Navigating Beyond the SLOC: Exploring Improvements in Software Cost Estimating

Naval Postgraduate School Acquisition Symposium

17 May 2012

Kathlyn H. Loudin

Naval Surface Warfare Center, Dahlgren Division

Approved for public release; distribution is unlimited.

The views expressed in this brief are those of the authors and do not reflect the official policy or position of the Department of the Navy, the Department of Defense, or the U.S. government.
4. TITLE AND SUBTITLE
Navigating Beyond the SLOC: Exploring Improvements in Software Cost Estimating

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Surface Warfare Center, Dahlgren Division, 6149 Welsh Road, Suite 203, Dahlgren, VA, 22448

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Presented at the 9th Annual Acquisition Research Symposium, May 16 - 17, 2012, Monterey, CA

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT unclassified
 b. ABSTRACT unclassified
 c. THIS PAGE unclassified

17. LIMITATION OF ABSTRACT
 Same as Report (SAR)

18. NUMBER OF PAGES 17

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Proscribed by ANSI Std Z39-18
Navigating Beyond the SLOC:
Exploring Improvements in Software Cost Estimating
• Department of Defense (DoD) Software (SW) cost estimating
 – Estimates that fully encompass development scope are key

• Source Lines of Code (SLOC)-based methods don’t make sense
 – Analogous to estimating the complexity of a house painting job based on gallons of paint

• Other methods & metrics
 – What is used?
 – What is useful?
 – What is mandated?
• Divergence in policy versus practice
 – Are current policies misguided?

• Are non-SLOC-based alternatives feasible?

• Documents, specifications, and management reviews
 – How do we quantify non-Design Code Test (DCT) effort?

• Findings and recommendations from two recent Naval Surface Warfare Center, Dahlgren Division (NSWCDD), studies
 – Software Estimating and Modeling (SEAM)
 – Software Estimating Enhancement Task (SWEET)
SWEET Fiscal Year 2011 Study Approach

Researched SW Policy
- DoD 5000 series
- DCARC/SRDR
- ASN(RDA) Guidebook

Reviewed SW Guidance
- NAVSEA05C
- NAVAIR 4.2
- NCCA
- Air Force STSC
- GAO
- NASA

Collected Data
(via Data Calls, Interviews, Questionnaire, Site Visits)
- NSWCDD SW Programs (40+ efforts)
 - SLBM, TTWCS, Mk 160, NFCS
 - LCS, AEGIS, SSDS
 - SPS, SGS/AC, Next-Gen Simulation
- External Organizations
 - China Lake, SPAWAR, NAVAIR

Identified Best Practices
- Estimate SW Effort with appropriate metric
- Align methodology with program maturity
- Institute EVM and Metrics tracking
- Validate estimating tools and estimates

Assessed Current Practices
- Variations in:
 - SW development process and maturity
 - Metrics collection and tracking
 - EVM implementation and utilization
 - SW estimating methods (LOE, SLOC, etc.)

GAP Analysis
Example:
EVM not uniformly instituted

Recommended Process Improvements
- Interface with the SW Community of Practice
- More rigorous EVM

Future Implementation

Example:
EVM not uniformly instituted
SLOC-Centric Policy and Guidance

• Policy does not always make sense
 – What works on paper does not always translate to practical, real-life scenarios

• For Acquisition Categories (ACATs) I and/or IA programs, the DoD 5000 series mandates contractor delivery of Software Resources Data Reports (SRDRs) through the Defense Cost and Research Center (DCARC)

• Cost and Software Data Reporting (CSDR) plan required for ACAT I/IA programs

• Non-ACAT programs, e.g., AEGIS, are not required to submit SRDRs
SLOC-Centric Policy and Guidance (Cont’d)

• Assistant Secretary of the Navy (Research, Development, and Acquisition) [ASN(RDA)] *Guidebook for Acquisition of Naval Software Intensive Systems* – limited application by program offices (function of awareness)

• Naval Sea Systems Command (NAVSEA) Program Executive Office Integrated Warfare Systems guidance
 – Detailed data requested (other than SRDR) from additional programs, e.g., ACAT II, III, but
 • There is still no mechanism for enforcement
 • There is no Data Item Description (DID) to give contractors specific guidance and definitions

No single policy or mechanism exists to collect “good” data from both large and small programs.
NSWCDD

- Most projects use engineering build-up and Level of Effort (LOE)-based approaches
- Few projects currently use SLOC-based methods or models, e.g., COCOMO II, SLIM
- Some projects use code-counting tools, e.g., USC Universal CodeCount* (UCC)
- There is no common tool, standards, or approach across all NSWCDD projects

External Entities

- AIR 4.1, Process Improvement Group-affiliated projects use detailed engineering build-up
- AIR 4.2, Space and Naval Warfare Systems Command (SPAWAR) 1.6, NAVSEA 05C, and the Naval Center for Cost Analysis use SLOC-based methods or models
- Handbooks are descriptive, not prescriptive, so variations exist

* Developed by University of Southern California Center for Systems and Software Engineering
SWEET Findings: SW—Historical Data

NSWCDD

- Several projects collect historical cost data
- Few projects utilize this data to improve cost estimates
- No projects leverage cost performance metrics from other programs, i.e., there is limited collaboration
- No projects employ a focused approach to data analysis
 - No cost estimating relationships ascertained
 - No “bidding database”

External Entities

- Data availability issues pose problems across the board
 - Processes are not in place for the cost estimating community to efficiently capture execution data from program offices
 - Program offices are unwilling to share data outside their program
 - Lack of consistency in interpretation
 - CSDR/SRDR: Reliability can be suspect
- Progress is being made but is hindered by lack of funding for working-capital organizations, and lack of resources for mission-funded organizations
SWEET Findings: SW—Tracking and Reporting

NSWCDD

- Few projects adhere to reporting requirements imposed on the industry, e.g., rigorous Earned Value Management (EVM) System and proposal bases of estimate
- Most projects use a work breakdown structure to estimate, track, and report execution data
- Most projects use Microsoft Project or Excel-based in-house tools
- Tomahawk, Submarine Launch Ballistic Missile (SLBM), and Littoral Combat Ship (LCS) Surface Warfare (SUW) have the most mature processes
 - Tomahawk uses a progress tracking tool, but its emphasis is tracking not estimating, and reports SLOC using SLIM to compare estimates to actuals, i.e., validation
 - SLBM uses a technical effort tracking tool for both tracking and estimating

External Entities

- A variety of tools are used, but relatively few achieve the “ideal state”
 - The ideal state being the capability of comparing estimates to actuals while capturing incremental changes throughout the SW acquisition life cycle

In the areas of cost estimation, historical data, and tracking and reporting, NSWCDD has challenges similar to those of other organizations.
SLOC is Only One Artifact

Systems Engineering

- SW: Preliminary Design
- SW: Detailed Design
- **SW: Coding**
- SW: Unit-Testing

System Development Activities and Artifacts

COST, SCHEDULE, RISK MANAGEMENT, METRICS / CONFIGURATION MANAGEMENT

<table>
<thead>
<tr>
<th>Milestone Review Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Requirement Review</td>
</tr>
<tr>
<td>System Design Review Test Readiness Review Program Reviews</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SE Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Development Plan</td>
</tr>
<tr>
<td>Build/Capability Plan</td>
</tr>
<tr>
<td>Concept of Operations</td>
</tr>
<tr>
<td>Spend Plans</td>
</tr>
<tr>
<td>Safety and Security Specifications</td>
</tr>
<tr>
<td>Hardware Drawings and Specifications</td>
</tr>
<tr>
<td>Human System Integration Specifications</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System Level Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture Diagrams and/or DoD Architecture Framework Interface Specifications</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SW Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Software</td>
</tr>
<tr>
<td>Configuration Item</td>
</tr>
<tr>
<td>Requirements, Design SW Architecture</td>
</tr>
<tr>
<td>Source Code/Executables</td>
</tr>
<tr>
<td>Test Procedures/Reports</td>
</tr>
<tr>
<td>Spend Plans</td>
</tr>
<tr>
<td>Schedules</td>
</tr>
<tr>
<td>Risks and Mitigations Metrics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Integration and Test Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Plans, Procedures, and Reports</td>
</tr>
<tr>
<td>Spend Plans</td>
</tr>
<tr>
<td>Schedules</td>
</tr>
<tr>
<td>Risks and Mitigations Metrics</td>
</tr>
</tbody>
</table>
Literature Search: Alternatives to SLOC

- Identified 33 methods for defining SW scope, categorized
 - by SW development phase
 - by manual or auto counting
- Other than function point analysis, no method using early artifacts is uniformly adopted across the SW community
- No “one best way” endorsed by the SW community
- SLOC and function points are still the prevailing metrics
- Additional research is needed to fully assess applicability
 - It is premature to recommend an alternative approach or tool for SW estimating
An Example of SW Interfaces – MH-60R Integration: Vehicular Track Report

SH-60B Integration

MH-60R Integration

New SW component

What is the cost???

CURRENT

FUTURE

C&D

5. New MH-60R Track Notification

STM

6. TM_NewVehicularTrack

LSE

1. A-S140 (Vehicular Track Report)

2. S-A203 (ACK)

9. S-A242 (TN Assignment)

10. A-S103 (ACK)

MH-60R Controller

3. Vehicular Track Data

4. SM_NewMH60R Vehicular Track

TS

7. TS_TrackKey Assignment

STM

6. TM_NewVehicularTrack

C&D

5. S-A242 (TN Assignment)

10. A-S103 (ACK)

LSE

1. Manual Vehicular Track

2. ACK

13. TN Assignment

14. ACK

SQQ-89

3. Vehicular Track Data

4. 89-MT-005 (Transmit Symbol)

12. TN Assignment

WCS

5. WCS-MT-160 (LAMPS Track Data)

STM

7. New LAMPS Track Notification

6. SM_NewLAMPSVehicularTrack

TS

9. TS_TrackKey Assignment

C&D

11. TN Assignment

1. A-S140 (Vehicular Track Report) 3. Vehicular Track Data

9. S-A242 (TN Assignment)

6. TM_NewVehicularTrack

0X
• Selected tactical programs that represent a range of complexity and coding languages
 – AEGIS Advance Capability Build (ACB) 08
 Complex, Multimission Combat Management System (Java, C++)
 – TTWCS
 Tomahawk Missile Weapon Control System (C/C++, User Interface Language, Ada)
 – LCS SUW Mission Package
 Integrated Warfare Mission Module (Java)
SW Estimating Relationships (Preliminary)

ACB 08 WCS (Java)
L SLOC = 260 x Messages

LCS (70+% Java)
L SLOC = 165 x Messages

ACB 08 C&D (C++)
L SLOC = 116 x Messages

Possible Data Outlier
Navigational Path Forward

- Develop draft Contract Data Requirements List/DID to implement guidance
- Adopt the code counting standards used by the UCC tool or adopt the actual tool
- Implement changes to code counting practices in future DoD contracts
- Increase government access to development artifacts, e.g., code and associated LOE expenditures
- Investigate relationships for estimating non-DCT efforts
- Develop methods for collecting and using actual costs and other metrics, e.g., EVM, Dashboard, as part of optimal project management
Questions?