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Abstract

In this project we have developed reduced basis approximations and associated a posteriori error
bounds for parametrized partial differential equations. For this development to be of relevance
to AFOSR applications, careful attention has to be paid to numerical analysis; computational
procedures; performance assessment; and the application to non-trivial test cases. The approach is
at present relevant to linear coercive and noncoercive and nonlinear elliptic equations, linear coercive
and weakly noncoercive and nonlinear parabolic equations, and certain classes of linear hyperbolic
equations. Applications considered include heat transfer, acoustics, elasticity, fluid dynamics, and
electromagnetics.

We describe below the many methodological advances completed during the course of this grant.
In all cases the emphasis is on fast response in the real-time or many-query context certified by
rigorous a posteriori error estimators with the application to complex non-trivial test cases.

Overview of Contributions and Core Efforts

Note: Numbers in parenthesis refer to papers listed below.

Improved Inf-Sup Calculation and Successive constraint methods [4,5,8].

In the area of frequency-domain wave phenomena — relevant to acoustics, elastodynamics, and
electromagnetics — we have significantly improved the Offline-Online calculation of the inf-sup
stability factor crucial to our rigorous error bounds. The new approach combines attractive features
of earlier “natural norm” and “Successive Constraint Method” techniques to achieve a demonstrated
order of magnitude improvement in performance in particular in the Offline stage of the calculation.
This has also significantly improved the accuracy and speed of the error estimator, in particular
for problems with resonant or near-resonant behavior. Examples are presented for acoustics and
electromagnetics.

Certified Reduced Basis Methods for Mazwell’s Equations [10,17].
We have developed certified reduced basis methods for the efficient and reliable evaluation of a



general output that is implicitly connected to a given parameterized input through the harmonic
Maxwell’s equations. The truth approximation and the development of the reduced basis through
a greedy approach is based on a discontinuous Galerkin approximation. The formulation and
analysis is very general and allows the use of different approximation spaces for solving the primal
and the dual truth approximation problems to respect the characteristics of both problem types.
The main features of the method are: i) rapid convergence on the entire set of parameters, i)
rigorous a posteriori error estimators for the output and 4ii) off-line/on-line phases to enable the
rapid solution of many query problems arising in control, optimization, and design. The versatility
and performance of this approach has been demonstrated both for highly complex internal problems
with multiple resonances and external problems with scattering applications. Speedup of the the
reduced basis method when compared to the truth approximation is as much as two orders of
magnitude.

For scattering applications we have also demonstrated the ability to parameterize both geometries
and frequencies with excellent results and speedups comparable to those discussed above.

Empirical Interpolation Method: Rigorous Error Bounds and Improved Performance [9, 17]

For problems non-affine in the parameter the Empirical Interpolation Method offers an effective ap-
proach for reduction to approximation affine form — a prerequisite for subsequent effective Offline-
Online strategies. However, until recently, no rigorous error bounds were available to quantify the
Empirical Interpolation Method error. In this grant we have developed rigorous error bounds which
can (i) provide complete certification which includes both reduced basis and empirical interpolation
errors, and (4i) permit efficient Empirical Interpolation Method truncation.

Furthermore for complex non-affine functions such as those appearing in integral equation kernels,
the empirical interpolation methods leads to long expansions to secure adequate accuracy. This
directly impacts the online evaluation cost. We have developed a hierarchical improvement which,
in a greedy fashion, builds the empirical interpolation approach. A simple online search and a
rapid evaluation then allows the online evaluation of the output of interest. This has dramatically
accelerate problems where long interpolations are needed and have, in particular, proven to be
essential for the development of fast and efficient reduced basis methods for problems formulated
on integral form.

Unsteady Incompressible Fluid Flows [3,7].

In the area of nonlinear parabolic equations and in particular unsteady incompressible fluid flows
we have extended our certified reduced basis approach to the Burgers equation and to the Navier-
Stokes Boussinesq equations of natural convection (relevant, for example, to materials processing)
. The certified error bounds restrict the domain of application to modest times (order the diffusive
timescale, or many convective timescales) and also modest Reynolds/Grashof. However, within
this envelope, the reduced basis method (in the Online stage) is very efficient relative to classical
approaches.

h-p Approaches [13,16]

We have developed new h-p reduced basis approaches for elliptic and parabolic equations. In these
approaches we first optimally divide the parameter domain into subdomains (“h-type” refinement);
we then pursue the standard “p-type” reduced basis refinement in each subdomain. The h-p
approach is crucial in preserving low Online cost in particular for larger parameter domains. The
method is particularly well-suited to quadratically nonlinear problems (such as Navier-Stokes).



Parallel Approaches [18].

The Offline stage of the reduced basis method is expensive, in particular for three-dimensional
spatial domains and large parameter domains. We have developed new parallel procedures that
exploit concurrency in both the spatial domain and the parameter domain. Implementation and
tests were performed on the Ranger supercomputer at TACC.

Hierarchical Architectures [14,18].

The Online stage of the reduced basis method is very inexpensive — requires little memory and
little processing power. This suggests implementation of the Offline stage on a supercomputer
(see above) and implementation of the Online stage on slim platforms — to facilitate real-time
many-query calculations “in the field” (e.g., parameter estimation, embedded control). We have
demonstrated this concept with an implementation of the Online stage on a Nexus One Smartphone.

Multiscale Analysis [6, 15].

In the area of multiscale analysis — reduced basis techniques for rapid repeated evaluation of
microscale-induced effective properties — we have extended earlier work in the homogenization
context to the more challenging area of complex flows (relevant, for example, to polymer- or
biomolecule-laden fluids) governed by coupled Stokes Fokker-Planck systems.

Uncertainty Quantification [2, 12].

In the area of uncertainty analysis, we have incorporated our reduced basis approximations and
associated error bounds into both Bayesian parameter estimation frameworks and stochastic partial
differential equation frameworks: the approach yields rigorous assessments of both numerical and
parametric model errors in (currently) thermal systems.

Reduced Basis Methods for Integral Equations[17]

We have begun the development of an reduced basis method as an efficient tool for parametrized
scattering problems in computational electromagnetics in cases where field solutions are computed
using a standard Boundary Element Method (BEM) for the parametrized Electric Field Integral
Equation (EFIE). The significant complicate here as compared to all previous work is the highly
non-affine nature of the kernels and sources, requiring use to develop robust and accurate ways of
dealing with this through empirical interpolation. The problems are parameterized by the wavenum-
ber, the angle of the incident plane wave and its polarization, hence enabling a rapid evaluation of
scattering and scattering signatures for problems in which the truth approximation is an integral
equation solver as is often the case in complex applications. As for differential equation truth ap-
proximations, the potential for speedup is considerable and exceeds 10 for even simple applications
such a spheres and cavities.

Reduced Basis Element Methods for Electromagnetics[11]

We have demonstrated a reduced basis element method (RBEM) for the time-harmonic Maxwells
equation. The RBEM is a Reduced Basis Method (RBM) with parameters describing the geometry
of the computational domain, coupled with a domain decomposition method. The basic idea is to
first decompose the computational domain into a series of subdomains, each of which is deformed
from some reference domain, and then to associate with each reference domain precomputed solu-
tions to the same governing partial differential equation, but with different choices of deformations.
Finally one seeks the approximation on a new shape as a linear combination of the corresponding
precomputed solutions on each subdomain. Unlike the work on RBEM for thermal fin and fluid



flow problems, we do not need a mortar type method to glue the various local functions. This
gluing is done automatically thanks to the use of a discontinuous Galerkin method. We introduced
the methods and presented numerical results showing exponential convergence for the simulation
of a metallic pipe with both ends open. We have also developed some theoretical understanding of
the a posteriori error estimate for RBEM.
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Technology Transfer

Throughout the project there has been a close contact to HyperComp Inc (Los Angeles, CA) who
continues to pursue the development of certified reduced basis methods as part of their in-house
modeling software, used extensively for solving classified and high complex AFRL applications.
The ongoing development demonstrated in this effort has allowed them to seek the development of
a high-quality reduced basis technique with particular applications to scattering applications.

Much of the (linear) RB technology that we have developed is available in a software package
rbMIT which can be downloaded from our website http://augustine.mit.edu/methodology/
methodology_rbMIT_System.htm (subject to usual academic license restrictions).

We have developed a high-performance implementation of the certified reduced basis method,
rbOOmit, based on the C+4++ finite element library libMesh. This code is available under an
open source license as part of the libMesh project. See http://libmesh.sourceforge.net for
more details.

We also developed a reduced basis front-end, rbAPPmit, that runs on Android smartphones. This
“app” is available for download from the website http://sourceforge.net/projects/rbappmit/.



