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ABSTRACT

The Cultural Geography (CG) Model is a low-resolution, agent-based discrete
event social simulation tailored to specific operational environments. It is based
on doctrine and social theory designed to represent the behavioral response of
civilian populations in conflict environments. The current version of the CG Model
does not represent key leader engagements (KLE), which are activities between
coalition military forces and host nation civilian personnel, as means of obtaining
information, influencing behavior, and building an indigenous base of support for
coalition and government objectives. These capabilities are needed for additional

tactical level representation of the operational environment.

This research develops a simulation model using Simkit to explore the
feasibility of modeling KLEs using discrete event simulation. A total of 32
dynamic input factors are varied using a 512-design point design. Second-order
regression metamodels and partition tree models are developed for simulation
model output responses that track numbers of engagements, numbers of times
knowledge is provided, numbers of campaigns, and numbers of captures and
kills; these analytical models are used to verify the proper execution of the
simulation model. Summary statistics are analyzed to gain further insights about

the simulation model’s behavior.
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EXECUTIVE SUMMARY

The Cultural Geography (CG) Model, developed by TRAC-Monterey, is a
low-resolution, agent-based, discrete event social simulation tailored to specific
operational environments based on doctrine and social theory. It is designed to
represent the behavioral responses of civilian populations in conflict
environments. It focuses on the political, military, economic, social, infrastructure,
and information variables in the operational environment, which affect the
population’s beliefs, values, interests, attitudes, and behaviors. TRAC-Monterey
developed the model to support the analysis of civilian population perception

based on friendly and threat actions.

The current version of the CG Model does not represent key leader
engagements (KLE), which are activities between coalition military forces and
host nation civilian personnel as a means of obtaining information, influencing
behavior, and building an indigenous base of support for coalition and
government objectives. TRAC needs this capability for additional tactical level
representation of the operational environment. TRAC’s Irregular Warfare (IW)
Tactical Wargame (TWG) initiative utilizes Nexus, an interpretive social science
simulation of IW that is separate from the CG Model, to incorporate the influence
of key individuals on the population by modeling the key leader network. One of
the focus areas discussed in the after-action report from the TWG that TRAC-
Monterey held in October 2011 was a need to incorporate the Nexus key leader
functionality into the existing CG Model. TRAC seeks to remodel the components
of Nexus as discrete event simulation using Simkit, the basis for the CG Model.
Currently the CG Model takes the Nexus outputs as a subset of its inputs to

study a larger cultural population.

This thesis project explores three research questions. First, can we
satisfactorily model KLEs using discrete event simulation and Simkit? After
conducting an initial analysis of the KLE components within Nexus, we

developed a discrete event simulation model that captured the critical
XV



functionality of Nexus. This functionality includes conducting KLES, agreeing to
pass coalition force messages, honoring critical knowledge requests,
campaigning by key leaders, and capturing, killing, releasing, and replacing key
leaders. Additionally, we included micro-KLES, or interactions with the general
populace to extract critical knowledge. Our model involved the creation of model
agents, the development of agent behaviors based primarily on an attribute
called observed attitude and behavior (OAB), and the definition and development
of parameters, state variables, and event graphs. We then translated the agents,
behaviors, and event graphs into computer code using Java and Simkit for direct
closed-loop analysis. Upon exploring the feasibility of modeling KLEs, we were

able to create a simple, yet realistic, discrete event simulation model of KLEs.

Second, how can experimental design be used to assist in code
verification efforts? Once complete with the discrete event simulation modeling,
simulation scenarios were developed to study the KLE Model and to provide
insight on what model input parameters have the greatest impact on influencing
model output behaviors. Large-scale experiments were designed and employed
to vary the 32 input parameters in a structured, efficient manner in order to assist
with code verification efforts. Three separate scenario runtimes were used: one
week to study short-term model effects, nine weeks to study the effects during a
typical TWG runtime, and one year to study long-term model effects. After
building regression metamodels and partition tree models for the output
responses, our analysis highlighted several input factors that were important in
predicting all of the output responses, such as the probability a key leader
reneges from a KLE, the probability a key leader is a no-show to a KLE, and the
probability a key leader honors message or knowledge requests. The
identification of significant input parameters was then used to verify the proper
functionality of our model by using them to explain expected behavior of the

model components.

Third, are there any insights we can gain from the model using the output
summary statistics coupled with histograms and boxplots, such as variability

XVi



issues or outlier issues? The analysis showed that most of the output responses
provide plausible ranges and variations, thus verifying the reasonableness of our
model outputs. Outliers did not appear to be an issue. One output that did not
behave as expected was the number of micro-KLEs response. This appeared
anomalous as it exhibited exponential growth. After further investigation, we
found that the results were consistent with the input parameters provided by
TRAC, because a large number of potential micro-KLEs could be conducted

when key leaders were unavailable.

In summary, we have built a conceptual model of the impact of key leader
engagements on civilian population behavior, implemented this model using a
discrete event simulation approach, and tested its performance with a large-scale
experiment. This sets the stage for incorporating our KLE Model into the current
CG Model, in order to improve the CG Model's suitability for use in tactical

wargames and other studies.

XVii
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INTRODUCTION

Chapter | begins with some background about why this thesis was
conducted, basically stemming from a need for key leader engagement
functionality for a United States Army irregular warfare model. Next it describes
what key leaders, observed attitudes and behaviors, key leader engagements,
and micro-key leader engagements are. An overview of the methodology is

outlined, concluding with the research questions that were posed.

A. MOTIVATION FOR THESIS
1. TRAC and the Cultural Geography Model

The United States Army Training and Doctrine Command Analysis Center,
or TRAC, supports the United States Army by conducting operational analysis to
inform Army decisions. TRAC-Monterey, co-located with the Naval Postgraduate
School in Monterey, California, is the research and analysis arm of TRAC. It
specializes in relevant, credible exploratory and applied research related to
modeling, simulation, and analysis methodologies.

The Cultural Geography (CG) Model, developed by TRAC-Monterey, is a
low-resolution, agent-based, discrete event social simulation tailored to specific
operational environments based on doctrine and social theory. It is designed to
represent the behavioral responses of civilian populations in conflict
environments. It focuses on the political, military, economic, social, infrastructure,
and information variables in the operational environment, which affect the
population’s beliefs, values, interests, attitudes, and behaviors. TRAC-Monterey
developed the model to support the analysis of civilian population perception

based on friendly and threat actions.

The CG Model is built around the concept of reusable “plug-and-play”
Java modules that formalize theories from behavioral and social science. It is
implemented in Java and utilizes Simkit as the simulation engine. It blends a

variety of carefully selected social science theories with current and emerging
1



counterinsurgency and stability operations doctrine. It employs a social network
for population entities and a bipartite network between groups and population
entities to represent the evolving relationships and interactions over time. The
civilian population entities and adversary entities have deep intelligence
representations to allow those agents to react to events and information, and to

change positions and affiliations over time with a clear understanding of motive.

2. Need for Key Leader Engagement Functionality

The current version of the CG Model does not represent key leader
engagements, which are activities between coalition military forces and host
nation civilian personnel as a means of obtaining information, influencing
behavior, and building an indigenous base of support for coalition and
government objectives. TRAC needs this capability for additional tactical level

representation of the operational environment.

TRAC's Irregular Warfare (IW) Tactical Wargame (TWG) initiative utilizes
Nexus, an interpretive social science simulation of IW that is separate from the
CG Model, to incorporate the influence of key individuals on the population by
modeling the key leader network. One of the focus areas discussed in the after-
action report from the TWG that TRAC-Monterey held in October 2011 was a
need to incorporate the Nexus key leader functionality into the existing CG
Model. In an effort to create an integrated, simplified, and stable model that
encompasses social interactions and cultural impacts, TRAC-Monterey is
creating a new model, the Social Impacts Module, or SIM. The goal is to have
SIM complete by the next TWG scheduled for the spring of 2013.

The Nexus Key Leader Model, a part of the Nexus suite, is a cognitive
agent-based model that focuses on individual, discrete interactions among
agents such as those found in key leader engagements. Nexus utilizes Repast,
an agent-based modeling and simulation toolkit. Agent behaviors and symbolic

interactionism are derived from interpretive social science. Agents individually



adapt to civil and military intervention using Artificial Intelligence Technologies,

and so they implement cultural rules using probabilistic ontologies. (Duong n.d.)

TRAC seeks to remodel the components of Nexus as discrete event
simulation using Simkit, the basis for the CG Model. Currently the CG Model
takes the Nexus outputs as a subset of its inputs to study a larger cultural
population. This thesis project looks at the feasibility for the seamless integration
of the Nexus-based code into the CG Model, thus providing improved continuity

of the input parameters and the output data.

B. KEY LEADERS AND KEY LEADER ENGAGEMENTS
1. Key Leaders

Key leaders are the formal or informal leaders that are powerful in a
society and can influence a target audience in a way that is beneficial for
coalition operations. In the context of a TWG, key leaders are of two types. The
first type is the coalition force representative, or military commander, represented
by the physical player of the TWG; the human player has a simulated
representation in the model. The second type is the key actor in the mission area
with whom the military commander wants to engage; this is the powerbroker,
stakeholder, or otherwise influential voice within the community and culture being
studied, represented by a simulated entity within the model. Key leaders are one
of the primary means through which players may influence the population. They
can provide critical knowledge about other key leaders, threats, or resources,
pass messages to the population, or inform players as to issue stances regarding

Community concerns.

Key leaders can be encouraged (monetarily or non-monetarily) or
threatened. They can be captured or killed through player action, and if this
occurs, the network of leaders within the game will reorganize through an
adjudication process, and influences may change. Players begin with a unique
list of known key leaders. Additional key leaders will be revealed throughout the
game as the players form relationships with the population.

3



The motivation for key leaders to act a particular way toward coalition
forces comes from an attribute called observed attitudes and behaviors (OAB).
This is a key leader’s general attitude toward coalition forces, either positive or
negative, coupled with their propensity to act a certain way, either active or
passive. The OAB types of the key leaders in this study are positive active (will
go out of their way to help you), positive passive (like you but will generally stay
out of the way), neutral, negative passive (do not like you but will generally stay
out of the way), and negative active (will go out of their way to hurt you).

2. Key Leader Engagements

The interactions between the physical players and simulated entities are
called key leader engagements (KLE). KLEs are planned to convey selected
information and indicators to foreign audiences to influence their emotions,
motives, objective reasoning, and ultimately the behavior of foreign governments,
organizations, groups, and individuals. They are held in order to collect
intelligence, develop relationships in support of commander’s intent, and obtain
mutually satisfying outcomes within constraints existing in a partnered nation’s

cultural belief system.

In general, a KLE is more than just a meeting, mini-conference, or working
group between the military leaders and the local population. They are exploratory
engagements in order for both sides to identify one another's motives. KLEs
enable military leaders and decision makers to interact with key leaders and the
local populace in order to begin or build relations. In addition, KLEs enable
military leaders to identify the key issues and concerns of the population
(McKenna and Hampsey 2010).

A subset of KLEs consists of micro-KLEs. These deal with getting
information from civilians within the general population. Micro-KLEs have
outcomes that are associated with the OAB of the civilian, and the civilian that is
chosen to interact with is usually selected at random. Based on that person’s

social network, he or she might know something about a key leader, a threat, or

4



a resource, and based on that person’s motivations, he or she might tell a human
player what they know. Not every micro-KLE results in useful information, and so

the probability of getting actionable information is usually low.

C. RESEARCH QUESTIONS
1. Satisfactorily Modeling KLEs

Can we satisfactorily model KLEs using discrete event simulation and
Simkit? Additionally, are we gaining or losing (or willing to lose) any important
KLE functionality from the current method of using a third-party model? Upon
exploring the feasibility of modeling KLEs, we were able to create a simple, yet
realistic, discrete event simulation model of KLEs. This model also included the
ability to look at micro-KLEs, a function not found within Nexus but identified by
TRAC as important for SIM.

2. Significant Input Parameters and Code Verification

What input parameters are significant when predicting the model output
responses? Can these significant factors assist with code verification efforts?
Through the use of second-order regression metamodels and partition tree
models, our analysis highlighted several input parameters that were statistically
significant in predicting all of the output responses. In most cases, the
metamodels and tree models backed each other up. Additionally, the factors
found to be most significant helped verify the expected behavior of the model

components.

3. Summary Statistic Insights

Are there any insights we can gain from the model using the output
summary statistics, such as variability issues or outlier issues? The analysis
showed that most of the output responses provide plausible ranges and

variations, thus verifying the reasonableness of our model outputs. Outliers did



not appear to be an issue. Furthermore, the summary statistics showed us that
the number of micro-KLEs response appeared anomalous as it exhibited

exponential growth.

D. METHODOLOGICAL APPROACH

We conducted an initial analysis of the KLE components within Nexus.
The goal was to identify and understand the critical components of the network
relating to KLEs. We remodeled these critical components using discrete event
simulation. This involved the creation of model agents, the development of agent
behaviors, and the definition and development of parameters, state variables,
and event graphs. We then translated the agents, behaviors, and event graphs

into computer code using Java and Simkit for direct closed-loop analysis.

Additionally, the CG Model currently uses Bayesian belief networks to
model the population stance changes. Another project within TRAC-Monterey’s
scope is to explore the possibility of modeling the population behavior using
Markov chains instead of the Bayesian belief networks. To conform to this
updated population behavior methodology, Markov chains were utilized in

modeling the key leader OAB changes and assignments.

Once we completed the discrete event simulation modeling, simulation
scenarios were developed to study the KLE Model and to provide insight on what
model input parameters have the greatest impact on influencing model output
behaviors. Large-scale experiments (Kleijnen et al. 2005, Vieira et al. 2011) were
designed and employed to vary the input parameters in a structured, efficient
manner in order to assist with code verification efforts. Output responses similar
to those in Nexus were identified, developed, and added to the KLE Model to

gather information from the model for statistical analysis.

The simulation output data were collected and analyzed to identify and
build any useful statistical relationships that can help predict model input
outcomes. Analysis tools used included second-order regression metamodels,

partition tree models, summary statistics, histograms, and boxplots.
6



We provide details about the KLE Model in Chapter Il. In Chapter Il we
describe the experimental design used to investigate the KLE Model’s
performance. Chapter IV contains our analysis and assessment of 13 different

model responses. Conclusions and suggestions for further research appear in
Chapter V.
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I KEY LEADER ENGAGEMENT MODEL

Chapter 1l begins with a description of the requirements needed for a
closed-loop model of key leader engagements (KLE). Some of these
requirements are highlighted in TRAC-Monterey supporting documentation, while
others are a carryover from the Nexus KLE functionality. Next, we discuss the
three types of agents used in the model, namely Blue players, Green players,
and Red players, followed by behavior equations that are used to model agent
behaviors. Lastly, the event graphs and components that we built are described

in detail, including the component listening structure and adapters.

A. REQUIREMENTS OF KLE MODEL

Specific requirements for integrating Nexus into the Cultural Geography
(CG) Model are outlined in Caldwell and Brown (2011). The model must allow
agents to update their observed attitudes and behaviors (OAB), consent to pass
a message, and provide critical knowledge on key leaders, threats, and/or
resources. Other components are required to integrate with the CG Model, but
the KLE Model in this research is run independently from the CG Model, so those
functions are not explicitly implemented. The requirements document does not
outline some of the KLE functionality, but it is a continuation from the legacy
version of Nexus and used in comparing the KLE Model outputs to the tactical
wargame (TWG) results; these functions are campaigning, capturing, killing, and

replacing key leaders.

In order to model KLEs, we need to model agents, behaviors, and events.
The agents represented in the model are Blue players (coalition force military
commanders), Green players (key leaders), and Red players (anti-coalition force
and/or anti-key leader personnel). The behaviors are represented by simple
equations or probability transition matrices utilizing OABs, probability factors,

probabilities, and times.



The components used in this model allow for a closed-loop execution of
events that are based on discrete event simulation using Simkit. For more
information on discrete event simulation modeling and discrete event

programming with Simkit, see Buss (2011).

The KLE Model requirements include:

. Method to create agents;

. Method to figure out if Blue players are seeking out micro-KLEs or
scheduling KLEs, to include reneges and no-shows;

o Method to handle micro-KLEs and potentially gain critical
knowledge;

. Methods to handle KLEs and potentially persuade Green players to
pass messages, provide critical knowledge, and/or update their
OAB;

o Method to handle Green player campaigns;

o Method to handle capturing and killing of Green players;

o Method to handle releasing of Green players; and

. Method to handle Green player replacements.

B. AGENTS IN KLE MODEL
1. BluePlayer Agent

A BluePlayer agent in the KLE Model represents a United States military
commander or coalition force commander that has the authority to conduct
micro-KLEs and partake in KLEs. The agent has three attributes, summarized in
Table 1. The attribute name is self-explanatory. The attribute id is a unique
integer identification for the Blue player to help identify the agent in the model.
The first Blue player created has an id of 1; each subsequent Blue player created
has the next incremental integer. The attribute incentiveToOffer is a Boolean-
type used to show if the Blue player has an incentive to offer to a Green player
during a KLE.
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Attribute Type Description
name String name of Blue player
id int integer identification of Blue player
Blue player has (true) or does not have
(false) an incentive to offer a Green player

incentiveToOffer boolean

Table 1. BluePlayer agent attributes.

2. GreenPlayer Agent

A GreenPlayer agent in the KLE Model represents the influential key
leader. The agent has 16 attributes, summarized in Table 2. The attribute name
is self-explanatory. The attribute id is a unique integer identification for the Green
player to help identify the agent in the model. The first Green player created has
an id of 1; each subsequent Green player created has the next incremental
integer. The attribute observedAttitudeBehavior holds the current OAB for the
Green player. The following are the corresponding OAB values for the
representative integers: O is negative active, 1 is negative passive, 2 is neutral, 3
IS positive passive, and 4 is positive active. The attribute corrupt is a Boolean-
type used to show if the Green player is corrupt and will be enticed by incentives
offered during KLEs. The attribute agreedToPassMessage is a Boolean-type
used to show if the Green player has agreed to pass along a message from a
Blue player during a KLE. The attribute keyLeaderKnowledge is a Boolean-type
used to show if the Green player has critical knowledge on other key leaders to
provide to a Blue player during a KLE. The attribute threatkKnowledge is a
Boolean-type used to show if the Green player has critical knowledge on threats
to provide to a Blue player during a KLE. The attribute resourceKnowledge is a
Boolean-type used to show if the Green player has critical knowledge on

resources to provide to a Blue player during a KLE.

The attribute incentivized is a Boolean-type used to show if the Green
player has been offered an incentive during a KLE. The attribute threatened is a
Boolean-type used to show if the Green player has been presented a threat
during a KLE. The attribute killed holds the current killed status of the Green
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player as an integer; O corresponds to alive, 1 corresponds to killed by a Blue
player, and 2 corresponds to killed by a Red player. The attribute captured holds
the current captured status of the Green player as an integer; O corresponds to
not captured, 1 corresponds to captured by a Blue player, and 2 corresponds to
captured by a Red player. The attribute replacement represents another
GreenPlayer agent who is a replacement for the Green player if he is captured or
killed. The attribute kleStartTimeStamp is used to mark the beginning of a KLE.
The attribute kleEndTimeStamp is used to mark the end of a KLE. The attribute

campaignTimeStamp is used to mark the start of a campaign.
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Attribute Type Description
name String name of Green player
id int integer identification of Green player
Green player's observed attitude and behavior
towards Blue players
(0 = negative active
observedAttitudeBehavior int 1 = negative passive
2 = neutral
3 = positive passive
4 = positive active)
corrupt boolean Green player is (true) or is not (false) corrupt
G I has (t h t (fal
agreedToPassMessage boolean _reen player has (true) Qr ars not (false)
agreed to pass a Blue player's message
_ Green player has (true) or does not have (false)
keyLeaderKnowledge boolean critical knowledge on other key leaders
threatknowledge boolean Green playgr_ has (true) or does not have (false)
critical knowledge on threats
resourceknowledge boolean Green pla\.y(.ar. has (true) or does not have (false)
critical knowledge on resources
incentivized boolean Green player has.(true) or has not (false) been
incentivized
threatened boolean Green player has (true) or has not (false) been
threatened
killed status of Green player
: . (0 = alive
killed int 1 = killed by Blue player
2 = killed by Red player)
captured status of Green player
. 0 = not captured
captured int (0= not capture

1 = captured by Blue player
2 = captured by Red player)

replacement

GreenPlayer

Green player replacement for a killed or
captured Green player

kleStartTimeStamp double time stamp used to mark the beginning of a KLE
kleEndTimeStamp double time stamp used to mark the end of a KLE
campaignTimeStamp double time stamp used to mark the start of a

campaign

Table 2.

GreenPlayer agent attributes.
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3. RedPlayer Agent

A RedPlayer agent in the KLE Model represents a person who is the
enemy of the United States or coalition forces, or even of key leaders, and does
not want collaboration between Blue players and Green players. A Red player
could be in direct competition with a Blue player for the favor of a Green player,
but this behavior is not modeled. Based on certain actions of Green players, Red
players capture or kill Green players. A Red player does not have a physical
representation within the model and is only referenced or implied through event

names.

C. BEHAVIOR EQUATIONS IN KLE MODEL

The KLE Model uses several “behavior equations” to control certain
actions by the players. These equations use simple logic to determine
probabilities that players carry out a particular action. In all cases, the calculated
probability or probabilities are referenced against a random uniform draw

between 0 and 1 to see if the player behaves a particular way.

Behavior Equation 1 (Figure 1) is used to see if a Blue player can gain
knowledge during micro-KLEs or have requests honored during KLEs. It has
three variables. The first represents the OAB value, an integer between 0 and 4,
of a player. The second is a random uniform draw between 0 and 1. The third is
a probability factor, assumed to be between 0 and 0.2. The equation takes the
OAB and adds to it the random uniform draw. The result is then multiplied by the
probability factor. This gives a resulting probability that will always be between 0
and 1. The purpose of the equation is to give a range of probabilities for the
player to access, and for the probabilities to be increasingly higher as the OAB
value increases. For instance, if the probability factor is 0.1, a player with an OAB
of O will have a behavior probability between 0 and 0.1. Likewise, a player with
an OAB of 4 will have a behavior probability between 0.4 and 0.5. In both cases,

a separate random uniform draw is compared to the probability range.
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P{Blue player gamns knowledge durmg micro-KLE or
has request honored dunng KILE}
=(0AB+U)* pf

where (AR = observed attitude and behawvior, between 0 and 4
U ~ Uniferm(0,1)
Pf = probabihity factor between 0 and 0.2

Figure 1. Behavior Equation 1

Behavior Equation 2 (Figure 2) is used to see if a Green player is going to
renege from or be a no-show to a planned KLE and to see if a Blue player will
offer a threat to a Green player during a KLE. It has three variables. The first
represents the OAB value, an integer between 0 and 4, of a player. The second
is a random uniform draw between 0 and 1. The third is a probability factor,
assumed to be between 0 and 0.2. The equation subtracts four from the OAB,
takes the absolute value of the result, and adds to it the random uniform draw.
The result is then multiplied by the probability factor. This gives a resulting
probability that will always be between 0 and 1. The purpose of the equation is to
give a range of probabilities for the player to access, and for the probabilities to
be decreasingly lower as the OAB value increases. For instance, if the probability
factor is 0.2, a player with an OAB of 0 will have a behavior probability between
0.8 and 1. Likewise, a player with an OAB of 4 will have a behavior probability
between 0 and 0.2. In both cases, a separate random uniform draw is compared

to the probability range.
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P{Green player reneges from or 15 a no-show to a KLE, or
Blue player offers threat dunng ETE}

={]G.=‘.E—4-|+E.-'J*p_f

where OAE = observed attitude and behavior, between 0 and 4
U ~ Uniform(0,1)
pf = probability factor between 0 and 0.2

Figure 2. Behavior Equation 2

Behavior Equation 3 (Figure 3) is used to see if a Green player is going to
be captured or killed by a Blue player following a campaign or captured or killed
by a Red player following a KLE or campaign. It has two variables. The first
represents a baseline probability. The second represents some amount of
elapsed time between two events. The equation multiplies the baseline
probability by the time. The KLE Model assumes that the resulting calculation will
always be less than or equal to one to make it a valid probability, so maximum
times between events need to be planned accordingly. The purpose of the
equation is to give an increasing behavior probability as a player spends more
time performing some action. For instance, if the baseline probability is 0.2 and a
player spends 2 units of time in an activity, the player will have a behavior

probability of 0.4. Then, a random uniform draw is compared to the probability.

P{Green player 1s captured or lalled by Blue Player after a campaign or
by Red player after a KLE or campaign }
= Pbm'n'lru'*'r#HE

where p, . =basehne probability between 0 and 1
rime = elapsed time between events

Figure 3. Behavior Equation 3
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Behavior Equation 4 (Figure 4) is used to see if a Green player is going to
be captured or killed by a Blue player following a KLE. It has two variables. The
first represents a baseline probability. The second represents some amount of
elapsed time between two events. The equation divides the baseline probability
by the time. The KLE Model assumes that the resulting calculation will always be
less than or equal to one to make it a valid probability, so minimum and
maximum times between events need to be planned accordingly. The purpose of
the equation is to give a decreasing behavior probability as a player spends more
time performing some action. For instance, if the baseline probability is 0.3 and a
player spends 3 units of time in an activity, the player will have a behavior

probability of 0.1. Then, a random uniform draw is compared to the probability.

P{Green player 1s captured or killed by Blue Player after a KLE}
_ Proseine

fime

where p, .= baseline probability between 0 and 1
time = elapsed time between events

Figure 4. Behavior Equation 4

Behavior Equation 5 (Figure 5), which is actually a five-by-five probability
transition matrix, is used to see if a Green player updates his OAB during a KLE
or after being captured, or it is used to set the OAB of a replacement after a
Green player is captured or killed. The equation has three variables. The first
represents the OAB value, an integer between 0 and 4, of a player. The second
represents the probability of an OAB decrease. The third represents the
probability of an OAB increase. The model uses the two probabilities to complete
the matrix in Figure 5. For example, if the decrease probability is 0.1, the
increase probability is 0.2, and the player OAB is 3, then the player will have a
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0.1 probability of lowering his OAB to 2, a 0.7 probability of keeping his OAB at 3,
and a 0.2 probability of raising his OAB to 4. We assume that the Green player’s
OAB will change by at most 1 (in either direction) after a KLE.

T = T = = R =

SRS S

where OAB = observed attitude and behavior
D = probability of OAB decrease
I = probability of OAB increase

Figure 5. Behavior Equation 5 probability transition matrix

D. COMPONENTS OF KLE MODEL
1. CreatePlayers

The CreatePlayers component creates a number of BluePlayer agents
and GreenPlayer agents, each defined by the user via input parameters Ngp and
Ngp, respectively, which will be used in the KLE Model. BluePlayer agents
require a parameter p, that gives their probability of having an incentive to offer.
GreenPlayer agents require four parameters, pc, Pxik, Ptk, and prk, Which give
probabilities for being corrupt, having key leader critical knowledge, having threat

critical knowledge, and having resource critical knowledge, respectively.

Parameters for the CreatePlayers component are summarized in Table 3.
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Parameter Description
Ngp total number of Blue players
4] probability of Blue player having incentive to offer
Ngp total number of Green players
Pc probability of Green player being corrupt
Prik probability of Green player having key leader knowledge
Pk probability of Green player having threat knowledge
Prk probability of Green player having resource knowledge
Table 3. CreatePlayers parameters

The event graph for the CreatePlayers component is shown in Figure 6.

(i < Ngp)

Blue
Player
Arrival

(b)

Create
Blue
Player
(i)
{BluePlayer b =

new BluePlayer(p,)
i++}

{GreenPlayer g =
new GreenPlayer(“GREEN”, pc, Py Pri Pre)
i++}

Green
Player
Arrival

(8)

Create
Green
Player

(i)

(i< Ngp)

Figure 6. CreatePlayers event graph
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The Run event schedules the CreateBluePlayer and CreateGreenPlayer

events, passing the local parameter zero to both.

The CreateBluePlayer and CreateGreenPlayer events simulate adding a
Blue player or Green player, respectively, to the model. They each take in a local
integer parameter to keep track of how many players have been created. Each
event creates a BluePlayer or GreenPlayer agent, respectively, increments the
local integer parameter by one, and schedules a BluePlayerArrival or
GreenPlayerArrival event, respectively, passing along the created agent. The
self-scheduling loops schedule another agent creation if the local integer variable

is less than the parameters Ngp or Ngp, respectively.

The BluePlayerArrival and GreenPlayerArrival events each simulate a
Blue player or Green player, respectively, looking to schedule their first KLE.
They take in a local parameter represented by a BluePlayer or GreenPlayer

agent, respectively.

2. HandleEngagementType

The HandleEngagementType component handles the scheduling of micro-
KLEs and KLEs. It has six input parameters. It requires four random distributions
representing the stream of times that Blue players schedule their next micro-KLE
({tam]}), the stream of times that Blue Players schedule their next KLE ({tnk}), the
stream of times that Green players renege from a KLE ({trg}), and the stream of
times that Blue players schedule their next arrival for another micro-KLE or KLE
({tsm}). The parameter pfrg, Which is a number between 0 and 0.2, is used as a
probability factor to calculate whether a Green player is going to renege from a
KLE. The parameter pfys, which is a number between 0 and 0.2, is used as a

probability factor to calculate whether a Green player is a no-show to a KLE.

The HandleEngagementType component has two state variables that
represent lists; q is a queue to hold the arriving Green players to the component,
and x is a list of any Green players that have been canceled and no longer

needed in the model.
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Parameters, parameter constraints, and state variables for the

HandleEngagementType component are summarized in Table 4.

Parameter Description
{tamt stream of Blue player next micro-KLE times
{tnit stream of Blue player next KLE times
{trc} stream of Green player renege times
{tam} stream of Blue player next meeting times
pfra renege probability factor
Plus no-show probability factor
Parameter Constraint
0<pfre<0.2
0<pfys<0.2
State Variable Description
q queue to hold arriving Green players
X list of canceled Green players
Table 4. HandleEngagementType parameters, parameter constraints, and

state variables

The event graph for the HandleEngagementType component is shown in
Figure 7.
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Figure 7. HandleEngagementType event graph

The Run event clears g and x.
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The BluePlayerArrival event simulates a Blue player looking for a micro-
KLE or looking to set up a KLE. It takes a BluePlayer agent as its local
parameter. If there are no Green players to meet, a BlueReadyForMicroKLE
event is scheduled with a time delay pulled from {tyv}, passing along the local
Blue player. If there is a Green player available, a LinkPlayersForKLE event is

scheduled, passing along the local Blue player.

The GreenPlayerArrival event simulates a Green player looking to set up a
KLE. It takes a GreenPlayer agent as its local parameter. It adds the local Green

player to q.

The BlueReadyForMicroKLE event simulates a Blue player being ready to

start a micro-KLE. It takes a BluePlayer agent as its local parameter.

The LinkPlayersForKLE event simulates the initial agreement by a Blue
player and Green player to set up a KLE. It takes a BluePlayer agent as its local
parameter. Since the model assumes Blue players have no preference for which
Green player they engage, it removes the first Green player from g and assigns it
to a local GreenPlayer agent variable. It draws a random uniform number
between 0 and 1. It then calculates the probability that the local Green player
reneges by using the Green players OAB value and the parameter pfrg In
behavior Equation 2 (Figure 2). If the random uniform draw is less than the
calculated renege probability, it schedules a GreenReneges event with a time
delay pulled from {trc}, passing along the local Blue player and local Green
player. If the random uniform draw is greater than or equal to the calculated
renege probability, it schedules a PlayersReadyForKLE event with a time delay

pulled from {tnk}, passing along the local Blue player and local Green player.

The GreenReneges event simulates a Green player calling off a planned
KLE. It takes both a BluePlayer and GreenPlayer agent as its local parameters. If
the local Green player is not in x, it adds the Green player back to g. If the Green
player is not canceled, the assumption is that the Green player is still alive and

has reneged. If the Green player is canceled, the assumption is that the Green
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player is not alive or no longer available, and the Blue player is made aware of
this fact before showing up for the KLE. This event schedules a BluePlayerArrival

event with a time delay pulled from {tgm}, passing along the local Blue player.

The PlayersReadyForKLE event checks if a Blue player and Green player
are ready to start a KLE. It takes both a BluePlayer and GreenPlayer agent as its
local parameters. It draws a random uniform number between 0 and 1. It then
calculates the probability that the local Green player is a no-show by using the
Green player's OAB value and the parameter pfys in behavior Equation 2 (Figure
2). If the local Green player is in x, or if the random uniform draw is less than the
calculated no-show probability, it schedules a GreenNoShow event, passing
along the local Blue player and local Green player. If the local Green player is not
in x and the random uniform draw is greater than or equal to the calculated no-
show probability, it schedules a SendPlayersToKLE event, passing along the

local Blue player and local Green player.

The GreenNoShow event simulates a Green player not showing up for a
KLE. It takes both a BluePlayer and GreenPlayer agent as its local parameters. If
the local Green player is not in x, it adds the Green player back to g. If the Green
player is not canceled, the assumption is that the Green player is still alive and is
a no-show. If the Green player is canceled, the assumption is that the Green
player is not alive or no longer available, and the Blue player is made aware of
this fact upon showing up for the KLE. This event schedules a BluePlayerArrival

event with a time delay pulled from {tgm}, passing along the local Blue player.

The SendPlayersToKLE event simulates a Blue player and Green player
being ready to start a KLE. It takes both a BluePlayer and GreenPlayer agent as

its local parameters.

The GreenCanceled event simulates a Green player who is a replacement
being no longer needed in the model. It takes a GreenPlayer agent as its local

parameter. It removes the local Green player from ¢, and it adds the player to x.
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3. MicroKeyLeaderEngagement

The MicroKeyLeaderEngagement component represents a micro-KLE
with an entity that is not a key leader. It has two input parameters. It requires a
random distribution representing the stream of times that Blue players will spend
in a micro-KLE ({tw}). The parameter pfck, which is a number between 0 and 0.2,
is used as a probability factor to calculate whether a Blue player is going to gain
critical knowledge during a micro-KLE.

The MicroKeyLeaderEngagement component has two state variables. The
variable Nyk.e tracks the number of micro-KLEs held. The variable Nykg tracks

the number of times critical knowledge is gained from a micro-KLE.

Parameters, parameter constraints, and state variables for the

MicroKeyLeaderEngagement component are summarized in Table 5.

Parameter Description
{tm} stream of micro-KLE times
Pfek chance of knowledge probability factor
Parameter Constraint
0<pfg<0.2
State Variable Description
Npkie number of micro-KLEs (initialized to 0)
Nrxe number of times critical knowledge gained (initialized to 0)
Table 5. MicroKeyLeaderEngagement parameters, parameter constraints,

and state variables

The event graph for the MicroKeyLeaderEngagement component is
shown in Figure 8.
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Figure 8. MicroKeyLeaderEngagement event graph

The Run event initializes the two state variables to zero.

The StartMicroKLE event simulates the beginning of a micro-KLE. It takes
a BluePlayer agent as its local parameter. It draws a random uniform number
between O and 1. It also draws a random integer between 0 and 4 that
represents the OAB of the non-key leader. It then calculates the probability that
the non-key leader honors the local Blue player’s critical knowledge request by
using the random integer draw and the parameter pfck in behavior Equation 1

(Figure 1). If the random uniform draw is less than the calculated knowledge
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probability, it schedules an EndMicroKLEAndGetKnowledge event with a time
delay pulled from {ty}, passing along the local Blue player. If the random uniform
draw is greater than or equal to the calculated knowledge probability, it
schedules an EndMicroKLEAndDoNotGetKnowledge event with the same time

delay and by passing the Blue player.

The EndMicroKLEANndGetKnowledge event simulates the end of a micro-
KLE and a Blue player getting critical knowledge. It takes a BluePlayer agent as
its local parameter. It increments NykLe and Ntkg both by one. It then schedules

a ScheduleBlueNextMeeting event, passing along the local Blue player.

The EndMicroKLEAndDoNotGetKnowledge event simulates the end of a
micro-KLE and a Blue player not getting any critical knowledge. It takes a
BluePlayer agent as its local parameter. It increments Nyk.e by one. It then

schedules a ScheduleBlueNextMeeting, passing along the local Blue player.

The ScheduleBlueNextMeeting event simulates a Blue player scheduling
his next arrival for a micro-KLE or KLE. It takes a BluePlayer agent as its local

parameter.

4. KeyLeaderEngagement

The KeylLeaderEngagement component represents a KLE occurrence. It
has three input parameters. It requires two random distributions representing the
stream of times that Blue players and Green players will spend in a KLE ({tx})
and the stream of times that Blue players schedule their next arrival for another
micro-KLE or KLE ({tem}). The parameter p, is the same parameter from the
CreatePlayers component representing the probability that a Blue player has an

incentive to offer.

The KeyLeaderEngagement component has two state variables. The
variable Nk_g tracks the number of KLEs held. The variable x is a list of any

Green players that have been canceled and no longer needed in the model.
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Parameters and state variables for the KeyLeaderEngagement component

are summarized in Table 6.

Parameter Description
{te} stream of KLE times
{tamt stream of Blue player next meeting times
o] probability of Blue player having incentive to offer

State Variable

Description

Ngie number of KLEs (initialized to 0)
X list of canceled Green players
Table 6. KeyLeaderEngagement parameters and state variables

The event graph for the KeyLeaderEngagement component is shown in

Figure 9.
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KeyLeaderEngagement event graph
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The Run event initializes Nk g to zero. It also clears x.

The StartKLE event simulates the beginning of a KLE. It takes both a
BluePlayer and GreenPlayer agent as its local parameters. It stamps the KLE
start time for the local Green player. It resets whether the local Blue player has
an incentive to offer using p,. Lastly, it schedules an EndKLE event with a time

delay pulled from {t«}, passing along the local Blue player and local Green player.

The EndKLE event simulates the end of a KLE. It takes both a BluePlayer
and GreenPlayer agent as its local parameters. It increments Ng. e by one,
stamps the KLE end time for the local Green player, and, if the local Green
player is in x, sets the killed status of the local Green player as if he was killed by
a Red player. This event schedules a ScheduleBlueNextMeeting event with a
time delay pulled from {tgv}, passing along the local Blue player. It also
schedules a HandleRequests event, passing along the local Blue player and

local Green player.

The ScheduleBlueNextMeeting event simulates a Blue player scheduling
his next arrival for a micro-KLE or KLE. It takes a BluePlayer agent as its local

parameter.

The HandleRequests event simulates a Blue player and Green player
going over the KLE requests. It takes both a BluePlayer and GreenPlayer agent

as its local parameters.

The GreenCanceled event simulates a Green player replacement who is
no longer needed in the model. It takes a GreenPlayer agent as its local

parameter. It adds the local Green player to x.

5. HandleMessageRequest

The HandleMessageRequest component represents a GreenPlayer agent
deciding if he will pass a message from a BluePlayer agent to those under his
influence. It has four input parameters. The parameter pfgr, which is a number

between 0 and 0.2, is used as a probability factor to calculate whether a Blue
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player will offer a threat during a KLE to get the Green player to pass a message.
The final three parameters, pfur, pfuri, and pfurt, all between 0 and 0.2, are used
as probability factors to calculate whether a Green player will honor the Blue
player's request outright, honor with an incentive, or honor with a threat,

respectively.

The HandleMessageRequest component has one state variable. The

variable Nyrw tracks the number of honored message requests.

Parameters, parameter constraints, and state variables for the
HandleMessageRequest component are summarized in Table 7.

Parameter Description
pfar Blue player offering threat probability factor
pfur honor request probability factor
Plum honor request with incentive probability factor
pPfuar honor request with threat probability factor
Parameter Constraint
0<pfer<0.2
0<pfyr<0.2
0 < pfyp <0.2
0<pfypr<0.2
State Variable Description
Nurm number of honored message requests (initialized to 0)
Table 7. HandleMessageRequest parameters, parameter constraints, and

state variables

The event graph for the HandleMessageRequest component is shown in
Figures 10 and 11.
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Figure 11. HandleMessageRequest event graph (part 2)

The Run event initializes Nyrwm tO zero.

The StartMessageRequest event simulates the beginning of the message
request. It takes both a BluePlayer and GreenPlayer agent as its local
parameters. It resets the fact that the local Green player has agreed to pass a
message to false. Next, it draws a random uniform number between 0 and 1. It
then calculates the probability that the local Green player will honor the request
outright to pass a message by using the Green player's OAB value and the
parameter pfur in behavior Equation 1 (Figure 1). If the random uniform draw is
less than the calculated honoring request probability, it schedules an
AgreeToPassMessage event, passing along the local Blue player and local
Green player. If the random uniform draw is greater than or equal to the
calculated honoring request probability, it schedules a DoNotPassOfferincentive

event, passing along the local Blue player and local Green player.

The AgreeToPassMessage event simulates a Green player agreeing to
pass a message. It takes both a BluePlayer and GreenPlayer agent as its local
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parameters. It increments Nyrm by one, and it sets the fact that the local Green
player has agreed to pass a message to true. It schedules an
EndMessageRequest event, passing along the local Blue player and local Green

player.

The DoNotPassOfferincentive event simulates a Green player deciding
not to pass a message and a Blue player potentially offering an incentive to
persuade the Green player to change his mind and pass a message. It takes
both a BluePlayer and GreenPlayer agent as its local parameters. If the local
Blue player has an incentive to offer to the local Green player, it schedules an
IncentiveOffered event, passing along the local Blue player and local Green
player. If the local Blue player does not have an incentive to offer, it schedules a
DoNotPassPresentThreat event, passing along the local Blue player and local

Green player.

The IncentiveOffered event simulates a Blue player offering an incentive
to a Green player to persuade him to pass a message. It takes both a BluePlayer
and GreenPlayer agent as its local parameters. It sets the fact that the local
Green player has been incentivized to true. Next, it draws a random uniform
number between 0 and 1. It then calculates the probability that the local Green
player will honor the request to pass a message given an incentive by using the
Green player's OAB value and the parameter pfyg, in behavior Equation 1 (Figure
1). If the Green player is corrupt and the random uniform draw is less than the
calculated honoring request probability, it schedules an AgreeToPassMessage
event, passing along the local Blue player and local Green player. If the Green
player is corrupt and the random uniform draw is greater than or equal to the
calculated honoring request probability, or if the Green player is not corrupt, it
schedules a DoNotPassPresentThreat event, passing along the local Blue player
and local Green player.

The DoNotPassPresentThreat event simulates a Green player deciding
not to pass a message and a Blue player potentially presenting a threat to

persuade the Green player to change his mind and pass a message. It takes
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both a BluePlayer and GreenPlayer agent as its local parameters. It draws a
random uniform number between 0 and 1. It then calculates the probability that
the local Blue player will threaten the local Green player by using the Green
player's OAB value and the parameter pfgr in behavior Equation 2 (Figure 2). If
the random uniform draw is less than the calculated threat probability, it
schedules a ThreatPresented event, passing along the local Blue player and
local Green player. If the random uniform draw is greater than or equal to the
calculated threat probability, it schedules a DoNotAgreeToPassMessage event,

passing along the local Blue player and local Green player.

The ThreatPresented event simulates a Blue player threatening a Green
player to persuade him to pass a message. It takes both a BluePlayer and
GreenPlayer agent as its local parameters. It sets the fact that the local Green
player has been threatened to true. Next, it draws a random uniform number
between 0 and 1. It then calculates the probability that the local Green player will
honor the request to pass a message given a threat by using the Green player’s
OAB value and the parameter pfyrt in behavior Equation 1 (Figure 1). If the
random uniform draw is less than the calculated honoring request probability, it
schedules an AgreeToPassMessage event, passing along the local Blue player
and local Green player. If the random uniform draw is greater than or equal to the
calculated honoring request probability, it schedules a
DoNotAgreeToPassMessage event, passing along the local Blue player and local

Green player.

The DoNotAgreeToPassMessage event simulates a Green player
ultimately not agreeing to pass a message. It takes both a BluePlayer and
GreenPlayer agent as its local parameters. It schedules an EndMessageRequest

event, passing along the local Blue player and local Green player.

The EndMessageRequest event simulates the end of the message
request. It takes both a BluePlayer and GreenPlayer agent as its local

parameters.
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6. HandleKeyLeaderKnowledgeRequest

The HandleKeylLeaderKnowledgeRequest component represents a
GreenPlayer agent deciding on whether to provide key leader critical knowledge
to a BluePlayer. It has five input parameters. The parameters pfgr, pfur, pfuri,
and pfyrr are the same as those used in the HandleMessageRequest
component. The same parameter constraints apply to these four parameters.
The parameter pg.k is the same parameter from the CreatePlayers component
representing the probability that a Green player has key leader critical

knowledge.

The HandleKeyLeaderKnowledgeRequest component has one state
variable. The variable Nyrk tracks the number of honored key leader knowledge

requests.

Parameters, parameter constraints, and state variables for the

HandleKeyLeaderKnowledgeRequest component are summarized in Table 8.

Parameter Description
pfar Blue player offering threat probability factor
Pfur honor request probability factor
plup honor request with incentive probabhility factor
PfarT honor request with threat probability factor
PKLK prohability of Green player having key leader knowledge
Parameter Constraint
0<pfar<0.2
0<pfyr<0.2
0<pfyr=0.2
0 < pfurr < 0.2
State Variable Description
Nygrx number of honored key leader knowledge requests (initialized to 0)
Table 8. HandleKeyLeaderKnowledgeRequest parameters, parameter

constraints, and state variables

The event graph for the HandleKeyLeaderKnowledgeRequest component

is shown in Figures 12 and 13.
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Figure 13. HandleKeyLeaderKnowledgeRequest event graph (part 2)

The Run event initializes Nyrk to zero.

The StartKeyLeaderKnowledgeRequest event simulates the beginning of
the key leader critical knowledge request. It takes both a BluePlayer and
GreenPlayer agent as its local parameters. It draws a random uniform number
between 0 and 1. It then calculates the probability that the local Green player will
honor the request outright to provide key leader critical knowledge by using the
Green player's OAB value and the parameter pfyr in behavior Equation 1 (Figure
1). If the local Green player does not have any key leader critical knowledge, it
schedules a KnowsNothingKeyLeader event, passing along the local Blue player
and local Green player. If the Green player has key leader knowledge and the
random uniform draw is less than the calculated honoring request probability, it
schedules a ProvideKeyLeaderKnowledge event, passing along the local Blue
player and local Green player. If the Green player has key leader knowledge and
the random uniform draw is greater than or equal to the calculated honoring
request probability, it schedules a DoNotProvideOfferincentive event, passing
along the local Blue player and local Green player.
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The KnowsNothingKeyLeader event simulates a Green player not having
any knowledge on other key leaders. It takes both a BluePlayer and GreenPlayer
agent as its local parameters. It reinitializes whether the local Green player has
key leader critical knowledge by using the parameter pg.k. It schedules an
EndKeyLeaderKnowledgeRequest event, passing along the local Blue player and

local Green player.

The ProvideKeyLeaderKnowledge event simulates a Green player
providing key leader critical knowledge. It takes both a BluePlayer and
GreenPlayer agent as its local parameters. It increments Nprc by one, and it
resets whether the local Green player has key leader critical knowledge by using
the parameter pg.k. It schedules an EndKeyLeaderKnowledgeRequest event,

passing along the local Blue player and local Green player.

The DoNotProvideOfferincentive event simulates a Green player deciding
not to provide key leader critical knowledge and a Blue player potentially offering
an incentive to get such knowledge. It takes both a BluePlayer and GreenPlayer
agent as its local parameters. If the local Blue player has an incentive to offer to
the local Green player, it schedules an IncentiveOffered event, passing along the
local Blue player and local Green player. If the local Blue player does not have
an incentive to offer, it schedules a DoNotProvidePresentThreat event, passing

along the local Blue player and local Green player.

The IncentiveOffered event simulates a Blue player offering an incentive
to a Green player in an attempt to extract key leader critical knowledge. It takes
both a BluePlayer and GreenPlayer agent as its local parameters. It sets the fact
that the local Green player has been incentivized to true. Next, it draws a random
uniform number between 0 and 1. It then calculates the probability that the local
Green player will honor the request to provide key leader critical knowledge given
an incentive by using the Green player's OAB value and the parameter pfugs in
behavior Equation 1 (Figure 1). If the Green player is corrupt and the random
uniform draw is less than the calculated honoring request probability, it schedules

a ProvideKeyLeaderKnowledge event, passing along the local Blue player and
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local Green player. If the Green player is corrupt and the random uniform draw is
greater than or equal to the calculated honoring request probability, or if the
Green player is not corrupt, it schedules a DoNotProvidePresentThreat event,

passing along the local Blue player and local Green player.

The DoNotProvidePresentThreat event simulates a Green player deciding
not to provide key leader critical knowledge and a Blue player potentially
presenting a threat to get such knowledge. It takes both a BluePlayer and
GreenPlayer agent as its local parameters. It draws a random uniform number
between 0 and 1. It then calculates the probability that the local Blue player will
threaten the local Green player by using the Green player's OAB value and the
parameter pfgr in behavior Equation 2 (Figure 2). If the random uniform draw is
less than the calculated threat probability, it schedules a ThreatPresented event,
passing along the local Blue player and local Green player. If the random uniform
draw is greater than or equal to the calculated threat probability, it schedules a
DoNotProvideKeylLeaderKnowledge event, passing along the local Blue player

and local Green player.

The ThreatPresented event simulates a Blue player threatening a Green
player for key leader critical knowledge. It takes both a BluePlayer and
GreenPlayer agent as its local parameters. It sets the fact that the local Green
player has been threatened to true. Next, it draws a random uniform number
between 0 and 1. It then calculates the probability that the local Green player will
honor the request to provide key leader critical knowledge given a threat by using
the Green player's OAB value and the parameter pfurt in behavior Equation 1
(Figure 1). If the random uniform draw is less than the calculated honoring
request probability, it schedules a ProvideKeylLeaderKnowledge event, passing
along the local Blue player and local Green player. If the random uniform draw is
greater than or equal to the calculated honoring request probability, it schedules
a DoNotProvideKeylLeaderKnowledge event, passing along the local Blue player

and local Green player.
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The DoNotProvideKeylLeaderKnowledge event simulates a Green player
ultimately not providing key leader critical knowledge. It takes both a BluePlayer
and GreenPlayer agent as its local parameters. It resets whether the local Green
player has key leader critical knowledge by using the parameter pg.k. It then
schedules an EndKeyLeaderKnowledgeRequest event, passing along the local

Blue player and local Green player.

The EndKeylLeaderKnowledgeRequest event simulates the end of the key
leader critical knowledge request. It takes both a BluePlayer and GreenPlayer

agent as its local parameters.

7. HandleThreatKnowledgeRequest

The HandleThreatKknowledgeRequest component represents a
GreenPlayer agent deciding on whether to provide threat critical knowledge to a
BluePlayer. It has five input parameters. The parameters pfgr, pfur, pfuri, and
pfurr are the same as those used in the HandleMessageRequest component.
The same parameter constraints apply to these four parameters. The parameter
prk iIs the same parameter from the CreatePlayers component representing the

probability that a Green player has threat critical knowledge.

The HandleThreatKnowledgeRequest component has one state variable.

The variable Nyt tracks the number of honored threat knowledge requests.

Parameters, parameter constraints, and state variables for the

HandleThreatKnowledgeRequest component are summarized in Table 9.

40



Parameter Description
pfar Blue player offering threat probability factor
pfur honor request probability factor
Plum honor request with incentive probability factor
pfurt honor request with threat probability factor
Pk probability of Green player having threat knowledge
Parameter Constraint
0<pfgr<0.2
0<pfyr<0.2
0<pfyri 0.2
0 <pfyrr<0.2
State Variable Description
Nuygr number of honored threat knowledge requests (initialized to 0)
Table 9. HandleThreatKnowledgeRequest parameters, parameter

constraints, and state variables

The event graph for the HandleThreatKnowledgeRequest component is

shown in Figures 14 and 15.
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Figure 15. HandleThreatKnowledgeRequest event graph (part 2)

The Run event initializes NyrT to zero.

The StartThreatKnowledgeRequest event simulates the beginning of the
threat critical knowledge request. It takes both a BluePlayer and GreenPlayer
agent as its local parameters. It draws a random uniform number between 0 and
1. It then calculates the probability that the local Green player will honor the
request outright to provide threat critical knowledge by using the Green player’s
OAB value and the parameter pfur in behavior Equation 1 (Figure 1). If the local
Green player does not have any threat critical knowledge, it schedules a
KnowsNothingThreat event, passing along the local Blue player and local Green
player. If the Green player has threat knowledge and the random uniform draw is
less than the calculated honoring request probability, it schedules a
ProvideThreatKnowledge event, passing along the local Blue player and local
Green player. If the Green player has threat knowledge and the random uniform
draw is greater than or equal to the calculated honoring request probability, it
schedules a DoNotProvideOfferincentive event, passing along the local Blue
player and local Green player.
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The KnowsNothingThreat event simulates a Green player not having any
knowledge on threats. It takes both a BluePlayer and GreenPlayer agent as its
local parameters. It reinitializes whether the local Green player has threat critical
knowledge by using the parameter px. It schedules an
EndThreatKnowledgeRequest event, passing along the local Blue player and

local Green player.

The ProvideThreatKnowledge event simulates a Green player providing
threat critical knowledge. It takes both a BluePlayer and GreenPlayer agent as its
local parameters. It increments Nyrr by one, and it resets whether the local
Green player has threat critical knowledge by using the parameter prg. It
schedules an EndThreatKnowledgeRequest event, passing along the local Blue

player and local Green player.

The DoNotProvideOfferincentive event simulates a Green player deciding
not to provide threat critical knowledge and a Blue player potentially offering an
incentive to get such knowledge. It takes both a BluePlayer and GreenPlayer
agent as its local parameters. If the local Blue player has an incentive to offer to
the local Green player, it schedules an IncentiveOffered event, passing along the
local Blue player and local Green player. If the local Blue player does not have
an incentive to offer, it schedules a DoNotProvidePresentThreat event, passing

along the local Blue player and local Green player.

The IncentiveOffered event simulates a Blue player offering an incentive
to a Green player in an attempt to extract threat critical knowledge. It takes both
a BluePlayer and GreenPlayer agent as its local parameters. It sets the fact that
the local Green player has been incentivized to true. Next, it draws a random
uniform number between 0 and 1. It then calculates the probability that the local
Green player will honor the request to provide threat critical knowledge given an
incentive by using the Green player's OAB value and the parameter pfygr in
behavior Equation 1 (Figure 1). If the Green player is corrupt and the random
uniform draw is less than the calculated honoring request probability, it schedules

a ProvideThreatkKnowledge event, passing along the local Blue player and local
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Green player. If the Green player is corrupt and the random uniform draw is
greater than or equal to the calculated honoring request probability, or if the
Green player is not corrupt, it schedules a DoNotProvidePresentThreat event,

passing along the local Blue player and local Green player.

The DoNotProvidePresentThreat event simulates a Green player deciding
not to provide threat critical knowledge and a Blue player potentially presenting a
threat to get such knowledge. It takes both a BluePlayer and GreenPlayer agent
as its local parameters. It draws a random uniform number between 0 and 1. It
then calculates the probability that the local Blue player will threaten the local
Green player by using the Green player's OAB value and the parameter pfgr in
behavior Equation 2 (Figure 2). If the random uniform draw is less than the
calculated threat probability, it schedules a ThreatPresented event, passing
along the local Blue player and local Green player. If the random uniform draw is
greater than or equal to the calculated threat probability, it schedules a
DoNotProvideThreatkKnowledge event, passing along the local Blue player and

local Green player.

The ThreatPresented event simulates a Blue player threatening a Green
player for threat critical knowledge. It takes both a BluePlayer and GreenPlayer
agent as its local parameters. It sets the fact that the local Green player has been
threatened to true. Next, it draws a random uniform number between 0 and 1. It
then calculates the probability that the local Green player will honor the request
to provide threat critical knowledge given a threat by using the Green player’s
OAB and the parameter pfyrr in behavior Equation 1 (Figure 1). If the random
uniform draw is less than the calculated honoring request probability, it schedules
a ProvideThreatkKnowledge event, passing along the local Blue player and local
Green player. If the random uniform draw is greater than or equal to the
calculated honoring request probability, it schedules a
DoNotProvideThreatkKnowledge event, passing along the local Blue player and

local Green player.
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The DoNotProvideThreatKnowledge event simulates a Green player
ultimately not providing threat critical knowledge. It takes both a BluePlayer and
GreenPlayer agent as its local parameters. It resets whether the local Green
player has threat critical knowledge by using the parameter prk. It then schedules
an EndThreatkKnowledgeRequest event, passing along the local Blue player and

local Green player.

The EndThreatKnowledgeRequest event simulates the end of the threat
critical knowledge request. It takes both a BluePlayer and GreenPlayer agent as

its local parameters.

8. HandleResourceKnowledgeRequest

The HandleResourceKnowledgeRequest component represents a
GreenPlayer agent deciding on whether to provide resource critical knowledge to
a BluePlayer. It has five input parameters. The parameters pfgr, pfur, pfuri, and
pfurr are the same as those used in the HandleMessageRequest component.
The same parameter constraints apply to these four parameters. The parameter
prk IS the same parameter from the CreatePlayers component representing the

probability that a Green player has resource critical knowledge.

The HandleResourceKnowledgeRequest component has one state
variable. The variable Nyrr tracks the number of honored resource knowledge

requests.

Parameters, parameter constraints, and state variables for the

HandleResourceKnowledgeRequest component are summarized in Table 10.
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Parameter Description
pfar Blue player offering threat probability factor
pfur honor request probability factor
pfum honor request with incentive probability factor
pPfuar honor request with threat probability factor
Prk probability of Green player having resource knowledge
Parameter Constraint
0<pfer<0.2
0<pfyr<0.2
0<pfyp<0.2
0 < pfyrr<0.2
State Variable Description
Nurr number of honored resource knowledge requests (initialized to 0)
Table 10.

HandleResourceKnowledgeRequest parameters, parameter
constraints, and state variables

The event graph for the HandleResourceKnowledgeRequest component
is shown in Figures 16 and 17.
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Figure 17. HandleResourceKnowledgeRequest event graph (part 2)

The Run event initializes Nyrg t0 zero.

The StartResourceKnowledgeRequest event simulates the beginning of
the resource critical knowledge request. It takes both a BluePlayer and
GreenPlayer agent as its local parameters. It draws a random uniform number
between 0 and 1. It then calculates the probability that the local Green player will
honor the request outright to provide resource critical knowledge by using the
Green player's OAB value and the parameter pfyr in behavior Equation 1 (Figure
1). If the local Green player does not have any resource critical knowledge, it
schedules a KnowsNothingResource event, passing along the local Blue player
and local Green player. If the Green player has resource knowledge and the
random uniform draw is less than the calculated honoring request probability, it
schedules a ProvideResourceKnowledge event, passing along the local Blue
player and local Green player. If the Green player has resource knowledge and

the random uniform draw is greater than or equal to the calculated honoring
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request probability, it schedules a DoNotProvideOfferincentive event, passing

along the local Blue player and local Green player.

The KnowsNothingResource event simulates a Green player not having
any knowledge on resources. It takes both a BluePlayer and GreenPlayer agent
as its local parameters. It reinitializes whether the local Green player has
resource critical knowledge by using the parameter pgrk. It schedules an

EndResourceKnowledgeRequest event, passing along the local Green player.

The ProvideResourceKnowledge event simulates a Green player
providing resource critical knowledge. It takes both a BluePlayer and
GreenPlayer agent as its local parameters. It increments Nyrr by one, and it
resets whether the local Green player has resource critical knowledge by using
the parameter pgrk. It schedules an EndResourceKnowledgeRequest event,

passing along the local Green player.

The DoNotProvideOfferincentive event simulates a Green player deciding
not to provide resource critical knowledge and a Blue player potentially offering
an incentive to get such knowledge. It takes both a BluePlayer and GreenPlayer
agent as its local parameters. If the local Blue player has an incentive to offer to
the local Green player, it schedules an IncentiveOffered event, passing along the
local Blue player and local Green player. If the local Blue player does not have
an incentive to offer, it schedules a DoNotProvidePresentThreat event, passing

along the local Blue player and local Green player.

The IncentiveOffered event simulates a Blue player offering an incentive
to a Green player in an attempt to extract resource critical knowledge. It takes
both a BluePlayer and GreenPlayer agent as its local parameters. It sets the fact
that the local Green player has been incentivized to true. Next, it draws a random
uniform number between 0 and 1. It then calculates the probability that the local
Green player will honor the request to provide resource critical knowledge given
an incentive by using the Green player's OAB value and the parameter pfugs in

behavior Equation 1 (Figure 1). If the Green player is corrupt and the random
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uniform draw is less than the calculated honoring request probability, it schedules
a ProvideResourceKnowledge event, passing along the local Blue player and
local Green player. If the Green player is corrupt and the random uniform draw is
greater than or equal to the calculated honoring request probability, or if the
Green player is not corrupt, it schedules a DoNotProvidePresentThreat event,

passing along the local Blue player and local Green player.

The DoNotProvidePresentThreat event simulates a Green player deciding
not to provide resource critical knowledge and a Blue player potentially
presenting a threat to get such knowledge. It takes both a BluePlayer and
GreenPlayer agent as its local parameters. It draws a random uniform number
between 0 and 1. It then calculates the probability that the local Blue player will
threaten the local Green player by using the Green player's OAB value and the
parameter pfgr in behavior Equation 2 (Figure 2). If the random uniform draw is
less than the calculated threat probability, it schedules a ThreatPresented event,
passing along the local Blue player and local Green player. If the random uniform
draw is greater than or equal to the calculated threat probability, it schedules a
DoNotProvideResourceKnowledge event, passing along the local Blue player

and local Green player.

The ThreatPresented event simulates a Blue player threatening a Green
player for resource critical knowledge. It takes both a BluePlayer and
GreenPlayer agent as its local parameters. It sets the fact that the local Green
player has been threatened to true. Next, it draws a random uniform number
between 0 and 1. It then calculates the probability that the local Green player will
honor the request to provide resource critical knowledge given a threat by using
the Green player's OAB value and the parameter pfyrt in behavior Equation 1
(Figure 1). If the random uniform draw is less than the calculated honoring
request probability, it schedules a ProvideResourceKnowledge event, passing
along the local Blue player and local Green player. If the random uniform draw is

greater than or equal to the calculated honoring request probability, it schedules
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a DoNotProvideResourceKnowledge event, passing along the local Blue player

and local Green player.

The DoNotProvideResourceKnowledge event simulates a Green player
ultimately not providing resource critical knowledge. It takes both a BluePlayer
and GreenPlayer agent as its local parameters. It resets whether the local Green
player has resource critical knowledge by using the parameter prk. It then
schedules an EndResourceKnowledgeRequest event, passing along the local

Green player.

The EndResourceKnowledgeRequest event simulates the end of the
resource critical knowledge request. It takes a GreenPlayer agent as its local

parameter.

9. UpdateOAB

The UpdateOAB component handles the updating of a Green player’'s
OAB depending on what happens during a KLE. It has eight input parameters.
The parameters ppo and pyo represent the probabilities of an OAB decrease or
increase, respectively, given the Green player not being incentivized and not
being threatened; the sum of these two must be less than or equal to 1. The
parameters pp; and p; represent the probabilities of an OAB decrease or
increase, respectively, given the Green player being incentivized and not being
threatened; the sum of these two must be less than or equal to 1. The
parameters ppr and p;r represent the probabilities of an OAB decrease or
increase, respectively, given the Green player being threatened; the sum of
these two must be less than or equal to 1. The parameters pgcks and psckr are
baseline probabilities of a Green player being captured or killed by either a Blue
player or Red player, respectively. In order to avoid overlapping probability
ranges, one minus pgckr times the maximum possible KLE time must be greater

than or equal to pgcks.

Parameters and parameter constraints for the UpdateOAB component are

summarized in Table 11.
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Parameter

Description

probability of OAB decrease when Green player not incentivized

Poo and not threatened
probability of OAB increase when Green player not incentivized
Pio and not threatened
probability of OAB decrease when Green player incentivized and
Po not threatened
probability of OAB increase when Green player incentivized and
P not threatened
Pot probability of OAB decrease when Green player threatened
Prr probability of OAB increase when Green player threatened
baseline probability of Green player captured or killed by Blue
Packe player
baseline probability of Green player captured or killed by Red
Peckr player
Parameter Constraint
Poo +Ppo<1
Por+pus1l
Por+pr<1
Packs < 1 - Packs * (Max KLE time)
Table 11. UpdateOAB parameters and parameter constraints

The event graph for the UpdateOAB component is shown in Figure 18.
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Figure 18. UpdateOAB event graph

The CheckGreenStatus event checks if a Green player is still in the model
following a KLE. It takes a GreenPlayer agent as its local parameter. If the local
Green player has not been canceled during a KLE (not killed in this case), it

schedules an OABUpdate event, passing along the local Green player.

The OABUpdate event simulates a Green player changing his OAB after a
KLE. It takes a GreenPlayer agent as its local parameter. If the Green player has
not been incentivized or threatened during the KLE, it calculates the Green
player's new OAB by using his current OAB, D = ppo, and | = pjp in behavior
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Equation 5 (Figure 5). If the Green player has been incentivized but not
threatened during the KLE, it calculates the Green player's new OAB by using his
current OAB, D = pp;, and | = p; in behavior Equation 5 (Figure 5). It then resets
the fact that the Green player is incentivized to false. If the Green player has
been threatened during the KLE, it calculates the Green player's new OAB by
using his current OAB, D = ppr, and | = pir in behavior Equation 5 (Figure 5). It
then resets the facts that the Green player is incentivized and threatened to false.
Lastly, it schedules an UpdateComplete event, passing along the local Green

player.

The UpdateComplete event simulates a Green player completing his OAB
update. It takes a GreenPlayer agent as its local parameter. It draws a random
uniform number between 0 and 1. If the time that the Green player spent in the
KLE is greater than or equal to one, it calculates the probability that he is
captured or killed by a Blue player by using pscks and the time spent in the KLE
in behavior Equation 4 (Figure 4). If the time that the Green player spent in the
KLE is less than one, the probability of being captured or killed by a Blue player
equals pgcks. It also calculates the probability that the local Green player is
captured or killed by a Red player by using psckr and the time spent in the KLE
in behavior Equation 3 (Figure 3). If the random uniform draw is less than the
calculated capture or kill by Blue probability, it schedules a CaptureOrKillByBlue
event, passing along the local Green player. If the random uniform draw is
greater than or equal to one minus the calculated capture or kill by Red
probability, it schedules a CaptureOrKillByRed event, passing along the local
Green player. If the random uniform draw is greater than or equal to the
calculated capture or kill by Blue probability and less than one minus the
calculated capture or kill by Red probability, it schedules a Campaign event,

passing along the local Green player.

The Campaign event simulates a Green player looking to campaign. It

takes a GreenPlayer agent as its local parameter.
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The CaptureOrKillByBlue event simulates a Green player being captured
or killed by a Blue player. It takes a GreenPlayer agent as its local parameter.

The CaptureOrKillByRed event simulates a Green player being captured

or killed by a Red player. It takes a GreenPlayer agent as its local parameter.

10. Campaign

The Campaign component handles whether a Green player will campaign
following a KLE. It has five input parameters. It requires three random
distributions representing the stream of times that Green players schedule their
next campaign ({tnc}), the stream of times that Green players spend campaigning
({tc}), and the stream of times that Green players schedule their next arrival for
another KLE ({tem}). The parameters pgcks and psckr are the same as defined in
the UpdateOAB component. Additional constraints on these two parameters are
that pscks times the maximum campaign time and pgckr times the maximum
campaign time both must be less than or equal to one; this ensures that
probabilities greater than one are not encountered.

The Campaign component has two state variables. The variable Npc
tracks the number of pro-coalition force campaigns. The variable Nac tracks the

number of anti-coalition force campaigns.

Parameters, parameter constraints, and state variables for the Campaign

component are summarized in Table 12.
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Parameter Description

{tne} stream of Green player next campaign times
{tc} stream of Green player campaign times
{temt stream of Green player next meeting times

baseline probability of Green player captured or killed by Blue
Packe I

player

baseline probability of Green player captured or killed by Red

Packr player

Parameter Constraint

Pecke * (mMax campaign time) < 1

Packs * (max campaign time) < 1

State Variable Description
Npc number of pro-CF campaigns (initialized to 0)
Nac number of anti-CF campaigns (initialized to 0)

Table 12. Campaign parameters, parameter constraints, and state variables

The event graph for the Campaign component is shown in Figures 19 and
20.
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Campaign event graph (part 1)
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Figure 20. Campaign event graph (part 2)

The Run event initializes the two state variables to zero.

The CheckOAB event checks a Green player's OAB to see if he will
campaign or not. It takes a GreenPlayer agent as its local parameter. It draws a
random uniform number between 0 and 1. If the local Green player has an OAB
equal to 4, has an OAB equal to 3 and has agreed to pass a message, or has an
OAB equal to 2, has agreed to pass a message, and the uniform draw is less
than 0.5, it schedules a ProCFCampaign event with a time delay pulled from
{tnc}, passing along the local Green player. If the local Green player has an OAB
equal to 0, has an OAB equal to 1 and has agreed to pass a message, or has an
OAB equal to 2, has agreed to pass a message, and the uniform draw is greater
than or equal to 0.5, it schedules an AntiCFCampaign event with a time delay
pulled from {tnc}, passing along the local Green player. If the Green player has
not agreed to pass a message and his OAB equals 1, 2, or 3, it schedules a

NoCampaign event, passing along the local Green player.

The ProCFCampaign event simulates a Green player starting his pro-
coalition force campaign. It takes a GreenPlayer agent as its local parameter. It
stamps the campaign start time for the local Green player. It then schedules an
EndProCFCampaign event with a time delay pulled from {tc}, passing along the

local Green player.
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The AntiCFCampaign event simulates a Green player starting his anti-
coalition force campaign. It takes a GreenPlayer agent as its local parameter. It
stamps the campaign start time for the local Green player. It then schedules an
EndAntiCFCampaign event with a time delay pulled from {tc}, passing along the

local Green player.

The NoCampaign event simulates a Green player not campaigning. It
takes a GreenPlayer agent as its local parameter. It schedules a
ScheduleGreenNextMeeting event with a time delay pulled from {tgm}, passing

along the local Green player.

The EndProCFCampaign event simulates a Green player ending his pro-
coalition force campaign. It takes a GreenPlayer agent as its local parameter. It
increments Npc by one. It then draws a random uniform number between 0 and
1. It calculates the probability that the local Green player is captured or killed by a
Red player by using psckr and the time spent in the campaign in behavior
Equation 3 (Figure 3). If the random uniform draw is less than the calculated
capture or kill by Red probability, it schedules a CaptureOrKillByRed event,
passing along the local Green player. If the random uniform draw is greater than
or equal to the calculated capture or kill by Red probability, it schedules a
ScheduleGreenNextMeeting event with a time delay pulled from {tgm}, passing

along the local Green player.

The EndAntiCFCampaign event simulates a Green player ending his anti-
coalition force campaign. It takes a GreenPlayer agent as its local parameter. It
increments Nac by one. It then draws a random uniform number between 0 and
1. It calculates the probability that the local Green player is captured or killed by a
Blue player by using pscks and the time spent in the campaign in behavior
Equation 3 (Figure 3). If the random uniform draw is less than the calculated
capture or Kill by Blue probability, it schedules a CaptureOrKillByBlue event,
passing along the local Green player. If the random uniform draw is greater than

or equal to the calculated capture or kill by Blue probability, it schedules a
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ScheduleGreenNextMeeting event with a time delay pulled from {tgm}, passing

along the local Green player.

The ScheduleGreenNextMeeting event simulates a Green player
scheduling his next arrival for a KLE. It takes a GreenPlayer agent as its local

parameter.

The CaptureOrKillByRed event simulates a Green player being captured

or killed by a Red player. It takes a GreenPlayer agent as its local parameter.

The CaptureOrKillByBlue event simulates a Green player being captured

or killed by a Blue player. It takes a GreenPlayer agent as its local parameter.

The GreenCanceled event simulates a Green player replacement that is
no longer needed in the model. It takes a GreenPlayer agent as its local
parameter. It cancels the ProCFCampaign, AntiCFCampaign,
EndProCFCampaign, EndAntiCFCampaign, and ScheduleGreenNextMeeting

events for the local Green player.

11. CaptureOrKill

The CaptureOrKill component handles whether a Green player will be
captured or killed by a Blue player or Red player following a KLE or campaign. It
has four input parameters. The parameter pcg is the probability that a Blue player
captures a Green player. One minus pcg then is the probability that a Blue player
kills him. The parameter pcr is the probability that a Red player captures a Green
player. One minus pcr then is the probability that a Red player kills him. The
parameter ppcg is the probability that a Green player decreases his OAB given a
capture by a Blue player. The parameter pcr is the probability that a Green

player increases his OAB given a capture by a Red player.

The CaptureOrKill component has four state variables. The variables Ngc,
Ngk, Nre, and Ngk track the number of Green players captured by Blue players,
kiled by Blue players, captured by Red players, and killed by Red players,

respectively.
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Parameters and state variables for the CaptureOrKill component are

summarized in Table 13.

Parameter Description
Pce probability of capture by Blue player
1-pce probability of kill by Blue player
Pcr probability of capture by Red player
1-pcr probability of kill by Red player
Pocs probability of OAB decrease given capture by Blue player
Picr probability of OAB increase given capture by Red player
State Variable Description
Ngc number of Green player captures by Blue players (initialized to 0)
Nek number of Green player kills by Blue players (initialized to 0)
Ngrc number of Green player captures by Red players (initialized to 0)
Ngk number of Green player kills by Red players (initialized to 0)

Table 13. CaptureOrKill parameters and state variables

The event graph for the CaptureOrKill component is shown in Figures 21
and 22.
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Figure 22. CaptureOrKill event graph (part 2)

The Run event initializes all state variables to zero.

The CaptureOrKillByBlue event sees whether a Green player will be
captured or killed by a Blue player. It takes a GreenPlayer agent as its local
parameter. It draws a random uniform number between 0 and 1. If the random
uniform draw is less than pcg, it schedules a GreenCapturedByBlue event,
passing along the local Green player. If the random uniform draw is greater than
or equal to pcg, it schedules a GreenKilledByBlue event, passing along the local

Green player.

The GreenCapturedByBlue event simulates a Green player being
captured by a Blue player. It takes a GreenPlayer agent as its local parameter. It
sets the captured status of the local Green player as if he was captured by a Blue
player and increments Ngc by one. It calculates the Green player's new OAB by
using his current OAB, D = ppcgs, and | = 0 in behavior Equation 5 (Figure 5). It
then schedules a ReplaceGreen event and a WaitForRelease event, passing

along the local Green player to both.

The GreenKilledByBlue event simulates a Green player being killed by a

Blue player. It takes a GreenPlayer agent as its local parameter. It sets the killed
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status of the local Green player as if he was killed by a Blue player, and it
increments Ngk by one. It then schedules a ReplaceGreen event, passing along

the local Green player.

The CaptureOrKillByRed event sees whether a Green player will be
captured or killed by a Red player. It takes a GreenPlayer agent as its local
parameter. It draws a random uniform number between 0 and 1. If the random
uniform draw is less than pcr, it schedules a GreenCapturedByRed event,
passing along the local Green player. If the random uniform draw is greater than
or equal to pcr, it schedules a GreenKilledByRed event, passing along the local

Green player.

The GreenCapturedByRed event simulates a Green player being captured
by a Red player. It takes a GreenPlayer agent as its local parameter. It sets the
captured status of the local Green player as if he was captured by a Red player
and increments Nrc by one. It calculates the Green player's new OAB by using
his current OAB, D = 0, and | = picr in behavior Equation 5 (Figure 5). It then
schedules a ReplaceGreen event and a WaitForRelease event, passing along

the local Green player to both.

The GreenKilledByRed event simulates a Green player being killed by a
Red player. It takes a GreenPlayer agent as its local parameter. It sets the killed
status of the local Green player as if he was killed by a Red player, and it
increments Ngrk by one. It then schedules a ReplaceGreen event, passing along

the local Green player.

The ReplaceGreen event simulates a Green player being replaced by
another Green player after being captured or killed. It takes a GreenPlayer agent

as its local parameter.

The WaitForRelease event simulates a Green player awaiting his release

after being captured. It takes a GreenPlayer agent as its local parameter.
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12. Release

The Release component represents the releasing of Green players after
being captured. It has one input parameter. It requires a random distribution

representing the stream of times that Green players are released ({tr.}).

Parameters for the Release component are summarized in Table 14.

Parameter Description
{ta} stream of Green player release times

Table 14. Release parameters

The event graph for the Release component is shown in Figure 23.
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Figure 23. Release event graph

The ScheduleRelease event simulates a Green player waiting for his
release after being captured. It takes a GreenPlayer agent as its local parameter.
It schedules a GreenReleased event with a time delay pulled from {tg.}, passing

along the local Green player.

The GreenReleased event simulates a Green player being released. It

takes a GreenPlayer agent as its local parameter. It resets the captured status of
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the local Green player to show that he is no longer captured. It then schedules a

ReplaceReplacement event, passing along the local Green player.

The ReplaceReplacement event simulates a Green player taking control

back from his replacement. It takes a GreenPlayer agent as its local parameter.

The GreenCanceled event simulates a Green player replacement that is
no longer needed in the model. It takes a GreenPlayer agent as its local

parameter. It cancels the GreenReleased event for the local Green player.

13. HandleReplacements

The HandleReplacements component handles the replacing of Green
players when they are captured, killed, or released. It has 13 input parameters. It
requires one random distribution representing the stream of times that Green
players schedule their next arrival for another KLE ({tcm}). The parameters pc,
Pxik, Ptk, and prg are the same parameters from the CreatePlayers component
representing the probabilities that a Green player is corrupt, has key leader
critical knowledge, has threat critical knowledge, and has resource critical
knowledge, respectively. The parameters pxs and puxs represent the
probabilities of a Green replacement having a lower or higher OAB, respectively,
than the Green player that is killed by a Blue player; the sum of these two must
be less than or equal to 1. The parameters pxr and pukr represent the
probabilities of a Green replacement having a lower or higher OAB, respectively,
than the Green player that is killed by a Red player; the sum of these two must
be less than or equal to 1. The parameters p.cg and pucs represent the
probabilities of a Green replacement having a lower or higher OAB, respectively,
than the Green player that is captured by a Blue player; the sum of these two
must be less than or equal to 1. The parameters p.cr and pucr represent the
probabilities of a Green replacement having a lower or higher OAB, respectively,
than the Green player that is captured by a Red player; the sum of these two

must be less than or equal to 1.
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The HandleReplacements component has one state variable. The variable

c represents a list to hold captured Green players that have a replacement in the

model.

Parameters,

parameter constraints, and state variables for

HandleReplacements component are summarized in Table 15.

the

Parameter Description
{tem} stream of Green player next meeting times
Pc probability of Green player being corrupt
Prik probability of Green player having key leader knowledge
Prg probability of Green player having threat knowledge
Pri probability of Green player having resource knowledge
probability of replacement having lower OAB when Green
Pice player killed by Blue player
probability of replacement having higher OAB when Green
Pre player killed by Blue player
probability of replacement having lower OAB when Green
Pucs player killed by Red player
probability of replacement having higher OAB when Green
Prac player killed by Red player
probability of replacement having lower OAB when Green
Pucs player captured by Blue player
probability of replacement having higher OAB when Green
Prca player captured by Blue player
probability of replacement having lower OAB when Green
P player captured by Red player
probability of replacement having higher OAB when Green
PHcr player captured by Red player
Parameter Constraint
Puke + Prke < 1
Pukr + Prkr € 1
Pice + Pucs < 1
Picr + Pacr < 1
State Variable Description
C list to hold captured Green players that have replacement

Table 15. HandleReplacements parameters, parameter constraints, and state

variables
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The event graph for the HandleReplacements component is shown in
Figure 24.
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Figure 24. HandleReplacements event graph

The Run event clears c.

The CreateGreenReplacement event simulates a Green replacement
being added to the model when a Green player is captured or killed. It takes a

GreenPlayer agent as its local parameter. It creates a new GreenPlayer agent
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that is the replacement for the local Green player. If a Blue player kills the local
Green player, it calculates the replacement’'s OAB by using the Green player’s
OAB, D = pikg, and | = puks in behavior Equation 5 (Figure 5). If the local Green
player is killed by a Red player, it calculates the replacement’s OAB by using the
Green player's OAB, D = pikr, and | = pukr in behavior Equation 5 (Figure 5). If
the local Green player is captured by a Blue player, it calculates the
replacement’'s OAB by using the Green player’s OAB, D = p.cg, and | = pycg in
behavior Equation 5 (Figure 5). If the local Green player is captured by a Red
player, it calculates the replacement’s OAB by using the Green player's OAB, D
= pLcr, and | = pycr in behavior Equation 5 (Figure 5). Then it checks the state
variable, c, to determine if the local Green player that is killed or captured is
already a replacement for another captured Green player. If this is the case, it
sets the newly created replacement as the replacement for the Green player in c.
Then, if the local Green player is not already a replacement and is captured, it
sets the newly created replacement as his replacement and is added to c. Lastly,
it schedules a ScheduleGreenNextMeeting event with a time delay pulled from

{tem}, passing along the created replacement.

The ReplaceReplacement event simulates a Green player being released
and his replacement being no longer needed in the model. It takes a
GreenPlayer agent as its local parameter. It takes the Green replacement
assigned to the released Green player and assigns this replacement to a local
GreenPlayer agent variable. It resets the replacement of the released Green
player to null, and then it removes the released Green player from c. Lastly, it
schedules a ScheduleGreenNextMeeting event with a time delay pulled from
{tem}, passing along the released Green player, and it schedules a
CancelReplacement event, passing along the replacement.

The ScheduleGreenNextMeeting event simulates a Green player
scheduling his next arrival for a KLE. It takes a GreenPlayer agent as its local

parameter.
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The CancelReplacement event simulates a Green player replacement no
longer being needed in the model. It takes a GreenPlayer agent as its local

parameter.

E. COMPONENT LISTENING STRUCTURE AND ADAPTERS OF KLE
MODEL

The various components of the KLE Model are connected together as
shown in Figure 25. The various adapters in the KLE Model are listed in Table
16. When one of the listed events for a given component is executed, the
respective listening component schedules the appropriate event. For more
information on connecting event graphs using listeners and adapters, see Buss
(2011).
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EXECUTED COMPONENT/EVENT

LISTENING COMPONENT/EVENT

Component Event Component Event
Create BluePlayer Handle BluePlayer
Players Arrival EngagementType Arrival
Create GreenPlayer Handle GreenPlayer
Players Arrival EngagementType Arrival

MicroKeylLeader ScheduleBlue Handle BluePlayer
Engagement NextMeeting EngagementType Arrival
KeylLeader ScheduleBlue Handle BluePlayer
Engagement NextMeeting EngagementType Arrival
. ScheduleGreen Handle GreenPlayer
Campaign . .
NextMeeting EngagementType Arrival
Handle ScheduleGreen Handle GreenPlayer
Replacements NextMeeting EngagementType Arrival
Handle Cancel Handle Green
Replacements Replacement EngagementType Canceled
Handle BlueReady MicroKeyleader Start
EngagementType ForMicroKLE Engagement MicroKLE
Handle SendPlayers KeylLeader Start
EngagementType ToKLE Engagement KLE
Handle Cancel KeyLeader Green
Replacements Replacement Engagement Canceled
Keyleader Handle Handle StartMessage
Engagement Requests MessageRequest Request
Handle EndMessage HandleKeyleader StartKeyleader
MessageRequest Request KnowledgeRequest KnowledgeRequest
HandleKeylLeader EndKeyleader HandleThreat StartThreat
KnowledgeRequest KnowledgeRequest KnowledgeRequest KnowledgeRequest
HandleThreat EndThreat HandleResource StartResource
KnowledgeRequest KnowledgeRequest KnowledgeRequest KnowledgeRequest
HandleResource EndResource UpdateOAB CheckGreen
KnowledgeRequest KnowledgeRequest Status
Update Campaign Campaign Check
OAB OAB
Handle Cancel Campaign Green
Replacements Replacement Canceled
Update CaptureOr . CaptureOr
0AB KillByBlue CaptureOrkill KillByBlue
Update CaptureOr . CaptureOr
0AB KillByRed CaptureOrkill KillByRed
Campaign i?l?;:;?er CaptureOrKill i?ﬁ;:;g
Campaign CKE:IF; I;l;:fec;r CaptureOrKill clg ﬁél;;{eec;r

Capture WaitFor Release Schedule
Orkill Release Release
Handle Cancel Release Green

Replacements Replacement Canceled

Capture Replace Handle CreateGreen
OrKill Green Replacements Replacement

Release Replace Handle Replace

Replacement

Replacements

Replacement

Table 16.
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.  DESIGN OF EXPERIMENTS

Chapter Ill begins with a brief discussion on the use of random number
generators in the Key Leader Engagement (KLE) Model. Then we discuss what
model input parameters were not varied and those that were, including their low
and high values. We talk briefly about the nearly orthogonal and balanced mixed
design of experiments that was utilized for further analysis of the model. The
chapter ends with a small discussion on the scenario replication and three

scenarios (one-week, nine-weeks, and one-year) that were executed.

A. RANDOM NUMBER GENERATION

Two random number streams are used to run the KLE Model. One
generator creates random seeds for each design point run, and the other
generator utilizes the seed to generate random numbers that are needed when
running the model components. The two random number streams used when
running the KLE Model both use the Mersenne Twister MT 19937 pseudorandom
number generator (Wikipedia 2012).

B. HANDLING OF INPUT PARAMETERS
1. Static Parameters

The input parameters not varied in the design of experiments are those
associated with numbers of players and all streams of time. The constant values
assigned to these static parameters are best-guess estimates derived from
military and civilian analysts at TRAC-Monterey that best coincide with what can
be expected during a tactical wargame (TWG) using an Afghanistan scenario.

The time streams are all triangle distributed (minimum, maximum, mode).

Table 17 lists the parameters that are not varied, the component(s) they

are found in, and their associated values.
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Parameter Component(s) Value
Ngp CreatePlayers il
Nep CreatePlayers 17
{tam! HandleEngagementType Triangle(0.25,1,0.5)
{trt HandleEngagementType Triangle(1,168,48)
{trc} HandleEngagementType Triangle(1,168,48)
HandleEngagementType
{tem} MicroKeyleaderEngagement Triangle(24,72,48)
KeyleaderEngagement
{tm} MicroKeyLeaderEngagement Triangle(0.1,0.5,0.2)
{ty} KeyLeaderEngagement Triangle(1,6,4)
{tnct Campaign Triangle(1,168,24)
{tc} Campaign Triangle(0.5,48,3)
{taw} Handli‘la%rggg:cgenments Triangle(24,336,96)
{ta} Release Triangle(24,8760,2160)
Table 17. Static model parameters and their values
2. Dynamic Parameters and NOB Mixed Design

The input parameters varied in the design of experiments are those

associated with probabilities and probability factors. Probabilities not associated

with  OAB changes or assignments are varied from O to 1. Probabilities

associated with OAB changes and assignments are varied from 0 to 0.5 due to

the decreasel/increase or lower/higher pairings used in behavior Equation 5

(Figure 5). Probability factors are varied from 0 to 0.2. The baseline probabilities,

Pscks and psckr, are varied from 0 to 0.0208 due to the parameter restriction that

these two individually multiplied by the maximum campaign time (48) must be

less than or equal to 1.

Tables 18 and 19 list the parameters that are varied, the component(s)

they are found in, and their associated low and high values.
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Parameter

Component(s)

Low Value

High Value

P

CreatePlayers
KeylLeaderEngagement

0

1

Pc

CreatePlayers
HandleReplacements

Prk

CreatePlayers
HandleKeylLeaderKnowledgeRequest
HandleReplacements

CreatePlayers
HandleThreatKnowledgeRequest
HandleReplacements

Pri

CreatePlayers
HandleResourceKnowledgeRequest
HandleReplacements

pfre

HandleEngagementType

0.2

Pfns

HandleEngagementType

0.2

pfex

MicroKeylLeaderEngagement

0.2

pfar

HandleMessageRequest
HandleKeyleaderKnowledgeRequest
HandleThreatKnowledgeRequest
HandleResourceKnowledgeRequest

0.2

Pfug

HandleMessageRequest
HandleKeyleaderKnowledgeRequest
HandleThreatKnowledgeRequest
HandleResourceKnowledgeRequest

0.2

Plhgi

HandleMessageRequest
HandleKeyleaderKnowledgeRequest
HandleThreatKnowledgeRequest
HandleResourceKnowledgeRequest

0.2

Pfurr

HandleMessageRequest
HandleKeylLeaderKnowledgeRequest
HandleThreatKnowledgeRequest
HandleResourceKnowledgeRequest

0.2

Table 18.
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Parameter Component(s) Low Value High Value
Poo UpdateOAB 0 0.5
Pio UpdateOAB 0 0.5
Poi UpdateOAB 0 0.5
P UpdateOAB 0 0.5
Pot UpdateOAB 0 0.5
Pir UpdateOAB 0 0.5

Packs Uczdri:;?g? 0 0.0208
Peckr Uczdrit)zci)gl?wB 0 0.0208
Pce CaptureQOrKill 0

Pcr CaptureOrKill 0

Poce CaptureQrKill 0 0.5
Picr CaptureOrKill 0 0.5
Pce HandleReplacements 0 0.5
Phks HandleReplacements 0 0.5
Pcr HandleReplacements 0 0.5
Pukr HandleReplacements 0 0.5
Pice HandleReplacements 0 0.5
PHcs HandleReplacements 0 0.5
PLcr HandleReplacements 0 0.5
PHcr HandleReplacements 0 0.5

Table 19. Dynamic model parameters and their values (part 2)

The design is constructed using the 512-design point nearly orthogonal
and balanced (NOB) mixed design spreadsheet of Vieira (2012). The result is a
nearly orthogonal Latin hypercube (NOLH) since all parameters in this design are
continuous-valued. For more details about the properties or application of NOLH
designs, see Kleijnen et al. (2005) or Sanchez et al. (2012). For more details
about NOB designs, which can also handle discrete-valued factors with limited

numbers of levels, see Vieira et al. (2011, 2012).
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C. SCENARIO REPLICATION

In order to assist with the code verification efforts of the KLE Model, three
different scenarios are used. Within the model, one unit of simulated time
represents one hour of real time. The first scenario looks at short-term effects
within the model and warm-up period issues; the model is run for 168 time units
(hours) to represent the span of a week. The second looks at mid-range effects;
the model is run for 1,512 time units to represent the span of nine weeks, the
typical run time for a TWG. The third looks at long-term effects and convergence
issues; the model is run for 8,760 time units to represent the span of a year.
Additionally, each design point for each scenario is replicated 200 times to collect
summary statistics for analysis, and to allow for the possibility of examining the

variances as well as the means of the output responses of interest.
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IV. KLE MODEL ANALYSIS

Chapter IV begins with a short description of the model output data. The
analysis begins with a look at the significant input parameters used to build
regression metamodels and partition tree models to help verify the KLE Model
execution. We then look at the output summary statistics to gain insights into the
ranges and the variability of the output responses. Finally, some discussion on
the number of micro-KLEs response is presented given the apparently
anomalous behavior of this output variable.

A. OUTPUT DATA

The outputs analyzed in the KLE Model are associated with all the
countable state variables within the model components; these are of interest as
they correlate to the outputs analyzed during a TRAC tactical wargame (TWG).
For each design point, we collect the final values of the state variables for all 200
replications. We then output the mean, standard deviation, minimum value, and

maximum value for the 200 replications.

B. SIGNIFICANT INPUT PARAMETERS AND MODEL VERIFICATION

In order to explore the significant input factors for each of the output
responses, and subsequently help verify the expected functionality of the KLE
Model, we first derive second-order regression metamodels that best fit each
output response. A stepwise regression control with a minimum Bayesian
information criterion stopping rule is used to find the input parameters that are
significant in predicting the responses. These parameters (after removing less
significant terms) are then used to fit the regression metamodel using standard
least squares. From the sorted parameter estimates, we can see which input
parameters are the most significant. Second, we create partition tree models with

up to 20 splits if needed to identify the most significant input parameters for each
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response; this helps verify the significant parameters derived in the regression
metamodels. The statistical software JMP® Pro 9.0 was used to create these

regression metamodels and partition tree models.

To get an idea of the regression metamodels and partition tree models
created, we use the number of KLEs output response as an example. Starting
with the metamodels, Figures 26, 27, and 28 show the second-order regression
metamodels for the number of KLEs in the one-week, nine-week, and one-year
scenarios, respectively. All three metamodels show an F-statistic p-value of less
than 0.0001, indicating statistical significance in all cases; all three have relatively
high R-squared values (greater than 0.9); and all three metamodels have terms
that are statistically significant (t-statistic p-values less than 0.01). We remark
that with such a large data set, statistical significance is necessary but not
sufficient for including terms in the metamodels. In some cases, we have
eliminated terms with p-values less than 0.01 in the interests of parsimony, when
their inclusion leads to very little improvement in a metamodel’s R-squared value.
Figure 27 illustrates this phenomenon; if we simplified the metamodel even
further by eliminating the four interaction terms with p-values between 0.0003
and 0.0020, the R-squared value would drop only slightly (from 0.9898 to
0.9886). The simplified metamodel is preferable. Similar simplifications could be
made for the one-year metamodel.

From these regression metamodels, we see that the renege probability
factor (pfrg) and the no-show probability factor (pfys) are the two most significant
parameters for the one-week and nine-week scenarios and within the top three
for the one-year scenario. These two parameters are the primary factors of
whether a Blue player engages a Green player, and as model runtime increases,
these factors remain significant, which is what we were looking for in the KLE
Model execution. The figures also exhibit the increasing complexity of the
metamodels as runtime increases due to the greater influence of cross-

component effects, which is expected.
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Figure 26.

Number of KLEs regression metamodel (1 week)
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Actual by Predicted Plot
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Figure 27.

Number of KLEs regression metamodel (9 weeks)
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Actual by Predicted Plot
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Figure 28.

Number of KLESs regression metamodel (1 year)
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Figures 29, 30, and 31 show the partition tree models for the number of
KLEs in the one-week, nine-week, and one-year scenarios, respectively. These
trees back-up what was discovered in the regression metamodels, especially the
initial split using the probability of having key leader critical knowledge (pk.x) in
the one-year scenario (Figure 31), which corresponds to the parameter's
significance in the one-year regression metamodel (Figure 28). For simplicity,
only three or four levels within the partition trees are displayed. The resulting R-
squared values are lower than they were for the corresponding regression
metamodels. Even so, looking at the output in both ways is useful, since
responses with discontinuities in the results may fit much better with partition tree
models than with regression metamodels. Partition trees are also sometimes

easier graphs for communicating with decision makers (Sanchez et al. 2012).

(" split ) ( Prune ) Number
—_— RSquare RMSE N of Splits AlCc
0844 0276917 512 6 154.425

|
All Rows
Count 512 LogWorth Difference
Mean 3.0175391 04.342627 0.8811
Std Dev  0.7010842

pf_RG=>=0.097065 pf_RG<0.097065
Count 264 LogWorth Difference Count 248 LogWorth Difference
Mean 25007576 82.338785 0.68796 Mean 3.4718548 105.49551 0.96196
Std Dev  0.4886012 Std Dev  0.6173646
| |
[ | [ |
pf_NS=>=0.087671 pf_NS<0.087671 pf_NS=>=0.085714 pf_NS<0.085714
Count 153 LogWorth Ditference || Count 111 LogWorth Difference | | Count 138 LogWorth Difference || Count 110
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Std Dev  0.2120192 || Std Dev  0.2475082 Std Dev  0.1958906 || Std Dev  0.2656441 Std Dev  0.2150496 || Std Dev  0.2800777
Figure 29. Number of KLEs patrtition tree model (1 week)
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(split ) ( Prune ) Number
— T RSquare RMSE N of Splits AICc
0.867 25765997 512 8 244262
|
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I
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Figure 30. Number of KLEs partition tree model (9 weeks)
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Figure 31.

Number of KLEs partition tree model (1 year)

Having discussed the techniques used to derive the second-order

regression metamodels and partition tree models, Tables 20, 21, and 22 show

which input parameters are the top three most significant when building the

metamodels (denoted by #) and tree models (denoted by &) for the output

responses for the one-week scenario, nine-week scenario, and one-year
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scenario, respectively. Two count columns show the total number of times an
input parameter is one of the top three most significant in the regression

metamodels and likewise for the partition tree models.

Regr
input | Meta- | P2
Param MDdEls Trees NMKI.E NTKG HILE NIIIII|| NH“ NIIII'I NHHI! HPC NAC HIK: NBI NBC NRI

Count
Count

P 0
Pc
Prix
P
Pre
Pfra
Plus
pfex
Pler
Plur
Plum
Pl
Poo
Pio
Poi

H#E | HE& [ #E& | #& # | #&
# &

#E&
HE& | H& # | HE& | #H& | #
HE | #& | HE& & |#&

#&

HE | #& #E& | H#E | HE | #HE&

P

Packe

#E | #E&

Peckr #E& | #&
Pce
Pcr
Poce

Picr

#E& | #E&

#HE& |#&

o|lo|lo|o|o|lO|o|Q(Q(M|IM|MKNMOoOIOC|ICQ|IOC|C(C|IC|D|D|(D|=]|BE|D|=|R=MC|D
o|lo|lo|o|o|lo|lo|r|(O(m|m|m R ool O|R|D|R || RSO

Picr
Prcr 0 0
# = parameter included in regression metamodel that is one of top three most significant

& = parameter included in partition tree model that is one of top three most significant

Table 20. Top three significant input parameters (1 week).
88



Input
Param

Regr
Meta-
Models
Count

Part
Trees

Count

r"TI:G

HK].E

r"IIII'I'

Nec

NAC

0

Pc

Prx

#E&

#E&

# &

#&

#&

#E&

#&

# &

#E&

Prx

#E&

Pfrc

#&

# &

#&

# &

Pius

# &

# &

# &

Plex

Pler

pfur

#E&

#E&

#&

#E&

#E&

#E&

Plam

prIIIT

Poo

Pio

Poi

P

Packe

#&

# &

Packr

#E&

#E&

Pce

# &

# &

Pcr

#E

#E&

Poce

Pica

Picr

S|l o(o|o|Q|O|Q(O MM IRKIRMK|OC|O|O | C(C|C|0|2|0(D|S|V|d|(R|=|W|D

o|lo|o|(o|lo|lo|lo|o|om|IRIRIRK|([C|O|o|C|o|(o|C|O||O(RD|D|R|(RlO][D]|OD

Phce

0

0

# = parameter included in regression metamodel that is one of top three most significant
& = parameter included in partition tree model that is one of top three most significant

Table 21.

Top three significant input parameters (9 weeks)
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Input
Param

Regr
Meta-
Models
Count

Part
Trees
Count

NMKI.E

NTKG

HI:I_E

NHII

NIlII'I'

Nec

NAC

Nac

0

=]

Pc

0

=]
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=
=}

=
=

#E&

#E

#E&

#&

# &

#&

# &

# &

#&

# &

#&

Prx

#E

Plac

#&

# &

# &

Pfus

#&

#&

Pfex

#E&
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Plur

#&

#E&

#E&

#&

#&

pfum

piHRT

#&

Pio

Pm

P

Packs

#&

# &

Packr

# &

#&

Pce

#E&

#&

Pcr

#E&

#E&

Poce

Picr

Pucr

clo|lo(lo|lo|lo|lo|lo|O|MN|NIM|NMIRICD|ICQ|C|D(R|D|C (| D |W|=d|F=]|H

o|lo|lo|o|o|o|lo||l|MIRIRINIOC|IC|IC(C|IR|IR|O(O|N|D|R|A]w|=|K

Phicr

0

0

# = parameter included in regression metamodel that is one of top three most significant
& = parameter included in partition tree model that is one of top three most significant

Table 22.

Top three significant input parameters (1 year)
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In all three scenarios, we see that px.k, pfrs, pfns, and pfyr are the input
parameters that are considered most significant the most times (counts
highlighted in green) for both regression metamodels and partition tree models.
The renege probability factor (pfrg) and the no-show probability factor (pfys)
make intuitive sense as these dictate whether a Green player ultimately shows
up and partakes in a KLE, and KLEs are the driving force for most of the model
outputs. The honoring requests probability factor (pfur) also makes intuitive
sense as many actions that occur after KLEs depend on whether the Green

player honored the various Blue player requests.

The probability of having key leader critical knowledge (pxik) seems
peculiar as to why it is so important in predicting the various outputs; for instance,
what does the number of pro-coalition force campaigns have to do with whether
or not a Green player has critical knowledge on other key leaders? If a Green
player has key leader critical knowledge, he can be incentivized or threatened to
give this knowledge to a Blue player during a KLE. If he is incentivized or
threatened, this can more significantly affect whether or not his OAB is updated
following a KLE. This in turn impacts whether or not he will conduct a pro-
coalition force campaign. Likewise, if the Green player does not have key leader
critical knowledge, he is never incentivized or threatened, and so his OAB is less
likely to change and the impact on conducting a pro-coalition force campaign is
reduced. This effect-tracing through the various components applies to all the

output responses.

Using Tables 21, 22, and 23, we can verify the functionality of the KLE
Model and confirm that it worked properly over a large range of inputs. The
number of micro-KLEs output is anomalous and is discussed in more detail in
section D. The number of times knowledge is gained during micro-KLES is
expected to be linked to the chance of knowledge probability factor (pfck), and
the metamodels and tree models support this fact. The number of KLEs is
discussed in the example at the beginning of this section, and those analytical
models support the expected behavior of the KLE Model.
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For the honoring request outputs (pass message, provide key leader
critical knowledge, provide threat critical knowledge, and provide resource critical
knowledge), we expect pfrg and pfys to be important (we cannot honor requests
during KLEs if we do not attend KLES), as well as pfyr. Additionally, for the three
critical knowledge-related outputs, we expect the probabilities of having said
knowledge (pkik, ptk, and prk) to help predict the respective responses, and they

show up in the analytical models with high significance.

For the pro- and anti-coalition force campaign outputs, we expect pfrc and
pfns to be important (we cannot campaign following KLEs if we do not attend
KLES), as well as pfyr since honoring or not honoring requests leads to potential
incentives and threats that can impact the OAB updating following a KLE; the
OAB directly impacts what type of campaign will occur. Once again, these factors

show up in the analytical models with high significance.

The last set of outputs (the capture and kill outputs) verify the capturing
and killing functionality by using the baseline probabilities of capture or kill by
Blue players (pscks) or by Red players (psckr) and the probabilities of capturing
vice killing by Blue players (pcs) or by Red players (pcr). We expect the
respective Blue player probabilities to be significant when predicting captures
and kills by Blue players, and likewise for the Red player probabilities. The
metamodels and tree models support this fact in all cases.

C. SUMMARY STATISTICS ANALYSIS

Using JMP®, the distributions of the means, standard deviations,
minimums, and maximums are attained for each output response per scenario.
The goal is to gain insights into what the KLE Model can provide regarding
issues such as variability or outliers. These snapshots include histograms, outlier
boxplots, quantile data, and moment data. The summary statistics can be used
(along with the histograms) to qualitatively assess whether the output is

reasonable or not.
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Once again we use the number of KLEs response as our example, and
the distributions can be seen in Figures 32, 33, and 34 for the one-week, nine-
week, and one-year scenarios, respectively. We see that the various data are
well-distributed but with some skewness, especially in the mean and minimum
histograms for all three runtimes. Note that there is no reason to expect that the
distribution of the design point means should be symmetric, since the design
point results arise from different combinations of inputs. In this example, there
are no significant outliers. Using the number of KLEsS mean statistics, and just
using plus or minus one standard deviation from its mean, we expect our model
to produce 2 to 4 KLEs in one week, 20 to 34 KLEs over nine weeks, and 62 to
149 KLEs over one year. This appears to scale nicely as runtime increases and
so this range of values seems reasonable. Even when we look at the minimum
and maximum numbers of KLEs experienced in all three scenarios, getting these

minimums and maximums as results is reasonable also.
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Figure 32. Number of KLEs summary statistics (1 week)
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Figure 33. Number of KLES summary statistics (9 weeks)
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Figure 34. Number of KLEs summary statistics (1 year)

Table 23 lists the summary statistics for all of the output means across all

three scenarios.
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Outout 1 week 9 weeks 1 year
P (mean/sd (mean/sd (mean/sd
Response . . .
min/max) min/max) min/max)
N 1/0 36.48/144.04 7905.92/8840.24
L 1/1 1/1879.44 1/34357.6
N 0.25/0.15 9.15/45.81 1987.56/2828.08
s 0/0.58 0/760.69 0/15503.4
N 3.02/0.7 26.67/7.06 105.3/43.72
LULE 1.63/4.82 13.71/44.98 32.03/256.32
- 1.14/0.54 9.28/4.29 30.13/17.79
HRM 0.06/2.76 0.67/23.67 3.01/118.73
. 0.57/0.46 A.46/3.27 11.74/5.39
. 0/2.42 0/15.37 0/20.78
- 0.42/0.34 3.51/2.86 12.34/11.97
HRT 0/1.74 0/15.9 0/75.15
N 0.42/0.34 3.3/2.67 11.04/10.62
R 0/2.38 0/19.91 0/70.56
N 0.46/0.13 7.15/2.41 26.16/19.81
-5 0.13/0.83 1.66/14.65 2.23/153.39
N 0.23/0.13 4.66/2.56 26.13/15.36
= 0.01/0.75 0.54/15.24 3.56/107.63
N 0.02/0.03 0.44/0.5 2.47/2.92
8C 0/0.15 0/3.58 0/29.44
N 0.84/0.51 0.45/0.51 2.43/2.76
L 0/2 0/3.37 0/18.5
. 0.09/0.08 1.04/1.01 4.23/5.43
RC 0/0.42 0/5.49 0/38.77
- 0.08/0.08 1.05/1.02 4.03/4.83
= 0/0.4 0/5.27 0/35.89
Table 23. Summary statistics for output response means

For the number of micro-KLEs (Nwk.e) response, we observe that exactly
one micro-KLE takes place during the one-week scenario. This is most likely due
to the proportion of Blue players (4) to Green players (17) used in the scenarios;

a Green player is almost always available to engage, so we never see more than
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(or less than) one micro-KLE. We also observe an exponential increase in the
number of micro-KLEs as model runtime increases, which is discussed in section
D. This exponential issue ties into the number of times knowledge is gained
during micro-KLEs (Ntkg), but the problem is with the number of micro-KLEs

only, as pfck is the driving force for Ntkg.

All of our responses are nonnegative. Some of their distributions are
highly skewed, with standard deviations that are quite large relative to the
means, which is why we report the minimum and maximum value along with the
means and standard deviations. This still results in plausible ranges for all of the
output variables (except Nukie and Ntgg) for all three scenarios, so our model is

producing reasonable responses.

Only two of our design points produced significant outliers. One of these
included the same outlier; they were the Nukie minimum boxplot and Nrkg
minimum boxplot, both at nine weeks. This was associated with design point 443.
All other design points produced only one micro-KLE and zero times knowledge
gained, but the outlier values were 59 micro-KLEs and 24 times knowledge
gained. The third outlier was found in the number of Blue captures minimum
boxplot at one year, and it was associated with design point 63. Approximately
90% of the design points produced zero Blue captures, but this outlier value was
14. After looking at the input parameter values associated with these design
points, no significant explanation was found for these three outliers and we

attribute this to randomness within the model.

D. DISCUSSION ON NUMBER OF MICRO-KLES

After deriving regression metamodels and partition tree models for the
number of micro-KLES output response, we are able to decipher which input
parameters are most significant in predicting number of micro-KLEs, but the
analytical models themselves provide poor fits and poor explanations of the
variability. In fact, we found that the number of micro-KLEs grows exponentially

as scenario runtime increases. In the one-week scenario, we always had one
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micro-KLE occurring, but as we increase model runtime to nine weeks, we see a
big jump in the mean number of micro-KLEs (Figure 35), and we experience

exponential growth as we run the model for one-year (Figure 36).

This is one instance that might not show up as a problem if a single
scenario time (nine weeks for instance) was used. A systematic exploration
shows this anomaly compared to the other KLE Model output responses. After
verifying that the KLE Model logic was sound and the implementation within Java
was correct, the anomaly was found to be linked to the static input parameters
governing the time a Blue player spends waiting for a micro-KLE and the time a

Blue player spends in a micro-KLE.

From Table 17, these triangle-distributed time streams have very small
modes compared to all the other time streams utilized in the model. The mode for
the next scheduled micro-KLE time stream is 0.5, and the mode for the time
spent in a micro-KLE time stream is 0.2. If there are no Green players available
to engage, then a Blue player could do about 34 micro-KLEs a day. With four
Blue players in the model, and assuming a one-year scenario, we could see

upwards of 49,640 micro-KLES in one-year combined.

The time streams were best-guess estimates from TRAC-Monterey
analysts, so one solution is to think more carefully about what static time stream
distribution is used for micro-KLEs. Another solution is that the micro-KLE
functionality used in our model may require modifications (such as constraints on
the total number of micro-KLEs that one agent can conduct over the course of a
week, or the opportunity to “do nothing” rather than initiate a micro-KLE if no key
leader is available) to meet TRAC'’s needs before any incorporation into the CG
Model.

99



N_MKLE.mean N_MKLE.sd N_MKLE.min N_MKLE.max

q q 6,‘}_ q

1 BOO | 4000 -]

] 700 50 1 .

] 600 ] 3000+ :

4 4 40— 4 .

1 500 % J 1 %
1000 - : : 1 2

1 : 400 ¥ 30+ 2000 F

1 300 s 1 ] =

] : 1 2 20+ 1 A

] N 200 & ] 1000 0

] _E_ 1&0—5 % 104 g

] 04 1 o]

0] ] ol 1| — ]
Quantiles Quantiles Quantiles Quantiles
100.0% maximum 1879.44 100.0% maximum 811.746 100.0% maximum 59 100.0%: maximum 4029
99.5% 1132.1 99.5% 740.197 99.5% 1 99.5% 3423.62
97.5% 310.013 97.5% 479.66 97.5% 1 97.5% 2519.4
90.0% 74.3665 90.0% 203.814 90.0% 1 90.0% 1656.7
75.0%  quartle 6.19125 75.0%  quartile 34.0482 75.0%  quartile 1 75.0%  quartile 41375
50.0%  median 1 50.0%  median 0 50.0%  median 1 50.0%  median 1
250%  quartile 1 25.0%  quartile 0 25.0%  quartie 1 250%  quartile 1
10.0% 1 10.0% 0 10.0% 1 10.0% 1
2.5% 1 2.5% 0 2.5% 1 2.5% 1
0.5% 1 0.5% 1] 0.5% 1 0.5% 1
0.0%  minimum 1 0.0%  minimum 0 0.0%  minimum 1 0.0%  minimum 1
Moments Moments Moments Moments
Mean 36479268  Mean 57.433273 Mean 11132813 Mean 399.96047
Std Dev 144.03641 Std Dev 127 78772 Std Dev 2.5632621 Std Dev 744.35171
Std Err Mean 6.3655703 Std Err Mean 5.6474728 Std Err Mean 0.1132813 Std Err Mean 32.896009
Upper 95% Mean 48.985177  Upper 95% Mean 68.528396 Upper 95% Mean 1.3358355  Upper 95% Mean 464.60853
Lower 85% Mean 23.973358  Lower 95% Mean 46.338151 Lower 95% Mean  0.880727  Lower 95% Mean  335.3524
N 512 N 512 N 512 N 512
Figure 35. Number of micro-KLEs summary statistics (9 weeks)
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Figure 36. Number of micro-KLEs summary statistics (1 year)
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V. WRAP-UP

We begin Chapter V by stating our conclusions as to what we
accomplished by creating a KLE Model and analyzing that model. We then
discuss the significant contributions that were made by conducting the research.
We end with some discussion as to potential future research opportunities that

stem from our research.

A. CONCLUSIONS

The primary goal of this research was to develop a discrete event
simulation model for potential plug-in to the CG Model. This model would take
the place of Nexus when analyzing KLEs by simplifying the Nexus code. We
were able to show that a simple and understandable model can be built using
Simkit that reasonably models those aspects of Nexus needed for the CG Model.
Through the use of event graphs, we were able to represent the complexities of
KLEs in a visually understandable way. In addition, by using discrete event
simulation and event graphs, the KLE Model can be easily modified while still
maintaining the desired functionality of the original model.

The purpose of the analysis was to test the KLE Model in order to verify
that it works properly, and to gain an understanding of KLEs for areas of future
research that can be pursued using this model. Various insights can be gathered
from this research and analysis. Through the use of experimental design, we
were able to adequately analyze what input parameters are most significant in
the KLE Model and how these parameters verify the code implementation. Using
the number of KLES response as an example, we were also able to see through
regression metamodels that output complexity increases with runtime as cross-
component effects become influential. Our analysis identified four input
parameters that show up most often in regression metamodels and partition tree
models for the output variables, and showed that are also the most significant in
the KLE Model. Three of these parameters made intuitive sense; the fourth, the
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probability of having key leader critical knowledge, can be shown to make sense
as it has cross-component implications within the model. Lastly, we found that
our model encountered difficulties modeling micro-KLEs, but the source of the
problem was identified and properly addressed.

B. SIGNIFICANT CONTRIBUTIONS

The primary objective of this work is to enhance the CG Model in the
highest priority areas of dynamic social network relationships and persuasion and
influence (Jackson 2009). We sought to help satisfy the critical area
requirements identified by the U.S. Army and U.S. Marine Corps. By
incorporating those components of Nexus into the CG Model, this work has the
potential to save the Army and Marine Corps time and money if and when the
model becomes a wide-scale decision-making tool. This effort reduces long-term
requirements for scenario file development and model maintenance. Lastly, this
research provides a better understanding of key leader engagements and the

part they play in cultural geography.

C. FUTURE RESEARCH OPPORTUNITIES

The KLE Model event graphs allow future researchers to identify where
modifications and/or additions are necessary in order to achieve a desired
outcome. Improvement in the functionality of the KLE Model can occur by
expanding on the behavior modeling of Blue players and Green players. The
behavior equations utilized are simple and easy to understand, but if found
unsatisfactory, more complex, social theory-based equations can be applied in
the model. Also, Red player actions were implied through various events, and
future research could look at the feasibility of adding a Red player agent as a

separate entity and analyzing outputs specific to its utilization.

This research ran the KLE Model as a closed-loop, stand-alone
simulation. Future research may look into tailoring the KLE Model to the specifics

of the CG Model. Then, by using the plug-and-play aspect of the CG Model, one
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could link the KLE Model up and see how the KLE Model outputs affect the
general population, and how population behaviors as inputs affect the workings
of the KLE Model.

The scenarios used in the analysis involved three distinct runtimes: one
week, nine weeks, and one year. This enabled us to look at distinct differences in
short-term, mid-range, and long-term model execution, but nothing in between.
Future research might look at including model runtime as a parameter to further
explore runtime effects on the output responses. Additionally, the numbers of
Blue players and Green players were static parameters, as well as the streams of
times used in the KLE Model. Future research could look at varying these
aspects in a systematic way to study the effects of varying numbers of players

and time streams.

Lastly, due to the large amount of data collected from running the model in
the three scenarios over the 13 different output variables, this research made use
of simple techniques to analyze the KLE Model. With more time, more advanced
analytical techniques could be utilized to take a closer look at the data and

extract any insights or relationships that were not shown in this research.
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