Award Number: W81XWH-09-1-0137

TITLE: Protein Phosphatase 2A signaling in human prostate cancer

PRINCIPAL INVESTIGATOR: Ajay Singh, Ph.D.

CONTRACTING ORGANIZATION: University of South Alabama
Mobile, AL 36688

REPORT DATE: June 2012

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Advanced prostate cancers (PCa) treated with first line androgen-deprivation therapy (ADT) eventually relapse in a hormone refractory or castration-resistant (CR) form. Relapsed disease is highly aggressive and poses an increased risk of morbidity and death. Previously, we demonstrated that PPP2CA, which encodes the catalytic-subunit (alpha-isoform) of the protein phosphatase 2A (PP2ACα), is downregulated in CR PCa. The level of PP2ACα was decreased in majority of CR PCa cell lines and cancer lesions as compared to the adjacent normal/benign tumor tissues. Under this project, we have utilized multiple approaches to demonstrate a functional role of PP2A in human prostate cancer progression. Specifically, we have generated and characterized stable PPP2CA overexpression (C4-2 and PC3) and knockdown (LNCaP) transfectants and obtained experimental evidence (in vitro) for the role of PP2A downregulation in growth, androgen depletion-resistance and aggressive behavior of prostate cancer cells. We have also developed in vivo experimental support for a suppressor role of PP2A in prostate cancer progression using orthotopic mouse model. Our data strongly suggest that downregulation of PP2A is associated with human prostate cancer progression and restoration of PP2A activity may be an effective approach for the treatment of the advanced disease.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Body</td>
<td>1</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>5</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>5</td>
</tr>
<tr>
<td>Conclusion</td>
<td>6</td>
</tr>
<tr>
<td>References</td>
<td>6</td>
</tr>
<tr>
<td>Appendices</td>
<td>6</td>
</tr>
</tbody>
</table>
INTRODUCTION:
First line of therapy for advanced prostate cancer (PCa) is androgen-deprivation therapy (ADT) through surgical or chemical castration; however, in majority of cases, tumors relapse in a hormone refractory or castration-resistant (CR) form (1). Once the PCa has recurred in CR form, it progresses to a highly aggressive disease with frequent metastasis and poses an increased risk of morbidity and death (1). Previously, we demonstrated that PPP2CA, which encodes the catalytic-subunit (alpha-isoform) of the protein phosphatase 2A (PP2ACα), is downregulated in CR PCa (2). The level of PP2ACα was decreased in majority of CR PCa cell lines and cancer lesions as compared to the adjacent normal/benign tumor tissues (2). Another study also reported the downregulated expression of β-isoform of PP2A catalytic subunit (PP2ACβ) in PCa (3). PP2ACα and PP2ACβ share 97% identity and are ubiquitously expressed; however, PP2ACα is about 10 times more abundant than PP2ACβ (4). PP2ACα/β is a well conserved subunit of PP2A serine/threonine phosphatases, and the in vivo activity of PP2A is provided by related complexes that exist either as hetero-dimers or hetero-trimers with scaffold (A) and regulatory (B) subunits (5).

Based on these supporting data, we hypothesized that dysregulation of PP2A plays an important role in the progression of prostate cancer.

To test our hypothesis, we proposed three specific aims:

Aim 1: Examine the biological role of PP2Ac in androgen-independent growth and malignant properties of the prostate cancer cells.

Aim 2: Define the molecular pathways that are responsive for the changes in PP2A signaling and establish their association with observed phenotype.

Aim 3: Establish the clinical significance of the experimental findings.

BODY:

Task 1: To develop stable transfectants from the prostate cancer cell lines with knockdown or exogenous expression of PP2Ac.

We reported generation of stable PPP2CA overexpression transfectants of castration-resistant C4-2 and PC-3 cell lines in previous year’s annual report. We have now generated a PPP2CA knockdown LNCaP subline (LNCaP-shPPP2CA) (from pooled PPP2CA-knockdown clones) along with its control transfectant (LNCaP-Scr). These cells have been characterized for PPP2CA (PP2ACα) expression and activity by immunoblot and malachite green based assay, respectively. We observe that LNCaP-shPPP2CA cells have low PP2ACα expression (Figure 1A) and activity (Figure 1B) as compared to control (LNCaP-Scr) cells.

Task 2: To examine the effect of PPP2CA overexpression /silencing on prostate cancer cell phenotype.
We reported the effect of **PPP2CA** downregulation on hormone-refractory growth of PCa cells in previous year's annual report. Now, we have phenotypically characterized stable PCa sublines that either overexpress (C4-2 and PC-3) or are silenced (LNCaP) for **PPP2CA** expression. For growth kinetics, cells (1x10^4) were seeded in 6-well plates and growth was monitored by counting the cell number up to 8 days. Our data demonstrate that over-expression of **PPP2CA** in C4-2 and PC3 cells significantly decrease their growth rate, whereas **PPP2CA**-silenced LNCaP cells exhibit increased growth as compared to their respective controls (Figure 2A). The total number of LNCaP-sh**PPP2CA** cells on 8th day of culture indicate 31.6% increase in growth as compared to LNCaP-Scr cells, whereas 34.1% and 35.2% decrease is observed in the **PPP2CA**-overexpressing cells (C4-2-**PPP2CA** and PC3-**PPP2CA**), respectively relative to their respective controls (Figure 2A). Growth analyzed during exponential phase suggest a decrease in population doubling time of LNCaP-sh**PPP2CA** (35.2 h) cells as compared with LNCaP-Scr (48.1 h) cells, whereas C4-2-**PPP2CA** and PC3-**PPP2CA** cells exhibit an increase in doubling time (34.7 and 38.9 h, respectively) compared with controls [C4-2-Neo (27.2 h) and PC3-Neo (29.1 h)] cells, respectively (Figure 2B). Altogether, our findings demonstrate that PP2A-downregulation potentiates growth of prostate cancer cells.

In last year's annual report, we presented our data on the effect of PP2A downregulation (by transient silencing or pharmacological inhibition) in androgen-depletion resistance of LNCaP prostate cancer cells. We have now examined the effect of **PPP2CA**-overexpression on the growth of C4-2 and PC3 cells under androgen-depleted condition. For this, we performed plating efficiency assay, an ideal test to monitor growth in long-term, under steroid-supplemented and -reduced conditions. Cells were seeded at low density (1x10^3 cells/well) in steroid-supplemented (FBS) and -reduced (CSS) media. After 2 weeks, colonies were stained with crystal violet, visualized and photographed using imaging system. Bars represent mean ± S.D; n=3; *, p< 0.05.
compared to their respective controls under steroid-supplemented condition (Figure 3). Interestingly, plating efficiency is decreased further (~72.3% and 59.8% in C4-2-PPP2CA and PC-3-PPP2CA, respectively) under steroid-deprived condition (Figure 3). Thus, our data provide additional in vitro support for an inhibitory role of PP2A in castration-resistant growth of prostate cancer cells.

Since castration-resistant stage of PCa is associated with increased aggressiveness (6), we next investigated the association of PP2A downregulation with malignant behavior of prostate cancer cells. We first examined the effect of PP2A activity modulation on cell migration (by trans-well chamber assays) and invasion (migration through a Matrigel-coated porous membrane) as previously described (7). Data show that number of migrating cells are decreased in PPP2CA-overexpressing C4-2 (2.3 fold) and PC-3 (2.2 fold) cells as compared to their respective controls, whereas a 2.4 fold increase is observed in PPP2CA-knockdown LNCaP cells (Figure 4). Similarly, we observe a decrease in invasiveness of PPP2CA overexpressing C4-2 (2.7 fold) and PC-3 (2.8 fold) cells as compared to their respective control cells, whereas it is increased (3.0 fold) in PPP2CA silenced LNCaP cells (Figure 4). Another behavioral property associated with tumor cells is decreased cell-cell adhesion that is required to facilitate its dissemination. Therefore, we next examined the effect of PPP2CA-overexpression on homotypic interaction of prostate cancer cells in a cell aggregation assay. Our data show an increased cell-cell interaction in PPP2CA overexpressing C4-2 and PC-3 cells as compared to their respective controls (Figure 5). Likewise, we also observe decreased cell-cell interaction in PPP2CA silenced LNCaP cells as compared to the control cells (Figure 5). Altogether, our data indicate that PP2A downregulation is associated with aggressive behavior of the prostate cancer cells.
Cancer cells lose their epithelial characteristics and gain a more mesenchymal phenotype as they progress, a process referred to as epithelial to mesenchymal transition (EMT) (8). As mesenchymal cells are relatively more motile and exhibit less cell-cell communication, we investigated a role of PP2A in EMT of PCa cells. For this, we examined the expression of protein markers associated with epithelial (E-cadherin) and mesenchymal (N-cadherin, Vimentin, Slug, Snail and Twist) phenotypes of a cell by immunoblot analysis. Our data show an increased expression of epithelial and decreased expression of mesenchymal markers (except Snail) in PPP2CA-overexpressing C4-2 and PC-3 cells as compared to respective controls or vice versa in PPP2CA-silenced LNCaP cells (Figure 6).

In next set of experiments, we examined the role of PP2A downregulation on the tumorigenesis and metastatic property of prostate cancer cells in an orthotopic mouse model of prostate cancer. Immunodeficient male mice (4 to 6-week old) were purchased from Harlan Laboratories (Prattville, AL) PPP2CA overexpressing (PC3-PPP2CA) or control (PC3-Neo) cells were harvested from sub-confluent culture and number of viable cells were counted by dye exclusion assay. Cells were suspended in HBSS medium at a concentration of 10^6 viable cells per 50 µl. Mice were anesthetized with intraperitoneal injection of ketamine and xylazine mixture (4:1), and their abdomen cleaned. A small midline incision was made to expose the prostate gland and cells (1×10^6) were injected into the dorsal prostatic lobe using a 27-guage needle. The abdominal wound was closed in two layers and animals were monitored every alternate day. At the end point (30 days post-implantation), mice were sacrificed by CO₂ asphyxiation and autopsied. Prostate tumors were resected, weighed and measured for their dimensions using vernier calipers. Tumor volume was calculated by the following formula: $(A \times B^2)/2$, where A is the larger and B is the smaller of the two dimensions. Visible metastases in the regional and distant lymph nodes, lung, liver and spleen as well as other organs were recorded and metastatic tissues collected and formalin-fixed for analysis. Our data demonstrated tumor incidence in all the mice of both the groups, however, mice injected with PC-3-PPP2CA cells had relatively smaller tumor as
Fig. 8: PP2A decreases phosphorylation of Akt and ERK. Total protein was isolated and effect of PP2A modulation on Akt and ERK activation was examined by immunoblot assay. β-actin was used as internal control.

Task 3: To investigate the effect of PP2A on androgen receptor (AR)-dependent and – independent signaling pathways.

We reported studies proposed under this task in our last year’s annual report, where we utilized transient gene silencing and specific pharmacological inhibitors to dissect the mechanistic routes downstream of PP2A. To validate the effect of PP2A modulation in our stable transfectants, we examined the activation of ERK and Akt by immunoblot analyses using specific antibodies. As expected, our data showed a decreased phosphorylation of Akt and ERK in PPP2CA-overexpressing C4-2 and PC-3 cells as compared to their respective controls or vice versa in PPP2CA silenced LNCaP cells (Figure 8).

Task 4: To examine the expression, localization and/or activation profiles of PP2Ac, AR, Akt and ERK in human prostate cancer.

We have been procuring prostate cancer clinical specimens, and are in the process of standardizing immunohistochemical assays.

KEY RESEARCH ACCOMPLISHMENTS:
- We have generated and characterized stable PPP2CA overexpression (C4-2 and PC3) and knockdown (LNCaP) transfectants.
- We have obtained experimental evidence (in vitro) for the role of PP2A downregulation in growth, androgen depletion- resistance and aggressive behavior of prostate cancer cells.
- We have also developed in vivo experimental support for a suppressor role of PP2A in prostate cancer progression using orthotopic mouse model.

REPORTABLE OUTCOMES (during this funding period)
We presented a poster entitled “Protein phosphatase 2A (PP2A) downregulation is associated with aggressive and castration-resistant phenotypes in prostate cancer” by Bhardwaj A, Srivastava SK, Singh S, Arora A, Honkanen RE, Grizzle WE, Reed E and Singh AP, in 103rd Annual Meeting of American Association for Cancer Research (AACR), held at Chicago, Illinois, March 31-April 4. (Manuscript under preparation).
CONCLUSION
Downregulation of PP2A is associated with human prostate cancer progression suggesting that a therapeutic approach that enables restoration of PP2A activity may be effective for treatment of the advanced disease.

Bibliography

APPENDIX
Bhardwaj A, Srivastava SK, Singh S, Arora A, Honkanen RE, Grizzle WE, Reed E and Singh AP. Protein phosphatase 2A (PP2A) downregulation is associated with aggressive and castration-resistant phenotypes in prostate cancer. Poster presented in 103rd Annual Meeting of American Association for Cancer Research (AACR), held at Chicago, Illinois, March 31-April 4.
Protein phosphatase 2A (PP2A) downregulation is associated with aggressive and castration-resistant phenotypes in prostate cancer

Arun Bhardwaj1, Sanjeev K. Srivastava1, Sėema Singh1, Sumit Arora1, Richard E. Honkanen2, William E. Grizzle3
1Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA; 2Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, USA; 3Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.

Abstract # 3991

INTRODUCTION
Prostate cancer (PCa) is the most commonly diagnosed non-cutaneous malignancy and the second leading cause of cancer related death in males in the United States (1). First line of therapy for these advanced disease is androgen-deprivation therapy (ADT) through surgical or chemical castration; however, in majority of cases, tumors relapse in a hormone refractory or castration-resistant (CR) form (2). Once the PCa has recurred in CR form, it progresses to a highly aggressive disease with frequent metastasis and poses an increased risk of morbidity and death (2). Previously, we demonstrated that PPP2CA, which encodes the catalytic-subunit (alpha-isoform) of the protein phosphatase 2A (PP2Aα), is downregulated in CR PCa. The level of PP2Aα was decreased in majority of CR PCa cell lines and cancer lesions as compared to the adjacent normal or benign tissues (3). Recently, we have also shown that PP2A downregulation sustains growth of PCa cells under steroid-deprived conditions through a novel mechanism, whereby loss of PP2A-mediated checkpoints leads to the activation of Akt and ERK and partially maintains androgen receptor (AR) signaling (4).

KEY FINDINGS
- PP2A negatively regulates the activation of Akt and ERK signaling pathways.
- PP2A decreases prostate cancer cell motility and invasiveness, while increases homotypic interactions.
- Downregulation of PP2A is associated with epithelial to mesenchymal transition (EMT) of prostate cancer cells.

HYPOTHESIS
Downregulation of PP2A promotes castration-resistance and aggressive malignant behavior in prostate cancer cells

METHODOLOGY
For ectopic PPP2CA overexpression, castration-resistant (C4-2 and PC-3) PCa cell lines were transfected with pCMV6-PPP2CA. Whereas, for the knockdown of PPP2CA, castration-sensitive PCa (LNCaP) cell line was transfected with pGFP-V-RS-shPPP2CA. Expression and activity of catalytic subunit of PPP2A (PP2Aα) was determined by immunoblot and melachite green-based enzyme assay kit (Upstate Biotech), respectively. Growth kinetics was performed by monitoring the cell number at different time intervals. Population doubling time was calculated during exponential growth phase (96–144 h) using the formula: Td = 0.693 ln(N/N0), where T is time in (h). N is the cell number at time t and N0 is the cell number at initial time. For anchorage-dependent clonogenicity assay, cells were plated in 6-well plate and grown for 2 weeks. Colonies were subsequently stained, photographed and counted. For migration and invasion assays, cells were plated in top chamber of non-coated or Matrigel-coated membranes, respectively, and allowed to migrate or invade overnight. Thereafter, migrated/invaded cells were fixed, stained, photographed and counted in 10 random view fields. For cell aggregation assay, cell suspension was placed onto the inner surface of lid of a Petri dish and hanged overnight to allow cell-cell interaction. Effects of overexpression and knockdown of PPP2CA on various proteins were examined by immunoblot analysis.

CONCLUSION
Downregulation of PP2A augments castration-resistance and malignant behavior of prostate cancer. Therefore, restoration of PP2A activity may be an alternative therapeutic approach against advanced prostate cancer.

Bibliography

Funding support ($$$) Department of Defense/US Army & USAMCI