
 

 
NAVAL 

POSTGRADUATE 
SCHOOL 

 
MONTEREY, CALIFORNIA 

 

 
 

THESIS 
 

Approved for public release; distribution is unlimited 

DISCRETE EVENT SIMULATION MODELING AND 
ANALYSIS OF KEY LEADER ENGAGEMENTS 

 
by 

 
Clifford C. Wakeman 

 
June 2012 

 
 Thesis Co-Advisors:    Arnold H. Buss 
     Susan M. Sanchez 
 Second Reader:    Jason C. Caldwell 



THIS PAGE INTENTIONALLY LEFT BLANK 



 i 

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing 
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection 
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction 
Project (0704-0188) Washington DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE   
June 2012 

3. REPORT TYPE AND DATES COVERED 
Master’s Thesis 

4. TITLE AND SUBTITLE  Discrete Event Simulation Modeling and Analysis 
of Key Leader Engagements 

5. FUNDING NUMBERS 
 

6. AUTHOR(S)  Clifford C. Wakeman 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING ORGANIZATION 
REPORT NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
N/A 

10. SPONSORING/MONITORING 
    AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the 
official policy or position of the Department of Defense or the U.S. Government.  IRB Protocol number ___N/A____.  

12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 
A 

13. ABSTRACT (maximum 200 words)  
The Cultural Geography (CG) Model is a low-resolution, agent-based discrete event social simulation 
tailored to specific operational environments. It is based on doctrine and social theory designed to 
represent the behavioral response of civilian populations in conflict environments. The current version of 
the CG Model does not represent key leader engagements (KLE), which are activities between coalition 
military forces and host nation civilian personnel, as means of obtaining information, influencing behavior, 
and building an indigenous base of support for coalition and government objectives. These capabilities are 
needed for additional tactical level representation of the operational environment.  

This research develops a simulation model using Simkit to explore the feasibility of modeling KLEs 
using discrete event simulation. A total of 32 dynamic input factors are varied using a 512-design point 
design. Second-order regression metamodels and partition tree models are developed for simulation model 
output responses that track numbers of engagements, numbers of times knowledge is provided, numbers 
of campaigns, and numbers of captures and kills; these analytical models are used to verify the proper 
execution of the simulation model. Summary statistics are analyzed to gain further insights about the 
simulation model’s behavior.   
14. SUBJECT TERMS Cultural Geography, Discrete Event Simulation, Key Leader, Key 
Leader Engagement, Simkit, Nearly Orthogonal and Balanced Mixed Design, Second-order 
Regression Metamodel, Partition Tree Model 

15. NUMBER OF 
PAGES  

129 
16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION OF 
ABSTRACT 
 

UU 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 8-98) 
 Prescribed by ANSI Std. Z39.18 



 ii 

THIS PAGE INTENTIONALLY LEFT BLANK 



 iii 

Approved for public release; distribution is unlimited 
 
 

DISCRETE EVENT SIMULATION MODELING AND ANALYSIS 
OF KEY LEADER ENGAGEMENTS 

 
 

Clifford C. Wakeman 
Captain, United States Marine Corps 

B.S., University of Michigan, Ann Arbor, 2002 
 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
 

MASTER OF SCIENCE IN OPERATIONS RESEARCH 
 

from the 
 
 

NAVAL POSTGRADUATE SCHOOL 
June 2012 

 
 
 

Author:  Clifford C. Wakeman 
 
 
 

Approved by:  Arnold H. Buss 
Thesis Co-Advisor 

 
 

   Susan M. Sanchez 
   Thesis Co-Advisor 

 
 

Jason C. Caldwell 
Second Reader 

 
 

Robert F. Dell 
Chair, Department of Operations Research 

 



 iv 

THIS PAGE INTENTIONALLY LEFT BLANK 



 v 

ABSTRACT 

The Cultural Geography (CG) Model is a low-resolution, agent-based discrete 

event social simulation tailored to specific operational environments. It is based 

on doctrine and social theory designed to represent the behavioral response of 

civilian populations in conflict environments. The current version of the CG Model 

does not represent key leader engagements (KLE), which are activities between 

coalition military forces and host nation civilian personnel, as means of obtaining 

information, influencing behavior, and building an indigenous base of support for 

coalition and government objectives. These capabilities are needed for additional 

tactical level representation of the operational environment.  

This research develops a simulation model using Simkit to explore the 

feasibility of modeling KLEs using discrete event simulation. A total of 32 

dynamic input factors are varied using a 512-design point design. Second-order 

regression metamodels and partition tree models are developed for simulation 

model output responses that track numbers of engagements, numbers of times 

knowledge is provided, numbers of campaigns, and numbers of captures and 

kills; these analytical models are used to verify the proper execution of the 

simulation model. Summary statistics are analyzed to gain further insights about 

the simulation model’s behavior.  
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EXECUTIVE SUMMARY 

The Cultural Geography (CG) Model, developed by TRAC-Monterey, is a 

low-resolution, agent-based, discrete event social simulation tailored to specific 

operational environments based on doctrine and social theory. It is designed to 

represent the behavioral responses of civilian populations in conflict 

environments. It focuses on the political, military, economic, social, infrastructure, 

and information variables in the operational environment, which affect the 

population’s beliefs, values, interests, attitudes, and behaviors. TRAC-Monterey 

developed the model to support the analysis of civilian population perception 

based on friendly and threat actions.  

The current version of the CG Model does not represent key leader 

engagements (KLE), which are activities between coalition military forces and 

host nation civilian personnel as a means of obtaining information, influencing 

behavior, and building an indigenous base of support for coalition and 

government objectives. TRAC needs this capability for additional tactical level 

representation of the operational environment. TRAC’s Irregular Warfare (IW) 

Tactical Wargame (TWG) initiative utilizes Nexus, an interpretive social science 

simulation of IW that is separate from the CG Model, to incorporate the influence 

of key individuals on the population by modeling the key leader network. One of 

the focus areas discussed in the after-action report from the TWG that TRAC-

Monterey held in October 2011 was a need to incorporate the Nexus key leader 

functionality into the existing CG Model. TRAC seeks to remodel the components 

of Nexus as discrete event simulation using Simkit, the basis for the CG Model. 

Currently the CG Model takes the Nexus outputs as a subset of its inputs to 

study a larger cultural population.  

This thesis project explores three research questions. First, can we 

satisfactorily model KLEs using discrete event simulation and Simkit? After 

conducting an initial analysis of the KLE components within Nexus, we 

developed a discrete event simulation model that captured the critical 
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functionality of Nexus. This functionality includes conducting KLEs, agreeing to 

pass coalition force messages, honoring critical knowledge requests, 

campaigning by key leaders, and capturing, killing, releasing, and replacing key 

leaders. Additionally, we included micro-KLEs, or interactions with the general 

populace to extract critical knowledge. Our model involved the creation of model 

agents, the development of agent behaviors based primarily on an attribute 

called observed attitude and behavior (OAB), and the definition and development 

of parameters, state variables, and event graphs. We then translated the agents, 

behaviors, and event graphs into computer code using Java and Simkit for direct 

closed-loop analysis. Upon exploring the feasibility of modeling KLEs, we were 

able to create a simple, yet realistic, discrete event simulation model of KLEs.  

Second, how can experimental design be used to assist in code 

verification efforts? Once complete with the discrete event simulation modeling, 

simulation scenarios were developed to study the KLE Model and to provide 

insight on what model input parameters have the greatest impact on influencing 

model output behaviors. Large-scale experiments were designed and employed 

to vary the 32 input parameters in a structured, efficient manner in order to assist 

with code verification efforts. Three separate scenario runtimes were used: one 

week to study short-term model effects, nine weeks to study the effects during a 

typical TWG runtime, and one year to study long-term model effects. After 

building regression metamodels and partition tree models for the output 

responses, our analysis highlighted several input factors that were important in 

predicting all of the output responses, such as the probability a key leader 

reneges from a KLE, the probability a key leader is a no-show to a KLE, and the 

probability a key leader honors message or knowledge requests. The 

identification of significant input parameters was then used to verify the proper 

functionality of our model by using them to explain expected behavior of the 

model components. 

Third, are there any insights we can gain from the model using the output 

summary statistics coupled with histograms and boxplots, such as variability 
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issues or outlier issues? The analysis showed that most of the output responses 

provide plausible ranges and variations, thus verifying the reasonableness of our 

model outputs. Outliers did not appear to be an issue. One output that did not 

behave as expected was the number of micro-KLEs response. This appeared 

anomalous as it exhibited exponential growth. After further investigation, we 

found that the results were consistent with the input parameters provided by 

TRAC, because a large number of potential micro-KLEs could be conducted 

when key leaders were unavailable. 

In summary, we have built a conceptual model of the impact of key leader 

engagements on civilian population behavior, implemented this model using a 

discrete event simulation approach, and tested its performance with a large-scale 

experiment. This sets the stage for incorporating our KLE Model into the current 

CG Model, in order to improve the CG Model’s suitability for use in tactical 

wargames and other studies. 
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I. INTRODUCTION  

Chapter I begins with some background about why this thesis was 

conducted, basically stemming from a need for key leader engagement 

functionality for a United States Army irregular warfare model. Next it describes 

what key leaders, observed attitudes and behaviors, key leader engagements, 

and micro-key leader engagements are. An overview of the methodology is 

outlined, concluding with the research questions that were posed.  

A. MOTIVATION FOR THESIS 

1. TRAC and the Cultural Geography Model 

The United States Army Training and Doctrine Command Analysis Center, 

or TRAC, supports the United States Army by conducting operational analysis to 

inform Army decisions. TRAC-Monterey, co-located with the Naval Postgraduate 

School in Monterey, California, is the research and analysis arm of TRAC. It 

specializes in relevant, credible exploratory and applied research related to 

modeling, simulation, and analysis methodologies.  

The Cultural Geography (CG) Model, developed by TRAC-Monterey, is a 

low-resolution, agent-based, discrete event social simulation tailored to specific 

operational environments based on doctrine and social theory. It is designed to 

represent the behavioral responses of civilian populations in conflict 

environments. It focuses on the political, military, economic, social, infrastructure, 

and information variables in the operational environment, which affect the 

population’s beliefs, values, interests, attitudes, and behaviors. TRAC-Monterey 

developed the model to support the analysis of civilian population perception 

based on friendly and threat actions.  

The CG Model is built around the concept of reusable “plug-and-play” 

Java modules that formalize theories from behavioral and social science. It is 

implemented in Java and utilizes Simkit as the simulation engine. It blends a 

variety of carefully selected social science theories with current and emerging 
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counterinsurgency and stability operations doctrine. It employs a social network 

for population entities and a bipartite network between groups and population 

entities to represent the evolving relationships and interactions over time. The 

civilian population entities and adversary entities have deep intelligence 

representations to allow those agents to react to events and information, and to 

change positions and affiliations over time with a clear understanding of motive.  

2. Need for Key Leader Engagement Functionality 

The current version of the CG Model does not represent key leader 

engagements, which are activities between coalition military forces and host 

nation civilian personnel as a means of obtaining information, influencing 

behavior, and building an indigenous base of support for coalition and 

government objectives. TRAC needs this capability for additional tactical level 

representation of the operational environment. 

TRAC’s Irregular Warfare (IW) Tactical Wargame (TWG) initiative utilizes 

Nexus, an interpretive social science simulation of IW that is separate from the 

CG Model, to incorporate the influence of key individuals on the population by 

modeling the key leader network. One of the focus areas discussed in the after-

action report from the TWG that TRAC-Monterey held in October 2011 was a 

need to incorporate the Nexus key leader functionality into the existing CG 

Model. In an effort to create an integrated, simplified, and stable model that 

encompasses social interactions and cultural impacts, TRAC-Monterey is 

creating a new model, the Social Impacts Module, or SIM. The goal is to have 

SIM complete by the next TWG scheduled for the spring of 2013. 

The Nexus Key Leader Model, a part of the Nexus suite, is a cognitive 

agent-based model that focuses on individual, discrete interactions among 

agents such as those found in key leader engagements. Nexus utilizes Repast, 

an agent-based modeling and simulation toolkit. Agent behaviors and symbolic 

interactionism are derived from interpretive social science. Agents individually 
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adapt to civil and military intervention using Artificial Intelligence Technologies, 

and so they implement cultural rules using probabilistic ontologies. (Duong n.d.) 

TRAC seeks to remodel the components of Nexus as discrete event 

simulation using Simkit, the basis for the CG Model. Currently the CG Model 

takes the Nexus outputs as a subset of its inputs to study a larger cultural 

population. This thesis project looks at the feasibility for the seamless integration 

of the Nexus-based code into the CG Model, thus providing improved continuity 

of the input parameters and the output data. 

B. KEY LEADERS AND KEY LEADER ENGAGEMENTS  

1. Key Leaders 

Key leaders are the formal or informal leaders that are powerful in a 

society and can influence a target audience in a way that is beneficial for 

coalition operations. In the context of a TWG, key leaders are of two types. The 

first type is the coalition force representative, or military commander, represented 

by the physical player of the TWG; the human player has a simulated 

representation in the model. The second type is the key actor in the mission area 

with whom the military commander wants to engage; this is the powerbroker, 

stakeholder, or otherwise influential voice within the community and culture being 

studied, represented by a simulated entity within the model. Key leaders are one 

of the primary means through which players may influence the population. They 

can provide critical knowledge about other key leaders, threats, or resources, 

pass messages to the population, or inform players as to issue stances regarding 

community concerns.  

Key leaders can be encouraged (monetarily or non-monetarily) or 

threatened. They can be captured or killed through player action, and if this 

occurs, the network of leaders within the game will reorganize through an 

adjudication process, and influences may change. Players begin with a unique 

list of known key leaders. Additional key leaders will be revealed throughout the 

game as the players form relationships with the population.  
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The motivation for key leaders to act a particular way toward coalition 

forces comes from an attribute called observed attitudes and behaviors (OAB). 

This is a key leader’s general attitude toward coalition forces, either positive or 

negative, coupled with their propensity to act a certain way, either active or 

passive. The OAB types of the key leaders in this study are positive active (will 

go out of their way to help you), positive passive (like you but will generally stay 

out of the way), neutral, negative passive (do not like you but will generally stay 

out of the way), and negative active (will go out of their way to hurt you).  

2. Key Leader Engagements 

The interactions between the physical players and simulated entities are 

called key leader engagements (KLE). KLEs are planned to convey selected 

information and indicators to foreign audiences to influence their emotions, 

motives, objective reasoning, and ultimately the behavior of foreign governments, 

organizations, groups, and individuals. They are held in order to collect 

intelligence, develop relationships in support of commander’s intent, and obtain 

mutually satisfying outcomes within constraints existing in a partnered nation’s 

cultural belief system.  

In general, a KLE is more than just a meeting, mini-conference, or working 

group between the military leaders and the local population. They are exploratory 

engagements in order for both sides to identify one another‘s motives. KLEs 

enable military leaders and decision makers to interact with key leaders and the 

local populace in order to begin or build relations. In addition, KLEs enable 

military leaders to identify the key issues and concerns of the population 

(McKenna and Hampsey 2010). 

A subset of KLEs consists of micro-KLEs. These deal with getting 

information from civilians within the general population. Micro-KLEs have 

outcomes that are associated with the OAB of the civilian, and the civilian that is 

chosen to interact with is usually selected at random. Based on that person’s 

social network, he or she might know something about a key leader, a threat, or 
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a resource, and based on that person’s motivations, he or she might tell a human 

player what they know. Not every micro-KLE results in useful information, and so 

the probability of getting actionable information is usually low.  

C. RESEARCH QUESTIONS 

1. Satisfactorily Modeling KLEs 

Can we satisfactorily model KLEs using discrete event simulation and 

Simkit? Additionally, are we gaining or losing (or willing to lose) any important 

KLE functionality from the current method of using a third-party model? Upon 

exploring the feasibility of modeling KLEs, we were able to create a simple, yet 

realistic, discrete event simulation model of KLEs. This model also included the 

ability to look at micro-KLEs, a function not found within Nexus but identified by 

TRAC as important for SIM. 

2. Significant Input Parameters and Code Verification 

What input parameters are significant when predicting the model output 

responses? Can these significant factors assist with code verification efforts? 

Through the use of second-order regression metamodels and partition tree 

models, our analysis highlighted several input parameters that were statistically 

significant in predicting all of the output responses. In most cases, the 

metamodels and tree models backed each other up. Additionally, the factors 

found to be most significant helped verify the expected behavior of the model 

components. 

3. Summary Statistic Insights 

Are there any insights we can gain from the model using the output 

summary statistics, such as variability issues or outlier issues? The analysis 

showed that most of the output responses provide plausible ranges and 

variations, thus verifying the reasonableness of our model outputs. Outliers did  
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not appear to be an issue. Furthermore, the summary statistics showed us that 

the number of micro-KLEs response appeared anomalous as it exhibited 

exponential growth. 

D. METHODOLOGICAL APPROACH 

We conducted an initial analysis of the KLE components within Nexus. 

The goal was to identify and understand the critical components of the network 

relating to KLEs. We remodeled these critical components using discrete event 

simulation. This involved the creation of model agents, the development of agent 

behaviors, and the definition and development of parameters, state variables, 

and event graphs. We then translated the agents, behaviors, and event graphs 

into computer code using Java and Simkit for direct closed-loop analysis. 

Additionally, the CG Model currently uses Bayesian belief networks to 

model the population stance changes. Another project within TRAC-Monterey’s 

scope is to explore the possibility of modeling the population behavior using 

Markov chains instead of the Bayesian belief networks. To conform to this 

updated population behavior methodology, Markov chains were utilized in 

modeling the key leader OAB changes and assignments.  

Once we completed the discrete event simulation modeling, simulation 

scenarios were developed to study the KLE Model and to provide insight on what 

model input parameters have the greatest impact on influencing model output 

behaviors. Large-scale experiments (Kleijnen et al. 2005, Vieira et al. 2011) were 

designed and employed to vary the input parameters in a structured, efficient 

manner in order to assist with code verification efforts. Output responses similar 

to those in Nexus were identified, developed, and added to the KLE Model to 

gather information from the model for statistical analysis. 

The simulation output data were collected and analyzed to identify and 

build any useful statistical relationships that can help predict model input 

outcomes. Analysis tools used included second-order regression metamodels, 

partition tree models, summary statistics, histograms, and boxplots.  
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We provide details about the KLE Model in Chapter II. In Chapter III we 

describe the experimental design used to investigate the KLE Model’s 

performance. Chapter IV contains our analysis and assessment of 13 different 

model responses. Conclusions and suggestions for further research appear in 

Chapter V. 
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II. KEY LEADER ENGAGEMENT MODEL 

Chapter II begins with a description of the requirements needed for a 

closed-loop model of key leader engagements (KLE). Some of these 

requirements are highlighted in TRAC-Monterey supporting documentation, while 

others are a carryover from the Nexus KLE functionality. Next, we discuss the 

three types of agents used in the model, namely Blue players, Green players, 

and Red players, followed by behavior equations that are used to model agent 

behaviors. Lastly, the event graphs and components that we built are described 

in detail, including the component listening structure and adapters.  

A. REQUIREMENTS OF KLE MODEL 

Specific requirements for integrating Nexus into the Cultural Geography 

(CG) Model are outlined in Caldwell and Brown (2011). The model must allow 

agents to update their observed attitudes and behaviors (OAB), consent to pass 

a message, and provide critical knowledge on key leaders, threats, and/or 

resources. Other components are required to integrate with the CG Model, but 

the KLE Model in this research is run independently from the CG Model, so those 

functions are not explicitly implemented. The requirements document does not 

outline some of the KLE functionality, but it is a continuation from the legacy 

version of Nexus and used in comparing the KLE Model outputs to the tactical 

wargame (TWG) results; these functions are campaigning, capturing, killing, and 

replacing key leaders.  

In order to model KLEs, we need to model agents, behaviors, and events. 

The agents represented in the model are Blue players (coalition force military 

commanders), Green players (key leaders), and Red players (anti-coalition force 

and/or anti-key leader personnel). The behaviors are represented by simple 

equations or probability transition matrices utilizing OABs, probability factors, 

probabilities, and times. 
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The components used in this model allow for a closed-loop execution of 

events that are based on discrete event simulation using Simkit. For more 

information on discrete event simulation modeling and discrete event 

programming with Simkit, see Buss (2011).  

The KLE Model requirements include:  

• Method to create agents; 

• Method to figure out if Blue players are seeking out micro-KLEs or 
scheduling KLEs, to include reneges and no-shows; 

• Method to handle micro-KLEs and potentially gain critical 
knowledge; 

• Methods to handle KLEs and potentially persuade Green players to 
pass messages, provide critical knowledge, and/or update their 
OAB; 

• Method to handle Green player campaigns; 

• Method to handle capturing and killing of Green players; 

• Method to handle releasing of Green players; and 

• Method to handle Green player replacements. 

B. AGENTS IN KLE MODEL 

1. BluePlayer Agent 

A BluePlayer agent in the KLE Model represents a United States military 

commander or coalition force commander that has the authority to conduct 

micro-KLEs and partake in KLEs. The agent has three attributes, summarized in 

Table 1. The attribute name is self-explanatory. The attribute id is a unique 

integer identification for the Blue player to help identify the agent in the model. 

The first Blue player created has an id of 1; each subsequent Blue player created 

has the next incremental integer. The attribute incentiveToOffer is a Boolean-

type used to show if the Blue player has an incentive to offer to a Green player 

during a KLE.  
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Table 1. BluePlayer agent attributes. 

2. GreenPlayer Agent 

A GreenPlayer agent in the KLE Model represents the influential key 

leader. The agent has 16 attributes, summarized in Table 2. The attribute name 

is self-explanatory. The attribute id is a unique integer identification for the Green 

player to help identify the agent in the model. The first Green player created has 

an id of 1; each subsequent Green player created has the next incremental 

integer. The attribute observedAttitudeBehavior holds the current OAB for the 

Green player. The following are the corresponding OAB values for the 

representative integers: 0 is negative active, 1 is negative passive, 2 is neutral, 3 

is positive passive, and 4 is positive active. The attribute corrupt is a Boolean-

type used to show if the Green player is corrupt and will be enticed by incentives 

offered during KLEs. The attribute agreedToPassMessage is a Boolean-type 

used to show if the Green player has agreed to pass along a message from a 

Blue player during a KLE. The attribute keyLeaderKnowledge is a Boolean-type 

used to show if the Green player has critical knowledge on other key leaders to 

provide to a Blue player during a KLE. The attribute threatKnowledge is a 

Boolean-type used to show if the Green player has critical knowledge on threats 

to provide to a Blue player during a KLE. The attribute resourceKnowledge is a 

Boolean-type used to show if the Green player has critical knowledge on 

resources to provide to a Blue player during a KLE.  

The attribute incentivized is a Boolean-type used to show if the Green 

player has been offered an incentive during a KLE. The attribute threatened is a 

Boolean-type used to show if the Green player has been presented a threat 

during a KLE. The attribute killed holds the current killed status of the Green 
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player as an integer; 0 corresponds to alive, 1 corresponds to killed by a Blue 

player, and 2 corresponds to killed by a Red player. The attribute captured holds 

the current captured status of the Green player as an integer; 0 corresponds to 

not captured, 1 corresponds to captured by a Blue player, and 2 corresponds to 

captured by a Red player. The attribute replacement represents another 

GreenPlayer agent who is a replacement for the Green player if he is captured or 

killed. The attribute kleStartTimeStamp is used to mark the beginning of a KLE. 

The attribute kleEndTimeStamp is used to mark the end of a KLE. The attribute 

campaignTimeStamp is used to mark the start of a campaign. 



 13 

 

Table 2. GreenPlayer agent attributes. 
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3. RedPlayer Agent 

A RedPlayer agent in the KLE Model represents a person who is the 

enemy of the United States or coalition forces, or even of key leaders, and does 

not want collaboration between Blue players and Green players. A Red player 

could be in direct competition with a Blue player for the favor of a Green player, 

but this behavior is not modeled. Based on certain actions of Green players, Red 

players capture or kill Green players. A Red player does not have a physical 

representation within the model and is only referenced or implied through event 

names. 

C. BEHAVIOR EQUATIONS IN KLE MODEL 

The KLE Model uses several “behavior equations” to control certain 

actions by the players. These equations use simple logic to determine 

probabilities that players carry out a particular action. In all cases, the calculated 

probability or probabilities are referenced against a random uniform draw 

between 0 and 1 to see if the player behaves a particular way.  

Behavior Equation 1 (Figure 1) is used to see if a Blue player can gain 

knowledge during micro-KLEs or have requests honored during KLEs. It has 

three variables. The first represents the OAB value, an integer between 0 and 4, 

of a player. The second is a random uniform draw between 0 and 1. The third is 

a probability factor, assumed to be between 0 and 0.2. The equation takes the 

OAB and adds to it the random uniform draw. The result is then multiplied by the 

probability factor. This gives a resulting probability that will always be between 0 

and 1. The purpose of the equation is to give a range of probabilities for the 

player to access, and for the probabilities to be increasingly higher as the OAB 

value increases. For instance, if the probability factor is 0.1, a player with an OAB 

of 0 will have a behavior probability between 0 and 0.1. Likewise, a player with 

an OAB of 4 will have a behavior probability between 0.4 and 0.5. In both cases, 

a separate random uniform draw is compared to the probability range.  
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Figure 1.   Behavior Equation 1 

Behavior Equation 2 (Figure 2) is used to see if a Green player is going to 

renege from or be a no-show to a planned KLE and to see if a Blue player will 

offer a threat to a Green player during a KLE. It has three variables. The first 

represents the OAB value, an integer between 0 and 4, of a player. The second 

is a random uniform draw between 0 and 1. The third is a probability factor, 

assumed to be between 0 and 0.2. The equation subtracts four from the OAB, 

takes the absolute value of the result, and adds to it the random uniform draw. 

The result is then multiplied by the probability factor. This gives a resulting 

probability that will always be between 0 and 1. The purpose of the equation is to 

give a range of probabilities for the player to access, and for the probabilities to 

be decreasingly lower as the OAB value increases. For instance, if the probability 

factor is 0.2, a player with an OAB of 0 will have a behavior probability between 

0.8 and 1. Likewise, a player with an OAB of 4 will have a behavior probability 

between 0 and 0.2. In both cases, a separate random uniform draw is compared 

to the probability range.  



 16 

 

Figure 2.   Behavior Equation 2 

Behavior Equation 3 (Figure 3) is used to see if a Green player is going to 

be captured or killed by a Blue player following a campaign or captured or killed 

by a Red player following a KLE or campaign. It has two variables. The first 

represents a baseline probability. The second represents some amount of 

elapsed time between two events. The equation multiplies the baseline 

probability by the time. The KLE Model assumes that the resulting calculation will 

always be less than or equal to one to make it a valid probability, so maximum 

times between events need to be planned accordingly. The purpose of the 

equation is to give an increasing behavior probability as a player spends more 

time performing some action. For instance, if the baseline probability is 0.2 and a 

player spends 2 units of time in an activity, the player will have a behavior 

probability of 0.4. Then, a random uniform draw is compared to the probability.  

 

Figure 3.   Behavior Equation 3 



 17 

Behavior Equation 4 (Figure 4) is used to see if a Green player is going to 

be captured or killed by a Blue player following a KLE. It has two variables. The 

first represents a baseline probability. The second represents some amount of 

elapsed time between two events. The equation divides the baseline probability 

by the time. The KLE Model assumes that the resulting calculation will always be 

less than or equal to one to make it a valid probability, so minimum and 

maximum times between events need to be planned accordingly. The purpose of 

the equation is to give a decreasing behavior probability as a player spends more 

time performing some action. For instance, if the baseline probability is 0.3 and a 

player spends 3 units of time in an activity, the player will have a behavior 

probability of 0.1. Then, a random uniform draw is compared to the probability.  

 

Figure 4.   Behavior Equation 4 

Behavior Equation 5 (Figure 5), which is actually a five-by-five probability 

transition matrix, is used to see if a Green player updates his OAB during a KLE 

or after being captured, or it is used to set the OAB of a replacement after a 

Green player is captured or killed. The equation has three variables. The first 

represents the OAB value, an integer between 0 and 4, of a player. The second 

represents the probability of an OAB decrease. The third represents the 

probability of an OAB increase. The model uses the two probabilities to complete 

the matrix in Figure 5. For example, if the decrease probability is 0.1, the 

increase probability is 0.2, and the player OAB is 3, then the player will have a  
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0.1 probability of lowering his OAB to 2, a 0.7 probability of keeping his OAB at 3, 

and a 0.2 probability of raising his OAB to 4.  We assume that the Green player’s 

OAB will change by at most 1 (in either direction) after a KLE. 

 

Figure 5.   Behavior Equation 5 probability transition matrix 

D. COMPONENTS OF KLE MODEL 

1. CreatePlayers 

The CreatePlayers component creates a number of BluePlayer agents 

and GreenPlayer agents, each defined by the user via input parameters NBP and 

NGP, respectively, which will be used in the KLE Model.  BluePlayer agents 

require a parameter pI that gives their probability of having an incentive to offer.  

GreenPlayer agents require four parameters, pC, pKLK, pTK, and pRK, which give 

probabilities for being corrupt, having key leader critical knowledge, having threat 

critical knowledge, and having resource critical knowledge, respectively.   

Parameters for the CreatePlayers component are summarized in Table 3. 
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Table 3. CreatePlayers parameters 

The event graph for the CreatePlayers component is shown in Figure 6. 

 

Figure 6.   CreatePlayers event graph 
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The Run event schedules the CreateBluePlayer and CreateGreenPlayer 

events, passing the local parameter zero to both.   

The CreateBluePlayer and CreateGreenPlayer events simulate adding a 

Blue player or Green player, respectively, to the model. They each take in a local 

integer parameter to keep track of how many players have been created. Each 

event creates a BluePlayer or GreenPlayer agent, respectively, increments the 

local integer parameter by one, and schedules a BluePlayerArrival or 

GreenPlayerArrival event, respectively, passing along the created agent. The 

self-scheduling loops schedule another agent creation if the local integer variable 

is less than the parameters NBP or NGP, respectively.    

The BluePlayerArrival and GreenPlayerArrival events each simulate a 

Blue player or Green player, respectively, looking to schedule their first KLE. 

They take in a local parameter represented by a BluePlayer or GreenPlayer 

agent, respectively. 

2. HandleEngagementType 

The HandleEngagementType component handles the scheduling of micro-

KLEs and KLEs. It has six input parameters. It requires four random distributions 

representing the stream of times that Blue players schedule their next micro-KLE 

({tNM}), the stream of times that Blue Players schedule their next KLE ({tNK}), the 

stream of times that Green players renege from a KLE ({tRG}), and the stream of 

times that Blue players schedule their next arrival for another micro-KLE or KLE 

({tBM}). The parameter pfRG, which is a number between 0 and 0.2, is used as a 

probability factor to calculate whether a Green player is going to renege from a 

KLE. The parameter pfNS, which is a number between 0 and 0.2, is used as a 

probability factor to calculate whether a Green player is a no-show to a KLE.  

The HandleEngagementType component has two state variables that 

represent lists; q is a queue to hold the arriving Green players to the component, 

and x is a list of any Green players that have been canceled and no longer 

needed in the model. 
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Parameters, parameter constraints, and state variables for the 

HandleEngagementType component are summarized in Table 4.  

 
Table 4. HandleEngagementType parameters, parameter constraints, and 

state variables 

The event graph for the HandleEngagementType component is shown in 

Figure 7.  
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Figure 7.   HandleEngagementType event graph 

The Run event clears q and x.  
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The BluePlayerArrival event simulates a Blue player looking for a micro-

KLE or looking to set up a KLE. It takes a BluePlayer agent as its local 

parameter. If there are no Green players to meet, a BlueReadyForMicroKLE 

event is scheduled with a time delay pulled from {tNM}, passing along the local 

Blue player. If there is a Green player available, a LinkPlayersForKLE event is 

scheduled, passing along the local Blue player.  

The GreenPlayerArrival event simulates a Green player looking to set up a 

KLE. It takes a GreenPlayer agent as its local parameter. It adds the local Green 

player to q.   

The BlueReadyForMicroKLE event simulates a Blue player being ready to 

start a micro-KLE. It takes a BluePlayer agent as its local parameter. 

The LinkPlayersForKLE event simulates the initial agreement by a Blue 

player and Green player to set up a KLE. It takes a BluePlayer agent as its local 

parameter. Since the model assumes Blue players have no preference for which 

Green player they engage, it removes the first Green player from q and assigns it 

to a local GreenPlayer agent variable. It draws a random uniform number 

between 0 and 1. It then calculates the probability that the local Green player 

reneges by using the Green player’s OAB value and the parameter pfRG in 

behavior Equation 2 (Figure 2). If the random uniform draw is less than the 

calculated renege probability, it schedules a GreenReneges event with a time 

delay pulled from {tRG}, passing along the local Blue player and local Green 

player. If the random uniform draw is greater than or equal to the calculated 

renege probability, it schedules a PlayersReadyForKLE event with a time delay 

pulled from {tNK}, passing along the local Blue player and local Green player.  

The GreenReneges event simulates a Green player calling off a planned 

KLE. It takes both a BluePlayer and GreenPlayer agent as its local parameters. If 

the local Green player is not in x, it adds the Green player back to q. If the Green 

player is not canceled, the assumption is that the Green player is still alive and 

has reneged. If the Green player is canceled, the assumption is that the Green 
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player is not alive or no longer available, and the Blue player is made aware of 

this fact before showing up for the KLE. This event schedules a BluePlayerArrival 

event with a time delay pulled from {tBM}, passing along the local Blue player. 

The PlayersReadyForKLE event checks if a Blue player and Green player 

are ready to start a KLE. It takes both a BluePlayer and GreenPlayer agent as its 

local parameters. It draws a random uniform number between 0 and 1. It then 

calculates the probability that the local Green player is a no-show by using the 

Green player’s OAB value and the parameter pfNS in behavior Equation 2 (Figure 

2). If the local Green player is in x, or if the random uniform draw is less than the 

calculated no-show probability, it schedules a GreenNoShow event, passing 

along the local Blue player and local Green player. If the local Green player is not 

in x and the random uniform draw is greater than or equal to the calculated no-

show probability, it schedules a SendPlayersToKLE event, passing along the 

local Blue player and local Green player.  

The GreenNoShow event simulates a Green player not showing up for a 

KLE. It takes both a BluePlayer and GreenPlayer agent as its local parameters. If 

the local Green player is not in x, it adds the Green player back to q. If the Green 

player is not canceled, the assumption is that the Green player is still alive and is 

a no-show. If the Green player is canceled, the assumption is that the Green 

player is not alive or no longer available, and the Blue player is made aware of 

this fact upon showing up for the KLE. This event schedules a BluePlayerArrival 

event with a time delay pulled from {tBM}, passing along the local Blue player.  

The SendPlayersToKLE event simulates a Blue player and Green player 

being ready to start a KLE. It takes both a BluePlayer and GreenPlayer agent as 

its local parameters. 

The GreenCanceled event simulates a Green player who is a replacement 

being no longer needed in the model. It takes a GreenPlayer agent as its local 

parameter. It removes the local Green player from q, and it adds the player to x.  
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3. MicroKeyLeaderEngagement 

The MicroKeyLeaderEngagement component represents a micro-KLE 

with an entity that is not a key leader. It has two input parameters. It requires a 

random distribution representing the stream of times that Blue players will spend 

in a micro-KLE ({tM}). The parameter pfCK, which is a number between 0 and 0.2, 

is used as a probability factor to calculate whether a Blue player is going to gain 

critical knowledge during a micro-KLE.  

The MicroKeyLeaderEngagement component has two state variables. The 

variable NMKLE tracks the number of micro-KLEs held. The variable NTKG tracks 

the number of times critical knowledge is gained from a micro-KLE.  

Parameters, parameter constraints, and state variables for the 

MicroKeyLeaderEngagement component are summarized in Table 5. 

 
Table 5. MicroKeyLeaderEngagement parameters, parameter constraints, 

and state variables 

The event graph for the MicroKeyLeaderEngagement component is 

shown in Figure 8.  
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Figure 8.   MicroKeyLeaderEngagement event graph 

The Run event initializes the two state variables to zero. 

The StartMicroKLE event simulates the beginning of a micro-KLE. It takes 

a BluePlayer agent as its local parameter. It draws a random uniform number 

between 0 and 1. It also draws a random integer between 0 and 4 that 

represents the OAB of the non-key leader. It then calculates the probability that 

the non-key leader honors the local Blue player’s critical knowledge request by 

using the random integer draw and the parameter pfCK in behavior Equation 1 

(Figure 1). If the random uniform draw is less than the calculated knowledge 
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probability, it schedules an EndMicroKLEAndGetKnowledge event with a time 

delay pulled from {tM}, passing along the local Blue player. If the random uniform 

draw is greater than or equal to the calculated knowledge probability, it 

schedules an EndMicroKLEAndDoNotGetKnowledge event with the same time 

delay and by passing the Blue player. 

The EndMicroKLEAndGetKnowledge event simulates the end of a micro-

KLE and a Blue player getting critical knowledge. It takes a BluePlayer agent as 

its local parameter. It increments NMKLE and NTKG both by one. It then schedules 

a ScheduleBlueNextMeeting event, passing along the local Blue player.  

The EndMicroKLEAndDoNotGetKnowledge event simulates the end of a 

micro-KLE and a Blue player not getting any critical knowledge. It takes a 

BluePlayer agent as its local parameter. It increments NMKLE by one. It then 

schedules a ScheduleBlueNextMeeting, passing along the local Blue player.  

The ScheduleBlueNextMeeting event simulates a Blue player scheduling 

his next arrival for a micro-KLE or KLE. It takes a BluePlayer agent as its local 

parameter.  

4. KeyLeaderEngagement 

The KeyLeaderEngagement component represents a KLE occurrence. It 

has three input parameters. It requires two random distributions representing the 

stream of times that Blue players and Green players will spend in a KLE ({tK}) 

and the stream of times that Blue players schedule their next arrival for another 

micro-KLE or KLE ({tBM}). The parameter pI is the same parameter from the 

CreatePlayers component representing the probability that a Blue player has an 

incentive to offer.  

The KeyLeaderEngagement component has two state variables. The 

variable NKLE tracks the number of KLEs held. The variable x is a list of any 

Green players that have been canceled and no longer needed in the model.  
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Parameters and state variables for the KeyLeaderEngagement component 

are summarized in Table 6.  

 
Table 6. KeyLeaderEngagement parameters and state variables 

The event graph for the KeyLeaderEngagement component is shown in 

Figure 9. 

 

Figure 9.   KeyLeaderEngagement event graph 
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The Run event initializes NKLE to zero. It also clears x. 

The StartKLE event simulates the beginning of a KLE. It takes both a 

BluePlayer and GreenPlayer agent as its local parameters. It stamps the KLE 

start time for the local Green player. It resets whether the local Blue player has 

an incentive to offer using pI. Lastly, it schedules an EndKLE event with a time 

delay pulled from {tK}, passing along the local Blue player and local Green player.  

The EndKLE event simulates the end of a KLE. It takes both a BluePlayer 

and GreenPlayer agent as its local parameters. It increments NKLE by one, 

stamps the KLE end time for the local Green player, and, if the local Green 

player is in x, sets the killed status of the local Green player as if he was killed by 

a Red player. This event schedules a ScheduleBlueNextMeeting event with a 

time delay pulled from {tBM}, passing along the local Blue player. It also 

schedules a HandleRequests event, passing along the local Blue player and 

local Green player. 

The ScheduleBlueNextMeeting event simulates a Blue player scheduling 

his next arrival for a micro-KLE or KLE. It takes a BluePlayer agent as its local 

parameter.  

The HandleRequests event simulates a Blue player and Green player 

going over the KLE requests. It takes both a BluePlayer and GreenPlayer agent 

as its local parameters.  

The GreenCanceled event simulates a Green player replacement who is 

no longer needed in the model. It takes a GreenPlayer agent as its local 

parameter. It adds the local Green player to x. 

5. HandleMessageRequest 

The HandleMessageRequest component represents a GreenPlayer agent 

deciding if he will pass a message from a BluePlayer agent to those under his 

influence. It has four input parameters. The parameter pfBT, which is a number 

between 0 and 0.2, is used as a probability factor to calculate whether a Blue 
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player will offer a threat during a KLE to get the Green player to pass a message. 

The final three parameters, pfHR, pfHRI, and pfHRT, all between 0 and 0.2, are used 

as probability factors to calculate whether a Green player will honor the Blue 

player’s request outright, honor with an incentive, or honor with a threat, 

respectively.  

The HandleMessageRequest component has one state variable. The 

variable NHRM tracks the number of honored message requests.  

Parameters, parameter constraints, and state variables for the 

HandleMessageRequest component are summarized in Table 7.  

 

Table 7. HandleMessageRequest parameters, parameter constraints, and 
state variables 

The event graph for the HandleMessageRequest component is shown in 

Figures 10 and 11. 
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Figure 10.   HandleMessageRequest event graph (part 1) 



 32 

 
Figure 11.   HandleMessageRequest event graph (part 2) 

The Run event initializes NHRM to zero. 

The StartMessageRequest event simulates the beginning of the message 

request. It takes both a BluePlayer and GreenPlayer agent as its local 

parameters. It resets the fact that the local Green player has agreed to pass a 

message to false. Next, it draws a random uniform number between 0 and 1. It 

then calculates the probability that the local Green player will honor the request 

outright to pass a message by using the Green player’s OAB value and the 

parameter pfHR in behavior Equation 1 (Figure 1). If the random uniform draw is 

less than the calculated honoring request probability, it schedules an 

AgreeToPassMessage event, passing along the local Blue player and local 

Green player. If the random uniform draw is greater than or equal to the 

calculated honoring request probability, it schedules a DoNotPassOfferIncentive 

event, passing along the local Blue player and local Green player.  

The AgreeToPassMessage event simulates a Green player agreeing to 

pass a message. It takes both a BluePlayer and GreenPlayer agent as its local 
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parameters. It increments NHRM by one, and it sets the fact that the local Green 

player has agreed to pass a message to true. It schedules an 

EndMessageRequest event, passing along the local Blue player and local Green 

player.  

The DoNotPassOfferIncentive event simulates a Green player deciding 

not to pass a message and a Blue player potentially offering an incentive to 

persuade the Green player to change his mind and pass a message. It takes 

both a BluePlayer and GreenPlayer agent as its local parameters. If the local 

Blue player has an incentive to offer to the local Green player, it schedules an 

IncentiveOffered event, passing along the local Blue player and local Green 

player. If the local Blue player does not have an incentive to offer, it schedules a 

DoNotPassPresentThreat event, passing along the local Blue player and local 

Green player.  

The IncentiveOffered event simulates a Blue player offering an incentive 

to a Green player to persuade him to pass a message. It takes both a BluePlayer 

and GreenPlayer agent as its local parameters. It sets the fact that the local 

Green player has been incentivized to true. Next, it draws a random uniform 

number between 0 and 1. It then calculates the probability that the local Green 

player will honor the request to pass a message given an incentive by using the 

Green player’s OAB value and the parameter pfHRI in behavior Equation 1 (Figure 

1). If the Green player is corrupt and the random uniform draw is less than the 

calculated honoring request probability, it schedules an AgreeToPassMessage 

event, passing along the local Blue player and local Green player. If the Green 

player is corrupt and the random uniform draw is greater than or equal to the 

calculated honoring request probability, or if the Green player is not corrupt, it 

schedules a DoNotPassPresentThreat event, passing along the local Blue player 

and local Green player.   

The DoNotPassPresentThreat event simulates a Green player deciding 

not to pass a message and a Blue player potentially presenting a threat to 

persuade the Green player to change his mind and pass a message. It takes 
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both a BluePlayer and GreenPlayer agent as its local parameters. It draws a 

random uniform number between 0 and 1. It then calculates the probability that 

the local Blue player will threaten the local Green player by using the Green 

player’s OAB value and the parameter pfBT in behavior Equation 2 (Figure 2). If 

the random uniform draw is less than the calculated threat probability, it 

schedules a ThreatPresented event, passing along the local Blue player and 

local Green player. If the random uniform draw is greater than or equal to the 

calculated threat probability, it schedules a DoNotAgreeToPassMessage event, 

passing along the local Blue player and local Green player.  

The ThreatPresented event simulates a Blue player threatening a Green 

player to persuade him to pass a message. It takes both a BluePlayer and 

GreenPlayer agent as its local parameters. It sets the fact that the local Green 

player has been threatened to true. Next, it draws a random uniform number 

between 0 and 1. It then calculates the probability that the local Green player will 

honor the request to pass a message given a threat by using the Green player’s 

OAB value and the parameter pfHRT in behavior Equation 1 (Figure 1). If the 

random uniform draw is less than the calculated honoring request probability, it 

schedules an AgreeToPassMessage event, passing along the local Blue player 

and local Green player. If the random uniform draw is greater than or equal to the 

calculated honoring request probability, it schedules a 

DoNotAgreeToPassMessage event, passing along the local Blue player and local 

Green player.   

The DoNotAgreeToPassMessage event simulates a Green player 

ultimately not agreeing to pass a message. It takes both a BluePlayer and 

GreenPlayer agent as its local parameters. It schedules an EndMessageRequest 

event, passing along the local Blue player and local Green player.  

The EndMessageRequest event simulates the end of the message 

request. It takes both a BluePlayer and GreenPlayer agent as its local 

parameters.  
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6. HandleKeyLeaderKnowledgeRequest 

The HandleKeyLeaderKnowledgeRequest component represents a 

GreenPlayer agent deciding on whether to provide key leader critical knowledge 

to a BluePlayer. It has five input parameters. The parameters pfBT, pfHR, pfHRI, 

and pfHRT are the same as those used in the HandleMessageRequest 

component. The same parameter constraints apply to these four parameters. 

The parameter pKLK is the same parameter from the CreatePlayers component 

representing the probability that a Green player has key leader critical 

knowledge.  

The HandleKeyLeaderKnowledgeRequest component has one state 

variable. The variable NHRK tracks the number of honored key leader knowledge 

requests. 

Parameters, parameter constraints, and state variables for the 

HandleKeyLeaderKnowledgeRequest component are summarized in Table 8.  

 

Table 8. HandleKeyLeaderKnowledgeRequest parameters, parameter 
constraints, and state variables 

The event graph for the HandleKeyLeaderKnowledgeRequest component 

is shown in Figures 12 and 13. 
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Figure 12.   HandleKeyLeaderKnowledgeRequest event graph (part 1) 
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Figure 13.   HandleKeyLeaderKnowledgeRequest event graph (part 2) 

The Run event initializes NHRK to zero. 

The StartKeyLeaderKnowledgeRequest event simulates the beginning of 

the key leader critical knowledge request. It takes both a BluePlayer and 

GreenPlayer agent as its local parameters. It draws a random uniform number 

between 0 and 1. It then calculates the probability that the local Green player will 

honor the request outright to provide key leader critical knowledge by using the 

Green player’s OAB value and the parameter pfHR in behavior Equation 1 (Figure 

1). If the local Green player does not have any key leader critical knowledge, it 

schedules a KnowsNothingKeyLeader event, passing along the local Blue player 

and local Green player. If the Green player has key leader knowledge and the 

random uniform draw is less than the calculated honoring request probability, it 

schedules a ProvideKeyLeaderKnowledge event, passing along the local Blue 

player and local Green player. If the Green player has key leader knowledge and 

the random uniform draw is greater than or equal to the calculated honoring 

request probability, it schedules a DoNotProvideOfferIncentive event, passing 

along the local Blue player and local Green player.  
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The KnowsNothingKeyLeader event simulates a Green player not having 

any knowledge on other key leaders. It takes both a BluePlayer and GreenPlayer 

agent as its local parameters. It reinitializes whether the local Green player has 

key leader critical knowledge by using the parameter pKLK. It schedules an 

EndKeyLeaderKnowledgeRequest event, passing along the local Blue player and 

local Green player.  

The ProvideKeyLeaderKnowledge event simulates a Green player 

providing key leader critical knowledge. It takes both a BluePlayer and 

GreenPlayer agent as its local parameters. It increments NHRK by one, and it 

resets whether the local Green player has key leader critical knowledge by using 

the parameter pKLK. It schedules an EndKeyLeaderKnowledgeRequest event, 

passing along the local Blue player and local Green player.  

The DoNotProvideOfferIncentive event simulates a Green player deciding 

not to provide key leader critical knowledge and a Blue player potentially offering 

an incentive to get such knowledge. It takes both a BluePlayer and GreenPlayer 

agent as its local parameters. If the local Blue player has an incentive to offer to 

the local Green player, it schedules an IncentiveOffered event, passing along the 

local Blue player and local Green player. If the local Blue player does not have 

an incentive to offer, it schedules a DoNotProvidePresentThreat event, passing 

along the local Blue player and local Green player.  

The IncentiveOffered event simulates a Blue player offering an incentive 

to a Green player in an attempt to extract key leader critical knowledge. It takes 

both a BluePlayer and GreenPlayer agent as its local parameters. It sets the fact 

that the local Green player has been incentivized to true. Next, it draws a random 

uniform number between 0 and 1. It then calculates the probability that the local 

Green player will honor the request to provide key leader critical knowledge given 

an incentive by using the Green player’s OAB value and the parameter pfHRI in 

behavior Equation 1 (Figure 1). If the Green player is corrupt and the random 

uniform draw is less than the calculated honoring request probability, it schedules 

a ProvideKeyLeaderKnowledge event, passing along the local Blue player and 
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local Green player. If the Green player is corrupt and the random uniform draw is 

greater than or equal to the calculated honoring request probability, or if the 

Green player is not corrupt, it schedules a DoNotProvidePresentThreat event, 

passing along the local Blue player and local Green player.   

The DoNotProvidePresentThreat event simulates a Green player deciding 

not to provide key leader critical knowledge and a Blue player potentially 

presenting a threat to get such knowledge. It takes both a BluePlayer and 

GreenPlayer agent as its local parameters. It draws a random uniform number 

between 0 and 1. It then calculates the probability that the local Blue player will 

threaten the local Green player by using the Green player’s OAB value and the 

parameter pfBT in behavior Equation 2 (Figure 2). If the random uniform draw is 

less than the calculated threat probability, it schedules a ThreatPresented event, 

passing along the local Blue player and local Green player. If the random uniform 

draw is greater than or equal to the calculated threat probability, it schedules a 

DoNotProvideKeyLeaderKnowledge event, passing along the local Blue player 

and local Green player.  

The ThreatPresented event simulates a Blue player threatening a Green 

player for key leader critical knowledge. It takes both a BluePlayer and 

GreenPlayer agent as its local parameters. It sets the fact that the local Green 

player has been threatened to true. Next, it draws a random uniform number 

between 0 and 1. It then calculates the probability that the local Green player will 

honor the request to provide key leader critical knowledge given a threat by using 

the Green player’s OAB value and the parameter pfHRT in behavior Equation 1 

(Figure 1). If the random uniform draw is less than the calculated honoring 

request probability, it schedules a ProvideKeyLeaderKnowledge event, passing 

along the local Blue player and local Green player. If the random uniform draw is 

greater than or equal to the calculated honoring request probability, it schedules 

a DoNotProvideKeyLeaderKnowledge event, passing along the local Blue player 

and local Green player.   
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The DoNotProvideKeyLeaderKnowledge event simulates a Green player 

ultimately not providing key leader critical knowledge. It takes both a BluePlayer 

and GreenPlayer agent as its local parameters. It resets whether the local Green 

player has key leader critical knowledge by using the parameter pKLK. It then 

schedules an EndKeyLeaderKnowledgeRequest event, passing along the local 

Blue player and local Green player.  

The EndKeyLeaderKnowledgeRequest event simulates the end of the key 

leader critical knowledge request. It takes both a BluePlayer and GreenPlayer 

agent as its local parameters.  

7. HandleThreatKnowledgeRequest 

The HandleThreatKnowledgeRequest component represents a 

GreenPlayer agent deciding on whether to provide threat critical knowledge to a 

BluePlayer. It has five input parameters. The parameters pfBT, pfHR, pfHRI, and 

pfHRT are the same as those used in the HandleMessageRequest component. 

The same parameter constraints apply to these four parameters. The parameter 

pTK is the same parameter from the CreatePlayers component representing the 

probability that a Green player has threat critical knowledge.  

The HandleThreatKnowledgeRequest component has one state variable. 

The variable NHRT tracks the number of honored threat knowledge requests. 

Parameters, parameter constraints, and state variables for the 

HandleThreatKnowledgeRequest component are summarized in Table 9. 
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Table 9. HandleThreatKnowledgeRequest parameters, parameter 
constraints, and state variables 

The event graph for the HandleThreatKnowledgeRequest component is 

shown in Figures 14 and 15. 
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Figure 14.   HandleThreatKnowledgeRequest event graph (part 1) 
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Figure 15.   HandleThreatKnowledgeRequest event graph (part 2) 

The Run event initializes NHRT to zero. 

The StartThreatKnowledgeRequest event simulates the beginning of the 

threat critical knowledge request. It takes both a BluePlayer and GreenPlayer 

agent as its local parameters. It draws a random uniform number between 0 and 

1. It then calculates the probability that the local Green player will honor the 

request outright to provide threat critical knowledge by using the Green player’s 

OAB value and the parameter pfHR in behavior Equation 1 (Figure 1). If the local 

Green player does not have any threat critical knowledge, it schedules a 

KnowsNothingThreat event, passing along the local Blue player and local Green 

player. If the Green player has threat knowledge and the random uniform draw is 

less than the calculated honoring request probability, it schedules a 

ProvideThreatKnowledge event, passing along the local Blue player and local 

Green player. If the Green player has threat knowledge and the random uniform 

draw is greater than or equal to the calculated honoring request probability, it 

schedules a DoNotProvideOfferIncentive event, passing along the local Blue 

player and local Green player.  
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The KnowsNothingThreat event simulates a Green player not having any 

knowledge on threats. It takes both a BluePlayer and GreenPlayer agent as its 

local parameters. It reinitializes whether the local Green player has threat critical 

knowledge by using the parameter pTK. It schedules an 

EndThreatKnowledgeRequest event, passing along the local Blue player and 

local Green player.  

The ProvideThreatKnowledge event simulates a Green player providing 

threat critical knowledge. It takes both a BluePlayer and GreenPlayer agent as its 

local parameters. It increments NHRT by one, and it resets whether the local 

Green player has threat critical knowledge by using the parameter pTK. It 

schedules an EndThreatKnowledgeRequest event, passing along the local Blue 

player and local Green player.  

The DoNotProvideOfferIncentive event simulates a Green player deciding 

not to provide threat critical knowledge and a Blue player potentially offering an 

incentive to get such knowledge. It takes both a BluePlayer and GreenPlayer 

agent as its local parameters. If the local Blue player has an incentive to offer to 

the local Green player, it schedules an IncentiveOffered event, passing along the 

local Blue player and local Green player. If the local Blue player does not have 

an incentive to offer, it schedules a DoNotProvidePresentThreat event, passing 

along the local Blue player and local Green player.  

The IncentiveOffered event simulates a Blue player offering an incentive 

to a Green player in an attempt to extract threat critical knowledge. It takes both 

a BluePlayer and GreenPlayer agent as its local parameters. It sets the fact that 

the local Green player has been incentivized to true. Next, it draws a random 

uniform number between 0 and 1. It then calculates the probability that the local 

Green player will honor the request to provide threat critical knowledge given an 

incentive by using the Green player’s OAB value and the parameter pfHRI in 

behavior Equation 1 (Figure 1). If the Green player is corrupt and the random 

uniform draw is less than the calculated honoring request probability, it schedules 

a ProvideThreatKnowledge event, passing along the local Blue player and local 
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Green player. If the Green player is corrupt and the random uniform draw is 

greater than or equal to the calculated honoring request probability, or if the 

Green player is not corrupt, it schedules a DoNotProvidePresentThreat event, 

passing along the local Blue player and local Green player.   

The DoNotProvidePresentThreat event simulates a Green player deciding 

not to provide threat critical knowledge and a Blue player potentially presenting a 

threat to get such knowledge. It takes both a BluePlayer and GreenPlayer agent 

as its local parameters. It draws a random uniform number between 0 and 1. It 

then calculates the probability that the local Blue player will threaten the local 

Green player by using the Green player’s OAB value and the parameter pfBT in 

behavior Equation 2 (Figure 2). If the random uniform draw is less than the 

calculated threat probability, it schedules a ThreatPresented event, passing 

along the local Blue player and local Green player. If the random uniform draw is 

greater than or equal to the calculated threat probability, it schedules a 

DoNotProvideThreatKnowledge event, passing along the local Blue player and 

local Green player.  

The ThreatPresented event simulates a Blue player threatening a Green 

player for threat critical knowledge. It takes both a BluePlayer and GreenPlayer 

agent as its local parameters. It sets the fact that the local Green player has been 

threatened to true. Next, it draws a random uniform number between 0 and 1. It 

then calculates the probability that the local Green player will honor the request 

to provide threat critical knowledge given a threat by using the Green player’s 

OAB and the parameter pfHRT in behavior Equation 1 (Figure 1). If the random 

uniform draw is less than the calculated honoring request probability, it schedules 

a ProvideThreatKnowledge event, passing along the local Blue player and local 

Green player. If the random uniform draw is greater than or equal to the 

calculated honoring request probability, it schedules a 

DoNotProvideThreatKnowledge event, passing along the local Blue player and 

local Green player.   
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The DoNotProvideThreatKnowledge event simulates a Green player 

ultimately not providing threat critical knowledge. It takes both a BluePlayer and 

GreenPlayer agent as its local parameters. It resets whether the local Green 

player has threat critical knowledge by using the parameter pTK. It then schedules 

an EndThreatKnowledgeRequest event, passing along the local Blue player and 

local Green player.  

The EndThreatKnowledgeRequest event simulates the end of the threat 

critical knowledge request. It takes both a BluePlayer and GreenPlayer agent as 

its local parameters.  

8. HandleResourceKnowledgeRequest 

The HandleResourceKnowledgeRequest component represents a 

GreenPlayer agent deciding on whether to provide resource critical knowledge to 

a BluePlayer. It has five input parameters. The parameters pfBT, pfHR, pfHRI, and 

pfHRT are the same as those used in the HandleMessageRequest component. 

The same parameter constraints apply to these four parameters. The parameter 

pRK is the same parameter from the CreatePlayers component representing the 

probability that a Green player has resource critical knowledge.  

The HandleResourceKnowledgeRequest component has one state 

variable. The variable NHRR tracks the number of honored resource knowledge 

requests. 

Parameters, parameter constraints, and state variables for the 

HandleResourceKnowledgeRequest component are summarized in Table 10. 
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Table 10. HandleResourceKnowledgeRequest parameters, parameter 
constraints, and state variables 

The event graph for the HandleResourceKnowledgeRequest component 

is shown in Figures 16 and 17. 
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Figure 16.   HandleResourceKnowledgeRequest event graph (part 1) 
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Figure 17.   HandleResourceKnowledgeRequest event graph (part 2) 

The Run event initializes NHRR to zero. 

The StartResourceKnowledgeRequest event simulates the beginning of 

the resource critical knowledge request. It takes both a BluePlayer and 

GreenPlayer agent as its local parameters. It draws a random uniform number 

between 0 and 1. It then calculates the probability that the local Green player will 

honor the request outright to provide resource critical knowledge by using the 

Green player’s OAB value and the parameter pfHR in behavior Equation 1 (Figure 

1). If the local Green player does not have any resource critical knowledge, it 

schedules a KnowsNothingResource event, passing along the local Blue player 

and local Green player. If the Green player has resource knowledge and the 

random uniform draw is less than the calculated honoring request probability, it 

schedules a ProvideResourceKnowledge event, passing along the local Blue 

player and local Green player. If the Green player has resource knowledge and 

the random uniform draw is greater than or equal to the calculated honoring 
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request probability, it schedules a DoNotProvideOfferIncentive event, passing 

along the local Blue player and local Green player.  

The KnowsNothingResource event simulates a Green player not having 

any knowledge on resources. It takes both a BluePlayer and GreenPlayer agent 

as its local parameters. It reinitializes whether the local Green player has 

resource critical knowledge by using the parameter pRK. It schedules an 

EndResourceKnowledgeRequest event, passing along the local Green player.  

The ProvideResourceKnowledge event simulates a Green player 

providing resource critical knowledge. It takes both a BluePlayer and 

GreenPlayer agent as its local parameters. It increments NHRR by one, and it 

resets whether the local Green player has resource critical knowledge by using 

the parameter pRK. It schedules an EndResourceKnowledgeRequest event, 

passing along the local Green player.  

The DoNotProvideOfferIncentive event simulates a Green player deciding 

not to provide resource critical knowledge and a Blue player potentially offering 

an incentive to get such knowledge. It takes both a BluePlayer and GreenPlayer 

agent as its local parameters. If the local Blue player has an incentive to offer to 

the local Green player, it schedules an IncentiveOffered event, passing along the 

local Blue player and local Green player. If the local Blue player does not have 

an incentive to offer, it schedules a DoNotProvidePresentThreat event, passing 

along the local Blue player and local Green player.  

The IncentiveOffered event simulates a Blue player offering an incentive 

to a Green player in an attempt to extract resource critical knowledge. It takes 

both a BluePlayer and GreenPlayer agent as its local parameters. It sets the fact 

that the local Green player has been incentivized to true. Next, it draws a random 

uniform number between 0 and 1. It then calculates the probability that the local 

Green player will honor the request to provide resource critical knowledge given 

an incentive by using the Green player’s OAB value and the parameter pfHRI in 

behavior Equation 1 (Figure 1). If the Green player is corrupt and the random 
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uniform draw is less than the calculated honoring request probability, it schedules 

a ProvideResourceKnowledge event, passing along the local Blue player and 

local Green player. If the Green player is corrupt and the random uniform draw is 

greater than or equal to the calculated honoring request probability, or if the 

Green player is not corrupt, it schedules a DoNotProvidePresentThreat event, 

passing along the local Blue player and local Green player.   

The DoNotProvidePresentThreat event simulates a Green player deciding 

not to provide resource critical knowledge and a Blue player potentially 

presenting a threat to get such knowledge. It takes both a BluePlayer and 

GreenPlayer agent as its local parameters. It draws a random uniform number 

between 0 and 1. It then calculates the probability that the local Blue player will 

threaten the local Green player by using the Green player’s OAB value and the 

parameter pfBT in behavior Equation 2 (Figure 2). If the random uniform draw is 

less than the calculated threat probability, it schedules a ThreatPresented event, 

passing along the local Blue player and local Green player. If the random uniform 

draw is greater than or equal to the calculated threat probability, it schedules a 

DoNotProvideResourceKnowledge event, passing along the local Blue player 

and local Green player.  

The ThreatPresented event simulates a Blue player threatening a Green 

player for resource critical knowledge. It takes both a BluePlayer and 

GreenPlayer agent as its local parameters. It sets the fact that the local Green 

player has been threatened to true. Next, it draws a random uniform number 

between 0 and 1. It then calculates the probability that the local Green player will 

honor the request to provide resource critical knowledge given a threat by using 

the Green player’s OAB value and the parameter pfHRT in behavior Equation 1 

(Figure 1). If the random uniform draw is less than the calculated honoring 

request probability, it schedules a ProvideResourceKnowledge event, passing 

along the local Blue player and local Green player. If the random uniform draw is 

greater than or equal to the calculated honoring request probability, it schedules 



 52 

a DoNotProvideResourceKnowledge event, passing along the local Blue player 

and local Green player.   

The DoNotProvideResourceKnowledge event simulates a Green player 

ultimately not providing resource critical knowledge. It takes both a BluePlayer 

and GreenPlayer agent as its local parameters. It resets whether the local Green 

player has resource critical knowledge by using the parameter pRK. It then 

schedules an EndResourceKnowledgeRequest event, passing along the local 

Green player.  

The EndResourceKnowledgeRequest event simulates the end of the 

resource critical knowledge request. It takes a GreenPlayer agent as its local 

parameter.  

9. UpdateOAB 

The UpdateOAB component handles the updating of a Green player’s 

OAB depending on what happens during a KLE. It has eight input parameters. 

The parameters pD0 and pI0 represent the probabilities of an OAB decrease or 

increase, respectively, given the Green player not being incentivized and not 

being threatened; the sum of these two must be less than or equal to 1. The 

parameters pDI and pII represent the probabilities of an OAB decrease or 

increase, respectively, given the Green player being incentivized and not being 

threatened; the sum of these two must be less than or equal to 1. The 

parameters pDT and pIT represent the probabilities of an OAB decrease or 

increase, respectively, given the Green player being threatened; the sum of 

these two must be less than or equal to 1. The parameters pBCKB and pBCKR are 

baseline probabilities of a Green player being captured or killed by either a Blue 

player or Red player, respectively. In order to avoid overlapping probability 

ranges, one minus pBCKR times the maximum possible KLE time must be greater 

than or equal to pBCKB.  

Parameters and parameter constraints for the UpdateOAB component are 

summarized in Table 11.  
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Table 11. UpdateOAB parameters and parameter constraints 

The event graph for the UpdateOAB component is shown in Figure 18. 
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Figure 18.   UpdateOAB event graph 

The CheckGreenStatus event checks if a Green player is still in the model 

following a KLE. It takes a GreenPlayer agent as its local parameter. If the local 

Green player has not been canceled during a KLE (not killed in this case), it 

schedules an OABUpdate event, passing along the local Green player.  

The OABUpdate event simulates a Green player changing his OAB after a 

KLE. It takes a GreenPlayer agent as its local parameter. If the Green player has 

not been incentivized or threatened during the KLE, it calculates the Green 

player’s new OAB by using his current OAB, D = pD0, and I = pI0 in behavior 
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Equation 5 (Figure 5). If the Green player has been incentivized but not 

threatened during the KLE, it calculates the Green player’s new OAB by using his 

current OAB, D = pDI, and I = pII in behavior Equation 5 (Figure 5). It then resets 

the fact that the Green player is incentivized to false. If the Green player has 

been threatened during the KLE, it calculates the Green player’s new OAB by 

using his current OAB, D = pDT, and I = pIT in behavior Equation 5 (Figure 5). It 

then resets the facts that the Green player is incentivized and threatened to false. 

Lastly, it schedules an UpdateComplete event, passing along the local Green 

player. 

The UpdateComplete event simulates a Green player completing his OAB 

update. It takes a GreenPlayer agent as its local parameter. It draws a random 

uniform number between 0 and 1. If the time that the Green player spent in the 

KLE is greater than or equal to one, it calculates the probability that he is 

captured or killed by a Blue player by using pBCKB and the time spent in the KLE 

in behavior Equation 4 (Figure 4). If the time that the Green player spent in the 

KLE is less than one, the probability of being captured or killed by a Blue player 

equals pBCKB. It also calculates the probability that the local Green player is 

captured or killed by a Red player by using pBCKR and the time spent in the KLE 

in behavior Equation 3 (Figure 3). If the random uniform draw is less than the 

calculated capture or kill by Blue probability, it schedules a CaptureOrKillByBlue 

event, passing along the local Green player. If the random uniform draw is 

greater than or equal to one minus the calculated capture or kill by Red 

probability, it schedules a CaptureOrKillByRed event, passing along the local 

Green player. If the random uniform draw is greater than or equal to the 

calculated capture or kill by Blue probability and less than one minus the 

calculated capture or kill by Red probability, it schedules a Campaign event, 

passing along the local Green player.  

The Campaign event simulates a Green player looking to campaign. It 

takes a GreenPlayer agent as its local parameter. 
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The CaptureOrKillByBlue event simulates a Green player being captured 

or killed by a Blue player. It takes a GreenPlayer agent as its local parameter. 

The CaptureOrKillByRed event simulates a Green player being captured 

or killed by a Red player. It takes a GreenPlayer agent as its local parameter. 

10. Campaign 

The Campaign component handles whether a Green player will campaign 

following a KLE. It has five input parameters. It requires three random 

distributions representing the stream of times that Green players schedule their 

next campaign ({tNC}), the stream of times that Green players spend campaigning 

({tC}), and the stream of times that Green players schedule their next arrival for 

another KLE ({tGM}). The parameters pBCKB and pBCKR are the same as defined in 

the UpdateOAB component. Additional constraints on these two parameters are 

that pBCKB times the maximum campaign time and pBCKR times the maximum 

campaign time both must be less than or equal to one; this ensures that 

probabilities greater than one are not encountered.  

The Campaign component has two state variables. The variable NPC 

tracks the number of pro-coalition force campaigns. The variable NAC tracks the 

number of anti-coalition force campaigns.  

Parameters, parameter constraints, and state variables for the Campaign 

component are summarized in Table 12.  
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Table 12. Campaign parameters, parameter constraints, and state variables 

The event graph for the Campaign component is shown in Figures 19 and 

20. 
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Figure 19.   Campaign event graph (part 1) 



 59 

 
Figure 20.   Campaign event graph (part 2) 

The Run event initializes the two state variables to zero. 

The CheckOAB event checks a Green player’s OAB to see if he will 

campaign or not. It takes a GreenPlayer agent as its local parameter. It draws a 

random uniform number between 0 and 1. If the local Green player has an OAB 

equal to 4, has an OAB equal to 3 and has agreed to pass a message, or has an 

OAB equal to 2, has agreed to pass a message, and the uniform draw is less 

than 0.5, it schedules a ProCFCampaign event with a time delay pulled from 

{tNC}, passing along the local Green player. If the local Green player has an OAB 

equal to 0, has an OAB equal to 1 and has agreed to pass a message, or has an 

OAB equal to 2, has agreed to pass a message, and the uniform draw is greater 

than or equal to 0.5, it schedules an AntiCFCampaign event with a time delay 

pulled from {tNC}, passing along the local Green player. If the Green player has 

not agreed to pass a message and his OAB equals 1, 2, or 3, it schedules a 

NoCampaign event, passing along the local Green player. 

The ProCFCampaign event simulates a Green player starting his pro-

coalition force campaign. It takes a GreenPlayer agent as its local parameter. It 

stamps the campaign start time for the local Green player. It then schedules an 

EndProCFCampaign event with a time delay pulled from {tC}, passing along the 

local Green player.  
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The AntiCFCampaign event simulates a Green player starting his anti-

coalition force campaign. It takes a GreenPlayer agent as its local parameter. It 

stamps the campaign start time for the local Green player. It then schedules an 

EndAntiCFCampaign event with a time delay pulled from {tC}, passing along the 

local Green player. 

The NoCampaign event simulates a Green player not campaigning. It 

takes a GreenPlayer agent as its local parameter. It schedules a 

ScheduleGreenNextMeeting event with a time delay pulled from {tGM}, passing 

along the local Green player.  

The EndProCFCampaign event simulates a Green player ending his pro-

coalition force campaign. It takes a GreenPlayer agent as its local parameter. It 

increments NPC by one. It then draws a random uniform number between 0 and 

1. It calculates the probability that the local Green player is captured or killed by a 

Red player by using pBCKR and the time spent in the campaign in behavior 

Equation 3 (Figure 3). If the random uniform draw is less than the calculated 

capture or kill by Red probability, it schedules a CaptureOrKillByRed event, 

passing along the local Green player. If the random uniform draw is greater than 

or equal to the calculated capture or kill by Red probability, it schedules a 

ScheduleGreenNextMeeting event with a time delay pulled from {tGM}, passing 

along the local Green player.  

The EndAntiCFCampaign event simulates a Green player ending his anti-

coalition force campaign. It takes a GreenPlayer agent as its local parameter. It 

increments NAC by one. It then draws a random uniform number between 0 and 

1. It calculates the probability that the local Green player is captured or killed by a 

Blue player by using pBCKB and the time spent in the campaign in behavior 

Equation 3 (Figure 3). If the random uniform draw is less than the calculated 

capture or kill by Blue probability, it schedules a CaptureOrKillByBlue event, 

passing along the local Green player. If the random uniform draw is greater than 

or equal to the calculated capture or kill by Blue probability, it schedules a 



 61 

ScheduleGreenNextMeeting event with a time delay pulled from {tGM}, passing 

along the local Green player.  

The ScheduleGreenNextMeeting event simulates a Green player 

scheduling his next arrival for a KLE. It takes a GreenPlayer agent as its local 

parameter. 

The CaptureOrKillByRed event simulates a Green player being captured 

or killed by a Red player. It takes a GreenPlayer agent as its local parameter. 

The CaptureOrKillByBlue event simulates a Green player being captured 

or killed by a Blue player. It takes a GreenPlayer agent as its local parameter. 

The GreenCanceled event simulates a Green player replacement that is 

no longer needed in the model. It takes a GreenPlayer agent as its local 

parameter. It cancels the ProCFCampaign, AntiCFCampaign, 

EndProCFCampaign, EndAntiCFCampaign, and ScheduleGreenNextMeeting 

events for the local Green player.  

11. CaptureOrKill 

The CaptureOrKill component handles whether a Green player will be 

captured or killed by a Blue player or Red player following a KLE or campaign. It 

has four input parameters. The parameter pCB is the probability that a Blue player 

captures a Green player. One minus pCB then is the probability that a Blue player 

kills him. The parameter pCR is the probability that a Red player captures a Green 

player. One minus pCR then is the probability that a Red player kills him.  The 

parameter pDCB is the probability that a Green player decreases his OAB given a 

capture by a Blue player. The parameter pICR is the probability that a Green 

player increases his OAB given a capture by a Red player.  

The CaptureOrKill component has four state variables. The variables NBC, 

NBK, NRC, and NRK track the number of Green players captured by Blue players, 

killed by Blue players, captured by Red players, and killed by Red players, 

respectively.  
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Parameters and state variables for the CaptureOrKill component are 

summarized in Table 13.  

 

Table 13. CaptureOrKill parameters and state variables 

The event graph for the CaptureOrKill component is shown in Figures 21 

and 22. 
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Figure 21.   CaptureOrKill event graph (part 1) 
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Figure 22.   CaptureOrKill event graph (part 2) 

The Run event initializes all state variables to zero.  

The CaptureOrKillByBlue event sees whether a Green player will be 

captured or killed by a Blue player. It takes a GreenPlayer agent as its local 

parameter. It draws a random uniform number between 0 and 1. If the random 

uniform draw is less than pCB, it schedules a GreenCapturedByBlue event, 

passing along the local Green player. If the random uniform draw is greater than 

or equal to pCB, it schedules a GreenKilledByBlue event, passing along the local 

Green player.  

The GreenCapturedByBlue event simulates a Green player being 

captured by a Blue player. It takes a GreenPlayer agent as its local parameter. It 

sets the captured status of the local Green player as if he was captured by a Blue 

player and increments NBC by one. It calculates the Green player’s new OAB by 

using his current OAB, D = pDCB, and I = 0 in behavior Equation 5 (Figure 5). It 

then schedules a ReplaceGreen event and a WaitForRelease event, passing 

along the local Green player to both.  

The GreenKilledByBlue event simulates a Green player being killed by a 

Blue player. It takes a GreenPlayer agent as its local parameter. It sets the killed 
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status of the local Green player as if he was killed by a Blue player, and it 

increments NBK by one. It then schedules a ReplaceGreen event, passing along 

the local Green player.  

The CaptureOrKillByRed event sees whether a Green player will be 

captured or killed by a Red player. It takes a GreenPlayer agent as its local 

parameter. It draws a random uniform number between 0 and 1. If the random 

uniform draw is less than pCR, it schedules a GreenCapturedByRed event, 

passing along the local Green player. If the random uniform draw is greater than 

or equal to pCR, it schedules a GreenKilledByRed event, passing along the local 

Green player.  

The GreenCapturedByRed event simulates a Green player being captured 

by a Red player. It takes a GreenPlayer agent as its local parameter. It sets the 

captured status of the local Green player as if he was captured by a Red player 

and increments NRC by one. It calculates the Green player’s new OAB by using 

his current OAB, D = 0, and I = pICR in behavior Equation 5 (Figure 5). It then 

schedules a ReplaceGreen event and a WaitForRelease event, passing along 

the local Green player to both.  

The GreenKilledByRed event simulates a Green player being killed by a 

Red player. It takes a GreenPlayer agent as its local parameter. It sets the killed 

status of the local Green player as if he was killed by a Red player, and it 

increments NRK by one. It then schedules a ReplaceGreen event, passing along 

the local Green player. 

The ReplaceGreen event simulates a Green player being replaced by 

another Green player after being captured or killed. It takes a GreenPlayer agent 

as its local parameter. 

The WaitForRelease event simulates a Green player awaiting his release 

after being captured. It takes a GreenPlayer agent as its local parameter. 
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12. Release 

The Release component represents the releasing of Green players after 

being captured. It has one input parameter. It requires a random distribution 

representing the stream of times that Green players are released ({tRL}).  

Parameters for the Release component are summarized in Table 14. 

 

Table 14. Release parameters 

The event graph for the Release component is shown in Figure 23. 

 
Figure 23.   Release event graph 

The ScheduleRelease event simulates a Green player waiting for his 

release after being captured. It takes a GreenPlayer agent as its local parameter. 

It schedules a GreenReleased event with a time delay pulled from {tRL}, passing 

along the local Green player.  

The GreenReleased event simulates a Green player being released. It 

takes a GreenPlayer agent as its local parameter. It resets the captured status of 
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the local Green player to show that he is no longer captured. It then schedules a 

ReplaceReplacement event, passing along the local Green player.  

The ReplaceReplacement event simulates a Green player taking control 

back from his replacement. It takes a GreenPlayer agent as its local parameter.  

The GreenCanceled event simulates a Green player replacement that is 

no longer needed in the model. It takes a GreenPlayer agent as its local 

parameter. It cancels the GreenReleased event for the local Green player.  

13. HandleReplacements 

The HandleReplacements component handles the replacing of Green 

players when they are captured, killed, or released. It has 13 input parameters. It 

requires one random distribution representing the stream of times that Green 

players schedule their next arrival for another KLE ({tGM}). The parameters pC, 

pKLK, pTK, and pRK are the same parameters from the CreatePlayers component 

representing the probabilities that a Green player is corrupt, has key leader 

critical knowledge, has threat critical knowledge, and has resource critical 

knowledge, respectively. The parameters pLKB and pHKB represent the 

probabilities of a Green replacement having a lower or higher OAB, respectively, 

than the Green player that is killed by a Blue player; the sum of these two must 

be less than or equal to 1. The parameters pLKR and pHKR represent the 

probabilities of a Green replacement having a lower or higher OAB, respectively, 

than the Green player that is killed by a Red player; the sum of these two must 

be less than or equal to 1. The parameters pLCB and pHCB represent the 

probabilities of a Green replacement having a lower or higher OAB, respectively, 

than the Green player that is captured by a Blue player; the sum of these two 

must be less than or equal to 1. The parameters pLCR and pHCR represent the 

probabilities of a Green replacement having a lower or higher OAB, respectively, 

than the Green player that is captured by a Red player; the sum of these two 

must be less than or equal to 1.  
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The HandleReplacements component has one state variable. The variable 

c represents a list to hold captured Green players that have a replacement in the 

model.  

Parameters, parameter constraints, and state variables for the 

HandleReplacements component are summarized in Table 15.  

 

Table 15. HandleReplacements parameters, parameter constraints, and state 
variables 
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The event graph for the HandleReplacements component is shown in 

Figure 24. 

 
Figure 24.   HandleReplacements event graph 

The Run event clears c. 

The CreateGreenReplacement event simulates a Green replacement 

being added to the model when a Green player is captured or killed. It takes a 

GreenPlayer agent as its local parameter. It creates a new GreenPlayer agent 
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that is the replacement for the local Green player. If a Blue player kills the local 

Green player, it calculates the replacement’s OAB by using the Green player’s 

OAB, D = pLKB, and I = pHKB in behavior Equation 5 (Figure 5). If the local Green 

player is killed by a Red player, it calculates the replacement’s OAB by using the 

Green player’s OAB, D = pLKR, and I = pHKR in behavior Equation 5 (Figure 5). If 

the local Green player is captured by a Blue player, it calculates the 

replacement’s OAB by using the Green player’s OAB, D = pLCB, and I = pHCB in 

behavior Equation 5 (Figure 5). If the local Green player is captured by a Red 

player, it calculates the replacement’s OAB by using the Green player’s OAB, D 

= pLCR, and I = pHCR in behavior Equation 5 (Figure 5). Then it checks the state 

variable, c, to determine if the local Green player that is killed or captured is 

already a replacement for another captured Green player. If this is the case, it 

sets the newly created replacement as the replacement for the Green player in c. 

Then, if the local Green player is not already a replacement and is captured, it 

sets the newly created replacement as his replacement and is added to c. Lastly, 

it schedules a ScheduleGreenNextMeeting event with a time delay pulled from 

{tGM}, passing along the created replacement.  

The ReplaceReplacement event simulates a Green player being released 

and his replacement being no longer needed in the model. It takes a 

GreenPlayer agent as its local parameter. It takes the Green replacement 

assigned to the released Green player and assigns this replacement to a local 

GreenPlayer agent variable. It resets the replacement of the released Green 

player to null, and then it removes the released Green player from c. Lastly, it 

schedules a ScheduleGreenNextMeeting event with a time delay pulled from 

{tGM}, passing along the released Green player, and it schedules a 

CancelReplacement event, passing along the replacement.  

The ScheduleGreenNextMeeting event simulates a Green player 

scheduling his next arrival for a KLE. It takes a GreenPlayer agent as its local 

parameter. 
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The CancelReplacement event simulates a Green player replacement no 

longer being needed in the model. It takes a GreenPlayer agent as its local 

parameter.  

E. COMPONENT LISTENING STRUCTURE AND ADAPTERS OF KLE 
MODEL 

The various components of the KLE Model are connected together as 

shown in Figure 25. The various adapters in the KLE Model are listed in Table 

16. When one of the listed events for a given component is executed, the 

respective listening component schedules the appropriate event. For more 

information on connecting event graphs using listeners and adapters, see Buss 

(2011). 
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Figure 25.   KLE Model component listening structure 
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Table 16. KLE Model adapters 

EXECUTED COMPONENT/ EVENT LISTENING COMPONENT/ EVENT 
Component Event Component Event 

Create Blue Player Handle Blue Player 
Players Arriva l EngagementType Arrival 

Create Green Player Handle GreenPiayer 
Players Arriva l EngagementType Arrival 

MicroKeyl eader Schedule Blue Handle Blue Player 
Engagem ent NextMeeting EngagementType Arrival 

Keyleader Schedule Blue Handle Blue Player 
Engagem ent NextMeeting EngagementType Arrival 

Campaign 
ScheduleGreen Handle GreenPiayer 

NextMeeting EngagementType Arrival 

Handle ScheduleGreen Handle GreenPiayer 
Replacements NextMeeting EngagementType Arrival 

Handle Cancel Handle Green 
Replacements Replacement EngagementType Canceled 

Handle Blue Ready MicroKeyl eader Start 
EngagementType ForMicroKLE Engagement MicroKLE 

Handle Send Players Keyleader Start 
EngagementType ToKLE Engagement KLE 

Handle Cancel Keyleader Green 
Replacements Replacement Engagement Canceled 

Keyleader Handle Handle StartMessage 
Engagem ent Requests MessageRequest Request 

Handle End Message HandleKeyl eader Start Keyl eader 
MessageRequest Request KnowledgeRequest Knowledge Request 

HandleKeyl eader EndKeyl eader Handle Threat Start Threat 
Knowledge Request KnowledgeRequest KnowledgeRequest Knowledge Request 

HandleTh reat EndThreat HandleResource Start Resource 
Knowledge Request KnowledgeRequest KnowledgeRequest Knowledge Request 

HandleResource End Resource 
UpdateOAB 

CheckGreen 
Knowledge Request KnowledgeRequest Status 

Update 
Campaign Campaign 

Check 
OAB OAB 

Handle Cancel 
Campaign 

Green 
Replacements Replacement Canceled 

Update CaptureOr 
Capt ureOrKill 

Capt ureOr 
OAB KiiiByBiue KiiiByBiue 

Update CaptureOr 
Capt ureOrKill 

Capt ureOr 
OAB KiiiByRed Kil l By Red 

Campaign 
CaptureOr 

Capt ureOrKill 
Capt ureOr 

KiiiByBiue KiiiByBiue 

Campaign 
CaptureOr 

Capt ureOrKill 
Capt ureOr 

KiiiByRed Kil l By Red 

Capt ure WaitFor 
Release 

Schedule 
OrKi ll Release Release 

Handle Cancel 
Release 

Green 
Replacements Replacement Canceled 

Capt ure Replace Handle CreateGreen 
OrKi ll Green Replacements Replacement 

Release 
Replace Handle Replace 

Replacement Replacements Replacement 
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III. DESIGN OF EXPERIMENTS 

Chapter III begins with a brief discussion on the use of random number 

generators in the Key Leader Engagement (KLE) Model. Then we discuss what 

model input parameters were not varied and those that were, including their low 

and high values. We talk briefly about the nearly orthogonal and balanced mixed 

design of experiments that was utilized for further analysis of the model. The 

chapter ends with a small discussion on the scenario replication and three 

scenarios (one-week, nine-weeks, and one-year) that were executed.  

A. RANDOM NUMBER GENERATION 

Two random number streams are used to run the KLE Model. One 

generator creates random seeds for each design point run, and the other 

generator utilizes the seed to generate random numbers that are needed when 

running the model components. The two random number streams used when 

running the KLE Model both use the Mersenne Twister MT 19937 pseudorandom 

number generator (Wikipedia 2012).  

B. HANDLING OF INPUT PARAMETERS 

1. Static Parameters 

The input parameters not varied in the design of experiments are those 

associated with numbers of players and all streams of time. The constant values 

assigned to these static parameters are best-guess estimates derived from 

military and civilian analysts at TRAC-Monterey that best coincide with what can 

be expected during a tactical wargame (TWG) using an Afghanistan scenario. 

The time streams are all triangle distributed (minimum, maximum, mode).  

Table 17 lists the parameters that are not varied, the component(s) they 

are found in, and their associated values.  
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Table 17. Static model parameters and their values 

2. Dynamic Parameters and NOB Mixed Design 

The input parameters varied in the design of experiments are those 

associated with probabilities and probability factors. Probabilities not associated 

with OAB changes or assignments are varied from 0 to 1. Probabilities 

associated with OAB changes and assignments are varied from 0 to 0.5 due to 

the decrease/increase or lower/higher pairings used in behavior Equation 5 

(Figure 5). Probability factors are varied from 0 to 0.2. The baseline probabilities, 

pBCKB and pBCKR, are varied from 0 to 0.0208 due to the parameter restriction that 

these two individually multiplied by the maximum campaign time (48) must be 

less than or equal to 1. 

Tables 18 and 19 list the parameters that are varied, the component(s) 

they are found in, and their associated low and high values. 
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Table 18. Dynamic model parameters and their values (part 1) 
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Table 19. Dynamic model parameters and their values (part 2) 

The design is constructed using the 512-design point nearly orthogonal 

and balanced (NOB) mixed design spreadsheet of Vieira (2012). The result is a 

nearly orthogonal Latin hypercube (NOLH) since all parameters in this design are 

continuous-valued. For more details about the properties or application of  NOLH 

designs, see Kleijnen et al. (2005) or Sanchez et al. (2012). For more details 

about NOB designs, which can also handle discrete-valued factors with limited 

numbers of levels, see Vieira et al. (2011, 2012).  
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C. SCENARIO REPLICATION 

In order to assist with the code verification efforts of the KLE Model, three 

different scenarios are used. Within the model, one unit of simulated time 

represents one hour of real time. The first scenario looks at short-term effects 

within the model and warm-up period issues; the model is run for 168 time units 

(hours) to represent the span of a week. The second looks at mid-range effects; 

the model is run for 1,512 time units to represent the span of nine weeks, the 

typical run time for a TWG. The third looks at long-term effects and convergence 

issues; the model is run for 8,760 time units to represent the span of a year. 

Additionally, each design point for each scenario is replicated 200 times to collect 

summary statistics for analysis, and to allow for the possibility of examining the 

variances as well as the means of the output responses of interest. 

 



 80 

THIS PAGE INTENTIONALLY LEFT BLANK 



 81 

IV. KLE MODEL ANALYSIS 

Chapter IV begins with a short description of the model output data. The 

analysis begins with a look at the significant input parameters used to build 

regression metamodels and partition tree models to help verify the KLE Model 

execution. We then look at the output summary statistics to gain insights into the 

ranges and the variability of the output responses. Finally, some discussion on 

the number of micro-KLEs response is presented given the apparently 

anomalous behavior of this output variable.  

A. OUTPUT DATA 

The outputs analyzed in the KLE Model are associated with all the 

countable state variables within the model components; these are of interest as 

they correlate to the outputs analyzed during a TRAC tactical wargame (TWG). 

For each design point, we collect the final values of the state variables for all 200 

replications. We then output the mean, standard deviation, minimum value, and 

maximum value for the 200 replications.  

B. SIGNIFICANT INPUT PARAMETERS AND MODEL VERIFICATION 

In order to explore the significant input factors for each of the output 

responses, and subsequently help verify the expected functionality of the KLE 

Model, we first derive second-order regression metamodels that best fit each 

output response. A stepwise regression control with a minimum Bayesian 

information criterion stopping rule is used to find the input parameters that are 

significant in predicting the responses. These parameters (after removing less 

significant terms) are then used to fit the regression metamodel using standard 

least squares. From the sorted parameter estimates, we can see which input 

parameters are the most significant. Second, we create partition tree models with 

up to 20 splits if needed to identify the most significant input parameters for each  
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response; this helps verify the significant parameters derived in the regression 

metamodels. The statistical software JMP® Pro 9.0 was used to create these 

regression metamodels and partition tree models.  

To get an idea of the regression metamodels and partition tree models 

created, we use the number of KLEs output response as an example. Starting 

with the metamodels, Figures 26, 27, and 28 show the second-order regression 

metamodels for the number of KLEs in the one-week, nine-week, and one-year 

scenarios, respectively. All three metamodels show an F-statistic p-value of less 

than 0.0001, indicating statistical significance in all cases; all three have relatively 

high R-squared values (greater than 0.9); and all three metamodels have terms 

that are statistically significant (t-statistic p-values less than 0.01). We remark 

that with such a large data set, statistical significance is necessary but not 

sufficient for including terms in the metamodels. In some cases, we have 

eliminated terms with p-values less than 0.01 in the interests of parsimony, when 

their inclusion leads to very little improvement in a metamodel’s R-squared value.  

Figure 27 illustrates this phenomenon; if we simplified the metamodel even 

further by eliminating the four interaction terms with p-values between 0.0003 

and 0.0020, the R-squared value would drop only slightly (from 0.9898 to 

0.9886). The simplified metamodel is preferable.  Similar simplifications could be 

made for the one-year metamodel. 

From these regression metamodels, we see that the renege probability 

factor (pfRG) and the no-show probability factor (pfNS) are the two most significant 

parameters for the one-week and nine-week scenarios and within the top three 

for the one-year scenario. These two parameters are the primary factors of 

whether a Blue player engages a Green player, and as model runtime increases, 

these factors remain significant, which is what we were looking for in the KLE 

Model execution. The figures also exhibit the increasing complexity of the 

metamodels as runtime increases due to the greater influence of cross-

component effects, which is expected.  



 83 

 

Figure 26.   Number of KLEs regression metamodel (1 week) 
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Figure 27.   Number of KLEs regression metamodel (9 weeks) 
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Figure 28.   Number of KLEs regression metamodel (1 year) 

Actual by Predicted Plot 

100 200 
N_KLE.mean Predicted 

P<.0001 RSq:0.91 RMSE=13.52 

Summary of Fit 
RSquare 
RSquare Adj 
Root Mean Square Error 
Mean of Response 
Observations (or Sum Wgts) 

Analysis of Variance 

0.907715 
0.904346 
13.52019 
105.2959 

512 

Sum of 
Source OF Squares Mean Square F Ratio 
Model 18 886404.52 49244.7 269.3975 
Error 493 90118.26 182.8 Prob > F 
C. Total 511 976522.78 <.0001• 

Sorted Parameter Estimates 
Term Estimate Std Error t Ratio 
p_KLK -86.86023 2.091336 -41.53 
pf_NS -293.6074 10.43467 -28.14 
pf_HR -292.9832 10.41999 -28.12 
pf_RG -288.615 10.38332 -27.80 
(p_KLK-0.5)"(pf_NS-0.1) 446.60665 36.70415 12.17 
(p_KLK-0.5)"(p f_RG-0.1) 369.44452 35.37955 10.44 
(p_KLK-O.S)"(pf_HR-0.1) -353.6441 36.07581 -9.80 
(pf_NS-0.1)"(pf_HR-0.1) 1474.9089 176.3731 8.36 
(pf_RG-0.1 )"(pf_HR-0.1) 1338.5144 178.5741 7.50 
p_C -12.1191 2.083207 -5.82 
p_l -9.853334 2.091881 -4.71 
pf_BT -46.77026 10.38876 -4.50 
pf_HRT -44.15599 10.45169 -4.22 
(p_C-0.5)"(pf_HR-0.1) 154.45205 37.13474 4.16 
(pf_HR-0.1 )"(pf_HRI-0.1) 710.98815 185.4616 3.83 
pf_HRI -36.66194 10.4566 -3.51 
(p_KLK-0.5)"(pf_HRT-0.1) -112.5208 36.64736 -3.07 
(pf_RG-0.1 )"(pf_NS-0.1) 523.22212 182.6806 2.86 

Prob>ltl 
<.0001• 
<.0001• 
<.0001• 
<.0001• 
<.0001• 
<.0001• 
<.0001• 
<.0001• 
<.0001• 
<.0001• 
<.0001• 
<.0001• 
<.0001• 
<.0001• 
o.ooo1· 
o.ooo5· 
0.0023. 
0.0044. 
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Figures 29, 30, and 31 show the partition tree models for the number of 

KLEs in the one-week, nine-week, and one-year scenarios, respectively. These 

trees back-up what was discovered in the regression metamodels, especially the 

initial split using the probability of having key leader critical knowledge (pKLK) in 

the one-year scenario (Figure 31), which corresponds to the parameter’s 

significance in the one-year regression metamodel (Figure 28). For simplicity, 

only three or four levels within the partition trees are displayed. The resulting R-

squared values are lower than they were for the corresponding regression 

metamodels. Even so, looking at the output in both ways is useful, since 

responses with discontinuities in the results may fit much better with partition tree 

models than with regression metamodels. Partition trees are also sometimes 

easier graphs for communicating with decision makers (Sanchez et al. 2012). 

 

Figure 29.   Number of KLEs partition tree model (1 week) 
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Figure 30.   Number of KLEs partition tree model (9 weeks) 

 

Figure 31.   Number of KLEs partition tree model (1 year) 

Having discussed the techniques used to derive the second-order 

regression metamodels and partition tree models, Tables 20, 21, and 22 show 

which input parameters are the top three most significant when building the 

metamodels (denoted by #) and tree models (denoted by &) for the output 

responses for the one-week scenario, nine-week scenario, and one-year  
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scenario, respectively. Two count columns show the total number of times an 

input parameter is one of the top three most significant in the regression 

metamodels and likewise for the partition tree models.  

 

Table 20. Top three significant input parameters (1 week). 
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Table 21. Top three significant input parameters (9 weeks) 
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Table 22. Top three significant input parameters (1 year) 
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In all three scenarios, we see that pKLK, pfRG, pfNS, and pfHR are the input 

parameters that are considered most significant the most times (counts 

highlighted in green) for both regression metamodels and partition tree models. 

The renege probability factor (pfRG) and the no-show probability factor (pfNS) 

make intuitive sense as these dictate whether a Green player ultimately shows 

up and partakes in a KLE, and KLEs are the driving force for most of the model 

outputs. The honoring requests probability factor (pfHR) also makes intuitive 

sense as many actions that occur after KLEs depend on whether the Green 

player honored the various Blue player requests.  

The probability of having key leader critical knowledge (pKLK) seems 

peculiar as to why it is so important in predicting the various outputs; for instance, 

what does the number of pro-coalition force campaigns have to do with whether 

or not a Green player has critical knowledge on other key leaders? If a Green 

player has key leader critical knowledge, he can be incentivized or threatened to 

give this knowledge to a Blue player during a KLE. If he is incentivized or 

threatened, this can more significantly affect whether or not his OAB is updated 

following a KLE. This in turn impacts whether or not he will conduct a pro-

coalition force campaign. Likewise, if the Green player does not have key leader 

critical knowledge, he is never incentivized or threatened, and so his OAB is less 

likely to change and the impact on conducting a pro-coalition force campaign is 

reduced. This effect-tracing through the various components applies to all the 

output responses. 

Using Tables 21, 22, and 23, we can verify the functionality of the KLE 

Model and confirm that it worked properly over a large range of inputs. The 

number of micro-KLEs output is anomalous and is discussed in more detail in 

section D. The number of times knowledge is gained during micro-KLEs is 

expected to be linked to the chance of knowledge probability factor (pfCK), and 

the metamodels and tree models support this fact. The number of KLEs is 

discussed in the example at the beginning of this section, and those analytical 

models support the expected behavior of the KLE Model. 
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For the honoring request outputs (pass message, provide key leader 

critical knowledge, provide threat critical knowledge, and provide resource critical 

knowledge), we expect pfRG and pfNS to be important (we cannot honor requests 

during KLEs if we do not attend KLEs), as well as pfHR. Additionally, for the three 

critical knowledge-related outputs, we expect the probabilities of having said 

knowledge (pKLK, pTK, and pRK) to help predict the respective responses, and they 

show up in the analytical models with high significance. 

For the pro- and anti-coalition force campaign outputs, we expect pfRG and 

pfNS to be important (we cannot campaign following KLEs if we do not attend 

KLEs), as well as pfHR since honoring or not honoring requests leads to potential 

incentives and threats that can impact the OAB updating following a KLE; the 

OAB directly impacts what type of campaign will occur. Once again, these factors 

show up in the analytical models with high significance. 

The last set of outputs (the capture and kill outputs) verify the capturing 

and killing functionality by using the baseline probabilities of capture or kill by 

Blue players (pBCKB) or by Red players (pBCKR) and the probabilities of capturing 

vice killing by Blue players (pCB) or by Red players (pCR). We expect the 

respective Blue player probabilities to be significant when predicting captures 

and kills by Blue players, and likewise for the Red player probabilities. The 

metamodels and tree models support this fact in all cases. 

C. SUMMARY STATISTICS ANALYSIS 

Using JMP®, the distributions of the means, standard deviations, 

minimums, and maximums are attained for each output response per scenario. 

The goal is to gain insights into what the KLE Model can provide regarding 

issues such as variability or outliers. These snapshots include histograms, outlier 

boxplots, quantile data, and moment data. The summary statistics can be used 

(along with the histograms) to qualitatively assess whether the output is 

reasonable or not. 
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Once again we use the number of KLEs response as our example, and 

the distributions can be seen in Figures 32, 33, and 34 for the one-week, nine-

week, and one-year scenarios, respectively. We see that the various data are 

well-distributed but with some skewness, especially in the mean and minimum 

histograms for all three runtimes. Note that there is no reason to expect that the 

distribution of the design point means should be symmetric, since the design 

point results arise from different combinations of inputs. In this example, there 

are no significant outliers. Using the number of KLEs mean statistics, and just 

using plus or minus one standard deviation from its mean, we expect our model 

to produce 2 to 4 KLEs in one week, 20 to 34 KLEs over nine weeks, and 62 to 

149 KLEs over one year. This appears to scale nicely as runtime increases and 

so this range of values seems reasonable. Even when we look at the minimum 

and maximum numbers of KLEs experienced in all three scenarios, getting these 

minimums and maximums as results is reasonable also. 
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Figure 32.   Number of KLEs summary statistics (1 week) 
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Figure 33.   Number of KLEs summary statistics (9 weeks) 
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Figure 34.   Number of KLEs summary statistics (1 year) 

Table 23 lists the summary statistics for all of the output means across all 

three scenarios.  
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Table 23. Summary statistics for output response means 

For the number of micro-KLEs (NMKLE) response, we observe that exactly 

one micro-KLE takes place during the one-week scenario. This is most likely due 

to the proportion of Blue players (4) to Green players (17) used in the scenarios; 

a Green player is almost always available to engage, so we never see more than 
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(or less than) one micro-KLE. We also observe an exponential increase in the 

number of micro-KLEs as model runtime increases, which is discussed in section 

D. This exponential issue ties into the number of times knowledge is gained 

during micro-KLEs (NTKG), but the problem is with the number of micro-KLEs 

only, as pfCK is the driving force for NTKG.  

All of our responses are nonnegative. Some of their distributions are 

highly skewed, with standard deviations that are quite large relative to the 

means, which is why we report the minimum and maximum value along with the 

means and standard deviations. This still results in plausible ranges for all of the 

output variables (except NMKLE and NTKG) for all three scenarios, so our model is 

producing reasonable responses.  

Only two of our design points produced significant outliers. One of these 

included the same outlier; they were the NMKLE minimum boxplot and NTKG 

minimum boxplot, both at nine weeks. This was associated with design point 443. 

All other design points produced only one micro-KLE and zero times knowledge 

gained, but the outlier values were 59 micro-KLEs and 24 times knowledge 

gained. The third outlier was found in the number of Blue captures minimum 

boxplot at one year, and it was associated with design point 63. Approximately 

90% of the design points produced zero Blue captures, but this outlier value was 

14. After looking at the input parameter values associated with these design 

points, no significant explanation was found for these three outliers and we 

attribute this to randomness within the model. 

D. DISCUSSION ON NUMBER OF MICRO-KLES 

After deriving regression metamodels and partition tree models for the 

number of micro-KLEs output response, we are able to decipher which input 

parameters are most significant in predicting number of micro-KLEs, but the 

analytical models themselves provide poor fits and poor explanations of the 

variability. In fact, we found that the number of micro-KLEs grows exponentially 

as scenario runtime increases. In the one-week scenario, we always had one 
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micro-KLE occurring, but as we increase model runtime to nine weeks, we see a 

big jump in the mean number of micro-KLEs (Figure 35), and we experience 

exponential growth as we run the model for one-year (Figure 36).  

This is one instance that might not show up as a problem if a single 

scenario time (nine weeks for instance) was used. A systematic exploration 

shows this anomaly compared to the other KLE Model output responses. After 

verifying that the KLE Model logic was sound and the implementation within Java 

was correct, the anomaly was found to be linked to the static input parameters 

governing the time a Blue player spends waiting for a micro-KLE and the time a 

Blue player spends in a micro-KLE.  

From Table 17, these triangle-distributed time streams have very small 

modes compared to all the other time streams utilized in the model. The mode for 

the next scheduled micro-KLE time stream is 0.5, and the mode for the time 

spent in a micro-KLE time stream is 0.2. If there are no Green players available 

to engage, then a Blue player could do about 34 micro-KLEs a day. With four 

Blue players in the model, and assuming a one-year scenario, we could see 

upwards of 49,640 micro-KLEs in one-year combined.  

The time streams were best-guess estimates from TRAC-Monterey 

analysts, so one solution is to think more carefully about what static time stream 

distribution is used for micro-KLEs. Another solution is that the micro-KLE 

functionality used in our model may require modifications (such as constraints on 

the total number of micro-KLEs that one agent can conduct over the course of a 

week, or the opportunity to “do nothing” rather than initiate a micro-KLE if no key 

leader is available) to meet TRAC’s needs before any incorporation into the CG 

Model. 
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Figure 35.   Number of micro-KLEs summary statistics (9 weeks) 
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Figure 36.   Number of micro-KLEs summary statistics (1 year) 
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V. WRAP-UP 

We begin Chapter V by stating our conclusions as to what we 

accomplished by creating a KLE Model and analyzing that model. We then 

discuss the significant contributions that were made by conducting the research. 

We end with some discussion as to potential future research opportunities that 

stem from our research.  

A. CONCLUSIONS 

The primary goal of this research was to develop a discrete event 

simulation model for potential plug-in to the CG Model. This model would take 

the place of Nexus when analyzing KLEs by simplifying the Nexus code. We 

were able to show that a simple and understandable model can be built using 

Simkit that reasonably models those aspects of Nexus needed for the CG Model. 

Through the use of event graphs, we were able to represent the complexities of 

KLEs in a visually understandable way. In addition, by using discrete event 

simulation and event graphs, the KLE Model can be easily modified while still 

maintaining the desired functionality of the original model.  

The purpose of the analysis was to test the KLE Model in order to verify 

that it works properly, and to gain an understanding of KLEs for areas of future 

research that can be pursued using this model. Various insights can be gathered 

from this research and analysis. Through the use of experimental design, we 

were able to adequately analyze what input parameters are most significant in 

the KLE Model and how these parameters verify the code implementation. Using 

the number of KLEs response as an example, we were also able to see through 

regression metamodels that output complexity increases with runtime as cross-

component effects become influential. Our analysis identified four input 

parameters that show up most often in regression metamodels and partition tree 

models for the output variables, and showed that are also the most significant in 

the KLE Model. Three of these parameters made intuitive sense; the fourth, the 
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probability of having key leader critical knowledge, can be shown to make sense 

as it has cross-component implications within the model. Lastly, we found that 

our model encountered difficulties modeling micro-KLEs, but the source of the 

problem was identified and properly addressed.  

B. SIGNIFICANT CONTRIBUTIONS 

The primary objective of this work is to enhance the CG Model in the 

highest priority areas of dynamic social network relationships and persuasion and 

influence (Jackson 2009). We sought to help satisfy the critical area 

requirements identified by the U.S. Army and U.S. Marine Corps. By 

incorporating those components of Nexus into the CG Model, this work has the 

potential to save the Army and Marine Corps time and money if and when the 

model becomes a wide-scale decision-making tool. This effort reduces long-term 

requirements for scenario file development and model maintenance. Lastly, this 

research provides a better understanding of key leader engagements and the 

part they play in cultural geography. 

C. FUTURE RESEARCH OPPORTUNITIES 

The KLE Model event graphs allow future researchers to identify where 

modifications and/or additions are necessary in order to achieve a desired 

outcome. Improvement in the functionality of the KLE Model can occur by 

expanding on the behavior modeling of Blue players and Green players. The 

behavior equations utilized are simple and easy to understand, but if found 

unsatisfactory, more complex, social theory-based equations can be applied in 

the model. Also, Red player actions were implied through various events, and 

future research could look at the feasibility of adding a Red player agent as a 

separate entity and analyzing outputs specific to its utilization.  

This research ran the KLE Model as a closed-loop, stand-alone 

simulation. Future research may look into tailoring the KLE Model to the specifics 

of the CG Model. Then, by using the plug-and-play aspect of the CG Model, one  
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could link the KLE Model up and see how the KLE Model outputs affect the 

general population, and how population behaviors as inputs affect the workings 

of the KLE Model. 

The scenarios used in the analysis involved three distinct runtimes: one 

week, nine weeks, and one year. This enabled us to look at distinct differences in 

short-term, mid-range, and long-term model execution, but nothing in between. 

Future research might look at including model runtime as a parameter to further 

explore runtime effects on the output responses. Additionally, the numbers of 

Blue players and Green players were static parameters, as well as the streams of 

times used in the KLE Model. Future research could look at varying these 

aspects in a systematic way to study the effects of varying numbers of players 

and time streams.  

Lastly, due to the large amount of data collected from running the model in 

the three scenarios over the 13 different output variables, this research made use 

of simple techniques to analyze the KLE Model. With more time, more advanced 

analytical techniques could be utilized to take a closer look at the data and 

extract any insights or relationships that were not shown in this research.  
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