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Grid-Free Electromagnetic Particle Simulations
Andrew J. Christlieb
Department of Mathematics
Michigan State University

Abstract Basic plasma science plays an increasingly significantirobgpplications of impor-
tance to the United States Air Force. Many of these apptinatrequire a fully kinetic description
in at least part of the domain. The most common approach isd¢@uully Lagrangian framework,
where the model is reduced to tracking the evolution of tagigies in phase space. Of the many
varieties, the most accepted approach is Particle-In{CgllThe PI, with his collaborators, is de-
veloping an alternative approach, the Boundary Integraédode (BIT) [2]. BIT is based on fast
summation algorithms and boasts arbitrary accuracy. Imger@f numerical experiments, the all
scale resolution of BIT has proven to provide a substantigirovement over PIC [2]. A major
objective in this currant work is to develop a grid-free élemagnetic formulation of BIT.

Summary Over the past four years, while developing our methodolag\afgrid-free electro-
magnetic formulation of BIT, several significant topics,igthneed to be addressed, have become
central in our research efforts. These include the: 1) Eladrour 1D analysis of the impact of ker-
nel regularization on the accuracy of the solution in théwig of boundaries to 3D (in preparation
[8]- Dr. Christlieb, Dr. Cartwright and Dr. Ong), 2) worked adevelopment of Boundary Integral
Corrected PIC (in preparation - Dr. Christlieb, Dr. Cargyiri and Dr. Ong), 3) a multi-scale ap-
proach to time stepping of coupled stiff systems based omigirorder semi-implicit integrators
[3,4,5], 4) applied our parallel time integrator [6,7] taptems that to time stepping of one million
particles using 3D BIT to compute fields and demonstrateeVen with the problem does not fit
in cash we still get 4th order in wall clock time of forward Eulin preparation - Dr. Christlieb,
Dr. MacDonald and Dr. Ong), 5) development of arbitrary oragymptotic preserving methods
for multi-scale problems (under development - Dr. Chiest)i 6) development of arbitrary order
adaptive methods based on explicit and semi-implicit irgtbdjffered correction (work complete -
in preparation - Dr. Christlieb, Dr. MacDonald, Dr. Ong),ar$tudy of the impact of regularization
on solutions to the Schrodinger equation - (in preparatidn Christlieb, Dr. Krasny and Dr. Ong),
8) translation and adaptation of a 3D c++ BIT code to par&llgDA for GPU architecture (under
development - Dr. Christlieb, Dr. Johnston and Dr. Ong), &edopment of implicit time step-
ping methods based for Maxwell’'s equations using the BiTrabegy (currently modifying 3D
BIT code to handle 3D Maxwell kernel - Dr. Christlieb, Mr. M@roningen and Dr. Ong), 10)
extension of BIT to radiative transport problems ([9])/mettunder development - Dr. Christlieb,
Dr. Hitchon, Dr. Lawler and Dr. Lister) 11) extension to 2Daof adaptive mesh refinement frame-
work based on WENO (Dr. Christlieb, Dr. Qiu and Dr. Shen - GeadMR VP solver based on
WENO) [10]. All of these topics are linked by a desire to bedbe multiple spatial and temporal
scales which arise in plasma problems. We now give a briehsemof the progress on our time
stepping methods, analysis of BIT, extension of BIT to Malk&equations and our high order
WENO AMR framework. At the end of this document, | have at&tbur relevant publications.



A.J. Christlieb  Final Report on AFOSR Grant Number FA955060-0092 Mathematics

Integral Deferred Correction Methods The Integral Deferred Correction (IDC) framework
[3,4] being developed by the Pl and his collaborators, ha&h lslhown as one possible way to
systematically generate high order RK methods based on aidder RK method. IDC belongs
to the family of integrators known as defect correction althpons. Given a system of the form
%’ = f(t,y) with y(to) = yo, IDC works as follows: lev? be an approximation tg(t) given by a
p'" order RK method on the time stes. . . , tm; letv(t) be a polynomial of degree at moatpass-
ing thought they?; define the error ag(t) = y(t) —v(t) and the residual agt) = % —f(t,v(t));
let Q(t) = e(t) + ﬁgr(T)dT; taking the derivative of the equation fet) and re-writhing the equa-
tion in terms ofQ(t), we arrive at the differential form of our IDC corrector etjoa,

dQ

=1 (t,Q+VO+/tOt f(T,V(T))dT) —ft,v(t)).

The corrector equation is solved to correftdiffers from other defect correction methods in that
the residual does note appear in differential form, ratheinintegral of the residual is built into the
O('j—? equation. This inherently makes the method more robustdterdard defect correctior%’

is solved with the samé'porder RK method and used to compufe— v0 4 Q; — tg r(t)dt. The

Pl, along with his current and former post docs Dr. Ong and@u, have show that under cretin
assumptionst — 1 successive approximations of the corrector equatioresohith a " order
explicit RK method, results in ax p™" order method, up to a maximum orderwhich is only
determined by the accuracy in the approximation of the haﬂe@sidual,ftg r(t)dt. In practice,

we have used d'porder implicit and semi-implicit RK in the predictor and cector and observed
the same result. Dr. Morton, together with the PI, Dr. Ong BndQiu, has extended the theoret-
ical results in [3,4] to both implicit and semi-implicit RK @thods. The PI is currently working
on extending these ideas to class of semi-implicit RK meshHotw as Asymptoticly Preserving
(AP) methods. AP methods are a systematic philosophy foe stapping of systems with stiff
relaxation. Given a system with a small parameter, say thed&on number in the collisional
Boltzmann equation, AP methods are a two step proceedeef@abing numerical methods that
give uniform convergence to the limiting system as the spaihmeter goes to zero, regardless of
the time step. Step one involves either mathematical magleli a clever re-casting of the system
in form where taking the limit as the small parameter goeseto yields the ‘correct’ limiting
behavior. For the Boltzmann equation of neutral gas dynsntigs involves scaling the system
so that the diffusion limit is obtained as Knudson numbersgimezero. Step two involves the
development of a consistent Semi-Implicit Runge-Kutt&S) schema designed to give uniform
convergence as the small parameter goes to zero. Then inmalit of the SIRK method handles
the stiff term, in this example the collision term, impllgiind the non stiff term, here transport,
explicitly. The PI has show that the IDC framework can suppoe type of SIRK that shows up in
an AP formulation. It remains to be shown that the new methad fiesults from embedding the
AP SIRK in an IDC framework will again be an AP method. We ar¢hi@ processes of applying
the IDC AP SIRK to a range of test problems to provide numéeeaence that the resulting
method is indeed AP, we will then focus on rigorously showtimg to be the case.

We have also focused on extending our method to a parallel itmegrator. IDC differs from
traditional defect correction in that the integral from bétresidual is used in the formulation of

2
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the solution, instead of the differential form of the resiluOn multi-core architectures, defect
correction methods become extremely attractive becaude aarection step can be decoupled
from the prediction and prior correction steps. In so dothg, methods are able to achieve high
order accuracy in the wall clock time equivalent to that & grediction step, provided multiple
cores are used for the computation. We refer to this new oadsfect correction as Revisionist
IDC (RIDC), which allow for the corrections to be computedarallel. The parallel integrator

we have developed is the first integrator to leverage multi-@e cpus such that the method
achievesp'™ order in the wall clock time equal to that of a single forward Euler step.

BIT Corrected PIC The use of time depended Green’s functions in a fully Lagemframe-
work raises the issue of needing to track a time history faheast particle. One proposed ap-
proach to controlling the need for a time history is to make ofkfixed course mesh. As a first
step towards the electromagnetic case, we are exploringsthef a coarse fixed mesh for domain
decomposition in electrostatic problems, where BIT is us®d sub-cell method within each PIC
cell. The methods presented here differ from Particlei¢tersParticle-Mesh (P3M) in that local
boundary integrals are used within each cell to provide @urate description of the local fields
within a mesh cell [6]. We demonstrate that, in 1D, regukdiBIT corrected PIC substantially
reduces numerical heating, even wierrs>> Ap. Because of the negative impact regularization has
on the solution field near boundaries, we have developedizatians of the regularization based
on Taylor expanding the 1D non-regularized greens fundimurt the regularized kernel and have
further proven that these are convergent expansions. Toisdes a possible adaptive approach
for dealing with regularized kernels near fixed non-pedabundaries. Further, we expect that
Ax > Ap should increase the efficiency of large scale PIC calculatienhancing the capability
of legacy PIC codes by adding both fidelity (less numericating) and efficiency (allowing more
flexibility in meshing at a given level of fidelity). For a wid#ass of electromagnetic problems,
where PIC is used, this electrostatic work is beneficiakesiior stability, the mesh spacing is suf-
ficiently small that the system looks electrostatic. In @bdiration with AFRL/RDHE, the Pl is
working on incorporating this into ICEPIC. Below we revigwetanalysis of 1D BIT. The analysis
has just recently been extend to the 2D and 3D case.

1D BI-PIC - RegularizationNear cell boundaries, the solution of regularized BIT dije= from
the true solution. To understand this error, we Taylor egghe non-regularized free space Green’s
function about the regularized one. We establish that tkigesion is rigorously convergent as
the number of terms goes to infinity and used this result tmédly establish error bounds at a cell
boundary. In addition, this expansion has a compact fornDimdd gives a way of localizing the
regularization. The convergent Taylor expansio®§f = 3/(x—y)2+d2 — d2 about(x—y)2 +

d?,

N q)i+1(9i _ | ,
G({D(le)% (i;( D +2i(i2!I Dk (—d?)' (x—y)2+d?)" 2)/2) | "

where(—1)"*1(2i — 3)Il = (1)(1)(-1)(—3)(=5)...(7—2i)(5—2i)(3— 2i), shows up as part of
the constant in thé" derivative in the above Taylor expansion. Using a similarxcedure for
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RleY )
7135()" X gives,

dG(l’g)((XIY)-:% (li(—l)i(zzii!_ Hn (_d2>i (x—y) <(X_y)2+d2)(2i+l)/2> , )

where(—1)'(2i — 1)!! = (1)(—1)(—3)...(5—2i)(3—2i)(1— 2i). The error bounds for the integral
equation with regularized field for a cell with endpointsiadnd 3, with potential fields given at
these points, using ax term approximation foG(l’D, can be written as,

r(N+3 -
Err — ﬁr((NJrg))dZ(N—kl) pr(Y)%[(E) (2N+1)/2} dy-+

€))
Jap(y) %(G?D(X|y)dy— D Wi p(xi)%(G?D(x‘Xi) ;

where€ € ((x—Y)2, (x—y)2+d?). In equation (3), the ternﬁ({)‘(z'\'ﬂ)/z} is strictly deceasing

on the intervak € ((x—k)?, (x—k)?4-d?) and has its maximum value and slop€& at (x—y)?.
Hence equation (3) is bounded above by,

pmaxr(N+l) 2 1 1
Err S 4\/ﬁ r(N+§) d (N+1) |:— ((X,B)2><2N+l)/2 + ((Xq)z)(2N+l)/2:| +

(4)
JaP() G (Xy)dy— 3 wip(x) &G (xIx) |

wherepmaxis the maximum density in the domahanda andf3 are the end points of the domain
Q. Equation (4) agrees with our the numerical results, ptegjahe correct upturn at the left
boundary and the correct down turn at the right boundarytheugrequation (4) demonstrates that
the more localized the regularization, the closer the defdtbe localized to the boundary, i.e.,
largeN will localize the error. Figure 1 a) shm@D using six terms of the equations (1) and (2). It
is clear that the additional terms cause the jump in PIC-®&lid-dramatically decrease. In addition,
the interior of the cell the PIC-BI'd-and PIC-BIT&-ext are in very close agreement. Further, using
6 terms in the approximation @QD picks up more of the features of the exact solution given by
non-regularized BIT. Figure 1 b) shows the exact solutidngldiamonds) and PIC-Bldwith one
(magenta triangles), two (green circles) and three (resl)detms in the approximation G(l’D. It

is important to note that the more localized the approxiamato G(l’D, the smaller the time step

d
will need to be in the numerical simulation so as to resolestthnsition indg—)l(f’. Our work shows

d
that the better an approximation 95@ the sharper the transition that needs to be resolved. So
the tradeoff will be between efficiency and localizatiorGSk

Time Implicit BIT  Building on the idea of using the ‘fixed’ mesh to support a timetory, the
Pl and Dr. Ong have developed a method of lines transposeagipto wave equations. In this
case, the mesh is not a standard finite difference mesh, thetrra way of tracking the time evo-
lution of waves not in the proximity of Lagrangian test pelgs. The mesh points do not have to
have any uniformity to them, and could be thought of as ghastgbes, which could be done with
a moving mesh.
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“10° Force Vs. Loc.,8=dx, Six Term & «10° Force Vs. Location, d=dx/10
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Figure 1: Force Vs. Location: a) PIC is the black dashed Bi€,is the green line with dots, BIT
corrected PIC withd = O is the open red circles, six ter@fl BIT corrected PIC wittd = Ax/10

is the blue diamonds and extended cell six t&fMBIT corrected PIC is the magenta triangles.
b) PIC is the black dashed line, BIT is the blue diamonds, ema G° BIT corrected PIC with

d = Ax/10 is the magenta triangles, two tef® BIT corrected PIC withd = Ax/10 is the green
circles, and three ter®Y BIT corrected PIC withd = Ax/10 is the red dots.

Time Implicit BIT for Wave Type Equationghe key idea is to consider the transpose of the
standard method of lines methodology, i.e., we choose toatige in time and directly solve the
resulting Helmholtz equation using an integral formulati®bserve that Maxwell’'s equations can
be cast as

1 , 1 1 ,
—Ex —UE=— ——U —Bit — U B =M xJ
it Hod e P 2B Mol X J

wherep = [ f dvis the charge density,= [ v f dvis the current densitygg, o) are the permittivity
and permeability and is the speed of light. To illustrate the implicit treecodméi stepping
methodology forE andB, it suffices to consider the wave equatiog,— k’J%u= 0. Using a
centered difference approximationug and evaluatingl?u at time leveln+ 1 gives,

1 1
Dzun+1 _ e un+1 _ e (_Zun+ un—l) )

The integral solution fou" is

—2u" -I—Un 1)

n+1 n+1 n+1
G(xly)dQ —i—j{ u UG- GHu -nds

//( k2At2 (x}y) y aQ( )

whereG(x]y), the free space Green’s function for the Helmholtz operatoy = (0 — kz—itz)(),

is G(xly) = yw in R3. Here,r = ||x—y]||2 andy is the normalization. The volumetric
and boundary integrals are approximated at the midpointstlee resulting sums can be computed
using fast summation algorithms. For the wave equationmgtiiaod is able to take time steps much
larger than the imposed CFL restrictions for an expliciegrator. We have applied our approach
to the wave equation in 1D, 2D and 3D with Direcltet boundaspditions. Additionally, this
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implicit time stepping methodology has been extended thdrigorder approximations in time.
Some interesting behaviors can be observed inkthsimulations below. In (a), the first order
scheme converges slowly to the analytic solution while i (e third order scheme converges
much quicker, albeit with more oscillations. A convergestigly is shown in (c). In this example
the number of intervals used in the mid-point approximatioime volumetric integral i1 = 4000.
The initial condition is set to

Uo(X) = exp(—x?)

The time step used in the the implicit updates Afre- fﬁfm with N € {1,2,...,5}. Here the final
time ist; = 5. For all results, the analytic solution was used to startithe marching method. In
each of the plots, blue curve is the exact solution, the goeeves are numerical solutions with
At € {45, 55, %} and the red curves are numerical solutions with= g5. In all the plots we see
convergence to the true solution&s— 0. Observe that in all casés is much larger than a cell
size. Note that while in the second and third order exampbkgdal oscillations for largét, the
oscillations rapidly deceases &sapproaches zero, oscillations are not visiblebs 5—10.

t=5 t=5

—analytic —analytic o o © st

- A ° = 2nd

1 —numerical 1 —numerical Lo 3rd
B
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(a) first order time differencindgb) third order time differencing (c) convergence a& — 0

Fast SummationTo overcome thé@(N?) issue, BIT makes use of a fast summation algorithm.
There are many variants of fast summation algorithms, is tlaise we are making use of the
Treecode algorithm. The idea is to approximate the longeanigraction of each distant cluster
of particles as a moment expansion about the center of eastecl Particle clusters are creates
with a hierarchal tree sorting of the particles. Fields amputed using a recursive divide and con-
quer approach, which makes use of the tree [2].The meth@dNdogN), a substantial speedup
over direct summation. (Note that PIC@sM logM) whereM is the number of mesh elements.)

In the work by Lee, Johnston, and Krasny (JCP 09), a recursiation is developed for kernels
of the fromyexp(—cr)/r. This kernel is precisely the from of the free space Greamrstion
that arises in the 3D time implicit formulation Maxwell’s gafions. The recursion relation is a
simple modification of the recursion relation used in elestitic BIT and are in the processes of
modifying our 3D c++ electrostatic BIT code so that we willddae to quickly develop a 3D time
implicit Maxwell solver. An essential step is to considee thevelopment of non-oscillatory time
stepping methods which are higher than first order in timetertime implicit Maxwell solver.

High order AMR based on finite difference WENO As a side project, we have been working
seedily to develop a high order strategy for Adaptive MethiriRenent based on Weighted Essen-

6
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tially Non-Oscillatory finite difference methods. The newetimod is the first which is 3rd order in
time and 5th order in space. The key ideas that have beemutea which differ from standard
AMR are that the method: 1) treat refinement patches that@imianother as a singe refinement
region sounded by a single ghost cell zone, 2) uses ghostatalitly to provide boundary data to
the refinement region, 3) uses Hermite interpolation to wansthird order in time ghost cell data
for intermediate time levels which arise in order to satisfy CFL of the fine mesh in the refine-
ment region, 4) uses WENO interpolation in space to providmiial a 5th order approximation
to the course soliton on the fine mesh and to update the ghbstgiens, 5) uses the WENO indi-
cator to disced were to refine, 6) the method use a 3rd orderRK/ hethod to do time integration.

We have show that the method is indeed 5th order in space dratr@er in time for smooth prob-
lems. Further, we have shown 5rd order AMR is far less dieigihan low order AMR, requiring
less refinement because it is less diffusive, for a rangespipi®blems. This include the 1D dam
break problem, the 1D blast wave problem, and the 2D doubleoklaefection problem. In all
cases, the method give superior results, coasting lessutatignal effort for a given accuracy than
the low order AMR method.

We are working to extend these ideas to a constrained transploer for MHD and to extend
these ideas to a high order Vlasov solver.
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