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Abstract – Tracking maneuvering targets is an 

important problem. A study was previously performed to 

compare the state estimation accuracy of a Kalman filter 

to an interacting multiple model (IMM) for a 

maneuvering target. The authors defined a 

maneuvering index to quantify the degree of 

maneuvering. Their study then compared the state 

estimates of the two filters as a function of this index. 

Their results showed that an IMM provides significant 

improvement over a Kalman filter. That study was 

revisited and this paper discusses the differing results 

observed. Our results show that the IMM does improve 

overall state estimations but much less than in the 

previous study. This improvement is due to the smaller 

state estimation errors that the IMM provides over the 

Kalman filter during the non-maneuvering intervals, 

rather than the complete domination in performance of 

the IMM that the previous study revealed. As a result, 

the "0.5 rule" that the previous authors identified, 

should be revised. 

 

Keywords: Maneuvering target, perfect IMM, Monte 

Carlo analysis, Kalman vs IMM 

1 Introduction 

Tracking maneuvering targets is an important problem 

that occurs in many domains. In 2001, Kirubarajan and 

Bar-Shalom (K&B) demonstrated the relative state 

estimation performance of a Kalman filter to an 

interacting multiple model (IMM) as the target becomes 

increasingly more maneuverable.[1][2] They introduced a 

maneuver index metric which quantifies the degree of 

maneuverability of a target. This index is discussed later. 

They compared the state estimation errors of these two 

filters and plotted the results as a function of the 

maneuvering index. K&B showed that the state estimation 

performance of an IMM was considerably better (i.e., has 

lower RMS error) than a Kalman filter as the target 

became more maneuverable. This analysis led to their 

finding of the "0.5 rule" which states that the IMM 

performs better than Kalman once the maneuver index 

exceeded 0.5.[1][2] K&B also plotted the estimation 

errors during the intervals that the target was maneuvering 

and during the intervals that the target was not 

maneuvering. Their results showed that the IMM produces 

smaller estimation errors than the Kalman filter regardless 

of whether the target is maneuvering or not. This result 

seemed unexpected. While one would expect their IMM 

to provide smaller estimation errors during the non-

maneuvering intervals, it was not clear why their IMM 

would perform better than the Kalman filter during the 

maneuvering intervals. 

That K&B study was re-visited in this study and the 

results are discussed in this paper. There was one 

difference, however, in this study. Instead of comparing 

the Kalman filter to an IMM, we will introduce a Perfect 

IMM filter and use this filter as the comparison to the 

Kalman filter. Using a Perfect IMM instead of an IMM 

defines the lower bound on estimation errors possible 

from an IMM. This paper will discuss the effort to re-

create the results from the original study. We will show, 

unfortunately, that K&B’s results could not be duplicated. 

We will provide justification of why we believe the results 

we obtained are more reasonable. Our results will suggest 

that the 0.5 rule that K&B identified should be revised. 

 

2 Introducing the Perfect IMM 

An IMM filter is effectively a Kalman filter with multiple 

motion (i.e., prediction) models. At each update, the IMM 

runs multiple filters, one for each motion model and then 

combines the resulting state estimations into an overall 

state estimation as a weighting of the results from each 

filter. The weights are generally arbitrary but based on 

some knowledge about the behavior of the target. 

Although K&B define the weights used for the IMM in 
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their study, we will use a Perfect IMM (PIMM) filter 

instead. A PIMM filter is a theoretical IMM-like filter that 

cannot be realized for any real system, but is useful for a 

simulated system. In an IMM, the goal is to apply the 

right motion model at the right time (i.e., update). In 

simulation, the true motion of the target is known (to the 

simulation), so the PIMM is told which motion model to 

use for each update. Thus, the selection of the correct 

motion model is always performed perfectly and hence its 

name, Perfect IMM. Since a Perfect IMM always selects 

the right motion model, it defines the lower bound on the 

estimation errors of any corresponding IMM making it 

useful for comparison studies of IMM performance. 

Furthermore, since the Kalman filter effectively defines 

the upper bound on the estimation errors of any IMM, we 

know that any real IMM will perform somewhere between 

these two bounds. 

For this study, a two-model PIMM is used that is similar 

to the two-model IMM that K&B used in their study. The 

two models are identical except for process noise. K&B 

defined a low process noise for when the target is deemed 

not maneuvering and a high process noise for when the 

target is deemed maneuvering. The same process noise 

models were used in the PIMM. The parameters for the 

process noise will be given later. 

3 The Target Motion Model 

In the K&B study, a simplistic two-dimensional target 

model is used where the acceleration error distributions in 

the x and y directions were identical. They assumed on 

each update, the target randomly selects an acceleration 

from a distribution with a large or small variance, 

depending if the target is maneuvering or maintaining 

(nearly) constant motion during this time update. K&B 

also assumed that the target maneuvers were synchronized 

with the measurement updates. Thus, the target always 

starts a maneuver at the measurement update time and 

continues with that maneuver until the next update time. 

Note that aligning the maneuver to the update time is 

unrealistic since these events are independent of each 

other. Although this is unrealistic, for consistency, we use 

the same approach in this study. It is suspected, however, 

that making the maneuver times independent of the 

measurement update times would not have any large 

affect on the results of the study. 

Based on these assumptions, a simple motion model can 

be derived as follows. Let T be the time between updates. 

Let    and    be the randomly selected x and y 

accelerations respectively, for the i
th

 update. Then, the 

target state for the i
th

 update would be: 

              (1) 

              (2) 

              
 

 
   

  (3) 

              
 

 
     (4) 

K&B state that the accelerations are selected from a zero-

mean distribution with standard deviation,   . The type of 

distribution was not stated but assumed to be Gaussian. 

4 Comparison Test Method 

Test scenarios will be constructed identically to the ones 

used in the K&B study. The initial position of the target 

will be at (25,000 m, 10,000 m) with an initial velocity of 

(-120 m/s, 0 m/s). Each scenario lasts seven minutes of 

simulated time. During the first, third, fifth, and seventh 

minute, the target moves with nearly constant velocity 

with process noise standard deviation    = 0.2 m/s
2
. 

During the second, fourth, and sixth minute the target 

maneuvers with a (fixed) process noise level that is varied 

from    = 0.4 m/s
2
 to 10.0 m/s

2
, in increments of 0.4 m/s

2
. 

The comparison graphs however, plot the state estimation 

root-mean-squared (RMS) errors as a function of the 

maneuver index, , just as was done in the K&B study. 

The maneuver index is a unit-less quantity formed as the 

ratio of the uncertainty in the target motion over the 

uncertainty in the measurement. The index is defined as: 

  
    

  
 (5) 

where    is the process noise standard deviation (in each 

dimension), T is the time between updates, and    is the 

measurement error standard deviation (in each 

dimension). 

Like the K&B study, the measurement errors in the x and 

y dimension are assumed to both be normally distributed 

with    = 100 m in each dimension. The time between 

updates is T = 5 sec. 

The results of the comparison will be summarized as a set 

of plots describing the position and velocity estimation 

RMS errors, using Monte Carlo analysis. The original 

study used 100 Monte Carlo iterations for each process 

noise standard deviation. To make the plots smoother, this 

study uses 1000 Monte Carlo iterations. The average RMS 

error,      is: 

     
 

 
  

 

 
    

 
 

   

 

   

 (6) 

where m = number of Monte Carlo iterations = 1000, n = 

number of measurement updates per scenario, and 

   
            

 
           

 
 is the computed error of 

the ith measurement update on the jth Monte Carlo 

iteration. 

4.1 Preparing the Kalman Filter 

The Kalman filter for this study follows identically with 

the one in the K&B study. It is assumed that the true state 

of the target at time    is 

                              
  (7) 

where      ,       is the position and       ,        is the 

velocity in the x,y coordinates, respectively. Like the 
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K&B study, the covariance matrix R of measurement 

noise is: 

   
  

  

   
   (8) 

The plant noise matrix Q is also identical to the one used 

in the K&B study. 

  

 
 
 
 
 
 
 

 
  

    

 
  

     
 

 
  

     
     

  
 

 
  

    

 
  

   

  
 

 
  

     
   

 
 
 
 
 
 

 (9) 

where    is set to 0.8 of the process noise standard 

deviation used during the maneuvering intervals. 

4.2 Preparing the PIMM Filter 

In the K&B study, the IMM simply employs two different 

plant noise matrices; one for when the target is deemed to 

be maneuvering and the other when the target is deemed 

to not be maneuvering. The plant noise matrix for the non-

maneuvering target is found using the low process noise 

   = 0.2 m/s
2
. The plant noise matrix for the maneuvering 

target is found using the process noise selected during the 

maneuvering interval. In this study, the PIMM filter 

follows similarly using the two different plant noise 

matrices, except it is told which plant noise matrix to use 

at each update. 

5 Results 

Figures 1 through 4 are the results obtained from this 

study. The figures directly correspond to the ones in the 

K&B study.[1] Figs 1a and 1b plot the peak position 

estimation RMS errors and peak velocity estimation RMS 

errors respectively, over the entire seven-minute scenario 

as a function of the maneuver index. The blue dotted line 

plots the RMS errors from the Kalman filter. The red solid 

line plots the errors from the PIMM. Like the K&B study, 

we show that the peak estimation errors from the Kalman 

filter are larger than those from the PIMM filter. 

However, our results show the differences between these 

two filters are much less than what K&B obtained. 

Fig. 1a shows that the peak position errors for the Kalman 

at = 2.5 is about 155 m. K&B show this peak error to be 

around 300 m, about twice as large. Furthermore, the 

figure shows the PIMM error is about 145 m, which is 

only ~6% improvement. The K&B study shows the IMM 

error to be about 180 m, about a 40% improvement. The 

peak errors for the velocity estimation are also different 

from K&B’s result. Fig. 1b shows the peak velocity errors 

to be approximately the same between the two filters with 

a difference growing to only ~5 m/s. K&B show the 

Kalman estimation error to be nearly three times larger 

than the IMM error. Additionally, K&B show that the 

velocity estimation errors for the IMM grow to only ~12 

m/s, which is about four times smaller than the errors we 

obtained. 

Figs 2a and 2b plot the overall position estimation errors 

and overall velocity estimation errors respectively, over 

the entire seven-minute scenario as a function of the 

maneuver index. Fig. 2a shows the position estimation 

errors for the Kalman filter leveling off to ~130 m. The 

K&B results show the position estimation error climbing 

to 210 m and seemingly continuing to climb. Their 

Kalman filter position errors are much larger than the 

errors in the measurements. Their results seem suspect 

since this would mean that using the measurements 

themselves would produce better position estimates than 

using the Kalman filter estimates. There is close 

agreement (115 m vs 120 m) for the position estimates for 

the IMM, except our results show a clear leveling off of 

error while the K&B results show an upward trend. As a 

result, their IMM position errors seem suspect as well. 

 

 (a) 

 (b) 

Figure 1. Base case. Peak RMS errors of Kalman versus PIMM. 

(a) Position errors; (b) Velocity errors. 

 

Like the peak velocity estimation error plot, Fig 2b shows 

minimal difference between the two filters; again rising to 

a difference of only ~5 m/s. The K&B study, on the other 

hand, shows the velocity estimation error from the 

Kalman rising to twice the error of the IMM. However, 

our velocity errors from the Kalman filter are about twice 

as large as those from the K&B study, and our velocity 

errors from the IMM are about three times larger. 

Figs 3a and 3b plot the position estimation errors and 

velocity estimation errors respectively, during the non-

maneuvering (a.k.a., uniform motion) intervals of the 

scenario, as a function of the maneuver index. It is during 

these intervals where the PIMM is expected to outperform 
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Kalman since the PIMM can use the smaller process 

noise. As expected, the plots show the dramatic 

differences in the errors between the Kalman and the 

PIMM. The results in Fig 3a are similar to those in the 

K&B except they show their two filters each rise to about 

15 m less. The velocity estimation errors shown in Fig. 3b 

are different than K&B’s result, but there is agreement 

that the IMM estimation errors are dramatically improved 

over the Kalman. It is suspected that the y-axis from the 

K&B study is mislabeled as it shows the Kalman filter 

velocity errors grow to only ~4 m/s. 
 

 (a) 

 (b) 

Figure 2. Base case. Overall RMS errors of Kalman versus 
PIMM. (a) Position errors; (b) Velocity errors. 

 

Figs 4a and 4b plot the position estimation errors and 

velocity estimation errors respectively, during the 

maneuvering intervals of the scenario as a function of the 

maneuver index. Note that there is little difference 

between the two filters. This is what should be expected 

since the two filters are virtually identical during these 

maneuvering time intervals. The K&B study, on the other 

hand, shows a dramatic improvement of the IMM over the 

Kalman as the maneuvering index increases. In fact, they 

show the position errors for both filters grow larger than 

the errors in the measurements themselves. Their position 

error for the IMM grew to ~180 m and the position error 

for the Kalman filter grew to ~260 m. Here again their 

results suggest it would be (much) better to ignore the 

filter and just use the measurements. The fact that they 

showed the IMM offered dramatic improvement over the 

Kalman filter is questionable. Since the filters are nearly 

identical during these intervals, it is unclear how they 

could obtain large differences between the two filters. 

 (a) 

 (b) 
Figure 3. Base case. RMS errors of Kalman versus PIMM during 

the non-maneuvering intervals. (a) Position errors; (b) Velocity 

errors. 

 

 (a) 

  (b) 

Figure 4. Base case. RMS errors of Kalman versus PIMM during 

the maneuvering intervals. (a) Position errors; (b) Velocity 
errors. 

0 0.5 1 1.5 2 2.5
80

85

90

95

100

105

110

115

120

125

130

Maneuver Index

O
ve

ra
ll 

P
os

 R
M

S
 E

rr
or

 (
m

)

Dotted Blue=Kalman, Solid Red=PerfectIMM

0 0.5 1 1.5 2 2.5
5

10

15

20

25

30

35

40

Maneuver Index

O
ve

ra
ll 

V
el

 R
M

S
 E

rr
or

 (
m

/s
)

Dotted Blue=Kalman, Solid Red=PerfectIMM

0 0.5 1 1.5 2 2.5
80

85

90

95

100

105

110

115

120

125

130

Maneuver Index

U
ni

fo
rm

 M
ot

io
n 

P
os

 R
M

S
 E

rro
r (

m
)

Dotted Blue=Kalman, Solid Red=PerfectIMM

0 0.5 1 1.5 2 2.5
5

10

15

20

25

30

Maneuver Index

U
ni

fo
rm

 M
ot

io
n 

V
el

 R
M

S
 E

rro
r (

m
/s

)

Dotted Blue=Kalman, Solid Red=PerfectIMM

0 0.5 1 1.5 2 2.5
80

90

100

110

120

130

140

Maneuver Index

M
an

eu
ve

r 
P

os
 R

M
S

 E
rr

or
 (

m
)

Dotted Blue=Kalman, Solid Red=PerfectIMM

0 0.5 1 1.5 2 2.5
5

10

15

20

25

30

35

40

45

50

55

Maneuver Index

M
an

eu
ve

r 
V

el
 R

M
S

 E
rr

or
 (

m
/s

)

Dotted Blue=Kalman, Solid Red=PerfectIMM

1147



Note that since the two filters are resulting in nearly 

identical estimation errors, it means that the Kalman filter 

is producing the lower bound on the errors during these 

maneuvering intervals. 
 

6 Conclusion 

Based on our results, we agree with the K&B study that 

the IMM is superior to the Kalman filter, but only because 

an IMM can lower its process noise during the non-

maneuvering intervals to provide tighter estimates during 

those times. The overall performance improvement that 

the IMM achieves is based on exploiting the intervals of 

time when the target is not maneuvering. Thus, if the 

target is constantly maneuvering, or at least, has only 

short periods when it is not maneuvering, then the IMM 

will offer little improvement. 

It is important to recall that this study introduced and used 

a Perfect IMM as the comparison. As mentioned earlier, 

this filter provides a lower bound on the estimation errors 

of any IMM. The study showed that during the 

maneuvering intervals, the Kalman filter state estimates 

were as good as the PIMM, so therefore a Kalman filter 

provides this lower bound. It was only during the non-

maneuvering intervals where the PIMM had significantly 

smaller estimation errors than the Kalman filter. As a 

result, we are not inclined to agree with K&B's '0.5 rule' 

of when it is better to use an IMM over a simpler Kalman 

filter. Instead we offer that the IMM will outperform the 

Kalman filter only if a maneuvering target does not 

maneuver for times long enough for the IMM to recognize 

that fact. 

The results from this study should help guide tracking 

system design, especially when considering continually 

maneuvering targets. 
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