TARDEC Occupant Protection Seat

Katrina Harris / Joseph Melotik, TARDEC

28 August 2012

The NDCEE is operated by CTC

Concurrent Technologies Corporation

Technology Transition – Supporting DoD Readiness, Sustainability, and the Warfighter
TARDEC Occupant Protection Seat

Date: 30 JUL 2012
Report Type: Briefing Charts
Dates Covered: 30-07-2012 to 30-07-2012

Authors: Katrina Harris; Joseph Melotik

Performing Organization: U.S. Army TARDEC, 6501 E.11 Mile Rd, Warren, MI, 48397-5000

Report Number: #23159

Sponsoring/Monitoring Agency: U.S. Army TARDEC, 6501 E.11 Mile Rd, Warren, MI, 48397-5000

Distribution/Availability Statement: Approved for public release; distribution unlimited

Supplementary Notes: Submitted to national Defence Center for Energy and Environment

Abstract: N/A

Subject Terms:

<table>
<thead>
<tr>
<th>Security Classification</th>
<th>a. Report</th>
<th>b. Abstract</th>
<th>c. This Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

Limitation of Abstract: Same as Report (SAR)

Number of Pages: 22
Notice

- Disclaimer: Reference herein to any specific commercial company, product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the Department of the Army (DoA). The opinions of the authors expressed herein do not necessarily state or reflect the United States Government or the DoA, and shall not be used for advertising or product endorsement purposes.
Presentation Overview

- Objective
- Program Overview
- Seat Design Overview
- Subscale Energy Attenuation (EA) Testing
- Phase II Design Updates
- Seat Fabrication Progress
- Remaining Work
Objective

- To develop an innovative, robust blast mitigating seat design that maximizes occupant safety during blast, slamdown and crash events.
 - The NDCEE blast mitigation seat design utilizes a robust wire bender Energy Attenuation (EA) system with a reset mechanism that protects the occupant during both the upward blast acceleration and slam down deceleration events.
Program Overview

• Phase 1 (November 2010 - December 2011)
 – Develop requirements
 – Develop EA system design / finite element analysis (FEA)
 – Design / build / test a subscale EA test fixture to verify EA performance and correlate with FEA models
 – Complete seat design to CDR level (CDR held 22 Dec 2011)

• Phase 2 (November 2011 - Present)
 – Update seat design to optimize performance based on test results
 – Fabricate four (4) prototype seats for testing
 – Perform drop tower testing to evaluate seat performance
 – Perform blast testing to evaluate seat performance
Design Overview

Stroking Seat Bucket

Fixed Seat Structure

Nominal position

Stroked 8 inches
Design Overview – EA System

- Breakout spring clip
- Return spring
- Ratchet mechanism (attached to fixed seat structure)
- EA wire
- EA roller (attached to stroking bucket)
Design Overview – EA System

Nominal position

Initial blast (stroked 8 inches)

Rebound

Slamdown

Wire bent around roller

Ratchet moves up

Additional wire pulled around roller
EA System FEA

ABAQUS Explicit Analysis
Design Overview – Cushions / Harness

- Removable center cushion
- Hydration pack pocket
- 5-point harness
- Single action harness release
- Shoulder harness retractor
- Lap belt retractors
Design Overview – Floor Deformation

Seat is designed to function nominally with up to ±10° rotation of one mounting foot relative to the other in any direction.

Flexible links to mitigate floor deformations.
Subscale EA Test Fixture

Purpose: To test all critical energy attenuation components on the TARDEC drop tower without incurring the cost of building a complete seat.

Design

- Spring clip
- Return spring
- EA wire
- Variable mass (add / remove plates)

Analyze

Test
Subscale EA Test Fixture Results

7 mass plates (represents 276 lb occupant),
182.3g input pulse
49.6g max on mass plates

7 mass plates (represents 276 lb occupant),
299.5g input pulse
63.6g max on mass plates
Test Results vs FEM Predictions

7 mass plates (represents 276 lb occupant), 182.3g input pulse

7 mass plates (represents 276 lb occupant), 299.5g input pulse

GOOD CORRELATION!
Subscale Test Summary Achievements
Phase I Wrap Up

- The EA wire bender design worked exactly as intended. No issues were observed with the roller or EA wire.
- The ability for this design to provide protection for two equivalent impact events was clearly demonstrated at both the 200g and 325g impact levels. (Seat was dropped twice in a row without modifying or replacing EA wire).
- The spring return and ratchet mechanism worked very well throughout the testing.
- Typically the seat was reset and ready for a second hit approximately 0.2 sec after the initial impact.
- The breakout spring clip functioned as intended. It was shown that the spring clip could be re-engaged after the first hit, thus providing identical performance for the second hit.
Subscale Test Summary Achievements
Phase I Wrap Up

• The seat design was able to provide shock mitigation when the drop table was rotated 15º forward and aft to simulate offset loading.
• The dynamic frictional properties of various coatings were evaluated, providing excellent data for future design activities.
• The test fixture survived 30 drop tests with minimal damage. This clearly demonstrates the robust nature of the design approach.
• FEA model predictions were validated, providing a correlated analysis tool for future design studies.
Phase II design updates

- Updated design to improve seat performance for full occupant range from 5th% female (108 lb) through 95th% male + 100 lb gear (323 lb).
 - Updated EA system to utilize a total of four (4) bend wires
 - Each EA wire engages at a different point during the stroke
 - Performed over 50 analysis iterations to optimize design
- Optimization of flexible link design
- Finalized restraint system / interface
- Numerous manufacturability improvements
Phase II – EA System

- Breakout spring clip
- Return spring
- Ratchet mechanisms
- 4 EA wires
- Variable engagement
- 4 EA rollers (attached to stroking bucket)
Other Completed Phase II tasks

- Performed preliminary Design Failure Modes and Effects Analysis (DFMEA)
- Performed FEA of crash loads per FMVSS standards
- Documented all structural analysis and DFMEA in the “Design Analysis Report” deliverable document
- Generated drop tower test plan, provided in the “Demonstration Plan for Occupant Seat” deliverable document
- Updated drawing package to reflect latest design
Seat Fabrication – Currently Ongoing
Remaining Work

- Complete fabrication of four (4) seats
 - Estimated completion date: 15 August 2012

- Perform drop tower testing using TARDEC drop tower located at Selfridge Air National Guard Base
 - Late August / Early September 2012

- Perform vehicle or “generic hull” blast testing with seats
 - Blast testing is a complex event that requires input and hardware from many different organizations outside the control of CTC. It is possible that this testing will be scheduled outside this contract’s performance deadline.

- Evaluate test results and generate final report
 - Will be complete by November 2012
Acknowledgements

- NDCEE Executive Agent Mr. Hew Wolfe, DASA (ESOH)
- NDCEE Program Director Mr. Pete Stemniski, ODASA (ESOH)
- NDCEE Program Manager Mr. Erik Hangeland, RDECOM
- NDCEE Contracting LTC Stephen Spellman, ODASA (ESOH)
- Officer’s Representative NA
- Government Technical Monitor Katrina Harris, TARDEC
- NDCEE Project Manager Dan Markiewicz
- NDCEE Team Members NA

This work was funded through the Office of the Assistant Secretary of the Army Installations, Energy and Environment and conducted under contract W91ZLK-10-D-0005 Task 0787. The views, opinions, and/or findings contained in this paper are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision unless so designated by other official documentation.