

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

DISCRETE EVENT SIMULATION MODELING AND
ANALYSIS OF KEY LEADER ENGAGEMENTS

by

Clifford C. Wakeman

June 2012

 Thesis Co-Advisors: Arnold H. Buss
 Susan M. Sanchez
 Second Reader: Jason C. Caldwell

THIS PAGE INTENTIONALLY LEFT BLANK

 i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2012

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Discrete Event Simulation Modeling and Analysis
of Key Leader Engagements

5. FUNDING NUMBERS

6. AUTHOR(S) Clifford C. Wakeman
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number ___N/A____.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT (maximum 200 words)
The Cultural Geography (CG) Model is a low-resolution, agent-based discrete event social simulation
tailored to specific operational environments. It is based on doctrine and social theory designed to
represent the behavioral response of civilian populations in conflict environments. The current version of
the CG Model does not represent key leader engagements (KLE), which are activities between coalition
military forces and host nation civilian personnel, as means of obtaining information, influencing behavior,
and building an indigenous base of support for coalition and government objectives. These capabilities are
needed for additional tactical level representation of the operational environment.

This research develops a simulation model using Simkit to explore the feasibility of modeling KLEs
using discrete event simulation. A total of 32 dynamic input factors are varied using a 512-design point
design. Second-order regression metamodels and partition tree models are developed for simulation model
output responses that track numbers of engagements, numbers of times knowledge is provided, numbers
of campaigns, and numbers of captures and kills; these analytical models are used to verify the proper
execution of the simulation model. Summary statistics are analyzed to gain further insights about the
simulation model’s behavior.
14. SUBJECT TERMS Cultural Geography, Discrete Event Simulation, Key Leader, Key
Leader Engagement, Simkit, Nearly Orthogonal and Balanced Mixed Design, Second-order
Regression Metamodel, Partition Tree Model

15. NUMBER OF
PAGES

129
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 8-98)
 Prescribed by ANSI Std. Z39.18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

DISCRETE EVENT SIMULATION MODELING AND ANALYSIS
OF KEY LEADER ENGAGEMENTS

Clifford C. Wakeman
Captain, United States Marine Corps

B.S., University of Michigan, Ann Arbor, 2002

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
June 2012

Author: Clifford C. Wakeman

Approved by: Arnold H. Buss
Thesis Co-Advisor

 Susan M. Sanchez
 Thesis Co-Advisor

Jason C. Caldwell
Second Reader

Robert F. Dell
Chair, Department of Operations Research

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

The Cultural Geography (CG) Model is a low-resolution, agent-based discrete

event social simulation tailored to specific operational environments. It is based

on doctrine and social theory designed to represent the behavioral response of

civilian populations in conflict environments. The current version of the CG Model

does not represent key leader engagements (KLE), which are activities between

coalition military forces and host nation civilian personnel, as means of obtaining

information, influencing behavior, and building an indigenous base of support for

coalition and government objectives. These capabilities are needed for additional

tactical level representation of the operational environment.

This research develops a simulation model using Simkit to explore the

feasibility of modeling KLEs using discrete event simulation. A total of 32

dynamic input factors are varied using a 512-design point design. Second-order

regression metamodels and partition tree models are developed for simulation

model output responses that track numbers of engagements, numbers of times

knowledge is provided, numbers of campaigns, and numbers of captures and

kills; these analytical models are used to verify the proper execution of the

simulation model. Summary statistics are analyzed to gain further insights about

the simulation model’s behavior.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ... 1
A. MOTIVATION FOR THESIS .. 1

1. TRAC and the Cultural Geography Model 1
2. Need for Key Leader Engagement Functionality 2

B. KEY LEADERS AND KEY LEADER ENGAGEMENTS 3
1. Key Leaders ... 3
2. Key Leader Engagements ... 4

C. RESEARCH QUESTIONS ... 5
1. Satisfactorily Modeling KLEs ... 5
2. Significant Input Parameters and Code Verification 5
3. Summary Statistic Insights ... 5

D. METHODOLOGICAL APPROACH .. 6

II. KEY LEADER ENGAGEMENT MODEL... 9
A. REQUIREMENTS OF KLE MODEL ... 9
B. AGENTS IN KLE MODEL .. 10

1. BluePlayer Agent ... 10
2. GreenPlayer Agent .. 11
3. RedPlayer Agent .. 14

C. BEHAVIOR EQUATIONS IN KLE MODEL .. 14
D. COMPONENTS OF KLE MODEL .. 18

1. CreatePlayers ... 18
2. HandleEngagementType ... 20
3. MicroKeyLeaderEngagement ... 25
4. KeyLeaderEngagement ... 27
5. HandleMessageRequest ... 29
6. HandleKeyLeaderKnowledgeRequest 35
7. HandleThreatKnowledgeRequest ... 40
8. HandleResourceKnowledgeRequest 46
9. UpdateOAB ... 52
10. Campaign ... 56
11. CaptureOrKill ... 61
12. Release ... 66
13. HandleReplacements .. 67

E. COMPONENT LISTENING STRUCTURE AND ADAPTERS OF
KLE MODEL .. 71

III. DESIGN OF EXPERIMENTS .. 75
A. RANDOM NUMBER GENERATION .. 75
B. HANDLING OF INPUT PARAMETERS ... 75

1. Static Parameters .. 75
2. Dynamic Parameters and NOB Mixed Design 76

C. SCENARIO REPLICATION ... 79

 viii

IV. KLE MODEL ANALYSIS .. 81
A. OUTPUT DATA .. 81
B. SIGNIFICANT INPUT PARAMETERS AND MODEL

VERIFICATION .. 81
C. SUMMARY STATISTICS ANALYSIS .. 92
D. DISCUSSION ON NUMBER OF MICRO-KLES................................. 98

V. WRAP-UP ... 103
A. CONCLUSIONS ... 103
B. SIGNIFICANT CONTRIBUTIONS .. 104
C. FUTURE RESEARCH OPPORTUNITIES .. 104

LIST OF REFERENCES .. 107

INITIAL DISTRIBUTION LIST ... 109

 ix

LIST OF FIGURES

Figure 1. Behavior Equation 1 ... 15
Figure 2. Behavior Equation 2 ... 16
Figure 3. Behavior Equation 3 ... 16
Figure 4. Behavior Equation 4 ... 17
Figure 5. Behavior Equation 5 probability transition matrix 18
Figure 6. CreatePlayers event graph ... 19
Figure 7. HandleEngagementType event graph .. 22
Figure 8. MicroKeyLeaderEngagement event graph ... 26
Figure 9. KeyLeaderEngagement event graph .. 28
Figure 10. HandleMessageRequest event graph (part 1) 31
Figure 11. HandleMessageRequest event graph (part 2) 32
Figure 12. HandleKeyLeaderKnowledgeRequest event graph (part 1) 36
Figure 13. HandleKeyLeaderKnowledgeRequest event graph (part 2) 37
Figure 14. HandleThreatKnowledgeRequest event graph (part 1) 42
Figure 15. HandleThreatKnowledgeRequest event graph (part 2) 43
Figure 16. HandleResourceKnowledgeRequest event graph (part 1) 48
Figure 17. HandleResourceKnowledgeRequest event graph (part 2) 49
Figure 18. UpdateOAB event graph .. 54
Figure 19. Campaign event graph (part 1) ... 58
Figure 20. Campaign event graph (part 2) ... 59
Figure 21. CaptureOrKill event graph (part 1).. 63
Figure 22. CaptureOrKill event graph (part 2).. 64
Figure 23. Release event graph .. 66
Figure 24. HandleReplacements event graph ... 69
Figure 25. KLE Model component listening structure .. 72
Figure 26. Number of KLEs regression metamodel (1 week) 83
Figure 27. Number of KLEs regression metamodel (9 weeks) 84
Figure 28. Number of KLEs regression metamodel (1 year) 85
Figure 29. Number of KLEs partition tree model (1 week) 86
Figure 30. Number of KLEs partition tree model (9 weeks) 87
Figure 31. Number of KLEs partition tree model (1 year) 87
Figure 32. Number of KLEs summary statistics (1 week) 94
Figure 33. Number of KLEs summary statistics (9 weeks) 95
Figure 34. Number of KLEs summary statistics (1 year) 96
Figure 35. Number of micro-KLEs summary statistics (9 weeks) 100
Figure 36. Number of micro-KLEs summary statistics (1 year).......................... 101

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF TABLES

Table 1. BluePlayer agent attributes. ... 11
Table 2. GreenPlayer agent attributes. ... 13
Table 3. CreatePlayers parameters .. 19
Table 4. HandleEngagementType parameters, parameter constraints, and

state variables .. 21
Table 5. MicroKeyLeaderEngagement parameters, parameter constraints,

and state variables ... 25
Table 6. KeyLeaderEngagement parameters and state variables 28
Table 7. HandleMessageRequest parameters, parameter constraints, and

state variables .. 30
Table 8. HandleKeyLeaderKnowledgeRequest parameters, parameter

constraints, and state variables .. 35
Table 9. HandleThreatKnowledgeRequest parameters, parameter

constraints, and state variables .. 41
Table 10. HandleResourceKnowledgeRequest parameters, parameter

constraints, and state variables .. 47
Table 11. UpdateOAB parameters and parameter constraints 53
Table 12. Campaign parameters, parameter constraints, and state variables ... 57
Table 13. CaptureOrKill parameters and state variables 62
Table 14. Release parameters ... 66
Table 15. HandleReplacements parameters, parameter constraints, and state

variables ... 68
Table 16. KLE Model adapters ... 73
Table 17. Static model parameters and their values .. 76
Table 18. Dynamic model parameters and their values (part 1) 77
Table 19. Dynamic model parameters and their values (part 2) 78
Table 20. Top three significant input parameters (1 week). 88
Table 21. Top three significant input parameters (9 weeks) 89
Table 22. Top three significant input parameters (1 year) 90
Table 23. Summary statistics for output response means 97

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF ACRONYMS AND ABBREVIATIONS

CG Cultural Geography

IW Irregular Warfare

KLE Key Leader Engagement

NOB Nearly Orthogonal and Balanced

NOLH Nearly Orthogonal Latin Hypercube

OAB Observed Attitude and Behavior

SIM Social Impact Module

TRAC Training and Doctrine Command Analysis Center

TWG Tactical Wargame

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

EXECUTIVE SUMMARY

The Cultural Geography (CG) Model, developed by TRAC-Monterey, is a

low-resolution, agent-based, discrete event social simulation tailored to specific

operational environments based on doctrine and social theory. It is designed to

represent the behavioral responses of civilian populations in conflict

environments. It focuses on the political, military, economic, social, infrastructure,

and information variables in the operational environment, which affect the

population’s beliefs, values, interests, attitudes, and behaviors. TRAC-Monterey

developed the model to support the analysis of civilian population perception

based on friendly and threat actions.

The current version of the CG Model does not represent key leader

engagements (KLE), which are activities between coalition military forces and

host nation civilian personnel as a means of obtaining information, influencing

behavior, and building an indigenous base of support for coalition and

government objectives. TRAC needs this capability for additional tactical level

representation of the operational environment. TRAC’s Irregular Warfare (IW)

Tactical Wargame (TWG) initiative utilizes Nexus, an interpretive social science

simulation of IW that is separate from the CG Model, to incorporate the influence

of key individuals on the population by modeling the key leader network. One of

the focus areas discussed in the after-action report from the TWG that TRAC-

Monterey held in October 2011 was a need to incorporate the Nexus key leader

functionality into the existing CG Model. TRAC seeks to remodel the components

of Nexus as discrete event simulation using Simkit, the basis for the CG Model.

Currently the CG Model takes the Nexus outputs as a subset of its inputs to

study a larger cultural population.

This thesis project explores three research questions. First, can we

satisfactorily model KLEs using discrete event simulation and Simkit? After

conducting an initial analysis of the KLE components within Nexus, we

developed a discrete event simulation model that captured the critical

 xvi

functionality of Nexus. This functionality includes conducting KLEs, agreeing to

pass coalition force messages, honoring critical knowledge requests,

campaigning by key leaders, and capturing, killing, releasing, and replacing key

leaders. Additionally, we included micro-KLEs, or interactions with the general

populace to extract critical knowledge. Our model involved the creation of model

agents, the development of agent behaviors based primarily on an attribute

called observed attitude and behavior (OAB), and the definition and development

of parameters, state variables, and event graphs. We then translated the agents,

behaviors, and event graphs into computer code using Java and Simkit for direct

closed-loop analysis. Upon exploring the feasibility of modeling KLEs, we were

able to create a simple, yet realistic, discrete event simulation model of KLEs.

Second, how can experimental design be used to assist in code

verification efforts? Once complete with the discrete event simulation modeling,

simulation scenarios were developed to study the KLE Model and to provide

insight on what model input parameters have the greatest impact on influencing

model output behaviors. Large-scale experiments were designed and employed

to vary the 32 input parameters in a structured, efficient manner in order to assist

with code verification efforts. Three separate scenario runtimes were used: one

week to study short-term model effects, nine weeks to study the effects during a

typical TWG runtime, and one year to study long-term model effects. After

building regression metamodels and partition tree models for the output

responses, our analysis highlighted several input factors that were important in

predicting all of the output responses, such as the probability a key leader

reneges from a KLE, the probability a key leader is a no-show to a KLE, and the

probability a key leader honors message or knowledge requests. The

identification of significant input parameters was then used to verify the proper

functionality of our model by using them to explain expected behavior of the

model components.

Third, are there any insights we can gain from the model using the output

summary statistics coupled with histograms and boxplots, such as variability

 xvii

issues or outlier issues? The analysis showed that most of the output responses

provide plausible ranges and variations, thus verifying the reasonableness of our

model outputs. Outliers did not appear to be an issue. One output that did not

behave as expected was the number of micro-KLEs response. This appeared

anomalous as it exhibited exponential growth. After further investigation, we

found that the results were consistent with the input parameters provided by

TRAC, because a large number of potential micro-KLEs could be conducted

when key leaders were unavailable.

In summary, we have built a conceptual model of the impact of key leader

engagements on civilian population behavior, implemented this model using a

discrete event simulation approach, and tested its performance with a large-scale

experiment. This sets the stage for incorporating our KLE Model into the current

CG Model, in order to improve the CG Model’s suitability for use in tactical

wargames and other studies.

 xviii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

Chapter I begins with some background about why this thesis was

conducted, basically stemming from a need for key leader engagement

functionality for a United States Army irregular warfare model. Next it describes

what key leaders, observed attitudes and behaviors, key leader engagements,

and micro-key leader engagements are. An overview of the methodology is

outlined, concluding with the research questions that were posed.

A. MOTIVATION FOR THESIS

1. TRAC and the Cultural Geography Model

The United States Army Training and Doctrine Command Analysis Center,

or TRAC, supports the United States Army by conducting operational analysis to

inform Army decisions. TRAC-Monterey, co-located with the Naval Postgraduate

School in Monterey, California, is the research and analysis arm of TRAC. It

specializes in relevant, credible exploratory and applied research related to

modeling, simulation, and analysis methodologies.

The Cultural Geography (CG) Model, developed by TRAC-Monterey, is a

low-resolution, agent-based, discrete event social simulation tailored to specific

operational environments based on doctrine and social theory. It is designed to

represent the behavioral responses of civilian populations in conflict

environments. It focuses on the political, military, economic, social, infrastructure,

and information variables in the operational environment, which affect the

population’s beliefs, values, interests, attitudes, and behaviors. TRAC-Monterey

developed the model to support the analysis of civilian population perception

based on friendly and threat actions.

The CG Model is built around the concept of reusable “plug-and-play”

Java modules that formalize theories from behavioral and social science. It is

implemented in Java and utilizes Simkit as the simulation engine. It blends a

variety of carefully selected social science theories with current and emerging

 2

counterinsurgency and stability operations doctrine. It employs a social network

for population entities and a bipartite network between groups and population

entities to represent the evolving relationships and interactions over time. The

civilian population entities and adversary entities have deep intelligence

representations to allow those agents to react to events and information, and to

change positions and affiliations over time with a clear understanding of motive.

2. Need for Key Leader Engagement Functionality

The current version of the CG Model does not represent key leader

engagements, which are activities between coalition military forces and host

nation civilian personnel as a means of obtaining information, influencing

behavior, and building an indigenous base of support for coalition and

government objectives. TRAC needs this capability for additional tactical level

representation of the operational environment.

TRAC’s Irregular Warfare (IW) Tactical Wargame (TWG) initiative utilizes

Nexus, an interpretive social science simulation of IW that is separate from the

CG Model, to incorporate the influence of key individuals on the population by

modeling the key leader network. One of the focus areas discussed in the after-

action report from the TWG that TRAC-Monterey held in October 2011 was a

need to incorporate the Nexus key leader functionality into the existing CG

Model. In an effort to create an integrated, simplified, and stable model that

encompasses social interactions and cultural impacts, TRAC-Monterey is

creating a new model, the Social Impacts Module, or SIM. The goal is to have

SIM complete by the next TWG scheduled for the spring of 2013.

The Nexus Key Leader Model, a part of the Nexus suite, is a cognitive

agent-based model that focuses on individual, discrete interactions among

agents such as those found in key leader engagements. Nexus utilizes Repast,

an agent-based modeling and simulation toolkit. Agent behaviors and symbolic

interactionism are derived from interpretive social science. Agents individually

 3

adapt to civil and military intervention using Artificial Intelligence Technologies,

and so they implement cultural rules using probabilistic ontologies. (Duong n.d.)

TRAC seeks to remodel the components of Nexus as discrete event

simulation using Simkit, the basis for the CG Model. Currently the CG Model

takes the Nexus outputs as a subset of its inputs to study a larger cultural

population. This thesis project looks at the feasibility for the seamless integration

of the Nexus-based code into the CG Model, thus providing improved continuity

of the input parameters and the output data.

B. KEY LEADERS AND KEY LEADER ENGAGEMENTS

1. Key Leaders

Key leaders are the formal or informal leaders that are powerful in a

society and can influence a target audience in a way that is beneficial for

coalition operations. In the context of a TWG, key leaders are of two types. The

first type is the coalition force representative, or military commander, represented

by the physical player of the TWG; the human player has a simulated

representation in the model. The second type is the key actor in the mission area

with whom the military commander wants to engage; this is the powerbroker,

stakeholder, or otherwise influential voice within the community and culture being

studied, represented by a simulated entity within the model. Key leaders are one

of the primary means through which players may influence the population. They

can provide critical knowledge about other key leaders, threats, or resources,

pass messages to the population, or inform players as to issue stances regarding

community concerns.

Key leaders can be encouraged (monetarily or non-monetarily) or

threatened. They can be captured or killed through player action, and if this

occurs, the network of leaders within the game will reorganize through an

adjudication process, and influences may change. Players begin with a unique

list of known key leaders. Additional key leaders will be revealed throughout the

game as the players form relationships with the population.

 4

The motivation for key leaders to act a particular way toward coalition

forces comes from an attribute called observed attitudes and behaviors (OAB).

This is a key leader’s general attitude toward coalition forces, either positive or

negative, coupled with their propensity to act a certain way, either active or

passive. The OAB types of the key leaders in this study are positive active (will

go out of their way to help you), positive passive (like you but will generally stay

out of the way), neutral, negative passive (do not like you but will generally stay

out of the way), and negative active (will go out of their way to hurt you).

2. Key Leader Engagements

The interactions between the physical players and simulated entities are

called key leader engagements (KLE). KLEs are planned to convey selected

information and indicators to foreign audiences to influence their emotions,

motives, objective reasoning, and ultimately the behavior of foreign governments,

organizations, groups, and individuals. They are held in order to collect

intelligence, develop relationships in support of commander’s intent, and obtain

mutually satisfying outcomes within constraints existing in a partnered nation’s

cultural belief system.

In general, a KLE is more than just a meeting, mini-conference, or working

group between the military leaders and the local population. They are exploratory

engagements in order for both sides to identify one another‘s motives. KLEs

enable military leaders and decision makers to interact with key leaders and the

local populace in order to begin or build relations. In addition, KLEs enable

military leaders to identify the key issues and concerns of the population

(McKenna and Hampsey 2010).

A subset of KLEs consists of micro-KLEs. These deal with getting

information from civilians within the general population. Micro-KLEs have

outcomes that are associated with the OAB of the civilian, and the civilian that is

chosen to interact with is usually selected at random. Based on that person’s

social network, he or she might know something about a key leader, a threat, or

 5

a resource, and based on that person’s motivations, he or she might tell a human

player what they know. Not every micro-KLE results in useful information, and so

the probability of getting actionable information is usually low.

C. RESEARCH QUESTIONS

1. Satisfactorily Modeling KLEs

Can we satisfactorily model KLEs using discrete event simulation and

Simkit? Additionally, are we gaining or losing (or willing to lose) any important

KLE functionality from the current method of using a third-party model? Upon

exploring the feasibility of modeling KLEs, we were able to create a simple, yet

realistic, discrete event simulation model of KLEs. This model also included the

ability to look at micro-KLEs, a function not found within Nexus but identified by

TRAC as important for SIM.

2. Significant Input Parameters and Code Verification

What input parameters are significant when predicting the model output

responses? Can these significant factors assist with code verification efforts?

Through the use of second-order regression metamodels and partition tree

models, our analysis highlighted several input parameters that were statistically

significant in predicting all of the output responses. In most cases, the

metamodels and tree models backed each other up. Additionally, the factors

found to be most significant helped verify the expected behavior of the model

components.

3. Summary Statistic Insights

Are there any insights we can gain from the model using the output

summary statistics, such as variability issues or outlier issues? The analysis

showed that most of the output responses provide plausible ranges and

variations, thus verifying the reasonableness of our model outputs. Outliers did

 6

not appear to be an issue. Furthermore, the summary statistics showed us that

the number of micro-KLEs response appeared anomalous as it exhibited

exponential growth.

D. METHODOLOGICAL APPROACH

We conducted an initial analysis of the KLE components within Nexus.

The goal was to identify and understand the critical components of the network

relating to KLEs. We remodeled these critical components using discrete event

simulation. This involved the creation of model agents, the development of agent

behaviors, and the definition and development of parameters, state variables,

and event graphs. We then translated the agents, behaviors, and event graphs

into computer code using Java and Simkit for direct closed-loop analysis.

Additionally, the CG Model currently uses Bayesian belief networks to

model the population stance changes. Another project within TRAC-Monterey’s

scope is to explore the possibility of modeling the population behavior using

Markov chains instead of the Bayesian belief networks. To conform to this

updated population behavior methodology, Markov chains were utilized in

modeling the key leader OAB changes and assignments.

Once we completed the discrete event simulation modeling, simulation

scenarios were developed to study the KLE Model and to provide insight on what

model input parameters have the greatest impact on influencing model output

behaviors. Large-scale experiments (Kleijnen et al. 2005, Vieira et al. 2011) were

designed and employed to vary the input parameters in a structured, efficient

manner in order to assist with code verification efforts. Output responses similar

to those in Nexus were identified, developed, and added to the KLE Model to

gather information from the model for statistical analysis.

The simulation output data were collected and analyzed to identify and

build any useful statistical relationships that can help predict model input

outcomes. Analysis tools used included second-order regression metamodels,

partition tree models, summary statistics, histograms, and boxplots.

 7

We provide details about the KLE Model in Chapter II. In Chapter III we

describe the experimental design used to investigate the KLE Model’s

performance. Chapter IV contains our analysis and assessment of 13 different

model responses. Conclusions and suggestions for further research appear in

Chapter V.

 8

THIS PAGE INTENTIONALLY LEFT BLANK

 9

II. KEY LEADER ENGAGEMENT MODEL

Chapter II begins with a description of the requirements needed for a

closed-loop model of key leader engagements (KLE). Some of these

requirements are highlighted in TRAC-Monterey supporting documentation, while

others are a carryover from the Nexus KLE functionality. Next, we discuss the

three types of agents used in the model, namely Blue players, Green players,

and Red players, followed by behavior equations that are used to model agent

behaviors. Lastly, the event graphs and components that we built are described

in detail, including the component listening structure and adapters.

A. REQUIREMENTS OF KLE MODEL

Specific requirements for integrating Nexus into the Cultural Geography

(CG) Model are outlined in Caldwell and Brown (2011). The model must allow

agents to update their observed attitudes and behaviors (OAB), consent to pass

a message, and provide critical knowledge on key leaders, threats, and/or

resources. Other components are required to integrate with the CG Model, but

the KLE Model in this research is run independently from the CG Model, so those

functions are not explicitly implemented. The requirements document does not

outline some of the KLE functionality, but it is a continuation from the legacy

version of Nexus and used in comparing the KLE Model outputs to the tactical

wargame (TWG) results; these functions are campaigning, capturing, killing, and

replacing key leaders.

In order to model KLEs, we need to model agents, behaviors, and events.

The agents represented in the model are Blue players (coalition force military

commanders), Green players (key leaders), and Red players (anti-coalition force

and/or anti-key leader personnel). The behaviors are represented by simple

equations or probability transition matrices utilizing OABs, probability factors,

probabilities, and times.

 10

The components used in this model allow for a closed-loop execution of

events that are based on discrete event simulation using Simkit. For more

information on discrete event simulation modeling and discrete event

programming with Simkit, see Buss (2011).

The KLE Model requirements include:

• Method to create agents;

• Method to figure out if Blue players are seeking out micro-KLEs or
scheduling KLEs, to include reneges and no-shows;

• Method to handle micro-KLEs and potentially gain critical
knowledge;

• Methods to handle KLEs and potentially persuade Green players to
pass messages, provide critical knowledge, and/or update their
OAB;

• Method to handle Green player campaigns;

• Method to handle capturing and killing of Green players;

• Method to handle releasing of Green players; and

• Method to handle Green player replacements.

B. AGENTS IN KLE MODEL

1. BluePlayer Agent

A BluePlayer agent in the KLE Model represents a United States military

commander or coalition force commander that has the authority to conduct

micro-KLEs and partake in KLEs. The agent has three attributes, summarized in

Table 1. The attribute name is self-explanatory. The attribute id is a unique

integer identification for the Blue player to help identify the agent in the model.

The first Blue player created has an id of 1; each subsequent Blue player created

has the next incremental integer. The attribute incentiveToOffer is a Boolean-

type used to show if the Blue player has an incentive to offer to a Green player

during a KLE.

 11

Table 1. BluePlayer agent attributes.

2. GreenPlayer Agent

A GreenPlayer agent in the KLE Model represents the influential key

leader. The agent has 16 attributes, summarized in Table 2. The attribute name

is self-explanatory. The attribute id is a unique integer identification for the Green

player to help identify the agent in the model. The first Green player created has

an id of 1; each subsequent Green player created has the next incremental

integer. The attribute observedAttitudeBehavior holds the current OAB for the

Green player. The following are the corresponding OAB values for the

representative integers: 0 is negative active, 1 is negative passive, 2 is neutral, 3

is positive passive, and 4 is positive active. The attribute corrupt is a Boolean-

type used to show if the Green player is corrupt and will be enticed by incentives

offered during KLEs. The attribute agreedToPassMessage is a Boolean-type

used to show if the Green player has agreed to pass along a message from a

Blue player during a KLE. The attribute keyLeaderKnowledge is a Boolean-type

used to show if the Green player has critical knowledge on other key leaders to

provide to a Blue player during a KLE. The attribute threatKnowledge is a

Boolean-type used to show if the Green player has critical knowledge on threats

to provide to a Blue player during a KLE. The attribute resourceKnowledge is a

Boolean-type used to show if the Green player has critical knowledge on

resources to provide to a Blue player during a KLE.

The attribute incentivized is a Boolean-type used to show if the Green

player has been offered an incentive during a KLE. The attribute threatened is a

Boolean-type used to show if the Green player has been presented a threat

during a KLE. The attribute killed holds the current killed status of the Green

 12

player as an integer; 0 corresponds to alive, 1 corresponds to killed by a Blue

player, and 2 corresponds to killed by a Red player. The attribute captured holds

the current captured status of the Green player as an integer; 0 corresponds to

not captured, 1 corresponds to captured by a Blue player, and 2 corresponds to

captured by a Red player. The attribute replacement represents another

GreenPlayer agent who is a replacement for the Green player if he is captured or

killed. The attribute kleStartTimeStamp is used to mark the beginning of a KLE.

The attribute kleEndTimeStamp is used to mark the end of a KLE. The attribute

campaignTimeStamp is used to mark the start of a campaign.

 13

Table 2. GreenPlayer agent attributes.

 14

3. RedPlayer Agent

A RedPlayer agent in the KLE Model represents a person who is the

enemy of the United States or coalition forces, or even of key leaders, and does

not want collaboration between Blue players and Green players. A Red player

could be in direct competition with a Blue player for the favor of a Green player,

but this behavior is not modeled. Based on certain actions of Green players, Red

players capture or kill Green players. A Red player does not have a physical

representation within the model and is only referenced or implied through event

names.

C. BEHAVIOR EQUATIONS IN KLE MODEL

The KLE Model uses several “behavior equations” to control certain

actions by the players. These equations use simple logic to determine

probabilities that players carry out a particular action. In all cases, the calculated

probability or probabilities are referenced against a random uniform draw

between 0 and 1 to see if the player behaves a particular way.

Behavior Equation 1 (Figure 1) is used to see if a Blue player can gain

knowledge during micro-KLEs or have requests honored during KLEs. It has

three variables. The first represents the OAB value, an integer between 0 and 4,

of a player. The second is a random uniform draw between 0 and 1. The third is

a probability factor, assumed to be between 0 and 0.2. The equation takes the

OAB and adds to it the random uniform draw. The result is then multiplied by the

probability factor. This gives a resulting probability that will always be between 0

and 1. The purpose of the equation is to give a range of probabilities for the

player to access, and for the probabilities to be increasingly higher as the OAB

value increases. For instance, if the probability factor is 0.1, a player with an OAB

of 0 will have a behavior probability between 0 and 0.1. Likewise, a player with

an OAB of 4 will have a behavior probability between 0.4 and 0.5. In both cases,

a separate random uniform draw is compared to the probability range.

 15

Figure 1. Behavior Equation 1

Behavior Equation 2 (Figure 2) is used to see if a Green player is going to

renege from or be a no-show to a planned KLE and to see if a Blue player will

offer a threat to a Green player during a KLE. It has three variables. The first

represents the OAB value, an integer between 0 and 4, of a player. The second

is a random uniform draw between 0 and 1. The third is a probability factor,

assumed to be between 0 and 0.2. The equation subtracts four from the OAB,

takes the absolute value of the result, and adds to it the random uniform draw.

The result is then multiplied by the probability factor. This gives a resulting

probability that will always be between 0 and 1. The purpose of the equation is to

give a range of probabilities for the player to access, and for the probabilities to

be decreasingly lower as the OAB value increases. For instance, if the probability

factor is 0.2, a player with an OAB of 0 will have a behavior probability between

0.8 and 1. Likewise, a player with an OAB of 4 will have a behavior probability

between 0 and 0.2. In both cases, a separate random uniform draw is compared

to the probability range.

 16

Figure 2. Behavior Equation 2

Behavior Equation 3 (Figure 3) is used to see if a Green player is going to

be captured or killed by a Blue player following a campaign or captured or killed

by a Red player following a KLE or campaign. It has two variables. The first

represents a baseline probability. The second represents some amount of

elapsed time between two events. The equation multiplies the baseline

probability by the time. The KLE Model assumes that the resulting calculation will

always be less than or equal to one to make it a valid probability, so maximum

times between events need to be planned accordingly. The purpose of the

equation is to give an increasing behavior probability as a player spends more

time performing some action. For instance, if the baseline probability is 0.2 and a

player spends 2 units of time in an activity, the player will have a behavior

probability of 0.4. Then, a random uniform draw is compared to the probability.

Figure 3. Behavior Equation 3

 17

Behavior Equation 4 (Figure 4) is used to see if a Green player is going to

be captured or killed by a Blue player following a KLE. It has two variables. The

first represents a baseline probability. The second represents some amount of

elapsed time between two events. The equation divides the baseline probability

by the time. The KLE Model assumes that the resulting calculation will always be

less than or equal to one to make it a valid probability, so minimum and

maximum times between events need to be planned accordingly. The purpose of

the equation is to give a decreasing behavior probability as a player spends more

time performing some action. For instance, if the baseline probability is 0.3 and a

player spends 3 units of time in an activity, the player will have a behavior

probability of 0.1. Then, a random uniform draw is compared to the probability.

Figure 4. Behavior Equation 4

Behavior Equation 5 (Figure 5), which is actually a five-by-five probability

transition matrix, is used to see if a Green player updates his OAB during a KLE

or after being captured, or it is used to set the OAB of a replacement after a

Green player is captured or killed. The equation has three variables. The first

represents the OAB value, an integer between 0 and 4, of a player. The second

represents the probability of an OAB decrease. The third represents the

probability of an OAB increase. The model uses the two probabilities to complete

the matrix in Figure 5. For example, if the decrease probability is 0.1, the

increase probability is 0.2, and the player OAB is 3, then the player will have a

 18

0.1 probability of lowering his OAB to 2, a 0.7 probability of keeping his OAB at 3,

and a 0.2 probability of raising his OAB to 4. We assume that the Green player’s

OAB will change by at most 1 (in either direction) after a KLE.

Figure 5. Behavior Equation 5 probability transition matrix

D. COMPONENTS OF KLE MODEL

1. CreatePlayers

The CreatePlayers component creates a number of BluePlayer agents

and GreenPlayer agents, each defined by the user via input parameters NBP and

NGP, respectively, which will be used in the KLE Model. BluePlayer agents

require a parameter pI that gives their probability of having an incentive to offer.

GreenPlayer agents require four parameters, pC, pKLK, pTK, and pRK, which give

probabilities for being corrupt, having key leader critical knowledge, having threat

critical knowledge, and having resource critical knowledge, respectively.

Parameters for the CreatePlayers component are summarized in Table 3.

 19

Table 3. CreatePlayers parameters

The event graph for the CreatePlayers component is shown in Figure 6.

Figure 6. CreatePlayers event graph

 20

The Run event schedules the CreateBluePlayer and CreateGreenPlayer

events, passing the local parameter zero to both.

The CreateBluePlayer and CreateGreenPlayer events simulate adding a

Blue player or Green player, respectively, to the model. They each take in a local

integer parameter to keep track of how many players have been created. Each

event creates a BluePlayer or GreenPlayer agent, respectively, increments the

local integer parameter by one, and schedules a BluePlayerArrival or

GreenPlayerArrival event, respectively, passing along the created agent. The

self-scheduling loops schedule another agent creation if the local integer variable

is less than the parameters NBP or NGP, respectively.

The BluePlayerArrival and GreenPlayerArrival events each simulate a

Blue player or Green player, respectively, looking to schedule their first KLE.

They take in a local parameter represented by a BluePlayer or GreenPlayer

agent, respectively.

2. HandleEngagementType

The HandleEngagementType component handles the scheduling of micro-

KLEs and KLEs. It has six input parameters. It requires four random distributions

representing the stream of times that Blue players schedule their next micro-KLE

({tNM}), the stream of times that Blue Players schedule their next KLE ({tNK}), the

stream of times that Green players renege from a KLE ({tRG}), and the stream of

times that Blue players schedule their next arrival for another micro-KLE or KLE

({tBM}). The parameter pfRG, which is a number between 0 and 0.2, is used as a

probability factor to calculate whether a Green player is going to renege from a

KLE. The parameter pfNS, which is a number between 0 and 0.2, is used as a

probability factor to calculate whether a Green player is a no-show to a KLE.

The HandleEngagementType component has two state variables that

represent lists; q is a queue to hold the arriving Green players to the component,

and x is a list of any Green players that have been canceled and no longer

needed in the model.

 21

Parameters, parameter constraints, and state variables for the

HandleEngagementType component are summarized in Table 4.

Table 4. HandleEngagementType parameters, parameter constraints, and

state variables

The event graph for the HandleEngagementType component is shown in

Figure 7.

 22

Figure 7. HandleEngagementType event graph

The Run event clears q and x.

 23

The BluePlayerArrival event simulates a Blue player looking for a micro-

KLE or looking to set up a KLE. It takes a BluePlayer agent as its local

parameter. If there are no Green players to meet, a BlueReadyForMicroKLE

event is scheduled with a time delay pulled from {tNM}, passing along the local

Blue player. If there is a Green player available, a LinkPlayersForKLE event is

scheduled, passing along the local Blue player.

The GreenPlayerArrival event simulates a Green player looking to set up a

KLE. It takes a GreenPlayer agent as its local parameter. It adds the local Green

player to q.

The BlueReadyForMicroKLE event simulates a Blue player being ready to

start a micro-KLE. It takes a BluePlayer agent as its local parameter.

The LinkPlayersForKLE event simulates the initial agreement by a Blue

player and Green player to set up a KLE. It takes a BluePlayer agent as its local

parameter. Since the model assumes Blue players have no preference for which

Green player they engage, it removes the first Green player from q and assigns it

to a local GreenPlayer agent variable. It draws a random uniform number

between 0 and 1. It then calculates the probability that the local Green player

reneges by using the Green player’s OAB value and the parameter pfRG in

behavior Equation 2 (Figure 2). If the random uniform draw is less than the

calculated renege probability, it schedules a GreenReneges event with a time

delay pulled from {tRG}, passing along the local Blue player and local Green

player. If the random uniform draw is greater than or equal to the calculated

renege probability, it schedules a PlayersReadyForKLE event with a time delay

pulled from {tNK}, passing along the local Blue player and local Green player.

The GreenReneges event simulates a Green player calling off a planned

KLE. It takes both a BluePlayer and GreenPlayer agent as its local parameters. If

the local Green player is not in x, it adds the Green player back to q. If the Green

player is not canceled, the assumption is that the Green player is still alive and

has reneged. If the Green player is canceled, the assumption is that the Green

 24

player is not alive or no longer available, and the Blue player is made aware of

this fact before showing up for the KLE. This event schedules a BluePlayerArrival

event with a time delay pulled from {tBM}, passing along the local Blue player.

The PlayersReadyForKLE event checks if a Blue player and Green player

are ready to start a KLE. It takes both a BluePlayer and GreenPlayer agent as its

local parameters. It draws a random uniform number between 0 and 1. It then

calculates the probability that the local Green player is a no-show by using the

Green player’s OAB value and the parameter pfNS in behavior Equation 2 (Figure

2). If the local Green player is in x, or if the random uniform draw is less than the

calculated no-show probability, it schedules a GreenNoShow event, passing

along the local Blue player and local Green player. If the local Green player is not

in x and the random uniform draw is greater than or equal to the calculated no-

show probability, it schedules a SendPlayersToKLE event, passing along the

local Blue player and local Green player.

The GreenNoShow event simulates a Green player not showing up for a

KLE. It takes both a BluePlayer and GreenPlayer agent as its local parameters. If

the local Green player is not in x, it adds the Green player back to q. If the Green

player is not canceled, the assumption is that the Green player is still alive and is

a no-show. If the Green player is canceled, the assumption is that the Green

player is not alive or no longer available, and the Blue player is made aware of

this fact upon showing up for the KLE. This event schedules a BluePlayerArrival

event with a time delay pulled from {tBM}, passing along the local Blue player.

The SendPlayersToKLE event simulates a Blue player and Green player

being ready to start a KLE. It takes both a BluePlayer and GreenPlayer agent as

its local parameters.

The GreenCanceled event simulates a Green player who is a replacement

being no longer needed in the model. It takes a GreenPlayer agent as its local

parameter. It removes the local Green player from q, and it adds the player to x.

 25

3. MicroKeyLeaderEngagement

The MicroKeyLeaderEngagement component represents a micro-KLE

with an entity that is not a key leader. It has two input parameters. It requires a

random distribution representing the stream of times that Blue players will spend

in a micro-KLE ({tM}). The parameter pfCK, which is a number between 0 and 0.2,

is used as a probability factor to calculate whether a Blue player is going to gain

critical knowledge during a micro-KLE.

The MicroKeyLeaderEngagement component has two state variables. The

variable NMKLE tracks the number of micro-KLEs held. The variable NTKG tracks

the number of times critical knowledge is gained from a micro-KLE.

Parameters, parameter constraints, and state variables for the

MicroKeyLeaderEngagement component are summarized in Table 5.

Table 5. MicroKeyLeaderEngagement parameters, parameter constraints,

and state variables

The event graph for the MicroKeyLeaderEngagement component is

shown in Figure 8.

 26

Figure 8. MicroKeyLeaderEngagement event graph

The Run event initializes the two state variables to zero.

The StartMicroKLE event simulates the beginning of a micro-KLE. It takes

a BluePlayer agent as its local parameter. It draws a random uniform number

between 0 and 1. It also draws a random integer between 0 and 4 that

represents the OAB of the non-key leader. It then calculates the probability that

the non-key leader honors the local Blue player’s critical knowledge request by

using the random integer draw and the parameter pfCK in behavior Equation 1

(Figure 1). If the random uniform draw is less than the calculated knowledge

 27

probability, it schedules an EndMicroKLEAndGetKnowledge event with a time

delay pulled from {tM}, passing along the local Blue player. If the random uniform

draw is greater than or equal to the calculated knowledge probability, it

schedules an EndMicroKLEAndDoNotGetKnowledge event with the same time

delay and by passing the Blue player.

The EndMicroKLEAndGetKnowledge event simulates the end of a micro-

KLE and a Blue player getting critical knowledge. It takes a BluePlayer agent as

its local parameter. It increments NMKLE and NTKG both by one. It then schedules

a ScheduleBlueNextMeeting event, passing along the local Blue player.

The EndMicroKLEAndDoNotGetKnowledge event simulates the end of a

micro-KLE and a Blue player not getting any critical knowledge. It takes a

BluePlayer agent as its local parameter. It increments NMKLE by one. It then

schedules a ScheduleBlueNextMeeting, passing along the local Blue player.

The ScheduleBlueNextMeeting event simulates a Blue player scheduling

his next arrival for a micro-KLE or KLE. It takes a BluePlayer agent as its local

parameter.

4. KeyLeaderEngagement

The KeyLeaderEngagement component represents a KLE occurrence. It

has three input parameters. It requires two random distributions representing the

stream of times that Blue players and Green players will spend in a KLE ({tK})

and the stream of times that Blue players schedule their next arrival for another

micro-KLE or KLE ({tBM}). The parameter pI is the same parameter from the

CreatePlayers component representing the probability that a Blue player has an

incentive to offer.

The KeyLeaderEngagement component has two state variables. The

variable NKLE tracks the number of KLEs held. The variable x is a list of any

Green players that have been canceled and no longer needed in the model.

 28

Parameters and state variables for the KeyLeaderEngagement component

are summarized in Table 6.

Table 6. KeyLeaderEngagement parameters and state variables

The event graph for the KeyLeaderEngagement component is shown in

Figure 9.

Figure 9. KeyLeaderEngagement event graph

 29

The Run event initializes NKLE to zero. It also clears x.

The StartKLE event simulates the beginning of a KLE. It takes both a

BluePlayer and GreenPlayer agent as its local parameters. It stamps the KLE

start time for the local Green player. It resets whether the local Blue player has

an incentive to offer using pI. Lastly, it schedules an EndKLE event with a time

delay pulled from {tK}, passing along the local Blue player and local Green player.

The EndKLE event simulates the end of a KLE. It takes both a BluePlayer

and GreenPlayer agent as its local parameters. It increments NKLE by one,

stamps the KLE end time for the local Green player, and, if the local Green

player is in x, sets the killed status of the local Green player as if he was killed by

a Red player. This event schedules a ScheduleBlueNextMeeting event with a

time delay pulled from {tBM}, passing along the local Blue player. It also

schedules a HandleRequests event, passing along the local Blue player and

local Green player.

The ScheduleBlueNextMeeting event simulates a Blue player scheduling

his next arrival for a micro-KLE or KLE. It takes a BluePlayer agent as its local

parameter.

The HandleRequests event simulates a Blue player and Green player

going over the KLE requests. It takes both a BluePlayer and GreenPlayer agent

as its local parameters.

The GreenCanceled event simulates a Green player replacement who is

no longer needed in the model. It takes a GreenPlayer agent as its local

parameter. It adds the local Green player to x.

5. HandleMessageRequest

The HandleMessageRequest component represents a GreenPlayer agent

deciding if he will pass a message from a BluePlayer agent to those under his

influence. It has four input parameters. The parameter pfBT, which is a number

between 0 and 0.2, is used as a probability factor to calculate whether a Blue

 30

player will offer a threat during a KLE to get the Green player to pass a message.

The final three parameters, pfHR, pfHRI, and pfHRT, all between 0 and 0.2, are used

as probability factors to calculate whether a Green player will honor the Blue

player’s request outright, honor with an incentive, or honor with a threat,

respectively.

The HandleMessageRequest component has one state variable. The

variable NHRM tracks the number of honored message requests.

Parameters, parameter constraints, and state variables for the

HandleMessageRequest component are summarized in Table 7.

Table 7. HandleMessageRequest parameters, parameter constraints, and
state variables

The event graph for the HandleMessageRequest component is shown in

Figures 10 and 11.

 31

Figure 10. HandleMessageRequest event graph (part 1)

 32

Figure 11. HandleMessageRequest event graph (part 2)

The Run event initializes NHRM to zero.

The StartMessageRequest event simulates the beginning of the message

request. It takes both a BluePlayer and GreenPlayer agent as its local

parameters. It resets the fact that the local Green player has agreed to pass a

message to false. Next, it draws a random uniform number between 0 and 1. It

then calculates the probability that the local Green player will honor the request

outright to pass a message by using the Green player’s OAB value and the

parameter pfHR in behavior Equation 1 (Figure 1). If the random uniform draw is

less than the calculated honoring request probability, it schedules an

AgreeToPassMessage event, passing along the local Blue player and local

Green player. If the random uniform draw is greater than or equal to the

calculated honoring request probability, it schedules a DoNotPassOfferIncentive

event, passing along the local Blue player and local Green player.

The AgreeToPassMessage event simulates a Green player agreeing to

pass a message. It takes both a BluePlayer and GreenPlayer agent as its local

 33

parameters. It increments NHRM by one, and it sets the fact that the local Green

player has agreed to pass a message to true. It schedules an

EndMessageRequest event, passing along the local Blue player and local Green

player.

The DoNotPassOfferIncentive event simulates a Green player deciding

not to pass a message and a Blue player potentially offering an incentive to

persuade the Green player to change his mind and pass a message. It takes

both a BluePlayer and GreenPlayer agent as its local parameters. If the local

Blue player has an incentive to offer to the local Green player, it schedules an

IncentiveOffered event, passing along the local Blue player and local Green

player. If the local Blue player does not have an incentive to offer, it schedules a

DoNotPassPresentThreat event, passing along the local Blue player and local

Green player.

The IncentiveOffered event simulates a Blue player offering an incentive

to a Green player to persuade him to pass a message. It takes both a BluePlayer

and GreenPlayer agent as its local parameters. It sets the fact that the local

Green player has been incentivized to true. Next, it draws a random uniform

number between 0 and 1. It then calculates the probability that the local Green

player will honor the request to pass a message given an incentive by using the

Green player’s OAB value and the parameter pfHRI in behavior Equation 1 (Figure

1). If the Green player is corrupt and the random uniform draw is less than the

calculated honoring request probability, it schedules an AgreeToPassMessage

event, passing along the local Blue player and local Green player. If the Green

player is corrupt and the random uniform draw is greater than or equal to the

calculated honoring request probability, or if the Green player is not corrupt, it

schedules a DoNotPassPresentThreat event, passing along the local Blue player

and local Green player.

The DoNotPassPresentThreat event simulates a Green player deciding

not to pass a message and a Blue player potentially presenting a threat to

persuade the Green player to change his mind and pass a message. It takes

 34

both a BluePlayer and GreenPlayer agent as its local parameters. It draws a

random uniform number between 0 and 1. It then calculates the probability that

the local Blue player will threaten the local Green player by using the Green

player’s OAB value and the parameter pfBT in behavior Equation 2 (Figure 2). If

the random uniform draw is less than the calculated threat probability, it

schedules a ThreatPresented event, passing along the local Blue player and

local Green player. If the random uniform draw is greater than or equal to the

calculated threat probability, it schedules a DoNotAgreeToPassMessage event,

passing along the local Blue player and local Green player.

The ThreatPresented event simulates a Blue player threatening a Green

player to persuade him to pass a message. It takes both a BluePlayer and

GreenPlayer agent as its local parameters. It sets the fact that the local Green

player has been threatened to true. Next, it draws a random uniform number

between 0 and 1. It then calculates the probability that the local Green player will

honor the request to pass a message given a threat by using the Green player’s

OAB value and the parameter pfHRT in behavior Equation 1 (Figure 1). If the

random uniform draw is less than the calculated honoring request probability, it

schedules an AgreeToPassMessage event, passing along the local Blue player

and local Green player. If the random uniform draw is greater than or equal to the

calculated honoring request probability, it schedules a

DoNotAgreeToPassMessage event, passing along the local Blue player and local

Green player.

The DoNotAgreeToPassMessage event simulates a Green player

ultimately not agreeing to pass a message. It takes both a BluePlayer and

GreenPlayer agent as its local parameters. It schedules an EndMessageRequest

event, passing along the local Blue player and local Green player.

The EndMessageRequest event simulates the end of the message

request. It takes both a BluePlayer and GreenPlayer agent as its local

parameters.

 35

6. HandleKeyLeaderKnowledgeRequest

The HandleKeyLeaderKnowledgeRequest component represents a

GreenPlayer agent deciding on whether to provide key leader critical knowledge

to a BluePlayer. It has five input parameters. The parameters pfBT, pfHR, pfHRI,

and pfHRT are the same as those used in the HandleMessageRequest

component. The same parameter constraints apply to these four parameters.

The parameter pKLK is the same parameter from the CreatePlayers component

representing the probability that a Green player has key leader critical

knowledge.

The HandleKeyLeaderKnowledgeRequest component has one state

variable. The variable NHRK tracks the number of honored key leader knowledge

requests.

Parameters, parameter constraints, and state variables for the

HandleKeyLeaderKnowledgeRequest component are summarized in Table 8.

Table 8. HandleKeyLeaderKnowledgeRequest parameters, parameter
constraints, and state variables

The event graph for the HandleKeyLeaderKnowledgeRequest component

is shown in Figures 12 and 13.

 36

Figure 12. HandleKeyLeaderKnowledgeRequest event graph (part 1)

 37

Figure 13. HandleKeyLeaderKnowledgeRequest event graph (part 2)

The Run event initializes NHRK to zero.

The StartKeyLeaderKnowledgeRequest event simulates the beginning of

the key leader critical knowledge request. It takes both a BluePlayer and

GreenPlayer agent as its local parameters. It draws a random uniform number

between 0 and 1. It then calculates the probability that the local Green player will

honor the request outright to provide key leader critical knowledge by using the

Green player’s OAB value and the parameter pfHR in behavior Equation 1 (Figure

1). If the local Green player does not have any key leader critical knowledge, it

schedules a KnowsNothingKeyLeader event, passing along the local Blue player

and local Green player. If the Green player has key leader knowledge and the

random uniform draw is less than the calculated honoring request probability, it

schedules a ProvideKeyLeaderKnowledge event, passing along the local Blue

player and local Green player. If the Green player has key leader knowledge and

the random uniform draw is greater than or equal to the calculated honoring

request probability, it schedules a DoNotProvideOfferIncentive event, passing

along the local Blue player and local Green player.

 38

The KnowsNothingKeyLeader event simulates a Green player not having

any knowledge on other key leaders. It takes both a BluePlayer and GreenPlayer

agent as its local parameters. It reinitializes whether the local Green player has

key leader critical knowledge by using the parameter pKLK. It schedules an

EndKeyLeaderKnowledgeRequest event, passing along the local Blue player and

local Green player.

The ProvideKeyLeaderKnowledge event simulates a Green player

providing key leader critical knowledge. It takes both a BluePlayer and

GreenPlayer agent as its local parameters. It increments NHRK by one, and it

resets whether the local Green player has key leader critical knowledge by using

the parameter pKLK. It schedules an EndKeyLeaderKnowledgeRequest event,

passing along the local Blue player and local Green player.

The DoNotProvideOfferIncentive event simulates a Green player deciding

not to provide key leader critical knowledge and a Blue player potentially offering

an incentive to get such knowledge. It takes both a BluePlayer and GreenPlayer

agent as its local parameters. If the local Blue player has an incentive to offer to

the local Green player, it schedules an IncentiveOffered event, passing along the

local Blue player and local Green player. If the local Blue player does not have

an incentive to offer, it schedules a DoNotProvidePresentThreat event, passing

along the local Blue player and local Green player.

The IncentiveOffered event simulates a Blue player offering an incentive

to a Green player in an attempt to extract key leader critical knowledge. It takes

both a BluePlayer and GreenPlayer agent as its local parameters. It sets the fact

that the local Green player has been incentivized to true. Next, it draws a random

uniform number between 0 and 1. It then calculates the probability that the local

Green player will honor the request to provide key leader critical knowledge given

an incentive by using the Green player’s OAB value and the parameter pfHRI in

behavior Equation 1 (Figure 1). If the Green player is corrupt and the random

uniform draw is less than the calculated honoring request probability, it schedules

a ProvideKeyLeaderKnowledge event, passing along the local Blue player and

 39

local Green player. If the Green player is corrupt and the random uniform draw is

greater than or equal to the calculated honoring request probability, or if the

Green player is not corrupt, it schedules a DoNotProvidePresentThreat event,

passing along the local Blue player and local Green player.

The DoNotProvidePresentThreat event simulates a Green player deciding

not to provide key leader critical knowledge and a Blue player potentially

presenting a threat to get such knowledge. It takes both a BluePlayer and

GreenPlayer agent as its local parameters. It draws a random uniform number

between 0 and 1. It then calculates the probability that the local Blue player will

threaten the local Green player by using the Green player’s OAB value and the

parameter pfBT in behavior Equation 2 (Figure 2). If the random uniform draw is

less than the calculated threat probability, it schedules a ThreatPresented event,

passing along the local Blue player and local Green player. If the random uniform

draw is greater than or equal to the calculated threat probability, it schedules a

DoNotProvideKeyLeaderKnowledge event, passing along the local Blue player

and local Green player.

The ThreatPresented event simulates a Blue player threatening a Green

player for key leader critical knowledge. It takes both a BluePlayer and

GreenPlayer agent as its local parameters. It sets the fact that the local Green

player has been threatened to true. Next, it draws a random uniform number

between 0 and 1. It then calculates the probability that the local Green player will

honor the request to provide key leader critical knowledge given a threat by using

the Green player’s OAB value and the parameter pfHRT in behavior Equation 1

(Figure 1). If the random uniform draw is less than the calculated honoring

request probability, it schedules a ProvideKeyLeaderKnowledge event, passing

along the local Blue player and local Green player. If the random uniform draw is

greater than or equal to the calculated honoring request probability, it schedules

a DoNotProvideKeyLeaderKnowledge event, passing along the local Blue player

and local Green player.

 40

The DoNotProvideKeyLeaderKnowledge event simulates a Green player

ultimately not providing key leader critical knowledge. It takes both a BluePlayer

and GreenPlayer agent as its local parameters. It resets whether the local Green

player has key leader critical knowledge by using the parameter pKLK. It then

schedules an EndKeyLeaderKnowledgeRequest event, passing along the local

Blue player and local Green player.

The EndKeyLeaderKnowledgeRequest event simulates the end of the key

leader critical knowledge request. It takes both a BluePlayer and GreenPlayer

agent as its local parameters.

7. HandleThreatKnowledgeRequest

The HandleThreatKnowledgeRequest component represents a

GreenPlayer agent deciding on whether to provide threat critical knowledge to a

BluePlayer. It has five input parameters. The parameters pfBT, pfHR, pfHRI, and

pfHRT are the same as those used in the HandleMessageRequest component.

The same parameter constraints apply to these four parameters. The parameter

pTK is the same parameter from the CreatePlayers component representing the

probability that a Green player has threat critical knowledge.

The HandleThreatKnowledgeRequest component has one state variable.

The variable NHRT tracks the number of honored threat knowledge requests.

Parameters, parameter constraints, and state variables for the

HandleThreatKnowledgeRequest component are summarized in Table 9.

 41

Table 9. HandleThreatKnowledgeRequest parameters, parameter
constraints, and state variables

The event graph for the HandleThreatKnowledgeRequest component is

shown in Figures 14 and 15.

 42

Figure 14. HandleThreatKnowledgeRequest event graph (part 1)

 43

Figure 15. HandleThreatKnowledgeRequest event graph (part 2)

The Run event initializes NHRT to zero.

The StartThreatKnowledgeRequest event simulates the beginning of the

threat critical knowledge request. It takes both a BluePlayer and GreenPlayer

agent as its local parameters. It draws a random uniform number between 0 and

1. It then calculates the probability that the local Green player will honor the

request outright to provide threat critical knowledge by using the Green player’s

OAB value and the parameter pfHR in behavior Equation 1 (Figure 1). If the local

Green player does not have any threat critical knowledge, it schedules a

KnowsNothingThreat event, passing along the local Blue player and local Green

player. If the Green player has threat knowledge and the random uniform draw is

less than the calculated honoring request probability, it schedules a

ProvideThreatKnowledge event, passing along the local Blue player and local

Green player. If the Green player has threat knowledge and the random uniform

draw is greater than or equal to the calculated honoring request probability, it

schedules a DoNotProvideOfferIncentive event, passing along the local Blue

player and local Green player.

 44

The KnowsNothingThreat event simulates a Green player not having any

knowledge on threats. It takes both a BluePlayer and GreenPlayer agent as its

local parameters. It reinitializes whether the local Green player has threat critical

knowledge by using the parameter pTK. It schedules an

EndThreatKnowledgeRequest event, passing along the local Blue player and

local Green player.

The ProvideThreatKnowledge event simulates a Green player providing

threat critical knowledge. It takes both a BluePlayer and GreenPlayer agent as its

local parameters. It increments NHRT by one, and it resets whether the local

Green player has threat critical knowledge by using the parameter pTK. It

schedules an EndThreatKnowledgeRequest event, passing along the local Blue

player and local Green player.

The DoNotProvideOfferIncentive event simulates a Green player deciding

not to provide threat critical knowledge and a Blue player potentially offering an

incentive to get such knowledge. It takes both a BluePlayer and GreenPlayer

agent as its local parameters. If the local Blue player has an incentive to offer to

the local Green player, it schedules an IncentiveOffered event, passing along the

local Blue player and local Green player. If the local Blue player does not have

an incentive to offer, it schedules a DoNotProvidePresentThreat event, passing

along the local Blue player and local Green player.

The IncentiveOffered event simulates a Blue player offering an incentive

to a Green player in an attempt to extract threat critical knowledge. It takes both

a BluePlayer and GreenPlayer agent as its local parameters. It sets the fact that

the local Green player has been incentivized to true. Next, it draws a random

uniform number between 0 and 1. It then calculates the probability that the local

Green player will honor the request to provide threat critical knowledge given an

incentive by using the Green player’s OAB value and the parameter pfHRI in

behavior Equation 1 (Figure 1). If the Green player is corrupt and the random

uniform draw is less than the calculated honoring request probability, it schedules

a ProvideThreatKnowledge event, passing along the local Blue player and local

 45

Green player. If the Green player is corrupt and the random uniform draw is

greater than or equal to the calculated honoring request probability, or if the

Green player is not corrupt, it schedules a DoNotProvidePresentThreat event,

passing along the local Blue player and local Green player.

The DoNotProvidePresentThreat event simulates a Green player deciding

not to provide threat critical knowledge and a Blue player potentially presenting a

threat to get such knowledge. It takes both a BluePlayer and GreenPlayer agent

as its local parameters. It draws a random uniform number between 0 and 1. It

then calculates the probability that the local Blue player will threaten the local

Green player by using the Green player’s OAB value and the parameter pfBT in

behavior Equation 2 (Figure 2). If the random uniform draw is less than the

calculated threat probability, it schedules a ThreatPresented event, passing

along the local Blue player and local Green player. If the random uniform draw is

greater than or equal to the calculated threat probability, it schedules a

DoNotProvideThreatKnowledge event, passing along the local Blue player and

local Green player.

The ThreatPresented event simulates a Blue player threatening a Green

player for threat critical knowledge. It takes both a BluePlayer and GreenPlayer

agent as its local parameters. It sets the fact that the local Green player has been

threatened to true. Next, it draws a random uniform number between 0 and 1. It

then calculates the probability that the local Green player will honor the request

to provide threat critical knowledge given a threat by using the Green player’s

OAB and the parameter pfHRT in behavior Equation 1 (Figure 1). If the random

uniform draw is less than the calculated honoring request probability, it schedules

a ProvideThreatKnowledge event, passing along the local Blue player and local

Green player. If the random uniform draw is greater than or equal to the

calculated honoring request probability, it schedules a

DoNotProvideThreatKnowledge event, passing along the local Blue player and

local Green player.

 46

The DoNotProvideThreatKnowledge event simulates a Green player

ultimately not providing threat critical knowledge. It takes both a BluePlayer and

GreenPlayer agent as its local parameters. It resets whether the local Green

player has threat critical knowledge by using the parameter pTK. It then schedules

an EndThreatKnowledgeRequest event, passing along the local Blue player and

local Green player.

The EndThreatKnowledgeRequest event simulates the end of the threat

critical knowledge request. It takes both a BluePlayer and GreenPlayer agent as

its local parameters.

8. HandleResourceKnowledgeRequest

The HandleResourceKnowledgeRequest component represents a

GreenPlayer agent deciding on whether to provide resource critical knowledge to

a BluePlayer. It has five input parameters. The parameters pfBT, pfHR, pfHRI, and

pfHRT are the same as those used in the HandleMessageRequest component.

The same parameter constraints apply to these four parameters. The parameter

pRK is the same parameter from the CreatePlayers component representing the

probability that a Green player has resource critical knowledge.

The HandleResourceKnowledgeRequest component has one state

variable. The variable NHRR tracks the number of honored resource knowledge

requests.

Parameters, parameter constraints, and state variables for the

HandleResourceKnowledgeRequest component are summarized in Table 10.

 47

Table 10. HandleResourceKnowledgeRequest parameters, parameter
constraints, and state variables

The event graph for the HandleResourceKnowledgeRequest component

is shown in Figures 16 and 17.

 48

Figure 16. HandleResourceKnowledgeRequest event graph (part 1)

 49

Figure 17. HandleResourceKnowledgeRequest event graph (part 2)

The Run event initializes NHRR to zero.

The StartResourceKnowledgeRequest event simulates the beginning of

the resource critical knowledge request. It takes both a BluePlayer and

GreenPlayer agent as its local parameters. It draws a random uniform number

between 0 and 1. It then calculates the probability that the local Green player will

honor the request outright to provide resource critical knowledge by using the

Green player’s OAB value and the parameter pfHR in behavior Equation 1 (Figure

1). If the local Green player does not have any resource critical knowledge, it

schedules a KnowsNothingResource event, passing along the local Blue player

and local Green player. If the Green player has resource knowledge and the

random uniform draw is less than the calculated honoring request probability, it

schedules a ProvideResourceKnowledge event, passing along the local Blue

player and local Green player. If the Green player has resource knowledge and

the random uniform draw is greater than or equal to the calculated honoring

 50

request probability, it schedules a DoNotProvideOfferIncentive event, passing

along the local Blue player and local Green player.

The KnowsNothingResource event simulates a Green player not having

any knowledge on resources. It takes both a BluePlayer and GreenPlayer agent

as its local parameters. It reinitializes whether the local Green player has

resource critical knowledge by using the parameter pRK. It schedules an

EndResourceKnowledgeRequest event, passing along the local Green player.

The ProvideResourceKnowledge event simulates a Green player

providing resource critical knowledge. It takes both a BluePlayer and

GreenPlayer agent as its local parameters. It increments NHRR by one, and it

resets whether the local Green player has resource critical knowledge by using

the parameter pRK. It schedules an EndResourceKnowledgeRequest event,

passing along the local Green player.

The DoNotProvideOfferIncentive event simulates a Green player deciding

not to provide resource critical knowledge and a Blue player potentially offering

an incentive to get such knowledge. It takes both a BluePlayer and GreenPlayer

agent as its local parameters. If the local Blue player has an incentive to offer to

the local Green player, it schedules an IncentiveOffered event, passing along the

local Blue player and local Green player. If the local Blue player does not have

an incentive to offer, it schedules a DoNotProvidePresentThreat event, passing

along the local Blue player and local Green player.

The IncentiveOffered event simulates a Blue player offering an incentive

to a Green player in an attempt to extract resource critical knowledge. It takes

both a BluePlayer and GreenPlayer agent as its local parameters. It sets the fact

that the local Green player has been incentivized to true. Next, it draws a random

uniform number between 0 and 1. It then calculates the probability that the local

Green player will honor the request to provide resource critical knowledge given

an incentive by using the Green player’s OAB value and the parameter pfHRI in

behavior Equation 1 (Figure 1). If the Green player is corrupt and the random

 51

uniform draw is less than the calculated honoring request probability, it schedules

a ProvideResourceKnowledge event, passing along the local Blue player and

local Green player. If the Green player is corrupt and the random uniform draw is

greater than or equal to the calculated honoring request probability, or if the

Green player is not corrupt, it schedules a DoNotProvidePresentThreat event,

passing along the local Blue player and local Green player.

The DoNotProvidePresentThreat event simulates a Green player deciding

not to provide resource critical knowledge and a Blue player potentially

presenting a threat to get such knowledge. It takes both a BluePlayer and

GreenPlayer agent as its local parameters. It draws a random uniform number

between 0 and 1. It then calculates the probability that the local Blue player will

threaten the local Green player by using the Green player’s OAB value and the

parameter pfBT in behavior Equation 2 (Figure 2). If the random uniform draw is

less than the calculated threat probability, it schedules a ThreatPresented event,

passing along the local Blue player and local Green player. If the random uniform

draw is greater than or equal to the calculated threat probability, it schedules a

DoNotProvideResourceKnowledge event, passing along the local Blue player

and local Green player.

The ThreatPresented event simulates a Blue player threatening a Green

player for resource critical knowledge. It takes both a BluePlayer and

GreenPlayer agent as its local parameters. It sets the fact that the local Green

player has been threatened to true. Next, it draws a random uniform number

between 0 and 1. It then calculates the probability that the local Green player will

honor the request to provide resource critical knowledge given a threat by using

the Green player’s OAB value and the parameter pfHRT in behavior Equation 1

(Figure 1). If the random uniform draw is less than the calculated honoring

request probability, it schedules a ProvideResourceKnowledge event, passing

along the local Blue player and local Green player. If the random uniform draw is

greater than or equal to the calculated honoring request probability, it schedules

 52

a DoNotProvideResourceKnowledge event, passing along the local Blue player

and local Green player.

The DoNotProvideResourceKnowledge event simulates a Green player

ultimately not providing resource critical knowledge. It takes both a BluePlayer

and GreenPlayer agent as its local parameters. It resets whether the local Green

player has resource critical knowledge by using the parameter pRK. It then

schedules an EndResourceKnowledgeRequest event, passing along the local

Green player.

The EndResourceKnowledgeRequest event simulates the end of the

resource critical knowledge request. It takes a GreenPlayer agent as its local

parameter.

9. UpdateOAB

The UpdateOAB component handles the updating of a Green player’s

OAB depending on what happens during a KLE. It has eight input parameters.

The parameters pD0 and pI0 represent the probabilities of an OAB decrease or

increase, respectively, given the Green player not being incentivized and not

being threatened; the sum of these two must be less than or equal to 1. The

parameters pDI and pII represent the probabilities of an OAB decrease or

increase, respectively, given the Green player being incentivized and not being

threatened; the sum of these two must be less than or equal to 1. The

parameters pDT and pIT represent the probabilities of an OAB decrease or

increase, respectively, given the Green player being threatened; the sum of

these two must be less than or equal to 1. The parameters pBCKB and pBCKR are

baseline probabilities of a Green player being captured or killed by either a Blue

player or Red player, respectively. In order to avoid overlapping probability

ranges, one minus pBCKR times the maximum possible KLE time must be greater

than or equal to pBCKB.

Parameters and parameter constraints for the UpdateOAB component are

summarized in Table 11.

 53

Table 11. UpdateOAB parameters and parameter constraints

The event graph for the UpdateOAB component is shown in Figure 18.

 54

Figure 18. UpdateOAB event graph

The CheckGreenStatus event checks if a Green player is still in the model

following a KLE. It takes a GreenPlayer agent as its local parameter. If the local

Green player has not been canceled during a KLE (not killed in this case), it

schedules an OABUpdate event, passing along the local Green player.

The OABUpdate event simulates a Green player changing his OAB after a

KLE. It takes a GreenPlayer agent as its local parameter. If the Green player has

not been incentivized or threatened during the KLE, it calculates the Green

player’s new OAB by using his current OAB, D = pD0, and I = pI0 in behavior

 55

Equation 5 (Figure 5). If the Green player has been incentivized but not

threatened during the KLE, it calculates the Green player’s new OAB by using his

current OAB, D = pDI, and I = pII in behavior Equation 5 (Figure 5). It then resets

the fact that the Green player is incentivized to false. If the Green player has

been threatened during the KLE, it calculates the Green player’s new OAB by

using his current OAB, D = pDT, and I = pIT in behavior Equation 5 (Figure 5). It

then resets the facts that the Green player is incentivized and threatened to false.

Lastly, it schedules an UpdateComplete event, passing along the local Green

player.

The UpdateComplete event simulates a Green player completing his OAB

update. It takes a GreenPlayer agent as its local parameter. It draws a random

uniform number between 0 and 1. If the time that the Green player spent in the

KLE is greater than or equal to one, it calculates the probability that he is

captured or killed by a Blue player by using pBCKB and the time spent in the KLE

in behavior Equation 4 (Figure 4). If the time that the Green player spent in the

KLE is less than one, the probability of being captured or killed by a Blue player

equals pBCKB. It also calculates the probability that the local Green player is

captured or killed by a Red player by using pBCKR and the time spent in the KLE

in behavior Equation 3 (Figure 3). If the random uniform draw is less than the

calculated capture or kill by Blue probability, it schedules a CaptureOrKillByBlue

event, passing along the local Green player. If the random uniform draw is

greater than or equal to one minus the calculated capture or kill by Red

probability, it schedules a CaptureOrKillByRed event, passing along the local

Green player. If the random uniform draw is greater than or equal to the

calculated capture or kill by Blue probability and less than one minus the

calculated capture or kill by Red probability, it schedules a Campaign event,

passing along the local Green player.

The Campaign event simulates a Green player looking to campaign. It

takes a GreenPlayer agent as its local parameter.

 56

The CaptureOrKillByBlue event simulates a Green player being captured

or killed by a Blue player. It takes a GreenPlayer agent as its local parameter.

The CaptureOrKillByRed event simulates a Green player being captured

or killed by a Red player. It takes a GreenPlayer agent as its local parameter.

10. Campaign

The Campaign component handles whether a Green player will campaign

following a KLE. It has five input parameters. It requires three random

distributions representing the stream of times that Green players schedule their

next campaign ({tNC}), the stream of times that Green players spend campaigning

({tC}), and the stream of times that Green players schedule their next arrival for

another KLE ({tGM}). The parameters pBCKB and pBCKR are the same as defined in

the UpdateOAB component. Additional constraints on these two parameters are

that pBCKB times the maximum campaign time and pBCKR times the maximum

campaign time both must be less than or equal to one; this ensures that

probabilities greater than one are not encountered.

The Campaign component has two state variables. The variable NPC

tracks the number of pro-coalition force campaigns. The variable NAC tracks the

number of anti-coalition force campaigns.

Parameters, parameter constraints, and state variables for the Campaign

component are summarized in Table 12.

 57

Table 12. Campaign parameters, parameter constraints, and state variables

The event graph for the Campaign component is shown in Figures 19 and

20.

 58

Figure 19. Campaign event graph (part 1)

 59

Figure 20. Campaign event graph (part 2)

The Run event initializes the two state variables to zero.

The CheckOAB event checks a Green player’s OAB to see if he will

campaign or not. It takes a GreenPlayer agent as its local parameter. It draws a

random uniform number between 0 and 1. If the local Green player has an OAB

equal to 4, has an OAB equal to 3 and has agreed to pass a message, or has an

OAB equal to 2, has agreed to pass a message, and the uniform draw is less

than 0.5, it schedules a ProCFCampaign event with a time delay pulled from

{tNC}, passing along the local Green player. If the local Green player has an OAB

equal to 0, has an OAB equal to 1 and has agreed to pass a message, or has an

OAB equal to 2, has agreed to pass a message, and the uniform draw is greater

than or equal to 0.5, it schedules an AntiCFCampaign event with a time delay

pulled from {tNC}, passing along the local Green player. If the Green player has

not agreed to pass a message and his OAB equals 1, 2, or 3, it schedules a

NoCampaign event, passing along the local Green player.

The ProCFCampaign event simulates a Green player starting his pro-

coalition force campaign. It takes a GreenPlayer agent as its local parameter. It

stamps the campaign start time for the local Green player. It then schedules an

EndProCFCampaign event with a time delay pulled from {tC}, passing along the

local Green player.

 60

The AntiCFCampaign event simulates a Green player starting his anti-

coalition force campaign. It takes a GreenPlayer agent as its local parameter. It

stamps the campaign start time for the local Green player. It then schedules an

EndAntiCFCampaign event with a time delay pulled from {tC}, passing along the

local Green player.

The NoCampaign event simulates a Green player not campaigning. It

takes a GreenPlayer agent as its local parameter. It schedules a

ScheduleGreenNextMeeting event with a time delay pulled from {tGM}, passing

along the local Green player.

The EndProCFCampaign event simulates a Green player ending his pro-

coalition force campaign. It takes a GreenPlayer agent as its local parameter. It

increments NPC by one. It then draws a random uniform number between 0 and

1. It calculates the probability that the local Green player is captured or killed by a

Red player by using pBCKR and the time spent in the campaign in behavior

Equation 3 (Figure 3). If the random uniform draw is less than the calculated

capture or kill by Red probability, it schedules a CaptureOrKillByRed event,

passing along the local Green player. If the random uniform draw is greater than

or equal to the calculated capture or kill by Red probability, it schedules a

ScheduleGreenNextMeeting event with a time delay pulled from {tGM}, passing

along the local Green player.

The EndAntiCFCampaign event simulates a Green player ending his anti-

coalition force campaign. It takes a GreenPlayer agent as its local parameter. It

increments NAC by one. It then draws a random uniform number between 0 and

1. It calculates the probability that the local Green player is captured or killed by a

Blue player by using pBCKB and the time spent in the campaign in behavior

Equation 3 (Figure 3). If the random uniform draw is less than the calculated

capture or kill by Blue probability, it schedules a CaptureOrKillByBlue event,

passing along the local Green player. If the random uniform draw is greater than

or equal to the calculated capture or kill by Blue probability, it schedules a

 61

ScheduleGreenNextMeeting event with a time delay pulled from {tGM}, passing

along the local Green player.

The ScheduleGreenNextMeeting event simulates a Green player

scheduling his next arrival for a KLE. It takes a GreenPlayer agent as its local

parameter.

The CaptureOrKillByRed event simulates a Green player being captured

or killed by a Red player. It takes a GreenPlayer agent as its local parameter.

The CaptureOrKillByBlue event simulates a Green player being captured

or killed by a Blue player. It takes a GreenPlayer agent as its local parameter.

The GreenCanceled event simulates a Green player replacement that is

no longer needed in the model. It takes a GreenPlayer agent as its local

parameter. It cancels the ProCFCampaign, AntiCFCampaign,

EndProCFCampaign, EndAntiCFCampaign, and ScheduleGreenNextMeeting

events for the local Green player.

11. CaptureOrKill

The CaptureOrKill component handles whether a Green player will be

captured or killed by a Blue player or Red player following a KLE or campaign. It

has four input parameters. The parameter pCB is the probability that a Blue player

captures a Green player. One minus pCB then is the probability that a Blue player

kills him. The parameter pCR is the probability that a Red player captures a Green

player. One minus pCR then is the probability that a Red player kills him. The

parameter pDCB is the probability that a Green player decreases his OAB given a

capture by a Blue player. The parameter pICR is the probability that a Green

player increases his OAB given a capture by a Red player.

The CaptureOrKill component has four state variables. The variables NBC,

NBK, NRC, and NRK track the number of Green players captured by Blue players,

killed by Blue players, captured by Red players, and killed by Red players,

respectively.

 62

Parameters and state variables for the CaptureOrKill component are

summarized in Table 13.

Table 13. CaptureOrKill parameters and state variables

The event graph for the CaptureOrKill component is shown in Figures 21

and 22.

 63

Figure 21. CaptureOrKill event graph (part 1)

 64

Figure 22. CaptureOrKill event graph (part 2)

The Run event initializes all state variables to zero.

The CaptureOrKillByBlue event sees whether a Green player will be

captured or killed by a Blue player. It takes a GreenPlayer agent as its local

parameter. It draws a random uniform number between 0 and 1. If the random

uniform draw is less than pCB, it schedules a GreenCapturedByBlue event,

passing along the local Green player. If the random uniform draw is greater than

or equal to pCB, it schedules a GreenKilledByBlue event, passing along the local

Green player.

The GreenCapturedByBlue event simulates a Green player being

captured by a Blue player. It takes a GreenPlayer agent as its local parameter. It

sets the captured status of the local Green player as if he was captured by a Blue

player and increments NBC by one. It calculates the Green player’s new OAB by

using his current OAB, D = pDCB, and I = 0 in behavior Equation 5 (Figure 5). It

then schedules a ReplaceGreen event and a WaitForRelease event, passing

along the local Green player to both.

The GreenKilledByBlue event simulates a Green player being killed by a

Blue player. It takes a GreenPlayer agent as its local parameter. It sets the killed

 65

status of the local Green player as if he was killed by a Blue player, and it

increments NBK by one. It then schedules a ReplaceGreen event, passing along

the local Green player.

The CaptureOrKillByRed event sees whether a Green player will be

captured or killed by a Red player. It takes a GreenPlayer agent as its local

parameter. It draws a random uniform number between 0 and 1. If the random

uniform draw is less than pCR, it schedules a GreenCapturedByRed event,

passing along the local Green player. If the random uniform draw is greater than

or equal to pCR, it schedules a GreenKilledByRed event, passing along the local

Green player.

The GreenCapturedByRed event simulates a Green player being captured

by a Red player. It takes a GreenPlayer agent as its local parameter. It sets the

captured status of the local Green player as if he was captured by a Red player

and increments NRC by one. It calculates the Green player’s new OAB by using

his current OAB, D = 0, and I = pICR in behavior Equation 5 (Figure 5). It then

schedules a ReplaceGreen event and a WaitForRelease event, passing along

the local Green player to both.

The GreenKilledByRed event simulates a Green player being killed by a

Red player. It takes a GreenPlayer agent as its local parameter. It sets the killed

status of the local Green player as if he was killed by a Red player, and it

increments NRK by one. It then schedules a ReplaceGreen event, passing along

the local Green player.

The ReplaceGreen event simulates a Green player being replaced by

another Green player after being captured or killed. It takes a GreenPlayer agent

as its local parameter.

The WaitForRelease event simulates a Green player awaiting his release

after being captured. It takes a GreenPlayer agent as its local parameter.

 66

12. Release

The Release component represents the releasing of Green players after

being captured. It has one input parameter. It requires a random distribution

representing the stream of times that Green players are released ({tRL}).

Parameters for the Release component are summarized in Table 14.

Table 14. Release parameters

The event graph for the Release component is shown in Figure 23.

Figure 23. Release event graph

The ScheduleRelease event simulates a Green player waiting for his

release after being captured. It takes a GreenPlayer agent as its local parameter.

It schedules a GreenReleased event with a time delay pulled from {tRL}, passing

along the local Green player.

The GreenReleased event simulates a Green player being released. It

takes a GreenPlayer agent as its local parameter. It resets the captured status of

 67

the local Green player to show that he is no longer captured. It then schedules a

ReplaceReplacement event, passing along the local Green player.

The ReplaceReplacement event simulates a Green player taking control

back from his replacement. It takes a GreenPlayer agent as its local parameter.

The GreenCanceled event simulates a Green player replacement that is

no longer needed in the model. It takes a GreenPlayer agent as its local

parameter. It cancels the GreenReleased event for the local Green player.

13. HandleReplacements

The HandleReplacements component handles the replacing of Green

players when they are captured, killed, or released. It has 13 input parameters. It

requires one random distribution representing the stream of times that Green

players schedule their next arrival for another KLE ({tGM}). The parameters pC,

pKLK, pTK, and pRK are the same parameters from the CreatePlayers component

representing the probabilities that a Green player is corrupt, has key leader

critical knowledge, has threat critical knowledge, and has resource critical

knowledge, respectively. The parameters pLKB and pHKB represent the

probabilities of a Green replacement having a lower or higher OAB, respectively,

than the Green player that is killed by a Blue player; the sum of these two must

be less than or equal to 1. The parameters pLKR and pHKR represent the

probabilities of a Green replacement having a lower or higher OAB, respectively,

than the Green player that is killed by a Red player; the sum of these two must

be less than or equal to 1. The parameters pLCB and pHCB represent the

probabilities of a Green replacement having a lower or higher OAB, respectively,

than the Green player that is captured by a Blue player; the sum of these two

must be less than or equal to 1. The parameters pLCR and pHCR represent the

probabilities of a Green replacement having a lower or higher OAB, respectively,

than the Green player that is captured by a Red player; the sum of these two

must be less than or equal to 1.

 68

The HandleReplacements component has one state variable. The variable

c represents a list to hold captured Green players that have a replacement in the

model.

Parameters, parameter constraints, and state variables for the

HandleReplacements component are summarized in Table 15.

Table 15. HandleReplacements parameters, parameter constraints, and state
variables

 69

The event graph for the HandleReplacements component is shown in

Figure 24.

Figure 24. HandleReplacements event graph

The Run event clears c.

The CreateGreenReplacement event simulates a Green replacement

being added to the model when a Green player is captured or killed. It takes a

GreenPlayer agent as its local parameter. It creates a new GreenPlayer agent

 70

that is the replacement for the local Green player. If a Blue player kills the local

Green player, it calculates the replacement’s OAB by using the Green player’s

OAB, D = pLKB, and I = pHKB in behavior Equation 5 (Figure 5). If the local Green

player is killed by a Red player, it calculates the replacement’s OAB by using the

Green player’s OAB, D = pLKR, and I = pHKR in behavior Equation 5 (Figure 5). If

the local Green player is captured by a Blue player, it calculates the

replacement’s OAB by using the Green player’s OAB, D = pLCB, and I = pHCB in

behavior Equation 5 (Figure 5). If the local Green player is captured by a Red

player, it calculates the replacement’s OAB by using the Green player’s OAB, D

= pLCR, and I = pHCR in behavior Equation 5 (Figure 5). Then it checks the state

variable, c, to determine if the local Green player that is killed or captured is

already a replacement for another captured Green player. If this is the case, it

sets the newly created replacement as the replacement for the Green player in c.

Then, if the local Green player is not already a replacement and is captured, it

sets the newly created replacement as his replacement and is added to c. Lastly,

it schedules a ScheduleGreenNextMeeting event with a time delay pulled from

{tGM}, passing along the created replacement.

The ReplaceReplacement event simulates a Green player being released

and his replacement being no longer needed in the model. It takes a

GreenPlayer agent as its local parameter. It takes the Green replacement

assigned to the released Green player and assigns this replacement to a local

GreenPlayer agent variable. It resets the replacement of the released Green

player to null, and then it removes the released Green player from c. Lastly, it

schedules a ScheduleGreenNextMeeting event with a time delay pulled from

{tGM}, passing along the released Green player, and it schedules a

CancelReplacement event, passing along the replacement.

The ScheduleGreenNextMeeting event simulates a Green player

scheduling his next arrival for a KLE. It takes a GreenPlayer agent as its local

parameter.

 71

The CancelReplacement event simulates a Green player replacement no

longer being needed in the model. It takes a GreenPlayer agent as its local

parameter.

E. COMPONENT LISTENING STRUCTURE AND ADAPTERS OF KLE
MODEL

The various components of the KLE Model are connected together as

shown in Figure 25. The various adapters in the KLE Model are listed in Table

16. When one of the listed events for a given component is executed, the

respective listening component schedules the appropriate event. For more

information on connecting event graphs using listeners and adapters, see Buss

(2011).

 72

Figure 25. KLE Model component listening structure

 73

Table 16. KLE Model adapters

EXECUTED COMPONENT/ EVENT LISTENING COMPONENT/ EVENT
Component Event Component Event

Create Blue Player Handle Blue Player
Players Arriva l EngagementType Arrival

Create Green Player Handle GreenPiayer
Players Arriva l EngagementType Arrival

MicroKeyl eader Schedule Blue Handle Blue Player
Engagem ent NextMeeting EngagementType Arrival

Keyleader Schedule Blue Handle Blue Player
Engagem ent NextMeeting EngagementType Arrival

Campaign
ScheduleGreen Handle GreenPiayer

NextMeeting EngagementType Arrival

Handle ScheduleGreen Handle GreenPiayer
Replacements NextMeeting EngagementType Arrival

Handle Cancel Handle Green
Replacements Replacement EngagementType Canceled

Handle Blue Ready MicroKeyl eader Start
EngagementType ForMicroKLE Engagement MicroKLE

Handle Send Players Keyleader Start
EngagementType ToKLE Engagement KLE

Handle Cancel Keyleader Green
Replacements Replacement Engagement Canceled

Keyleader Handle Handle StartMessage
Engagem ent Requests MessageRequest Request

Handle End Message HandleKeyl eader Start Keyl eader
MessageRequest Request KnowledgeRequest Knowledge Request

HandleKeyl eader EndKeyl eader Handle Threat Start Threat
Knowledge Request KnowledgeRequest KnowledgeRequest Knowledge Request

HandleTh reat EndThreat HandleResource Start Resource
Knowledge Request KnowledgeRequest KnowledgeRequest Knowledge Request

HandleResource End Resource
UpdateOAB

CheckGreen
Knowledge Request KnowledgeRequest Status

Update
Campaign Campaign

Check
OAB OAB

Handle Cancel
Campaign

Green
Replacements Replacement Canceled

Update CaptureOr
Capt ureOrKill

Capt ureOr
OAB KiiiByBiue KiiiByBiue

Update CaptureOr
Capt ureOrKill

Capt ureOr
OAB KiiiByRed Kil l By Red

Campaign
CaptureOr

Capt ureOrKill
Capt ureOr

KiiiByBiue KiiiByBiue

Campaign
CaptureOr

Capt ureOrKill
Capt ureOr

KiiiByRed Kil l By Red

Capt ure WaitFor
Release

Schedule
OrKi ll Release Release

Handle Cancel
Release

Green
Replacements Replacement Canceled

Capt ure Replace Handle CreateGreen
OrKi ll Green Replacements Replacement

Release
Replace Handle Replace

Replacement Replacements Replacement

 74

THIS PAGE INTENTIONALLY LEFT BLANK

 75

III. DESIGN OF EXPERIMENTS

Chapter III begins with a brief discussion on the use of random number

generators in the Key Leader Engagement (KLE) Model. Then we discuss what

model input parameters were not varied and those that were, including their low

and high values. We talk briefly about the nearly orthogonal and balanced mixed

design of experiments that was utilized for further analysis of the model. The

chapter ends with a small discussion on the scenario replication and three

scenarios (one-week, nine-weeks, and one-year) that were executed.

A. RANDOM NUMBER GENERATION

Two random number streams are used to run the KLE Model. One

generator creates random seeds for each design point run, and the other

generator utilizes the seed to generate random numbers that are needed when

running the model components. The two random number streams used when

running the KLE Model both use the Mersenne Twister MT 19937 pseudorandom

number generator (Wikipedia 2012).

B. HANDLING OF INPUT PARAMETERS

1. Static Parameters

The input parameters not varied in the design of experiments are those

associated with numbers of players and all streams of time. The constant values

assigned to these static parameters are best-guess estimates derived from

military and civilian analysts at TRAC-Monterey that best coincide with what can

be expected during a tactical wargame (TWG) using an Afghanistan scenario.

The time streams are all triangle distributed (minimum, maximum, mode).

Table 17 lists the parameters that are not varied, the component(s) they

are found in, and their associated values.

 76

Table 17. Static model parameters and their values

2. Dynamic Parameters and NOB Mixed Design

The input parameters varied in the design of experiments are those

associated with probabilities and probability factors. Probabilities not associated

with OAB changes or assignments are varied from 0 to 1. Probabilities

associated with OAB changes and assignments are varied from 0 to 0.5 due to

the decrease/increase or lower/higher pairings used in behavior Equation 5

(Figure 5). Probability factors are varied from 0 to 0.2. The baseline probabilities,

pBCKB and pBCKR, are varied from 0 to 0.0208 due to the parameter restriction that

these two individually multiplied by the maximum campaign time (48) must be

less than or equal to 1.

Tables 18 and 19 list the parameters that are varied, the component(s)

they are found in, and their associated low and high values.

 77

Table 18. Dynamic model parameters and their values (part 1)

 78

Table 19. Dynamic model parameters and their values (part 2)

The design is constructed using the 512-design point nearly orthogonal

and balanced (NOB) mixed design spreadsheet of Vieira (2012). The result is a

nearly orthogonal Latin hypercube (NOLH) since all parameters in this design are

continuous-valued. For more details about the properties or application of NOLH

designs, see Kleijnen et al. (2005) or Sanchez et al. (2012). For more details

about NOB designs, which can also handle discrete-valued factors with limited

numbers of levels, see Vieira et al. (2011, 2012).

 79

C. SCENARIO REPLICATION

In order to assist with the code verification efforts of the KLE Model, three

different scenarios are used. Within the model, one unit of simulated time

represents one hour of real time. The first scenario looks at short-term effects

within the model and warm-up period issues; the model is run for 168 time units

(hours) to represent the span of a week. The second looks at mid-range effects;

the model is run for 1,512 time units to represent the span of nine weeks, the

typical run time for a TWG. The third looks at long-term effects and convergence

issues; the model is run for 8,760 time units to represent the span of a year.

Additionally, each design point for each scenario is replicated 200 times to collect

summary statistics for analysis, and to allow for the possibility of examining the

variances as well as the means of the output responses of interest.

 80

THIS PAGE INTENTIONALLY LEFT BLANK

 81

IV. KLE MODEL ANALYSIS

Chapter IV begins with a short description of the model output data. The

analysis begins with a look at the significant input parameters used to build

regression metamodels and partition tree models to help verify the KLE Model

execution. We then look at the output summary statistics to gain insights into the

ranges and the variability of the output responses. Finally, some discussion on

the number of micro-KLEs response is presented given the apparently

anomalous behavior of this output variable.

A. OUTPUT DATA

The outputs analyzed in the KLE Model are associated with all the

countable state variables within the model components; these are of interest as

they correlate to the outputs analyzed during a TRAC tactical wargame (TWG).

For each design point, we collect the final values of the state variables for all 200

replications. We then output the mean, standard deviation, minimum value, and

maximum value for the 200 replications.

B. SIGNIFICANT INPUT PARAMETERS AND MODEL VERIFICATION

In order to explore the significant input factors for each of the output

responses, and subsequently help verify the expected functionality of the KLE

Model, we first derive second-order regression metamodels that best fit each

output response. A stepwise regression control with a minimum Bayesian

information criterion stopping rule is used to find the input parameters that are

significant in predicting the responses. These parameters (after removing less

significant terms) are then used to fit the regression metamodel using standard

least squares. From the sorted parameter estimates, we can see which input

parameters are the most significant. Second, we create partition tree models with

up to 20 splits if needed to identify the most significant input parameters for each

 82

response; this helps verify the significant parameters derived in the regression

metamodels. The statistical software JMP® Pro 9.0 was used to create these

regression metamodels and partition tree models.

To get an idea of the regression metamodels and partition tree models

created, we use the number of KLEs output response as an example. Starting

with the metamodels, Figures 26, 27, and 28 show the second-order regression

metamodels for the number of KLEs in the one-week, nine-week, and one-year

scenarios, respectively. All three metamodels show an F-statistic p-value of less

than 0.0001, indicating statistical significance in all cases; all three have relatively

high R-squared values (greater than 0.9); and all three metamodels have terms

that are statistically significant (t-statistic p-values less than 0.01). We remark

that with such a large data set, statistical significance is necessary but not

sufficient for including terms in the metamodels. In some cases, we have

eliminated terms with p-values less than 0.01 in the interests of parsimony, when

their inclusion leads to very little improvement in a metamodel’s R-squared value.

Figure 27 illustrates this phenomenon; if we simplified the metamodel even

further by eliminating the four interaction terms with p-values between 0.0003

and 0.0020, the R-squared value would drop only slightly (from 0.9898 to

0.9886). The simplified metamodel is preferable. Similar simplifications could be

made for the one-year metamodel.

From these regression metamodels, we see that the renege probability

factor (pfRG) and the no-show probability factor (pfNS) are the two most significant

parameters for the one-week and nine-week scenarios and within the top three

for the one-year scenario. These two parameters are the primary factors of

whether a Blue player engages a Green player, and as model runtime increases,

these factors remain significant, which is what we were looking for in the KLE

Model execution. The figures also exhibit the increasing complexity of the

metamodels as runtime increases due to the greater influence of cross-

component effects, which is expected.

 83

Figure 26. Number of KLEs regression metamodel (1 week)

 84

Figure 27. Number of KLEs regression metamodel (9 weeks)

 85

Figure 28. Number of KLEs regression metamodel (1 year)

Actual by Predicted Plot

100 200
N_KLE.mean Predicted

P<.0001 RSq:0.91 RMSE=13.52

Summary of Fit
RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
Observations (or Sum Wgts)

Analysis of Variance

0.907715
0.904346
13.52019
105.2959

512

Sum of
Source OF Squares Mean Square F Ratio
Model 18 886404.52 49244.7 269.3975
Error 493 90118.26 182.8 Prob > F
C. Total 511 976522.78 <.0001•

Sorted Parameter Estimates
Term Estimate Std Error t Ratio
p_KLK -86.86023 2.091336 -41.53
pf_NS -293.6074 10.43467 -28.14
pf_HR -292.9832 10.41999 -28.12
pf_RG -288.615 10.38332 -27.80
(p_KLK-0.5)"(pf_NS-0.1) 446.60665 36.70415 12.17
(p_KLK-0.5)"(p f_RG-0.1) 369.44452 35.37955 10.44
(p_KLK-O.S)"(pf_HR-0.1) -353.6441 36.07581 -9.80
(pf_NS-0.1)"(pf_HR-0.1) 1474.9089 176.3731 8.36
(pf_RG-0.1)"(pf_HR-0.1) 1338.5144 178.5741 7.50
p_C -12.1191 2.083207 -5.82
p_l -9.853334 2.091881 -4.71
pf_BT -46.77026 10.38876 -4.50
pf_HRT -44.15599 10.45169 -4.22
(p_C-0.5)"(pf_HR-0.1) 154.45205 37.13474 4.16
(pf_HR-0.1)"(pf_HRI-0.1) 710.98815 185.4616 3.83
pf_HRI -36.66194 10.4566 -3.51
(p_KLK-0.5)"(pf_HRT-0.1) -112.5208 36.64736 -3.07
(pf_RG-0.1)"(pf_NS-0.1) 523.22212 182.6806 2.86

Prob>ltl
<.0001•
<.0001•
<.0001•
<.0001•
<.0001•
<.0001•
<.0001•
<.0001•
<.0001•
<.0001•
<.0001•
<.0001•
<.0001•
<.0001•
o.ooo1·
o.ooo5·
0.0023.
0.0044.

 86

Figures 29, 30, and 31 show the partition tree models for the number of

KLEs in the one-week, nine-week, and one-year scenarios, respectively. These

trees back-up what was discovered in the regression metamodels, especially the

initial split using the probability of having key leader critical knowledge (pKLK) in

the one-year scenario (Figure 31), which corresponds to the parameter’s

significance in the one-year regression metamodel (Figure 28). For simplicity,

only three or four levels within the partition trees are displayed. The resulting R-

squared values are lower than they were for the corresponding regression

metamodels. Even so, looking at the output in both ways is useful, since

responses with discontinuities in the results may fit much better with partition tree

models than with regression metamodels. Partition trees are also sometimes

easier graphs for communicating with decision makers (Sanchez et al. 2012).

Figure 29. Number of KLEs partition tree model (1 week)

 87

Figure 30. Number of KLEs partition tree model (9 weeks)

Figure 31. Number of KLEs partition tree model (1 year)

Having discussed the techniques used to derive the second-order

regression metamodels and partition tree models, Tables 20, 21, and 22 show

which input parameters are the top three most significant when building the

metamodels (denoted by #) and tree models (denoted by &) for the output

responses for the one-week scenario, nine-week scenario, and one-year

 88

scenario, respectively. Two count columns show the total number of times an

input parameter is one of the top three most significant in the regression

metamodels and likewise for the partition tree models.

Table 20. Top three significant input parameters (1 week).

Input
Param

"' Pe

PxLX

Pn
p ..

pfRG

pfNS

Pfac

pt ..

pf".

pf" ..

pfHRT

Poo
p,.

Po•

"'' PoT

Pll

PIICICB

PIICICR

Pea

Pco

Poca

PICR

PLXB

p,..

PLXR

p,..

Pte•

PHca

Pteo

PHco

Regr
Part Meta-

M odels
Trees N MKLf NnG NKL£ N HRM N""" NHRT NHRA Npe NAe Nac N .. Noc

Count
Count

0 0

0 0

6 5 II& II& II& II& II

1 1 II&

1 1 II&

6 4 II& II& II II& II& II

4 6 II& II& II& & II& &

1 1 II&

0 0

6 6 II& II& II& II& II& II&

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

2 2 II& II&

2 2 II&

2 2 II& II&

2 2 II&

0 0

0 1 &

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

II= parameter included in regression meta model t hat is one of top t hree most sign ificant

& = parameter included in partition tree model that is one of t op th ree most significant

N ..

II&

II&

II&

 89

Table 21. Top three significant input parameters (9 weeks)

 90

Table 22. Top three significant input parameters (1 year)

 91

In all three scenarios, we see that pKLK, pfRG, pfNS, and pfHR are the input

parameters that are considered most significant the most times (counts

highlighted in green) for both regression metamodels and partition tree models.

The renege probability factor (pfRG) and the no-show probability factor (pfNS)

make intuitive sense as these dictate whether a Green player ultimately shows

up and partakes in a KLE, and KLEs are the driving force for most of the model

outputs. The honoring requests probability factor (pfHR) also makes intuitive

sense as many actions that occur after KLEs depend on whether the Green

player honored the various Blue player requests.

The probability of having key leader critical knowledge (pKLK) seems

peculiar as to why it is so important in predicting the various outputs; for instance,

what does the number of pro-coalition force campaigns have to do with whether

or not a Green player has critical knowledge on other key leaders? If a Green

player has key leader critical knowledge, he can be incentivized or threatened to

give this knowledge to a Blue player during a KLE. If he is incentivized or

threatened, this can more significantly affect whether or not his OAB is updated

following a KLE. This in turn impacts whether or not he will conduct a pro-

coalition force campaign. Likewise, if the Green player does not have key leader

critical knowledge, he is never incentivized or threatened, and so his OAB is less

likely to change and the impact on conducting a pro-coalition force campaign is

reduced. This effect-tracing through the various components applies to all the

output responses.

Using Tables 21, 22, and 23, we can verify the functionality of the KLE

Model and confirm that it worked properly over a large range of inputs. The

number of micro-KLEs output is anomalous and is discussed in more detail in

section D. The number of times knowledge is gained during micro-KLEs is

expected to be linked to the chance of knowledge probability factor (pfCK), and

the metamodels and tree models support this fact. The number of KLEs is

discussed in the example at the beginning of this section, and those analytical

models support the expected behavior of the KLE Model.

 92

For the honoring request outputs (pass message, provide key leader

critical knowledge, provide threat critical knowledge, and provide resource critical

knowledge), we expect pfRG and pfNS to be important (we cannot honor requests

during KLEs if we do not attend KLEs), as well as pfHR. Additionally, for the three

critical knowledge-related outputs, we expect the probabilities of having said

knowledge (pKLK, pTK, and pRK) to help predict the respective responses, and they

show up in the analytical models with high significance.

For the pro- and anti-coalition force campaign outputs, we expect pfRG and

pfNS to be important (we cannot campaign following KLEs if we do not attend

KLEs), as well as pfHR since honoring or not honoring requests leads to potential

incentives and threats that can impact the OAB updating following a KLE; the

OAB directly impacts what type of campaign will occur. Once again, these factors

show up in the analytical models with high significance.

The last set of outputs (the capture and kill outputs) verify the capturing

and killing functionality by using the baseline probabilities of capture or kill by

Blue players (pBCKB) or by Red players (pBCKR) and the probabilities of capturing

vice killing by Blue players (pCB) or by Red players (pCR). We expect the

respective Blue player probabilities to be significant when predicting captures

and kills by Blue players, and likewise for the Red player probabilities. The

metamodels and tree models support this fact in all cases.

C. SUMMARY STATISTICS ANALYSIS

Using JMP®, the distributions of the means, standard deviations,

minimums, and maximums are attained for each output response per scenario.

The goal is to gain insights into what the KLE Model can provide regarding

issues such as variability or outliers. These snapshots include histograms, outlier

boxplots, quantile data, and moment data. The summary statistics can be used

(along with the histograms) to qualitatively assess whether the output is

reasonable or not.

 93

Once again we use the number of KLEs response as our example, and

the distributions can be seen in Figures 32, 33, and 34 for the one-week, nine-

week, and one-year scenarios, respectively. We see that the various data are

well-distributed but with some skewness, especially in the mean and minimum

histograms for all three runtimes. Note that there is no reason to expect that the

distribution of the design point means should be symmetric, since the design

point results arise from different combinations of inputs. In this example, there

are no significant outliers. Using the number of KLEs mean statistics, and just

using plus or minus one standard deviation from its mean, we expect our model

to produce 2 to 4 KLEs in one week, 20 to 34 KLEs over nine weeks, and 62 to

149 KLEs over one year. This appears to scale nicely as runtime increases and

so this range of values seems reasonable. Even when we look at the minimum

and maximum numbers of KLEs experienced in all three scenarios, getting these

minimums and maximums as results is reasonable also.

 94

Figure 32. Number of KLEs summary statistics (1 week)

 95

Figure 33. Number of KLEs summary statistics (9 weeks)

 96

Figure 34. Number of KLEs summary statistics (1 year)

Table 23 lists the summary statistics for all of the output means across all

three scenarios.

 97

Table 23. Summary statistics for output response means

For the number of micro-KLEs (NMKLE) response, we observe that exactly

one micro-KLE takes place during the one-week scenario. This is most likely due

to the proportion of Blue players (4) to Green players (17) used in the scenarios;

a Green player is almost always available to engage, so we never see more than

 98

(or less than) one micro-KLE. We also observe an exponential increase in the

number of micro-KLEs as model runtime increases, which is discussed in section

D. This exponential issue ties into the number of times knowledge is gained

during micro-KLEs (NTKG), but the problem is with the number of micro-KLEs

only, as pfCK is the driving force for NTKG.

All of our responses are nonnegative. Some of their distributions are

highly skewed, with standard deviations that are quite large relative to the

means, which is why we report the minimum and maximum value along with the

means and standard deviations. This still results in plausible ranges for all of the

output variables (except NMKLE and NTKG) for all three scenarios, so our model is

producing reasonable responses.

Only two of our design points produced significant outliers. One of these

included the same outlier; they were the NMKLE minimum boxplot and NTKG

minimum boxplot, both at nine weeks. This was associated with design point 443.

All other design points produced only one micro-KLE and zero times knowledge

gained, but the outlier values were 59 micro-KLEs and 24 times knowledge

gained. The third outlier was found in the number of Blue captures minimum

boxplot at one year, and it was associated with design point 63. Approximately

90% of the design points produced zero Blue captures, but this outlier value was

14. After looking at the input parameter values associated with these design

points, no significant explanation was found for these three outliers and we

attribute this to randomness within the model.

D. DISCUSSION ON NUMBER OF MICRO-KLES

After deriving regression metamodels and partition tree models for the

number of micro-KLEs output response, we are able to decipher which input

parameters are most significant in predicting number of micro-KLEs, but the

analytical models themselves provide poor fits and poor explanations of the

variability. In fact, we found that the number of micro-KLEs grows exponentially

as scenario runtime increases. In the one-week scenario, we always had one

 99

micro-KLE occurring, but as we increase model runtime to nine weeks, we see a

big jump in the mean number of micro-KLEs (Figure 35), and we experience

exponential growth as we run the model for one-year (Figure 36).

This is one instance that might not show up as a problem if a single

scenario time (nine weeks for instance) was used. A systematic exploration

shows this anomaly compared to the other KLE Model output responses. After

verifying that the KLE Model logic was sound and the implementation within Java

was correct, the anomaly was found to be linked to the static input parameters

governing the time a Blue player spends waiting for a micro-KLE and the time a

Blue player spends in a micro-KLE.

From Table 17, these triangle-distributed time streams have very small

modes compared to all the other time streams utilized in the model. The mode for

the next scheduled micro-KLE time stream is 0.5, and the mode for the time

spent in a micro-KLE time stream is 0.2. If there are no Green players available

to engage, then a Blue player could do about 34 micro-KLEs a day. With four

Blue players in the model, and assuming a one-year scenario, we could see

upwards of 49,640 micro-KLEs in one-year combined.

The time streams were best-guess estimates from TRAC-Monterey

analysts, so one solution is to think more carefully about what static time stream

distribution is used for micro-KLEs. Another solution is that the micro-KLE

functionality used in our model may require modifications (such as constraints on

the total number of micro-KLEs that one agent can conduct over the course of a

week, or the opportunity to “do nothing” rather than initiate a micro-KLE if no key

leader is available) to meet TRAC’s needs before any incorporation into the CG

Model.

 100

Figure 35. Number of micro-KLEs summary statistics (9 weeks)

 101

Figure 36. Number of micro-KLEs summary statistics (1 year)

 102

THIS PAGE INTENTIONALLY LEFT BLANK

 103

V. WRAP-UP

We begin Chapter V by stating our conclusions as to what we

accomplished by creating a KLE Model and analyzing that model. We then

discuss the significant contributions that were made by conducting the research.

We end with some discussion as to potential future research opportunities that

stem from our research.

A. CONCLUSIONS

The primary goal of this research was to develop a discrete event

simulation model for potential plug-in to the CG Model. This model would take

the place of Nexus when analyzing KLEs by simplifying the Nexus code. We

were able to show that a simple and understandable model can be built using

Simkit that reasonably models those aspects of Nexus needed for the CG Model.

Through the use of event graphs, we were able to represent the complexities of

KLEs in a visually understandable way. In addition, by using discrete event

simulation and event graphs, the KLE Model can be easily modified while still

maintaining the desired functionality of the original model.

The purpose of the analysis was to test the KLE Model in order to verify

that it works properly, and to gain an understanding of KLEs for areas of future

research that can be pursued using this model. Various insights can be gathered

from this research and analysis. Through the use of experimental design, we

were able to adequately analyze what input parameters are most significant in

the KLE Model and how these parameters verify the code implementation. Using

the number of KLEs response as an example, we were also able to see through

regression metamodels that output complexity increases with runtime as cross-

component effects become influential. Our analysis identified four input

parameters that show up most often in regression metamodels and partition tree

models for the output variables, and showed that are also the most significant in

the KLE Model. Three of these parameters made intuitive sense; the fourth, the

 104

probability of having key leader critical knowledge, can be shown to make sense

as it has cross-component implications within the model. Lastly, we found that

our model encountered difficulties modeling micro-KLEs, but the source of the

problem was identified and properly addressed.

B. SIGNIFICANT CONTRIBUTIONS

The primary objective of this work is to enhance the CG Model in the

highest priority areas of dynamic social network relationships and persuasion and

influence (Jackson 2009). We sought to help satisfy the critical area

requirements identified by the U.S. Army and U.S. Marine Corps. By

incorporating those components of Nexus into the CG Model, this work has the

potential to save the Army and Marine Corps time and money if and when the

model becomes a wide-scale decision-making tool. This effort reduces long-term

requirements for scenario file development and model maintenance. Lastly, this

research provides a better understanding of key leader engagements and the

part they play in cultural geography.

C. FUTURE RESEARCH OPPORTUNITIES

The KLE Model event graphs allow future researchers to identify where

modifications and/or additions are necessary in order to achieve a desired

outcome. Improvement in the functionality of the KLE Model can occur by

expanding on the behavior modeling of Blue players and Green players. The

behavior equations utilized are simple and easy to understand, but if found

unsatisfactory, more complex, social theory-based equations can be applied in

the model. Also, Red player actions were implied through various events, and

future research could look at the feasibility of adding a Red player agent as a

separate entity and analyzing outputs specific to its utilization.

This research ran the KLE Model as a closed-loop, stand-alone

simulation. Future research may look into tailoring the KLE Model to the specifics

of the CG Model. Then, by using the plug-and-play aspect of the CG Model, one

 105

could link the KLE Model up and see how the KLE Model outputs affect the

general population, and how population behaviors as inputs affect the workings

of the KLE Model.

The scenarios used in the analysis involved three distinct runtimes: one

week, nine weeks, and one year. This enabled us to look at distinct differences in

short-term, mid-range, and long-term model execution, but nothing in between.

Future research might look at including model runtime as a parameter to further

explore runtime effects on the output responses. Additionally, the numbers of

Blue players and Green players were static parameters, as well as the streams of

times used in the KLE Model. Future research could look at varying these

aspects in a systematic way to study the effects of varying numbers of players

and time streams.

Lastly, due to the large amount of data collected from running the model in

the three scenarios over the 13 different output variables, this research made use

of simple techniques to analyze the KLE Model. With more time, more advanced

analytical techniques could be utilized to take a closer look at the data and

extract any insights or relationships that were not shown in this research.

 106

THIS PAGE INTENTIONALLY LEFT BLANK

 107

LIST OF REFERENCES

Baez, F. (2011). Cultural geography model. PowerPoint brief, unpublished,
TRAC-Monterey.

Buss, A. (2011). Discrete event simulation modeling. Monterey, CA: Arnold Buss.

Caldwell, J. C., & Brown, R. (2011). Social Impact Module (SIM) transition

requirements. Technical report, unpublished, TRAC-Monterey.

Conover, W. J. (1999). Practical nonparametric statistics (3rd ed.). New York,

NY: John Wiley & Sons, Inc.

Duong, D. (n.d.). Nexus and Indra. PowerPoint brief, unpublished, TRAC-

Monterey.

Jackson, L. A. (2009). Cultural geography model enhancements for irregular

warfare analysis. Technical report, unpublished, TRAC-Monterey.

Kleijnen, J. P. C., Sanchez, S. M., Lucas, T. W., & Cioppa, T. M. (2005). A user’s

guide to the brave new world of designing simulation experiments.
INFORMS Journal on Computing, 17(3), 263–289.

McKenna, S., & Hampsey, R. (2010). The “COIN Warrior” waging influence: hints

for the counterinsurgency (COIN) strategy in Afghanistan. Special to Small
Wars Journal.

Sanchez, S. M., Lucas, T. W., Sanchez, P. J., Nannini, C. J., and Wan, H.

(2012). Designing large scale simulation experiments, with applications to
defense and homeland security. In Design and analysis of experiments,
special designs and applications (vol. 3), ed. Hinkelmann, K. Hoboken,
New Jersey: Wiley, 413–442.

TRAC. (n.d.). IW tactical wargame player’s handbook: a manual for the irregular

warfare tactical wargame. Technical manual, unpublished, TRAC-White
Sands.

Vieira, Jr., H. (2012). NOB_Mixed_512DP_template_v1.xls design spreadsheet.

Retrieved April 1, 2012, from http://harvest.nps.edu

Vieira Jr., H., Sanchez, S. M., Kienitz, K. H., & Belderrain, M. C. N. (2011).

Generating and improving orthogonal designs by using mixed integer
programming. European Journal of Operational Research, 215, 629-638.

 108

Vieira, Jr., H., Sanchez, S. M., Kienitz, K. H., & Belderrain, M. C. N. (2012).
Conducting trade-off analyses via simulation: efficient nearly orthogonal
nearly balanced mixed designs. Working paper, Operations Research
Department, Naval Postgraduate School, Monterey, CA.

Wikipedia. (2012). Mersenne twister. Retrieved April 13, 2012, from

http://en.wikipedia.org/wiki/Mersenne_twister

 109

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
 Ft. Belvoir, Virginia

2. Dudley Knox Library
 Naval Postgraduate School
 Monterey, California

3. Arnold H. Buss
 Naval Postgraduate School
 Monterey, California

4. Susan M. Sanchez
 Naval Postgraduate School
 Monterey, California

5. TRAC-Monterey
 Naval Postgraduate School
 Monterey, California

6. Marine Corps Representative
 Naval Postgraduate School
 Monterey, California

7. Director, Training and Education, MCCDC, Code C46
 Quantico, Virginia

8. Director, Marine Corps Research Center, MCCDC, Code C40RC
 Quantico, Virginia

9. Marine Corps Tactical Systems Support Activity (Attn: Operations Officer)
 Camp Pendleton, California

10. Director, Studies and Analysis Division, MCCDC, Code C45
 Quantico, Virginia

	I. INTRODUCTION
	A. MOTIVATION FOR THESIS
	1. TRAC and the Cultural Geography Model
	2. Need for Key Leader Engagement Functionality

	B. KEY LEADERS AND KEY LEADER ENGAGEMENTS
	1. Key Leaders
	2. Key Leader Engagements

	C. RESEARCH QUESTIONS
	1. Satisfactorily Modeling KLEs
	2. Significant Input Parameters and Code Verification
	3. Summary Statistic Insights

	D. METHODOLOGICAL APPROACH

	II. KEY LEADER ENGAGEMENT MODEL
	A. REQUIREMENTS OF KLE MODEL
	B. AGENTS IN KLE MODEL
	1. BluePlayer Agent
	2. GreenPlayer Agent
	3. RedPlayer Agent

	C. BEHAVIOR EQUATIONS IN KLE MODEL
	D. COMPONENTS OF KLE MODEL
	1. CreatePlayers
	2. HandleEngagementType
	3. MicroKeyLeaderEngagement
	4. KeyLeaderEngagement
	5. HandleMessageRequest
	6. HandleKeyLeaderKnowledgeRequest
	7. HandleThreatKnowledgeRequest
	8. HandleResourceKnowledgeRequest
	9. UpdateOAB
	10. Campaign
	11. CaptureOrKill
	12. Release
	13. HandleReplacements

	E. COMPONENT LISTENING STRUCTURE AND ADAPTERS OF KLE MODEL

	III. DESIGN OF EXPERIMENTS
	A. RANDOM NUMBER GENERATION
	B. HANDLING OF INPUT PARAMETERS
	1. Static Parameters
	2. Dynamic Parameters and NOB Mixed Design

	C. SCENARIO REPLICATION

	IV. KLE MODEL ANALYSIS
	A. OUTPUT DATA
	B. SIGNIFICANT INPUT PARAMETERS AND MODEL VERIFICATION
	C. SUMMARY STATISTICS ANALYSIS
	D. DISCUSSION ON NUMBER OF MICRO-KLES

	V. WRAP-UP
	A. CONCLUSIONS
	B. SIGNIFICANT CONTRIBUTIONS
	C. FUTURE RESEARCH OPPORTUNITIES

	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

