
REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

The public reportmg burden for th1s collection of mformation is estimated to average 1 hour per response. includmg the time for rev>ewing instruct>ons. searclhing existing data sources. gathering and 
mmnta1mng the data needed. and completing and rev1ew1ng the collection of 1nforma t1 on. Send comments regarding th1s burden est1mate or any other aspect o fth1s collection of mformat1on . 1nclud1ng 
suggestions for reduc1ng the burden. to the Department of Defense. ExecutiVe Serv1ce D>rectorate (0704-0188) Respondents should be aware that notwithstanding any other prov1s1on of law. no 
person shall be sub;ect to any penalty for fall ing to comply w1th a collect>on of 1nformat1on if 1t does not display a currently valid OMB control number 

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. 

1. REPORT DATE (DD-MM-YYYY) 12. REPORT TYPE 3. DATES COVERED (From- To) 

02-28-2011 Final Report 0311 5/2008- 11 /30/ 2010 

4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER 

Evaluating the Effects oflnterface Disruption Using fNIR Spectroscopy FA 9550-08-l-0123 

Sb. GRANT NUMBER 

F A9550-08-l-0123 

Sc. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) Sd. PROJECT NUMBER 

Robert J.K. Jacob, Leanne M. Hirshfield 

Se. TASK NUMBER 

Sf. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 

Tufts University, 161 College Ave. Medford, MA 02155 REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) 

AFOSR 
875 N. Randolph St. 

Suite 325 11. SPONSOR/MONITOR'S REPORT 

Arlington, VA 22203 NUMBER(S) 

AFRL-OSR-VA-TR-2012-0234 

12. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
The primary accomplishment that we achieved during this three year effort was the creation and implementation of a novel usability experiment 
protocol and a set of machine learning methods that enable us to predict, on the fly, the user state of a given individual. Before we began this 
research, the majority of brain research, and all fNIRS research could not PREDICT user states. Previous research in non-invasive brain 
measurement could only predict that two (or more) user states differed from one another. We have had great success publishing our work in part 
because it offers a large leap forward in the state-of-the-art of non-invasive brain measurement in HCI. We used our techniques to test disruptions 
that were developed from the DnD project, and we reported on these findings throughout the effort. Building on the techniques and findings from 
our first 2 Y2 years of research, we spent the second half of our final year of funding pursing the measurement of trust and suspicion while users 
work with computers. We teamed up with a strong group of experts in the trust domain, including interested parties from AFRL at Wright Patterson 
Air Force Base, where we have visited several times to share, and build on, our research. 

1S. SUBJECT TERMS 

cyber-security, brain measurement, workload, trust, usability testing 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 

a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT OF 
PAGES 

u u u uu 15 

19a. NAME OF RESPONSIBLE PERSON 

Leanne M. Hirshfield 

19b. TELEPHONE NUMBER (Include area code) 

Reset 

617-314-2801 

Standard Form 298 (Rev. 8/98) 
Prescribed by ANSI Std Z39 18 

Adobe Professional 7.0 



Evaluating the Effects of Interface Disruption Using fNIR Spectroscopy 

Sponsor No:  FA9550-08-1-0123 

Final Report 

Robert J.K. Jacob/Leanne M. Hirshfield 

Tufts University/Hamilton College 

1 Introduction 

Our AFOSR 6.1 research began as supporting research for the larger AFOSR Denial and Disrupt (D&D) 

project. The D&D project aims to take an offensive stance toward adversarial computer operators in 

cyberspace. Cyber-operations techniques have been developed by personnel at Assured Information 

Security (AIS) to monitor or disrupt an adversarial operator‟s computer. By introducing subtle disruptions 

into an adversary‟s computer system, the D&D project aims to increase user workload, cause distractions, 

and increase user error rates. Some examples of disruptions are disabling copy and paste functionality, 

changing the effect of pressing various keyboard keys, causing pop ups to appear on the screen, and 

slowing down program response time.   

By introducing these subtle disruptions into an adversary‟s computer system we can continually reduce 

the adversary‟s threat potential while monitoring his actions. Understanding the effects that sequences of 

disruptions have on operators is essential to the success of this project. Choosing subtle disruptions and 

determining how often to disrupt an adversary‟s computer requires a wealth of experiments and a 

thorough understanding of human factors. Fundamental questions stemming from the D&D project are:  

 How do we measure the effectiveness of various interface disruptions? 

 What kinds of disruptions should we choose when: 

o We want to increase subject‟s error rate without subjects noticing that any disruption is 

occurring. 

o We want to increase error rate/and or task completion time and we want to frustrate the 

user without causing suspicion. 

 What human performance characteristics do we measure? 

 How do we conduct usability experiments to acquire the necessary metrics? 

Ideally, usability tests could be conducted to evaluate the effects of the D&D disruptions on computer 

users. While usability tests can acquire objective, real time metrics of a user‟s speed and accuracy while 

(s)he works with an interface, acquiring additional metrics about the user‟s mental state (such as 

perceived difficulty, enjoyment, suspicion, boredom, frustration, etc) while working with a computer 

system involves the use of surveys.  These surveys are subjective, and they are often prone to subject 

biases, and they are administered after a task has been completed, lacking valuable insight into the user‟s 

changing experiences while working with an interface.   

The novelty of our AFOSR 6.1 research stems from our use of a new, non-invasive brain measurement 

device to overcome the user state evaluation challenges listed above. We use our non-invasive brain 

measurements during our usability tests, where we have human users work with a target user interface 

(this interface could be to an airplane cockpit, an AFRL-sponsored web page, or any software developed 

for or by the Air Force, to name a few).  While users work with the interface on prescribed tasks, we 



measure their brain activity, as well as a number of other, more traditional usability metrics.  We then use 

the data from our usability experiment to evaluate the chosen interface design, to clearly specify its 

strengths (how it supports usability) and its weaknesses (how it limits usability), and to make suggestions 

about ways to improve (or further impair) the design.  

 

We use electroencephalography (EEG) and functional Near-Infrared spectroscopy (fNIRS) to acquire 

measures of users‟ mental states. Unlike other brain devices which require subjects to lie in restricted 

positions (fMRI), or to drink hazardous materials (PET), EEG and fNIRS can measure users‟ brain 

activity in realistic working conditions [1].  This makes EEG and fNIRS appropriate choices for brain 

measurement in usability testing.  Whereas EEG has been available since the early 1900‟s, fNIRS was not 

introduced until the 1990‟s and holds great potential for extremely non-invasive cognitive state 

measurement.  It is significantly easier and faster to set-up on subjects than is EEG, it is less sensitive to 

noise in the signal, has higher spatial resolution, and is less invasive, allowing for use in real working 

conditions. Our strong history of research with the promising fNIRS device has placed us at the leading 

edge of research on non-invasive measurement for usability testing and adaptive system design [2-6].   

The 6.1 research that we have conducted over the past three years has enhanced usability testing and the 

measurement of user states in general, and more specifically, we have applied the findings from our basic 

research to the usability testing problems stemming from the Denial & Disrupt project. 

2 Review of AFOSR Research 

At the heart of our previous AFOSR research has been the creation of an experimental protocol that can 

be used to acquire meaningful measures of users‟ mental states (i.e., levels of workload, frustration, 

suspicion) with brain imaging during usability studies [4, 7, 8]. As opposed to most brain measurement 

research that treats each user state as an independent variable, manipulated in order to control the user‟s 

mental state, our protocol enables us to measure each user state as a dependent variable during the 

usability study (as the point of a usability study is to determine the unknown effects that an interface has 

on computer user).  As a reminder, the general protocol is as follows:  

 

1) Researchers gather benchmark tasks from cognitive psychology that elicit high and low levels of 

brain activity on a range of target cognitive resource(s) such as visual search, working memory, 

response inhibition, and tasks that elicit emotional responses with set levels of valence and 

arousal. These exercises are henceforth referred to as cognitive benchmark tasks. 

2) Researchers create a set of tasks that users will complete with the UI to be evaluated. These tasks 

are referred to as UI tasks. 

3) An experiment is run where users complete the cognitive benchmark tasks, yielding a measure of 

their brain activity while experiencing high and low brain activity levels in their various cognitive 

subsystems. This is called the training period.  

4)  Users also work with the UI tasks. This is called the testing period.  Brain activity is measured 

throughout the experiment. 

5) Data analysis tools are used to find similarities and differences in the users‟ brain activity while 

working with the tasks in the training and testing period.  



With this protocol, researchers can make connections between the brain activity experienced by users‟ 

low level cognitive resources while they work with complex user interfaces.  

2.1 Year One Review 

We focused on the measurement of mental workload in controlled laboratory settings during our first year 

of research. As described in detail in our year one annual report, our first year of research focused on: 

 Measuring users‟ mental workload with fNIRS in tightly controlled experiments[5, 9, 10].  

 The creation of an initial suite of analysis algorithms for use with fNIRS data. 

 Combining EEG and fNIRS for measuring a wider range of users‟ mental workload states[3] 

 Developing the novel protocol (described above) to measure workload as a dependent variable, 

when the workload caused by a given interface is complex and difficult to interpret. 

 The conducting of a pilot experiment with AIS and simple interface disruptions to test out our 

analysis techniques and novel protocol for the evaluation of these interface disruptions [8]. 

Our second year of research built on the first year of research.  In the second year of research our lead 

researcher, Dr. Leanne Hirshfield, completed her PhD at Tufts and accepted a research position at 

Hamilton College.  The second year of research, and our ongoing research in year three, reflects a joint 

research effort by students and professors at Hamilton College and Tufts University. 

2.2 Year Two Review 

During our second year of research we iterated on the novel protocol described above and in [4], with the 

goal of validating the protocol. We also worked to extend the protocol to evaluate a variety of interface 

designs with the measurement of several mental states. In particular, during our second year of funding 

we made five notable research accomplishments, which were discussed in detail in our year two annual 

report: 

1) We ran an experiment using interface disruptions from the Denial and Disrupt (D&D) Project and 

we measured the effects that two disruptions had on computer users‟ level of working memory 

load [8]. 

2) We began to develop new fNIRS feature extraction and machine learning techniques that are 

more powerful than those developed in year 1 (see publications on SAX and Dynamic Time 

Warping Techniqus) [4]. 

3) We ran an experiment to further validate our experiment protocol in a realistic usability 

experiment. This experiment focused on evaluating two generic user interfaces (rather than 

evaluating interface variations from the D&D project). The experiment demonstrates the 

generality of our experimental protocol and analysis techniques. 

4) We acquired a custom fNIRS probe and adaptive filtering algorithms to remove noise in the 

fNIRS signal caused by subject movement; thus enabling us to run realistic usability studies 

where subjects can move freely [8]. 

 

 

 



2.3 Year Three Review 

In our final year of funding we tied up several loose ends in our research and we began preliminary 

experiments for a new avenue of research. Our work included finishing the iterations in development on 

our machine learning techniques, validating the robustness of our new techniques on a range of datasets, 

building a new lab with the help of DURIP funding, and beginning research to measure the user states of 

trust and suspicion while users work with their computers. 

2.3.1 Year Three Review: New Machine Learning Techniques 

As described above, an important aspect of our research has been the development and validation of the 

usability experiment protocol that can be used to measure user states on the fly. The human brain is 

extremely complex, and making the leap from measurement of brain activity to a meaningful user state is 

non-trivial.  Our protocol enables us to make these complex jumps. As a reminder, the usability 

experiment protocol is as follows: 

1) Researchers gather benchmark tasks from cognitive psychology that elicit high and low-levels of WL 

on a range of target cognitive resource(s) such as visual search, WM, and response inhibition. We refer to 

these exercises as cognitive benchmark tasks. 

2)  Researchers create a set of tasks that users will complete with the UI to be evaluated. We refer to these 

as UI tasks. 

3) An experiment is run where users complete the cognitive benchmark tasks, yielding a measure of their 

brain activity while experiencing high and low WL levels in their various cognitive subsystems. Users 

also work with the UI tasks.  Brain activity is measured throughout the experiment. 

4) fNIRS data from the cognitive benchmark tasks are used as training data to build a machine learning 

classifier. The fNIRS data from the UI tasks is input into the machine learning classifier as testing data for 

the classifier.  The classifier outputs the level of cognitive load experienced by each user while working 

with a given UI task. 

Step 4), above was the focus of much of our third year of research. We finished the development of 

algorithms to use the fNIRS data from our usability experiments to predict the user state of the person 

working with the computer during the experiment.   

The techniques we finished developing in the third year provide significantly higher classification 

accuracies than the techniques we used in years 1 (neural nets and timeseries data) and 2 (time series data 

and SAX  or Dynamic Time Warping with K-nearest neighbor classifier) of the research. Before building 

our machine learning classifier, we preprocess the fNIRS data to remove noise from heartbeat, motion 

artifacts, and breathing.  We then extract the following features from our preprocessed fNIRS data: 

largest value, smallest value, average, slope, time to peak, and full width at half maximum.  We extract 

these features for the first and second half of each task.  

For each participant, we input training data from our benchmark tasks to build a Naïve Bayes classifier. 

This classifier slightly outperforms other classifiers that we attempted such as Support Vector Machines, 

Neural Nets, and K-nearest neighbor classifiers. For example, Figure 1 depicts our process for creating a 



Naïve Bayes classifier to predict the WM load (high or low) associated with a given UI task. First, the 

data from each of the low and high benchmark WM tasks was used as training data to build a Naïve 

Bayes Classifier. This results in a WM classifier that predicts whether or not a given test instance has a 

high or low WM load.  

 

 
Figure 1: The WM classifier is built using WM benchmark tasks. The UI tasks are fed into the classifier as test instances.  

We‟ve had promising levels of accuracy using our new machine learning techniques on our usability 

experiment data.  We ran the new technique on all old fNIRS datasets and achieved an average increase in 

accuracy of 15%! We‟ll be presenting these machine learning techniques at the premiere conference in 

Human Computer Interaction this April.  At the conference, we‟ll present our machine learning 

classifier‟s success at predicting the level of load placed on participants‟ visual search, working memory, 

and response inhibition cognitive resources while working with a simulated driving task and a web search 

task [7].  Our ability to predict load placed on such fine tuned cognitive resources as these shows great 

potential for using the protocol and machine learning methods to measure a range of user states such as 

workload, frustration, engagement, trust, and suspicion.  

Thus, and we re-iterate this point to ensure it is clear. One of the strongest accomplishments that we 

reached during this three year effort was the creation, implementation, and validation of a novel 

usability experiment protocol and a set of machine learning methods that enable us to predict, on 

the fly, the user state of a given individual. Before we began this research, the vast majority of brain 

research (with the exception of some of the work by Berka et al [11]), and all fNIRS research could not 

PREDICT user states. This research could only predict that two (or more) user states differed from one 

another. We have had great success publishing our work in part because it offers a large leap forward in 

the state-of-the-art of non-invasive brain measurement in HCI.  

 



2.3.2 Year Three Review: Opening of New Lab 

During our last year of funding we were also recipients of a $468,000 DURIP award from AFOSR. With 

the equipment funding we created a cutting edge usability lab with a fully synchronized instrument for 

acquiring concurrent measurements of cognitive, physiological, and behavioral user state metrics.  With 

an eye toward their use in realistic human-computer interactions, our non-invasive equipment includes a 

wireless, lightweight Electroencephalograph (EEG), a functional near infrared spectroscopy (fNIRS) 

device, an eye tracker that can be used both inside and outside (most eye-trackers are sensitive to light 

and must be used in controlled light settings), and a wireless device for measuring galvanic skin response 

(GSR). With our usability software, we also have the capability to measure more traditional metrics such 

as speed, accuracy, key presses, mouse movement, and screen captures.  By acquiring concurrent 

recordings of cognitive, physiological, and behavioral user metrics during our usability studies, we are 

able to measure a person‟s user state in real time, and with a high degree of accuracy throughout our 

human subject studies.  

As described previously, a key element of our research is the use of non-invasive brain measurement to 

provide real time, objective information about users‟ mental states.   In particular, expertise with fNIRS 

places us at the cutting edge of our research domain. The few fNIRS devices that are being used in the 

research domain cost less than $50k, and they are limited by the number of channel measurements 

(usually 16) available, and by the fact that the measurement sensors are usually limited to placement on 

subjects‟ foreheads. With the DURIP funding, our fNIRS device is Hitachi Medical‟s ETG-4000.  The 

$315k piece of equipment was selected because of its wide range of probes and holders that enable a 

variety of assessments. This system can be configured to simultaneously take 24, 48 or 52 channel 

measurements, and it can be used to target various regions of the brain cortex (as opposed to just the 

prefrontal cortex). With this device, our usability work will be at the cutting edge of non-invasive brain 

measurement research. 

2.3.2  Year Three Review: Measuring Suspicion  

During our third year we also began research to quantify the user states of „trust‟, „distrust‟, and 

„suspicion‟, that occur when a user works with a computer system. On a high level, our goal was to 

measure the cognitive (i.e. the fNIRS and EEG brain data), physiological (i.e., galvanic skin reponse, 

heartbeat, respiration), and behavioral metrics (i.e., keypresses, mouse movement, speed, accuracy) that 

occur when a user loses trust and becomes suspicious that his computer system has been hacked.  The two 

primary AFOSR related end goals that stem from this basic research are: 

1) Monitoring of Adversarial Computer Operators: It is worth noting that many of the behavioral 

metrics that we will measure can be measured remotely; meaning that we can simply record 

information on a user‟s computer, as opposed to requiring the user to wear some sort of 

measurement equipment. Currently, these remote metrics can be acquired in our usability 

experiments, and we can make controlled connections between the remote metrics and our 

concurrent recordings of cognitive and physiological data. In the future we could acquire these 

remote metrics directly from the computer of an adversarial computer operator. Therefore, by 

making ties to the remote metrics that occur while users are experiencing changes in their level of 

trust toward the computer, we can monitor adversarial computer operators and determine their 



level of trust toward their computer system—which we have hacked into (i.e., are they suspicious 

of our hack?). We can incorporate trust repair tactics as needed if we determine that the adversary 

has detected our security breach. This research has direct implications for the AFOSR Denial & 

Disrupt project, where we can run usability studies to determine the threshold at which certain 

interface disruptions become too overt, causing users to become suspicious of a computer hack.   

 

2) Training Military Personnel: By understanding the cognitive and emotional aspects of the trust 

relationship between a trainee and his computer system, we can better train our military personnel 

to eliminate cognitive shortcuts that sacrifice computer security in return for lower cognitive load 

and lower stress. Research suggests that people tend to be „cognitive misers‟. We often make 

cognitive shortcuts in order to minimize mental workload. One of these cognitive shortcuts 

includes adapting a truth bias, where people tend to believe that all people they interact with are 

being honest and truthful. The truth bias is a cognitive shortcut that keeps people from becoming 

suspicious of other people, as suspicion causes people to critically think about their interactions, 

causing a high level of cognitive load. We hypothesize that many personnel in the US military 

adapt this truth bias while working with their computer systems; it‟s simply too much effort for 

them to think critically about the validity of the information being presented in their interactions 

with their computer. Instead, they assume that they are usually not being hacked into, and they 

may miss a vital security breach. In the future, non-invasive cognitive, behavioral, and 

physiological measurement devices could be used in training sessions to ensure that military 

personnel develop the correct cognitive and physiological mental state to accurately detect 

security breaches. 

In our final year of funding we joined together with a team of experts in the trust and management 

domains. Our team of trust collaborators included Lt. Col Alex Barelka from AFRL at Wright Patterson 

AFB, Dr. Roger Mayer from NC State University, and Dr. Philip Bobko from Gettysburg College.  We 

worked (and continue to work) to create new models of trust, distrust, and suspicion that describe the 

interactions between a person and that person‟s computer system. We also created plans to empirically 

validate our models and to measure a user‟s changing level of trust while working with his or her 

computer system.   

Our goal within this larger team effort was to find the cognitive, physiological, and behavioral correlates 

that predict users‟ level of trust, distrust, and suspicion toward their computer system. 

 After conducting a thorough literature review and collaborating with many experts in the trust domain, 

we were encouraged to find that this research is novel for several reasons (which is why we have applied 

for follow-on funding): 

1) Most research doesn‟t look at the changing relationship from trust -> distrust over time. They 

usually place someone in a low trust state (i.e. “The person you are about to interact with might 

be lying to you.”).  We‟ll be exploring the nature of the changing trust relationship over time, and 

we‟ll be looking at the effects of repair tactics on the trust relationship. 

2) To the best of our knowledge, there is little to no research exploring the cognitive, physiological, 

and behavioral changes that occur in an individual who is experiencing changing levels of trust <-

> suspicion <-> low trust.  The majority of the literature looks at the cognitive, physiological, and 



behavioral changes that occur in a person who is being deceitful, not at those metrics occurring 

when a person is detecting deceitfulness. 

3) There is very little research available that looks at the trust relationship between a person and that 

person‟s networked computer system. 

4) Being able to predict a user‟s level of trust with unbiased, real time data while he or she works 

with a networked computer can have far reaching applications for the military. 

 

In our final year of funding we ran a set of preliminary experiments to determine the feasibility of 

manipulating, and measuring, trust and suspicion during human-computer interactions. Our long term 

goal is to measure changing levels of trust during human-computer interactions. As a first step, we ran 

preliminary experiments that isolate the cognitive components of workload, frustration, and surprise [12]. 

Preliminary Trust Experiment 

We conducted an experiment that aimed to discover relationships between a computer user‟s level of trust 

and that user‟s changing cognitive and emotional states.  To do so we asked participants to sit in front of a 

standard-size computer monitor and interact with a computer console on the computer screen. They then 

played a version of the “Trust Game,” developed by Berg [13], which has been used in many experiments 

dealing with trust, risk-taking, and money management [14]. In our version of the “Trust Game” both the 

computer and the user began with a fictional $10.  The user and computer would take turns sending some 

amount of money, ranging from $0-$10, back and forth to one another. Each time some amount of money 

was sent between the user and computer, the amount sent was tripled while en route.  In an ideal, high-

trust scenario, the computer and the user would always send a the maximum amount of money back and 

forth to one another—maximizing the gain possible for each of the two Trust Game „players‟. This 

process was repeated 23 times. 

For the first eight transactions, the computer acted “trustworthy” in the sense that it typically returned a 

high amount of money back to the participant.  For the next nine transactions, the computer acted with a 

mix of trustworthy and untrustworthy behavior, sometimes returning a high amount, and other times 

returning a low amount of money back to the participant. For the last six transactions the computer acted 

in a wholly untrustworthy manner, regularly returning a very low amount of money back to the 

participant.  

We used data from Self Assessment Manikins which were administered after every six transactions to 

gauge the user‟s cognitive and emotional state.  Additionally, we collected the amount given and 

percentage returned for each transaction, as well as information regarding the subjects‟ self-rated locus of 

control, trust, and computer familiarity.  

From this information we gleaned that the median amount given increased during the computer‟s 

trustworthy state, varied highly during the computer‟s erratic state, and decreased during the computer‟s 

untrustworthy state.  Furthermore, we analyzed the data from the Self Assessment Manikins, turning users 

self reported measures of valence, arousal, and dominance into a set of discrete user states.  We found a 

direct correlation between the trustworthiness of the computer agent and the user‟s reported measures of 

workload, frustration, and surprise. Our results showed that overall workload increased throughout the 

experiment, as did frustration and surprise. 



We were also interested in whether relationships existed between frustration, surprise, and workload.  We 

found that significant correlations between frustration and workload in all four surveys existed.  We also 

found significant correlations between workload and surprise in surveys 1, 3, and 4, as shown in Table 1 

below. 

 Survey 1 Survey 2 Survey 3 Survey 4 

Frustration & 

Workload 

r(27)= .565 

p<.01 

r(25)=.733 

p<.01 

r(25)=.67 

p<.01 

r(26)=.739 

p<.01 

Workload 

and Surprise 

r(27)=.559 

p<.01 

r(25)=.391 

p<.06 

r(25)=.638 

p<.01 

r(26)=.478 

p<.02 

Table 1: Significant Correlations between workload/frustration, and workload/surprise 

Our results suggested that as computer users lost trust with the simulated agent they were interacting with 

in the Trust Game, the user states of workload, surprise, and frustration were directly correlated with the 

users‟ changing level of trust. 

Linking Trust in Human-Computer Interactions to Surprise, Workload, and Frustration 

While these results are restricted to the version of the Trust Game that users played, we hypothesized that 

the same user states will influence the level of trust in more realistic interactions between users and their 

computer systems. As an illustrative example, consider John Doe‟s interaction with his computer over the 

course of a year: 

When John‟s computer was functioning properly, he had high trust in his interactions with and through 

his computer.  During these high trust times, John had low levels of frustration, workload, and surprise—

all interactions with his computer seemed to proceed as expected.  However, one day John visited a new 

website and suddenly he noticed hundreds of pop ups infiltrating his screen (i.e., surprise and frustration). 

He later found out that his computer had a virus, which likely came from the site with all of the pop ups 

(frustration). Later on that year, , John was Instant Messaging with his friend Alice. Alice was a classmate 

of John‟s and a user with her name as a username contacted John via IM. After a few minutes of 

messaging with who he presumed to be Alice, John began to become wary of the interactions.  The IMer 

was not writing in a way that was consistent with Alice. John began to interact very cautiously with the 

IMer, hoping to determine if the person was indeed an imposter (workload, frustration, surprise).  Also, 

over the course of time, John‟s computer became very slow because he downloaded too many programs 

and add-ons. He was frustrated while using it because it took a long time for him to get things done and 

he found it difficult to keep focused on the task at hand while waiting long intervals for his computer to 

catch up to his train of thought (frustration and workload). 

All of these occurrences caused John‟s level of trust during his computer interactions to be lowered. We 

hypothesize that we can use measures of users‟ workload, frustration, and surprise to indicate that users‟ 

level of trust. In the next sections we describe the user states of workload, frustration, and surprise, and 

we describe our initial research attempts in year 3 to measure these user states objectively. 



Measurement of Surprise, Workload, and Frustration 

Acquiring quantitative data about computer users is a continual challenge for researchers in HCI. 

Although we can accurately measure task completion time and accuracy, measuring factors such as 

mental workload, frustration, and distraction are often done by qualitatively observing users or by 

administering subjective surveys to users. These surveys are often taken after the completion of a task, 

potentially missing valuable insight into the user‟s changing experiences throughout the task. They also 

fail to capture internal details of the operator‟s mental state. To address these evaluation issues, much 

current research focuses on developing objective techniques to measure, in real time, user states such as 

workload, frustration, and surprise [15-17]. Although this ongoing research has advanced user experience 

measurements in the HCI field, finding accurate and non-invasive tools to measure computer users‟ states 

in real working conditions remains a challenge. The user states that are addressed by this research are the 

states of workload, frustration, and surprise. 

Surprise 

Surprise has previously been measured in HCI studies using facial analysis software [18] as well as using 

Skin Conductivity, blood volume and heart rate [19]. Detecting surprise with electroencephalography 

(EEG) is a topic of much research in Psychophysiology. Surprise can be indicated by the presence of an 

Error-Related Potential (ErrP), in which EEG data contains error-related negativity (a sharp negative 

deflection around 80ms)[20], often followed by error-related positivity (a slow positive wave)[21]. ErrPs 

can be found both when a user makes an error and when a user notices an error made by the machine [22]. 

This makes the measurement of ErrPs useful in HCI-based interface analysis.  

Frustration 

Frustration is an important metric in HCI. Lazar, et al. studied frustration with computer interfaces by 

having employees that used computers in their workday keep journals that tracked their ongoing 

frustration as they used their routine computer programs [23]. The results showed that word processing 

and email were reported as the most frustrating activities, and that participants wasted an average of forty 

percent of their time trying to solve unnecessarily frustrating problems. 

Biological methods of measuring frustration allow researchers to collect more reliable data. Scheier, et al., 

induced frustration in users with a mouse that sporadically froze and inhibited the user from winning a 

game [24]. A Hidden Markov Model analyzed skin conductivity, blood volume pressure and the state of 

the mouse, eventually learning the manifestations of frustration. The results indicate that a user‟s affective 

state can be automatically discriminated from events in their physiology [24]. Most recently, BCI devices 

enable automated detection of user frustration through discovering patterns in brain activity. Reuderink et 

al. developed an affective version of Pacman which places the user in a state of frustration [16]. They 

found significant differences in EEG activity during periods of frustration and the normal state. 

Workload 

The ability to acquire objective, real-time measures of a computer user‟s mental workload while (s)he 

works with a computer would be valuable to the field of HCI. Adaptive interfaces could adapt in real-time 

to a given user based on his or her current level of workload, keeping that user in the flow [25]. Also, 

measures of users‟ mental workload could be acquired during usability studies to help interface designers 

to pinpoint areas of the interface that may be un-intuitive for users [4, 26].Researchers have successfully 



used EEG or fNIRS to measure elements of mental workload such as working memory[7, 9, 27, 28], 

response inhibition [7, 29], visual search [7, 30], as well as a myriad of other executive processes [31, 32]. 

Preliminary Trust Experiment: Measurement Oriented Experiments 

We conducted preliminary experiments during our third year of funding where we attempted to 

manipulate and measure the user states of surprise, frustration, and workload. In the future, we aim to 

acquire real time measures of these user states in order to predict one‟s level of trust during his or her 

computer interactions. 

Surprise Experiment 

An important component of trust is the moment of surprise; that is the moment when a person notices that 

something „unexpected‟ has occurred in the computer system.  This could be the moment users notice that 

a virus is on their computer, or the moment they realize that the person they are IMing with may be an 

imposter. To measure this, we exploited the oddball paradigm in order to elicit surprise. Three 

participants completed an experiment that was created using Eprime in which they pressed two different 

buttons depending on the position of an oval on the screen. The oval was in one of two positions, located 

either on the far left or the far right side of the screen.  When the oval was on the left side of the screen 

the subjects were instructed to press  the „z‟ button, and when the oval was on the right side of the screen 

they were instructed to press the „m‟ button. 

Immediately following the subject response a feedback screen indicated whether or not the subject had 

pressed the correct key. Subjects completed 150 tasks where they simply hit the „z‟ or „m‟ keys to 

indicate the position of the oval on the screen. During the first 20 tasks, the feedback for the subjects was 

as expected.  During the last 130 tasks, we randomly selected 15% of the tasks to provide incorrect, , or 

surprising feedback to the user. In other words, 15% of the time, when subjects pressed the „z‟ key, the 

feedback indicated that the „m‟ key had been pressed, and vice versa.  

The EEG used in the study was Advanced Brain Monitoring‟s b-alert wireless 10 channel EEG. Data was 

sampled at 256Hz (www.b-alert.com).   The non-invasive EEG is an ideal brain monitoring device for use 

in human-computer interaction studies, where it may be important to keep participants comfortable while 

completing tasks in realistic working conditions. 

The Eprime software sent markers to the EEG immediately before the subject saw the feedback screen. In 

this way, we planned to search for the presence of an ErrP that was caused when the surprising feedback 

occurred during 15% of the tasks. 

Data Analysis and Results of Surprise Experiment 

We used a similar procedure as Ferrez et al. [22] to preprocess our EEG data for classification. We took 

the data from the moment the feedback occurred through to 650ms after the feedback was shown for 

channels Cz and Fz.  Like Ferrez et al., we chose these channels because ErrPs are usually found in a 

fronto-central distribution along the midline [22] Each temporal section of data was associated with one 

of two class labels: control or surprise, indicating whether or not the feedback the subject saw at that 

moment was the expected feedback or the surprising feedback.. We applied a 1-10 Hz bandpass filter as 

ErrPs have a relatively slow cortical potential. We downsampled our data from 256Hz to 128Hz and input 

our resulting timeseries data into a weighted K-nearest neighbor classifier (k = 3) with a Dynamic Time 



Warping distance measure. We ran our classification separately for each subject.    Results are in Table 2. 

We were able to distinguish between the control and surprising feedback conditions with an average of 

71% accuracy for our three subjects. 

 

Table 2: Classifier accuracy distinguishing between the control and surprising feedback. 

 

sub1 sub2 sub3 average 

Classifier 

Accuracy 

70% 74% 68% 71% 

 

Frustration Experiment 

During the frustration experiment six subjects completed a series of nback tasks [7, 27], which have been 

used in many experiments to manipulate working memory. In the 1-back task, depicted in Figure 2, 

subjects must indicate whether the current letter on their computer screen is a match („m‟), or not a match 

(„n‟) to the letter that was shown 1 screen previously. 

 
Figure 2: Depiction of  the 1 back task. 

Each task lasted 30 seconds with a rest time of 20 seconds between tasks.  Half of the 1back tasks were 

completed by subjects as expected. However, during the other half of the 1back tasks, internet pop ups 

such as the one shown in Figure 3, were introduced into the computer systems. Subjects were told to 

finish the nback tasks as quickly as possible and with the highest accuracy possible. Six subjects (3 

female, 3 male) completed the experiment. Subjects were all Tufts undergraduate students. A randomized 

block design with eight trials was used in this experiment. 

 
Figure 3: An example of a pop up in the frustration experiment. 

In this experiment we used an OxyplexTS (ISS Inc. Champagne, IL) frequency-domain tissue 

spectrometer with two optical probes. Each probe has a detector and four light sources. Each light source 

emits near infrared light at two separate wavelengths (690nm and 830nm) which are pulsed intermittently 

in time.  This results in 2 probes x 4 light sources x 2 wavelengths = 16 light readings at each timepoint 

(sampled at 6.25Hz). 

Data Analysis and Results of Frustration Experiment 

All subjects were interviewed following the experiment. All subjects indicated that the pop ups were a 

source of frustration throughout the experiment. We computed all machine learning analyses separately 

for each subject. For each subject, we recorded 16 channel readings throughout the experiment where we 



refer to the readings of one source detector pair at one wavelength, as one channel. We normalized the 

intensity data in each channel by their own baseline values. We then applied a moving average band pass 

filter to each channel (with values of .1 and .01 Hz) and we use the modified Beer-Lambert Law[12] to 

convert our light intensity data to measures of the relative changes in oxygenated (HbO) and 

deoxygenated hemoglobin (Hb) concentrations in the brain. This resulted in eight readings of HbO and 

eight readings of Hb data at each timepoint in the experiment. We then averaged together the channels 

from the left side of the head and the channels on the right side of the head, giving us 4 time series for 

each subject; 1) HbO on the left side of the head, 2) HbO on the right side of the head, 3) Hb on the left 

side of the head, and 4) Hb on the right side of the head. We then input these time series into a weighted 

KNN classifier (k = 3) with a distance measure computed via Symbolic Aggregate Approximation (SAX). 

For more information on SAX, see [33].  As shown in Table 3, we were able to distinguish between the 

control 1back tasks and the frustrating 1back tasks with an average of 73% accuracy across the six 

subjects. 

 

Table 3: Classifier accuracy at distinguishing between the control (1back) and frustrating (1back 

with pop-ups) conditions. 

 

sub1 sub2 sub3 sub4 sub5 sub6 average 

Classifier 

Accuracy 

69% 81% 63% 75% 75% 75% 73% 

 

Workload Experiments 

We have conducted several experiments, using the fNIRs device described above, to measure various 

aspects of mental workload.  Using this device we have: 

1) Used machine learning techniques to classify, on a single trial basis, the load placed on users visual 

search, working memory, and response inhibition resources [7]. 

2) Used machine learning techniques to classify various levels of working memory load in a simple 

counting and addition task [5]. 

3) Used machine learning techniques to distinguish between spatial and verbal working memory[4]. 

 

Preliminary Trust Experiment Conclusion 

While there is certainly more work to be done, the preliminary experiments and research that we 

conducted during our third year of the project show promise for linking the user states of workload, 

surprise, and frustration to trust and suspicion.  We are continually working with our trust colleagues to 

develop high level models of trust and suspicion, and to measure these user states using the suite of 

devices in our new lab. 

 

 

3 Conclusion 

 

In conclusion, we had a very enjoyable, and very fruitful three years while working on this AFOSR effort. 

One of the greatest accomplishments that we reached during this three year effort was the creation and 

implementation of a novel usability experiment protocol and a set of machine learning methods that 

enable us to predict, on the fly, the user state of a given individual. Before we began this research, the 

vast majority of brain research (with the exception of some of the work by Berka et al), and all fNIRS 



research could not PREDICT user states. This research could only predict that two (or more) user states 

differed from one another. We have had great success publishing our work in part because it offers a large 

leap forward in the state-of-the-art of non-invasive brain measurement in HCI. We used our techniques to 

test disruptions that were developed from the DnD project, and we reported on these findings throughout 

the effort.  Building on the techniques and findings from our first 2 ½ years of research, we spent the 

second half of our final year of funding pursing the measurement of trust and suspicion while users work 

with computers.  We teamed up with a strong group of experts in the trust domain, and we began 

preliminary research with this group.   With members at Wright Patterson and at AFRL showing interest 

in this new avenue of research, we look forward to continuing this work in the future.   

 

4 References: 

 

1. Izzetoglu, M., et al., Functional Near-Infrared Neuroimaging. IEEE Trans Neural Syst Rehabil Eng, 
2005. 13(2): p. 153-9. 

2. Hirshfield, L.M., Enhancing Usability Testing with Functional Near Infrared Spectroscopy, in 
Computer Science. 2009, Tufts University: Medford, MA. 

3. Hirshfield, L.M., et al. Combining Electroencephalograph and Near Infrared Spectroscopy to 
Explore Users' Mental Workload States. in HCI International. 2009: Springer. 

4. Hirshfield, L.M., et al. Brain Measurement for Usability Testing and Adaptive Interfaces: An 
Example of Uncovering Syntactic Workload in the Brain Using Functional Near Infrared 
Spectroscopy. in Conference on Human Factors in Computing Systems: Proceeding of the twenty-
seventh annual SIGCHI conference on Human factors in computing systems. 2009. 

5. Hirshfield, L.M., et al. Human-Computer Interaction and Brain Measurement Using Functional 
Near-Infrared Spectroscopy. in Symposium on User Interface Software and Technology: Poster 
Paper. 2007: ACM Press. 

6. Girouard, A., et al., From Brain Signals to Adaptive Interfaces: using fNIRS in HCI, in (B+H)CI: The 
Brain in Human-Computer Interaction and the Human in Brain-Computer Interfaces, D.S. Tan and 
A. Nijholt, Editors. 2010, Springer. 

7. Hirshfield, L., et al. This is your brain on interfaces: enhancing usability testing with functional 
near infrared spectroscopy. in SIGCHI. 2011 (in press): ACM. 

8. Hirshfield, L.M., Enhancing Usabiltiy Testing with Functional Near Infrared Spectroscopy, in 
Computer Science. 2009, Tufts University: Medford, MA. 

9. Sassaroli, A., et al., Discrimination of mental workload levels in human subjects with functional 
near-infrared spectroscopy. accepted in the Journal of Innovative Optical Health Sciences, 2009. 

10. Girouard, A., et al. Distinguishing Difficulty Levels with Non-invasive Brain Activity 
Measurements. in Proc. INTERACT Conference. 2009. 

11. Berka, C. and D. Levendowski, EEG Correlates of Task Engagement and Mental Workload in 
Vigilance, Learning and Memory Tasks. Aviation Space and Environmental Medicine, 2007. 
78(5): p. B231-B244. 

12. Hirshfield, L., et al. Trust in Human-Computer Interactions as Reflected by Workload, Frustration, 
and Surprise. in HCI International 2011 14th International Conference on Human-Computer 
Interaction. 2011 (in press): Springer. 

13. Berg.J., J. Dickhaut, and K. McCabe, Trust, Reciprocity, and Social History. Games and Economic 
Behavior, 1995. 10: p. 122-142. 



14. Lewicki, R., et al., Trust and Distrust: New Relationships and Realities. The Academy of 
Management Review, 1998. 23 (3): p. 438-458. 

15. Mandryk, R., M. Atkins, and K. Inkpen, A continuous and objective evaluation of emotional 
experience with interactive play environments, in Proceedings of the SIGCHI conference on 
Human factors in computing systems. 2006, ACM Press: Canada. 

16. Reuderink, B., A. Nijholt, and M. Poel, Affective Pacman: A Frustrating Game for Brain-Computer 
Interface Experiments. Intelligent Technologies for Interactive Entertainment, Lecture Notes of 
the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 
2009. 

17. Savran, A., et al. Emotion Detection in the Loop from Brain Signals and Facial Images. in 
eNTERFACE’06. 2006. Dubrovnik, Croatia. 

18. Ward, R., An analysis of facial movement tracking in ordinary human-computer interaction. 
Physiological Computing, 2004. 16(5): p. 879-89. 

19. Ward, R. and P. Marsden, Physiological responses to different web page designs. International 
Journal of Human Computer Studies, 2003. 59: p. 199–212. 

20. Chavarriaga, R., P. Ferrez, and J. Millán, To Err is Human: Learning from Error Potentials in Brain-
Computer Interfaces. ADVANCES IN COGNITIVE NEURODYNAMICS, 2008: p. 777-782. 

21. Nieuwenhuis S, et al., Psychophysiology, Error-related brain potentials are differentially related 
to awareness of response errors: Evidence from an antisaccade task: p. 752–760. 

22. Ferrez, P. and J. Millán. You Are Wrong!---Automatic Detection of Interaction Errors from Brain 
Waves. in Proceedings of the 19th International Joint Conference on Artificial Intelligence. 2005. 

23. Lazar, J. and A.S. Jones, Workplace user frustration with computers: an exploratory investigation 
of the causes and severity. Behaviour & Information Technology, 2006: p. 239-251. 

24. Scheirer, J., et al., Frustrating the user on purpose: a step toward building an affective computer. 
Interacting with Computers, 2002: p. 93-118. 

25. Csikszentmihalyi, M., Flow:  The Psychology of Optimal Experience. 1991.: Harper Collins. 320. 
26. Lee, J.C. and D.S. Tan, Using a low-cost electroencephalograph for task classification in HCI 

research, in Proceedings of the 19th annual ACM symposium on User interface software and 
technology. 2006, ACM Press: Montreux, Switzerland. 

27. Grimes, D., et al. Feasibility and Pragmatics of Classifying Working Memory Load with an 
Electroencephalograph. in CHI 2008 Conference on Human Factors in Computing Systems. 2008. 
Florence, Italy. 

28. Gevins, A., et al., High-Resolution EEG Mapping of Cortical Activation Related to Working 
Memory: Effects of Task Difficulty, Type of Processing, and Practice. Cerebral Cortex, 1997. 

29. Schroeter, M.L., et al., Near-Infrared Spectroscopy Can Detect Brain Activity During a Color-Word 
Matching Stroop Task in an Event-Related Design. Human Brain Mapping, 2002. 17(1): p. 61-71. 

30. Anderson, E.J., et al., Involvement of prefrontal cortex in visual search. Experimental Brain 
Research, 2007. 180(2): p. 289-302. 

31. Tanida, M., et al., Relation between asymmetry of prefrontal cortex activities and the autonomic 
nervous system during a mental arithmetic task: near infrared spectroscopy study. Neuroscience 
Letters, 2004. 369(1): p. 69-74. 

32. Joanette, Y., et al., Neuroimaging investigation of executive functions: evidence from fNIRS. 
PSICO, 2008. 39(3). 

33. Lin, J., et al. A Symbolic Representation of Time Series, with Implications for Streaming 
Algorithms. in In proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data 
Mining and Knowledge Discovery. 2003. San Diego, CA. 

 
 


