REPORT DOCUMENTATION PAGE O 10188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,

1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,

Paperwork Reduction Project (0704-0188) Washington, DC 20503.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
May 2012 Conference Paper (Post Print FEB 2010 — SEP 2010
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
IN-HOUSE

EVOLUTIONARY TILE CODING: AN AUTOMATED STATE [

ABSTRACTION ALGORITHM FOR REINFORCEMENT N/A
LEARNING

5c. PROGRAM ELEMENT NUMBER

N/A
6. AUTHOR(S) 5d. PROJECT NUMBER
S2TS

Robert Wright, Stephen Lin

5e. TASK NUMBER

IH
5f. WORK UNIT NUMBER
ML

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
AFRL/RISC REPORT NUMBER
525 Brooks Rd
Rome NY 13441 N/A
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)
Air Force Research Laboratory/Information Directorate N/A
Rome Research Site/RISC 11. SPONSORING/MONITORING
525 Brooks Road ' AGENCY REPORT NUMBER
Rome NY 13441-4505 AFRL-RI-RS-TP-2012-013

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 88ABW-2010-1453
DATE CLEARED: JAN 2010

13. SUPPLEMENTARY NOTES

Paper presented at the AAAI Publications, Workshops at the Twenty-Fourth AAAI Conference on Artificial Intelligence,
July 10- 11, 2010, pg 42-47. This is a work of the United States Government and is not subject to copyright protection in the
United States.

14. ABSTRACT

Reinforcement learning (RL) algorithms have the ability to learn optimal policies for control problems by exploring a domain’s state
space. Unfortunately, for most problems the size of the state space is too great for RL technologies to fully explore in order to find
good policies. State abstraction is one way of reducing the size and complexity of a domain’s state space in order to enable RL. In
this paper we introduce a new approach for automatically deriving state abstractions called Evolutionary Tile Coding that uses a
genetic algorithm for deriving effective tile codings. We provide an empirical analysis of the new algorithm comparing it to another
adaptive tile coding method as well as fixed tile coding. Our results show that our approach is able to automatically derive effective
state abstractions for two RL benchmark problems. Additionally, we present an intriguing result that shows the classical mountain
car (Justin Boyan 1995) problem’s state space can be reduced to just two states and still preserve the discovery of an optimal policy.

15. SUBJECT TERMS
Reinforcement learning (RL), State Abstraction, genetic algorithm, tile coding

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF |18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
ABSTRACT OF PAGES ALEX F. SISTI
a. REPORT b. ABSTRACT [c. THIS PAGE vu 7 19b. TELEPHONE NUMBER (Include area code)
u u u N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18




Evolutionary Tile Coding: An Automated State
Abstraction Algorithm for Reinforcement Learning

Stephen Lin and Robert Wright
Air Force Research Laboratory Information Directorate
525 Brooks Rd.
Rome, NY 13441
Stephen.Lin@rl.af.mil and Robert.Wright@rl.af.mil

Abstract

Reinforcement learning (RL) algorithms have the ability to
learn optimal policies for control problems by exploring a do-
main’s state space. Unfortunately, for most problems the size
of the state space is too great for RL technologies to fully
explore in order to find good policies. State abstraction is
one way of reducing the size and complexity of a domain’s
state space in order to enable RL. In this paper we introduce
a new approach for automatically deriving state abstractions
called Evolutionary Tile Coding that uses a genetic algorithm
for deriving effective tile codings. We provide an empirical
analysis of the new algorithm comparing it to another adap-
tive tile coding method as well as fixed tile coding. Our re-
sults show that our approach is able to automatically derive
effective state abstractions for two RL benchmark problems.
Additionally, we present an intriguing result that shows the
classical mountain car (Justin Boyan 1995) problem’s state
space can be reduced to just two states and still preserve the
discovery of an optimal policy.

Introduction

Technological development has been driving toward more
complex systems that require faster responses to events.
Processes that used to require human intervention quickly
grow beyond the human operator’s ability to respond. Au-
tonomous control techniques can provide responses as fast
as needed to be effective, but the increasing complexity of
the tasks makes the autonomous controller difficult to de-
sign. Reinforcement learning (Sutton and Barto 1998) (RL)
is one approach that can be used to automate control pro-
cesses and provide rich solutions that are robust in their re-
sponse to new situations.

Reinforcement learning algorithms attempt to discover an
optimal policy for a given domain by exploring its state
space. The optimal policy, 7*, is a prescriptive function that
determines the appropriate action to take in any given state
that will result in the maximum aggregate reward. RL algo-
rithms learn 7* on-line by trying various actions in the states
it experiences and observing the rewards it receives. A RL
algorithm must experience the consequences, r, of attempt-
ing a particular action, a, in a given state, s, a number of

Copyright (© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

42

times before it can accurately estimate the value of taking a
in s otherwise known as the Q-value, Q(s, a).

A significant issue that has hindered the application of
RL algorithms is the state space problem also known as the
curse of dimensionality (Bellman 1961). Simply put, there
are too many states in a problem’s state space to experience
and learn over for most domains. The state of a problem is
defined by the features of the domain as well as the number
of values the features can take. Every unique combination of
feature values, if interpreted literally, can represent a unique
state. Adding a new feature to the representation of the state
increases the size and complexity of the state space expo-
nentially. A means for reducing the size and complexity of
state spaces is necessary for RL.

Fortunately, it has been found that in most domains much
of the information that describes the state is redundant or ir-
relevant with regards to solving the problem. State abstrac-
tion methods have been developed to simplify state spaces
by making generalizations that remove redundancies and
hide unnecessary information (Sutton 1996; Li, Walsh, and
Littman 2006; Wright and Gemelli 2009). In this paper we
focus on one particular state abstraction approach known as
tile coding (Sutton and Barto 1998).

Tile coding is a form of state abstraction for domains with
continuous states spaces. It discretizes the state space into
tiles that cover ranges of values for each feature in the state
space. Every state that falls under a specific tile is treated as
the same abstract state and the RL algorithm learns over the
abstract state space. The effectiveness of tile coding meth-
ods depends heavily on the design of the tiling scheme. If
there is insufficient resolution in a particular area of the state
space the RL algorithm will not be able to find 7*. As a re-
sult the design and implementation of tile coding schemes
has been a manual and time consuming process that requires
significant domain expertise to be effective.

Recently, there has been work in automated tiling meth-
ods that attempt to derive an effective tiling scheme on-line
(Uther and Veloso 1998; Whiteson, Taylor, and Stone 2007).
In this paper we introduce a new automated tile coding al-
gorithm called Evolutionary Tile Coding (EvoTC). EvoTC
uses a genetic algorithm to derive efficient tile structures that
maximizes an RL algorithm’s ability to find a good policy.
We compare the performance of EvoTC to competing fixed
and automated tile coding methods, CMAC and Adaptive



Tile Coding. And we show that EvoTC is able to provide
more efficient tile based state abstractions that should help
enable RL algorithms to scale towards more complex prob-
lems.

The rest of the paper proceeds as follows. In the next
section we provide background and details on the two tile
coding approaches we use for comparison. We then intro-
duce and describe EvoTC in detail. This is followed by a
description of our experimental setup and results. We con-
clude with a discussion of the results and a summary of the
conclusions we were able to make.

Background
Cerebellar Model Articulation Controller

The Cerebellar Model Articulation Controller algorithm,
better known as CMAC, was introduced in (W.T., FH., and
L.G. 1990) (then called the Cerebellar Model Arithmetic
Computer) as a means of providing local generalization of
the state space based on how the human brain is thought
to respond to stimuli (Albus 1971). This behavior allows
states that are in proximity to an observed state to learn even
though those states have not been observed themselves. It
was chosen for our analysis because it is arguably the most
popular of the tile coding methods (Sutton 1996).

CMAC partitions state spaces into a fixed set of non-
overlapping tiles. ()-values that are learned from any one
state in a tile are learned for all states in the tile. Partition-
ing the state space into many small tiles will slow learning
but will improve the probability of finding optimal policies.
Conversely, if the tiles are very large then ()-values will be
distributed quickly across many states, but there is no guar-
antee that two states on opposite sides of a tile should share
the same action values. In this case, each state may favor a
different action, but only one action can be preferred per tile,
preventing a correct policy from being found. This tradeoff
is mitigated by overlapping layers of tiles to provide both
coarse and fine grain generalization. Each observed state
updates one tile per layer, and each of these tiles covers a
different portion of the state space. The preferred action for
a state is the action that maximizes the weighted sum of ac-
tion values across all tiles that contain that state.

The CMAC algorithm has effectively learned a number
of domains including the mountain car and single pole bal-
ance (Sutton 1996). More recently, it has been shown to
suffer from some limitations on slightly more complicated
problems like the double pole balance (Gomez, Schmidhu-
ber, and Miikkulainen 2006). The main difficulty in apply-
ing CMAC is choosing a suitable way to break up the state
space into tiles. If this is done inexpertly then states that do
not prefer the same action can be forced to learn together
if they are both confined to a single tile. This will severely
slow down, if not prevent, the learning of a successful pol-
icy. A secondary concern is the memory requirements for
high dimensional scenarios. The number of tiles per map-
ping scales exponentially in the number of input percep-
tions for a problem, and storing all visited tiles can quickly
become unreasonable. Hashing techniques like those men-
tioned in (W.T., EH., and L.G. 1990) can be used to place

43

limits on the memory requirements of CMAC, but they ef-
fectively cause non-local generalization of learned values in
the event of a hash collision, which can negatively impact
policy convergence.

Adaptive Tile Coding

Adaptive tile coding (ATC) (Whiteson, Taylor, and Stone
2007) is a tile coding algorithm that automatically derives
variable resolution state abstraction while learning a policy
for a specific problem. It is similar to the continuous U-
Tree algorithm discussed in (Uther and Veloso 1998). Both
methods derive abstractions by starting with a single tile that
encompasses the entire state space. Based on observations
made while an RL algorithm attempts to learn over the ab-
stract state space, “splits” are introduced. Splits divide in-
dividual tiles evenly along feature dimensions into two new
abstract states. The idea is to increase the resolution only
in areas of the state space where changes in action choices
should be made. Splitting continues until the RL algorithm
is able to solve the problem using the derived abstract state
space. Determining when and where to split tiles is the only
significant difference between these methods. Heuristics is
used for ATC (Whiteson, Taylor, and Stone 2007) and a
statistical method is used for continuous U-tree (Uther and
Veloso 1998).

ATC uses two heuristics to determine first when to split
and then where to split. The first heuristic keeps track of the
lowest Bellman error per time step. If the lowest Bellman
update fails to change for a specified consecutive number
of updates, split threshold, then the heuristic has determined
learning has stopped and it is appropriate to split a tile. Once
it has been determined that it is appropriate to split the pol-
icy criterion heuristic determines where to split. The ATC
algorithm updates the @-values for all potential tiles in the
tilings. Every time a potential tile within the current acti-
vated tile prescribes a differing action from the activated tile
it updates a counter for the potential tile. ATC splits the
tile with the potential tile that has the highest counter value
to establish that potential tile in the tiling. This process in-
creases the resolution of the tiling in areas where a changes
in policy are likely.

In (Whiteson, Taylor, and Stone 2007) it was shown the
ATC has a number of advantages over CMAC. First, the
tilings are derived automatically eliminating the need to
manually design and discover an effective tiling. Second,
ATC was found to be faster at finding 7* than CMAC us-
ing the best found parameters for the number of tiles and
tilings. The reason for the improvement is that the RL algo-
rithm benefits from the generalization of the overly abstract
state space early in the learning. As the abstract state space
becomes more specific the new states are already partially
learned because they retain the values learned from the more
general state they were split from.

Although this approach is an improvement over fixed tile
coding methods like CMAC, it suffers from a significant
drawback. This approach splits the tiles in half evenly. It
is highly unlikely that such a split will be positioned exactly
where there is a decision point in which taking one action
should be preferred over another. These methods can make



up for this by successively splitting sub-tiles until the deci-
sion point is reached. However, many unnecessary states are
introduced by doing this and it will slow the RL.

Evolutionary Tile Coding

Evolutionary Tile Coding (EvoTC) is a new approach that
takes flexible state space arrangement even further. Like the
other adaptive tile coding approaches it starts with a single
tile that encompasses the entire state space and introduces
splits to increase the detail of the abstraction. The major
differences are that EvoTC uses an evolutionary algorithm
(Holland 1992) to determine when and where to place the
splits and the splits can divide tiles unevenly. By dividing
tiles unevenly EvoTC should be able to derive more effi-
cient and effective tiling abstractions than other existing tile
coding approaches.

In ATC and continuous U-tree the splits are placed in
the center of tiles because it is difficult to determine ex-
actly where the optimum split should be made. So, instead
they hone in on the correct position by adding additional
splits. The additional splits are unnecessary and slow learn-
ing. EvoTC is able to find better split positions by framing
the problem of finding the optimal position and number of
splits as an optimization problem where the performance of
the RL algorithm is optimized.

EvoTC starts with an initial population of tilings to be
evaluated. Each tiling is evaluated independently by pairing
it with an RL algorithm that attempts to solve a problem us-
ing the tiling as a state abstraction device. The performance
of the RL algorithm is considered the fitness of the tiling.
Tilings that are more effective at abstracting the state space
should enable the RL algorithm to perform better. After all
members of the population are evaluated the fittest tilings
are kept for successive generations. New tilings based on
the fittest members of the previous generation are also in-
troduced into the population for the next generation. The
new tilings are generated by applying mutation operators,
described later, to the current fittest members of the popu-
lation. The new population is then evaluated in the same
manner the previous generation was. Over the course of gen-
erations a tiling should be produced that will enable the RL
algorithm to exceed a specified performance threshold and
the algorithm terminates.

In the following we provide details on how the tilings are
represented in the evolutionary algorithm and how the mu-
tation operators function:

Genetic Representation of Tiles Each chromosome in
EvoTC represents a single unique tiling. The chromosomes
hold a tile arrangement described as a binary decision tree.
The genes that make up the chromosome describe the nodes
in the tree. Leaf nodes represent a current tile and hold the
@-values associated with the abstract state. Non-leaf nodes
represent tile divisions and describe along what feature the
division is made and its position. See figure 1 for an illus-
tration of how the tiling is represented as a tree. The genetic
representation is non-fixed to enable the tiling to become
more complex as needed. The process of how the chromo-
some is extended is described in the divide mutation operator

44

description.
Tile Tree
S2 I

2
g 0470 S2
[0}
>

S0 S1 S0 ‘ S1 ‘

0.755
X Position

Figure 1: This figure illustrates how EvoTC represents the
tile discretizations of a state space as a binary decision tree.
Left: shows a sample discretization of the two dimensional
state space of the mountain car problem. Right: shows the
corresponding decision tree which is used to lookup the Q-
values associated with the individual tiles.

Mutation Operators The key to the EvoTC is its muta-
tion operators which make diverse tile arrangements in the
search for the optimal arrangement. These mutation oper-
ators are applied, with a specified probability, to existing
chromosomes in the population to make new chromosomes
at the end of each generation. Two mutation operators are
used in this algorithm:

e The shift operator moves the position of tile splits. The

purpose of this mutation operator is to explore the abil-
ity of the existing tiling arrangement to properly abstract
the state space. As such this operator should be activated
with a higher probability than the divide operator which
changes the structure of the tiling arrangement.
When this mutation operator is activated it selects a num-
ber of division nodes to be modified at random. For each
selected node, the position of the divide is shifted by a
small amount determined by a gaussian random distribu-
tion up to within 1% of the edge of the tile. This prevents
a pair of adjacent tiles from effectively becoming one tile
if one of the tiles holds 0% of the state space. After the
selected genes are altered, the tree is updated with the mu-
tated genes.

e The divide operator introduces new splits to the tiling

to add granularity to the abstract state space. It should
have a relatively low probability of being activated to give
the shift operator sufficient time to explore more general
tilings.
This operator functions by selecting a single leaf node at
random to divide. The node is divided by randomly se-
lecting a dimension to divide along and the division is
placed using a random gaussian distribution over the cen-
ter of the tile. Once the divide is set, new leaf nodes, and
genes are created and attached to the new divide node. Fi-
nally, the @Q-values for the new leaf nodes are initialized
to a value that encourages exploration of the new tiles.



Experiments

We conducted an empirical comparison of CMAC, ATC, and
EvoTC on two well known RL benchmark problems with
continuous state spaces. The purpose of these algorithms is
to reduce the size and complexity of domains’ state spaces
and enable a RL algorithm to discover an optimal policy for
problems in those domains. We measure the effectiveness of
the approaches by the number of states in the abstract state
space and by the number of learning updates required by the
RL algorithm to learn an optimal policy. The fewer the num-
ber of states in abstract state space the better the method’s
ability to effectively abstract the state space. And, the fewer
the number of updates required by the RL algorithm to learn
an optimal policy the better the state abstraction.

The following is a description of the benchmark problems
used and our experimental setup. It should be noted that all
the methods require some parameter tweaking in order to
achieve their best performance. In our comparisons we used
the best found parameter settings for each method. The pa-
rameters used for each method and problem are specified be-
low. Each method was paired with the RL algorithm SARSA
(Sutton and Barto 1998) to derive policies. Also, the results
shown for EvoTC are representative of the median value of
25 separate runs. Because EvoTC is dependent on a stochas-
tic search several runs with different random seeds were nec-
essary to properly characterize its performance.

Mountain Car

The mountain car problem is a classical control RL problem
in which the learner has to derive a policy to enable an au-
tomobile to escape a deep valley. The car does not have
enough power to drive up the sides of the valley starting
from a standing position. To get out the driver must build up
enough momentum by rocking back and forth. Two continu-
ous features, position and velocity, specify the state. At each
time step the RL algorithm has to select one of three possi-
ble actions; accelerate to the left or right, or coast. A reward
signal of -1 for every time step the car has not reached the
goal state is provided to encourage the discovery of a policy
that reaches the goal state in as few time steps as possible.

We use a problem set of 100 different starting positions
and initial velocities to represent the problem domain in our
experiments. The algorithms are evaluated based on the av-
erage performance over all instances in the problem set. For
our problem set an optimal policy enables the car to escape
the valley in average of 50 time steps.

In our experiments for CMAC we used 2 layers of tiling
with 11 tiles per feature for each layer. This allows a max-
imum of 242 possible unique abstract states. ATC requires
the split threshold parameter be specified. For the moun-
tain car problem we found a value of 521 to work well.
EvoTC requires the mutation probabilities be specified. For
this problem values of 32% for shift and 5% for divide per
tiling per generation were used. A population size of 100
was also used for each evolutionary generation.

Pole Balance

The pole balance problem models a car balacing a long pole
attached on a hinge (Barto, Sutton, and Anderson 1990).

45

Table 1: Results for Mountain Car

Number of Updates | Number of States
CMAC | 1.22e+05 177
ATC 1.88e+05 83
EvoTC | 2.00e+07 2

The car is free to travel on a short track to keep the pole
balance vertically over the car. Failure occurs if the pole
falls more than 12 degrees from vertical or if the car rolls off
either end of the short track. The state is represented by 4
continuous features; the position and velocity of the car, and
the angle and angular velocity of the pole. There are three
available actions; accelerate to the left, to the right, and to
coast.

We use a problem set of 20 different initial feature values
in our experiments. The goal for the algorithms to find a
policy that keeps the pole balanced for at least 10 updates
without dropping the pole or exceeding the bounds of the
track.

For CMAC, the settings of 2 layers of tilings with 11 tiles
per dimension of input per layer is again selected for this
test for a maximum of 29282 states. The settings selected
for EvoTC are 30% for shift and 12% for divide. We were
unable to successfully apply ATC to this problem.

Results and Discussion

The results of the mountain car and pole balance are listed
in Table 1. All three methods were able to converge to an
optimal policy. We can see that CMAC was able to solve the
mountain car problem in the fewest number of updates. This
is slightly surprising because it was shown that ATC was
able to outperform CMAC on this problem in (Whiteson,
Taylor, and Stone 2007). We were not able to reproduce
that result. However, this result is intuitive in that the fixed
CMAC tile coding was tuned for this problem and was found
as a result of many trial runs. ATC and EvoTC have to learn
their tile abstractions and this requires some additional time
and updates.

It should be noted that EvoTC is penalized by the update
metric becasue all the updates required by the failed mem-
bers of the population are included. Including the aggregate
updates required for all the members of the population is
necessary to get an accurate measure of computation time
required. However, each evaluation of a tiling per genera-
tion could be done independently in parallel, which would
result in a significant speed up of this algorithm.

Table 1 also shows the size of the abstract state space re-
quired for each method. CMAC only uses 177 of the poten-
tial 242 states available. EvoTC and ATC are able to solve
the mountain car using substantially smaller state spaces
which shows they derive much more efficient state abstrac-
tions. This suggests that they will be able to scale more ef-
fectively as the size of the state spaces increase.

The most striking result of this experiment is that EvoTC
was able to derive an optimal policy using an abstract state
space consisting of only 2 states. , EvoTC was consistently
able to find this state abstraction during our experimentation.



0.477

Velocity

X Position

Figure 2: This figure shows how EvoTC algorithm dis-
cretized the mountain car state space

Velocity

X Position

Figure 3: This figure shows how the ATC algorithm dis-
cretized the mountain car state space

The mountain car problem is one of the classic RL control
problems. It is considered difficult due to its continuous state
space. EvoTC simplified it to a simple two state problem
which is trivial for a RL algorithm to find a policy for. Not
only that, EvoTC was able to eliminate the need for an entire
feature. The only split in the state space occurs at .477 of
the velocity vector. There are no divisions over the position
feature which means it is not relevant at all to solving the
problem. This result highlights the power of automated state
abstraction to find unintuitive and effective abstractions.

This experiment also shows how important the design of
the abstraction can be. Figures 2 and 3 shows the abstract
state spaces derived by EvoTC and ATC respectively. The
abstraction derived by ATC is significantly more complex
than the one derived by EvoTC and includes divisions across
the position vector. ATC cannot find the same abstraction
that EvoTC is able to find because it arbitrarily divides each
tile evenly. As aresult it had to derive a much more complex
abstract state space to learn and equivalent policy.

46

Table 2: Results for Pole Balance

Number of Updates | Number of States
CMAC | 3.69e+08 5379
ATC failed to converge failed to converge
EvoTC | 1.04e+09 61

Table 2 shows the results we obtained applying these
methods to the pole balance problem. The pole balance
problem is significantly more difficult than the mountain
car problem in that it has double the number of continu-
ous features. As such, we can see that CMAC still requires
the fewest updates, but required significantly more abstract
states in order to solve this problem. In our experiments we
were unable to find a parameter setting that enable ATC to
converge. Once again EvoTC was able to derive an abstrac-
tion with far fewer states and still allows the RL algorithm
to find an optimal policy. EvoTC still required an order of
magnitude more updates than CMAC, however the increase
in number of updates and states required by CMAC com-
pared to EvoTC further implies that EvoTC will scale more
effectively as the size of the state space is increased.

Observations and Discussion

In our testing we found that all methods were extremely sen-
sitive to untuned parameter settings. Slight changes to the
parameter settings that work for a domain could very eas-
ily prevent these methods from converging again. This was
especially true of the ATC algorithm, which required a sub-
stantial amount of trial and error to find a parameter set-
ting that worked for the mountain car. Finding settings for
CMAC and EvoTC was significantly less time consuming,
but still required some trial and error.

Although EvoTC and CMAC were able to solve both
benchmark problems it does not appear that either method
will scale adequately as the number of features that describe
the state space is increased. Both methods are tile coding
based and are linear abstractions of the state space. As a re-
sult, although the abstract state spaces found by these meth-
ods are significantly smaller than the actual state space, they
will still scale proportionally as the number of features is in-
creased. It may be the case that non-linear state abstraction
methods such as RL-SANE (Wright and Gemelli 2009) are
necessary as the number of features are increased.

Conclusion

Real world applications have large continuous state spaces
that prevent the use of RL algorithms. State abstraction
methods such as tile coding are necessary in order to ap-
ply RL to non-trivial problems. Fixed tile coding algorithms
such as CMAC can be effective as long as the tiling scheme
is properly designed. Adaptive tile coding methods like ATC
and EvoTC are appealing because they do not require man-
ual design of the state abstraction. In this paper we intro-
duced EvoTC and showed how it is able to abstract the state
space more effectively than CMAC and ATC on two contin-
uous state space problems.



Not only was EvoTC able to outperform CMAC and ATC
in terms of abstraction power it was able to reduce the clas-
sical mountain car domain to a problem consisting of just
two states. This result highlights the power and importance
of automated state abstraction methods.

Although EvoTC was able to very effectively abstract the
state space of the mountain car problem it does not appear
that the approach will scale well as the number of features
that describe the domain are increased. We believe this is
due to the linear nature of the tiling abstraction. Although
the tilings are gross abstractions of the state space the dimen-
sionality of the abstract state space is the same as the orig-
inal state space. In future work we will explore the deriva-
tion of non-linear state abstraction devices such as multi-
layered feed forward neural networks (Wright and Gemelli
2009) and examine how they scale. Non-linear state abstrac-
tions may be able to find more efficient abstractions of mutli-
dimensional state spaces enabling them to scale more effec-
tively as the number of features is increased.

References
Albus, J. S. 1971. A theory of cerebellar functions. Mathe-
matical Biosciences 10:25-61.
Barto, A. G.; Sutton, R. S.; and Anderson, C. W. 1990.
Neuronlike adaptive elements that can solve difficult learn-
ing control problems. Artificial neural networks: concept
learning 81-93.
Bellman, R. 1961. Adaptive Control Processes: A Guided
Tour. Princeton University Press.
Gomez, F. J.; Schmidhuber, J.; and Miikkulainen, R. 2006.
Efficient non-linear control through neuroevolution. In
ECML, 654-662.
Holland, J. H. 1992. Adaptation in Natural and Artificial
Systems: An Introductory Analysis with Applications to Bi-

47

ology, Control and Artificial Intelligence. Cambridge, MA,
USA: MIT Press.

Justin Boyan, A. M. 1995. Generalization in reinforcement
learning: Safely approximating the value function. In Lee,
G.T..D.T..T,ed., Neural Information Processing Systems
7,369-376. Cambridge, MA: The MIT Press.

Li, L.; Walsh, T. J.; and Littman, M. L. 2006. Towards
a unified theory of state abstraction for mdps. In In Pro-
ceedings of the Ninth International Symposium on Artificial
Intelligence and Mathematics, 531-539.

Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction (Adaptive Computation and Machine
Learning). The MIT Press.

Sutton, R. 1996. Generalization in reinforcement learn-
ing: Successful examples using sparse coarse coding. In
Advances in Neural Information Processing Systems, vol-
ume 8, 1038-1044. MIT Press.

Uther, W. T. B., and Veloso, M. M. 1998. Tree based dis-
cretization for continuous state space reinforcement learn-
ing. In AAAI "98/IAAI *98: Proceedings of the fifteenth na-
tional/tenth conference on Artificial intelligence/Innovative
applications of artificial intelligence, 769-774. Menlo Park,
CA, USA: American Association for Artificial Intelligence.
Whiteson, S.; Taylor, M. E.; and Stone, P. 2007. Adap-
tive tile coding for value function approximation. Technical
report, University of Texas at Austin.

Wright, R., and Gemelli, N. 2009. State aggregation for re-
inforcement learning using neuroevolution. In ICAART In-
ternational Conference on Agents and Artificial Intelligence.
W.T., M. I.; FH,, G.; and L.G., K. I. 1990. Cmac: an
associative neural network alternative to backpropagation.
Proceedings of the IEEE 78(10):1561-1567.





