follows: 

 

F(T,n,k) = 0 and G(R,n,k) = 0 

 

The right hand side of these equations is taken to be squared and this is the functional to 

be minimized for the extraction of the optical constants of the film in question.  

 

The Nilsson extraction procedure is very powerful for the ITZO optically pumped 

negative index experiment because all of the optical constants of a film can be extracted 

from a single shot, low noise transmittance experiment over a finite spectral range. The 

phase can also be estimated, eliminating the need for the use of the Kramers-Kronig 

relations, altogether. This method of the determination of the optical constants for the 

film is crucial as the probe laser will be collinear and coincident with the pump and 

support beams, and will be critical for accurately determining n and k under the requisite  

Photon pumping conditions. 

 

 

 

 

 

 

SubstrateFilmAir Air

(ns)
(n-ik)

nsTf
( ) 









−−
=

bs

s
fs

RT

T
TnT

11

SubstrateFilmAir Air

(ns)
(n-ik)

nsTf
( ) 









−−
=

bs

s
fs

RT

T
TnT

11



2. Cr doped IO material system  

 

In this section we will discuss in detail the homogeneous NIMs based on magnetic 

semiconductor In2-xCrxO3. We have shown that a strongly pronounced negative refractive 

index effect at ~ 27.8 µm. This effect was theoretically predicted earlier, and it is based 

on coexistence of the spin wave (magnon) mode with the plasmonic mode, with 

simultaneous negative permittivity and permeability responses. The thin films of In2-xCr 

xO3 are fabricated, with low stoichiometric oxygen deficiency, which is required for 

ferromagnetic behavior. The magnetic measurements clearly reveal the ferromagnetism 

with high saturation magnetization. The complex frequency-dependent refractive index is 

extracted from combined transmittance and reflectance data.  

 

Theoretical studies of Cr doped IO, [25] predict that such principally homogeneous 

materials (monocrystals or polycrystals) belong to class of magnetic semiconductors with 

ferromagnetic behavior, and detailed calculations of the expected negative refractive 

index were done for the transparent conducting Cr-doped indium oxide [26]. The 

calculations show that this ferromagnetic system, in its polycrystalline form, should 

possess the fully isotropic, low-loss negative refraction index n < 0 at ~ 10.48 THz. The 

negative refraction index was owing to overlapping the negative permittivity function 

ε(ω) < 0, due to the plasmons (resonance frequency ωp), with the negative permeability 

function µ(ω) < 0 due to the spin waves. In support of the idea of homogeneous materials 

with desirable effect, it was demonstrated experimentally [27], that ferromagnetic metal 

mangenite, La2/3Ca1/3MnO3, reveals negative refractive index at ~ 150 GHz, based on 

analogous plasmon-magnon excitation mechanism.           

 

2.1 Fabrication of Cr doped IO material system  

 

Fabrication of ferromagnetic In2-xCrxO3-δ films is a considerable challenge itself since the 

ferromagnetic behavior of In2-xCrxO3-δ critically depends on the stoichiometric oxygen 

deficiency concentration, or parameter, δ which should be within the difficult-to-reach 

narrow range: 4 21.6 10 10δ− −× ≤ ≤ [28]. Since every oxygen deficiency provides 2 electrons 

into the conduction band, the δ controls the electron density, ne, in conduction band. As 

the ferromagnetic ordering in this material is electron-mediated, and heavily depends on 

ne., the required δ within the aforementioned narrow range is crucial for indirect spin 

coupling, which causes the ferromagnetism [28]. Also, additional details of the 

fabrication process dramatically affect the magnetic behavior of the Cr-doped IO, and for 

this reason, the ferromagnetism becomes elusive or difficult to reach. Moreover, several 

groups, for this very reason, even deny the very existence of the ferromagnetic properties 

[29-30] or suggesting the presence of secondary phase as the origin of ferromagnetism 

[31-32].  

 

To cope with this difficulty, we have used an effective post annealing process for precise 

control of structural parameter δ. The material growth technique used for depositing the 

thin films was based on the DC/RF magnetron sputtering technique. The sputtered 

samples are deposited in a chamber whose base pressure was maintained at around 

2×10
−7

 Torr and the films were deposited on p-Si (100), whose resistivity was on the 



order of 0.1 Ω cm. In terms of substrate temperature, the grown samples are synthesized 

at room temperature.  

 

The sputtered samples are grown using two targets - a d.c. magnetron sputtering gun for 

the Cr and an r.f. magnetron gun for the In2 O3 Cr/ In2 O3 targets (K.J. Lesker, both at 

purity of 99.99%). The sputtering is performed in an Ar atmosphere of around 24 mT, 

while the oxygen concentration can be enhanced by the inclusion of a small partial 

pressure of oxygen at around 0.3 × 10
−3

 mT. The oxygenation comes from a rf driven O2 

plasma source and is controlled by a needle-valve and mass flow controller 5.8 sccm. In 

this way, we have grown Cr doped indium oxide with the general formula of In2−x CrxO3-δ 

(ICO), where x is the Cr mole fraction and δ represents the deviation from stoichiometric 

oxygen content. These samples were post annealed at 250
0 

C in air. Even a tiny change in 

the wt% of the oxygen results in a significant change in the oxygen deficiency, δ. 

 

The stoichiometric composition required for ferromagnetism is within the following 

range: 38.80±0.506 wt % In, 60.00±0.108 wt% O with 1.20±0.398 wt% Cr. In order to 

obtain this composition, the fabricated samples are post annealed at 250 
0
C. It is known 

that annealing in vacuum results in the formation of oxygen vacancies [33-34]. 
 
On the 

contrary, annealing of CIO in air causes oxygen to re- diffuse into the film and eradicates 

the oxygen vacancies. EDS results are presented in Table 1 below. As follows from this 

table, by changing the time of annealing (60 sec), we were able to reach the 

aforementioned range [28]
 
for δ. 

 
TABLE I. The effect of post annealing time on the composition of the sputtered Cr-doped InO 

 
Annealing %O %Cr %In X δ 

As-deposited 75.91 1.23 22.85 0.102 -3.3048 

2500C in 45  sec. 59.40 0.75 39.85 0.037 0.0739 

2500C in 60  sec. 59.93 0.73 39.34 0.036 0.0087 

2500C in 50  sec. 64.14 1.01 34.86 0.056 -0.5762 

2500C in 55  sec. 62.89 1.18 35.93 0.064 -0.3894 

 

 

2.2 Characterization of Cr doped IO material system  

 

The ordinary Hall Effect with a Van der Pauw contact geometry was used to determine 

the conduction carrier concentration, ne. The structural study of the fabricated samples 

was done by energy dispersive spectroscopy, EDS, and the film thickness was measured 

by the AlphaStep profilometer instrument.   

 

The magnetic measurements of the successful samples are performed by SQUID at 10 K 

and at room temperature, in hope to see expected ferromagnetic behavior. The magnetic 

field is applied in the sample plane. Fig. 1 shows the results of the magnetization versus 

applied magnetic field (M-H) curve measured at 10 K for the 0.35 µm thick of Cr:InO 



annealed thin films with carrier density ne= 0.529 x10
19

. As follows from this result, our 

successful samples are indeed ferromagnetic, with high saturation magnetization up to 

0.6 µB/Cr-atoms. The measurements of the ferromagnetic thin samples with thickness 0.1 

µm provided even higher saturation magnetization up to 0.8 µB/Cr-atoms. Since this 

saturation magnetization is only ~ 25% larger than magnetization 0.6 µB/Cr-atoms for 

thick samples, we can conclude that magnetization is mostly bulk effect and surface 

enhances ferromagnetism only to a small extent.   
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  Fig. 1. Magnetization measurements indicating that the doping of Cr atoms to the In2O3 film and after post 

annealing yields a saturated magnetic moment of (0.6-0.8) µB per Cr atom at 10 K. 

 

Next, the transmittance of the films were measured at normal incidence using a Bruker 

Optics Vertex 80 interferometer incorporating a broadband THz lamp and a room 

temperature KBr/DTGS-D301 photodetector. This system enabled us to perform 

transmittance measurements of the films over the spectral range up to 40 µm. The 

reflectance has been measured within broad range of angle of incidence, θ , 

(5,10,15,20,40,50,70,80 degrees) by the AutoSeagull reflection unit. 

 

Fig. 2(a) demonstrates, for a ferromagnetic sample, the examples of measured frequency-

dependent FTIR both the reflectance coefficient R for 05θ = , (a) 050θ =  (b), and the 

transmittance coefficient. One can see, from Fig.2, the strongly pronounced maximum on 

R curves at λmax~27.8 µm, and the minimum on the T curve at the same frequency. We 

assume that these extremes correspond to the limiting spin wave frequency, ω ~ 10.8 

THz, on the boundary of the Brillouin zone. Indeed, this frequency is very close to the 

theoretical predictions [26]. Hence, the maximum at ~ 27.8 µm is a viable candidate for 

the desirable effect, and we extracted the refractive index within narrow range which 

includes this wavelength (see below). 

 

It would be instructive to compare reflectance spectra of ferromagnetic and non-magnetic 

films, with the same Cr doping parameter x, but with different oxygen deficiency, δ. Fig. 

3 demonstrates the typical FTIR R spectrum for the non-magnetic film, with the same 

doping x ~0.036 as the ferromagnetic film (δ ~ 0.0087) utilized in Fig. 2, but with the 

oxygen deficiency, δ ~ 0.06, outside of the required range ( 4 21.6 10 10δ− −× ≤ ≤ ) which is 

required for the ferromagnetic indirect spin-spin coupling [28]. One can see, in contrast 



to ferromagnetic film, that the non-magnetic film possesses no maximum in region 27-28 

µm. Such behavior is expected, since the spin waves (magnons) which are responsible for 

the maximum are not presented in this specific film0. Moreover, the non-magnetic R 

spectrum, at 27.8 µm, shows a minimum instead of a maximum, and R is much smaller 

than R for the ferromagnetic film. One can conclude that the strongly pronounced peaks 

on R curve, with simultaneous extremely high reflectance R > 0.8, are the signatures of 

the magnon-plasmon resonance in magnetic semiconductors. 
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Fig. 2. Reflectance coefficient, R, and transmittance coefficient, T, of the ferromagnetic thin film of  In2−x 

Crx O3-δ, x~0.036, 0.0087δ ≅ , for different angles of incidence: a ) R, θ=5
°
, b) R, θ=50

°
, c) T, θ=0

°
,. 

Red arrow points to magnon-plasmon overlapping resonance at ~ 27.8 µm, which corresponds to a maxima 

of R and a minima of T. 
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Fig. 3. Reflectance coefficient, R, of the nonmagnetic thin films of In2−x Crx O3-δ, x~0.036, δ ~ 0.06, for 

angle of incidence θ=50
°
. 
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2.4 Extraction Methodology  

 

Even though FTIR measurements do not provide the phase of reflected and transmitted 

waves, the optical constants, or real and imaginary parts, n1(λ) and n2(λ), of a complex 

refractive index, n(λ) = n1(λ) + in2(λ), can still be reliably extracted from the combined 

reflection and transmission amplitudes, R(λ,θ) and T(λ,θ), measured at sequence of 

incident angles 1 2, ,... lθ θ θ  , if this sequence covers a wide range of angles [36]. The 

method of the extraction of n(λ) which was used for this project, is based on the 

following formulations. Obviously, each theoretically calculated curve with fixed θ for 

reflection and transmission 1 2 1 2( , ( ), ( )), ( , ( ), ( ))TH THR n n T n nθ λ λ θ λ λ , should depend on 

n1(λ) and n2(λ). Hence, within a narrow region, close to the specific wavelength of an 

interest, λ~ λext, it is possible to fit calculated amplitudes 

1 2 1 2( , ( ), ( )), ( , ( ), ( ))TH THR n n T n nθ λ λ θ λ λ
 
to experimental data, R(λ,θ) and T(λ,θ), in order 

to extract the couples of optical constants 1 2{ ( , ), ( , )}i in nθ λ θ λ  which depend on the 

incident angle θ = θ i. Afterwards, one can analyze which couple 1 2{ , }n n is the same for 

all R-T amplitudes, or for the whole set iθ θ= , and this solution should correspond to 

true refractive index, 1 2( ) , ( )ext extn nλ λ . 

 

In the calculation of the reflection–transmission amplitudes, RTH(θ, n1(λ), n2(λ)) and 

TTH(θ, n1(λ), n2(λ)), we have followed the classical Born’s method [36] of characteristic 

reflection-transmission matrix of a stratified medium. This medium is the film which 

covers the  silicon carbide substrate with thickness ~ 250 µm and permittivity εs ~ 3.38 + 

i0.0034 (both extrapolated from data of Ref. 37 and directly measured at wavelength ~28 

µm).  

 

The appropriate extracted refractive index band in vicinity of the magnon-plasmon 

resonance, at λmax ~ 27.8 µm, is shown in Fig. 4. One can see, from Fig. 4, that refractive 

index becomes negative within narrow band with Re(n) ~ -2.0, Im( ) 2.0n ≈ , which 

corresponds to figure of merit, FOM ~ 1. Hence, due to negative refractive index effect at 

~ 27.8 µm, we can conclude that this wavelength consistently corresponds to assumed 

plasmon-magnon resonance. 

 

As follows from Fig.4, the positive refractive index, Re(n) ~ 1.0 and Im(n) ~ 10.0, 

outside of the negative refractive index band. The magnitude of this refractive index can 

be explained from the Drude plasmon permittivity ε  [22], 

 
2

2
( ) (1 )

( )

D

i

ω
ε ω ε

ω γω∞= −
+

        (1), 

 

where the Drude frequency, ωD ~ 310.5 THz, corresponds to concentration of electrons 

(N~2.7x10
20

(1/cm
3
)) in the conduction band for experimental oxygen deficiency δ ~ 

0.0087; ε∞ ~0.8, and γ is the losses in plasmonic subsystem. Due to the lack of magnetic 

response (µ ~ 1) outside the narrow band, at the boundary of the Brillouin zone [25, 26], 



(which coincides approximately with the negative refractive band), the refractive index, 

outside the band, can be approximated as n ε= . Since the Drude frequency is much 

larger than the frequency where the negative refractive index band is located (ωD 

>> ωTH), the calculated real part of the Drude permittivity is negative: Re(ε) ~ -100.0. 

The appropriate real and imaginary parts of the index of refraction are as follows: Re(n) ~ 

1.0 and Im(n) ~ 10.0. Hence, as one can see from Fig. 4, real and imaginary parts of 

refractive index, as predicted by Drude theory, are on the same order of magnitude with 

experimental refractive index in the vicinity of the negative refractive index band. The 

behavior of ( )n λ is fully consistent both within and outside the negative refractive index 

band with the theoretical predictions [26, 38].  

 

 

 

.   

Fig. 4 Extracted refractive index n=Re(n)+iIm(n) in the vicinity of the plasmon-magnon resonance of the 

ferromagnetic film In2−x Crx O3-δ, x~0.036, δ ~ 0.0087. 

 

In conclusion, the negative refractive index band parameters of ferromagnetic Cr-doped 

indium oxide thin films (i.e. wavelength and bandwidth) are fully consistent with 

predicted ones in Ref. 27, and the measured electric and magnetic properties of Cr-doped 

IO are close to those reported in literature [29]. Specifically, the experimentally verified 

negative refractive index narrow band, with width, ∆λ/λmax~0.005, is located at the 

limiting frequency of the magnon spectra, λmax~27.8 µm, with Re(n)~ -2.0, Im(n) ~2.0. 

The theoretical prediction of Ref. 10 provides the negative refractive index band at λmax ~ 

30.0 µm with the estimated width, ∆λ/λmax~0.001-0.1, and the refractive index, Re(n)~ -

2.5, Im(n) ~1.0. These predictions are in close proximity to the extracted experimental 

parameters reported above. 
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Conclusions 

As a result of this project, we have investigated two different systems for achieving 

homogeneous negative index materials. Firstly, doped semiconductors exposed to special 

external laser beams to achieve coherent coupling of an electric dipole transition with a 

magnetic dipole transition leading to permeability and permittivity responses which result 

in negative index in a particular wavelength regime is considered. Then, magnetic 

semiconductors (specifically, Cr doped IO) are considered where the effect is due to the 

coexistence of the spin wave mode with the plasmonic mode. Both of these modes are 

activated by the e.m. field of the light with simultaneous permittivity and permeability 

responses within some frequency band, which ensures the negative refractive index 

within the frequency band close to the boundary of the Brillouin zone of the magnon 

spectra. Based on these studies presented herein, we believe that natural homogeneous 

magnetic semiconductors with well-pronounced negative refractive index band can be 

promising in future applications. The advantages of these natural materials compared 

with inhomogeneous composite metamaterials are their optical isotropy, and the fact that 

the optical constants, , , nε µ  are true physical variables defined on the atomic level, 

rather than some “effective” parameters.  
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