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ABSTRACT

The DoD relies on computing devices to accomplish a wide range of goals and

missions[1]. Malicious software jeopardizes these goals and missions. However,

determining whether an arbitrary executable is malicious can be difficult. Obfuscation

tools, called packers, are often used to hide malicious intent from anti-virus programs.

Therefore detecting whether or not an untrusted executable file is packed is a critical step

in software security.

This research uses machine learning methods to build the Polymorphic and

Non-Polymorphic Packer Detection (PNPD) system that detects whether an executable is

packed by either ASPack, UPX, Metasploit’s polymorphic msfencode, or is packed in

general. PNPD detection performance is evaluated on two feature sources. One is

intra-procedural path-insensitive instruction sequences, referred to as i-grams. The other

source, disassembly based features, consists of three sets: 1) control flow graph (CFG)

structural information 2) control flow instructions (CFI), and 3) intermediate language

(IL) representation of the Intel Architecture’s x86 instruction set.

Both feature sources successfully detect packed executables used in experiments.

Overall, it is discovered i-grams provide the best results with accuracies above 99.5%,

average true positive rates above 0.977, and average false positive rates below 1.6e-3

when detecting msfencode packed executables. Grams of sizes 1 and 2 that exclude

operands provide the best packed file detection results. The CFI feature set is the best

performing disassembly source with performance results near that of the best i-grams.
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INTRA-PROCEDURAL PATH-INSENSITIVE GRAMS (I-GRAMS)

AND DISASSEMBLY BASED FEATURES FOR PACKER TOOL

CLASSIFICATION AND DETECTION

1 Introduction

1.1 Research Domain

It is estimated over one billion personal computers were in use in 2008 [15]. These

business, government, and individually owned computers are often targeted by criminals,

terrorists, and enemy nation-states who use malware to confiscate the information,

resources, or systems they contain or control. To mitigate this threat, widely used software

security programs scan and detect executables with malicious intent. But at best, this is a

cat and mouse game as malware creators constantly invent new methods to circumvent

such detection systems employed. One such method is packing. The intent of packing is

to compress or encrypt a malicious executable into a form unrecognized by software

security programs. This leads to a false trust and the ultimate execution of the malware.

To combat this, both static and dynamic based signature, heuristic, and machine learning

methods are used. This research uses a static machine learning based method to detect the

packed executables themselves.

1.2 Problem Statement

The USAF’s and DoD’s goals and missions rely heavily upon commercial software

applications[1]. Therefore, ensuring a software application is not malicious is of critical

importance to national security. To thwart detection of malicious applications, malware

creators often resort to software obfuscation tools and techniques. Polymorphic and

non-polymorphic packers are two such tools. Both types of packers alter the static

1



appearance of an executable but maintain its runtime functionality. However, polymorphic

type packers are more difficult to detect because they use mutation techniques to avoid

signature-based packer detection tools. Because packing can bypass fast static malware

detection methods and simple reverse engineering efforts, determining if an executable is

packed is an important and necessary first step in determining whether to trust an arbitrary

executable.

1.3 Research Goals

The goal of this research is to improve the software security methods available to the

USAF and DoD. To accomplish this, the Polymorphic and Non-Polymorphic Packer

Detection (PNPD) system uses machine learning with sequences of disassembled

instructions and three distinct sets of disassembly based features to determine whether an

executable is packed. The classification performance of these various feature sets is

analyzed via a series of questions that culminate in determining candidates for the best

and worst sets for detection.

1.4 Document Outline

Chapter 2 provides background information and relevant research related to this

effort. Chapter 3 describes the experimental methodology used. Chapter 4 presents the

results and analysis of the experiments conducted. Chapter 5 provides a summary and the

conclusions for this research.
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2 Background Information

This chapter provides an overview of both x86 based software concepts, malware and

packer basics, and previous research in malware and packer detection.

2.1 Software Analysis Concepts

This section discusses concepts related to the structure and properties of windows

x86 based software.

2.1.1 Static Versus Dynamic Analysis

Static and dynamic analysis are two primary ways of analyzing software and each

have positive and negative characteristics. Static analysis examines the instructions of the

binary executable under analysis but does not execute them. Dynamic analysis executes

the instructions and observes the run-time behavior of the software on either real or virtual

systems. Static analysis methods are commonly used for malware detection by antivirus

programs because they often require less time to perform than dynamic analysis

methods[25].

2.1.2 Recursive Descent versus Linear Sweep Disassemblers

Linear sweep and recursive descent are the two main types of disassembly algorithms

[8]. The linear sweep disassembly algorithm assumes each machine code instruction is

followed by another machine code instruction. Accordingly, the algorithm converts

instructions sequentially relative to the first instruction. A major problem with this

algorithm is it interprets any data in the code section of a program as an instruction. This

leads to de-synchronization with respect to the actual instructions and inaccurate

disassembly as many instructions subsequent to the data may be misinterpreted.
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Recursive descent algorithms, also called traversal algorithms, such as those used by

IDA Pro [8], use the entry point of a program as the starting point for disassembly and

then disassemble instructions based on the program’s control flow. For example, if a

recursive descent algorithm interprets an instruction as a jump to an offset, the next

instruction decoded is the target of the jump and disassembly continues from there until

the next encountered branch instruction is reached and taken.

2.1.3 Portable Executable Format

Operating systems typically use some type of program header to provide information

on how an executable program is organized, what external applications or libraries it

references, and other attributes of the program to manage its execution. Windows based

systems use the Portable Executable (PE) format to organize the various sections and

other properties of executable files.

The PE format supports a variety of sections that represent different components of a

program, however, not all are used and in many cases sections are combined. For this

reason only the more common .text, .data, .idata, and .rsrc sections are discussed

further.

The .text section usually contains all code generated by the program’s compiler or

assembler, one exception being the Borland C++ compiler which labels the section as

CODE [16]. If the program is linked with multiple object files, the code from each of these

is included in the .text/CODE section. The .data section contains runtime initialized

data for the program’s global and static variables and if multiple object files are linked, the

section contains the combined .data sections of the files. Finally, the .idata section

contains information pertaining to functions imported from DLLs distinct from the

executable which, in many cases, can be most of the functionality of an application.
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2.2 Malware and Packer Concepts

Most of the malware discovered “in the wild” is packed [22] to hide or obfuscate

malicious behavior from reverse engineers, reduce the size of the packed code, and avoid

static pattern matching antivirus detection applications. This section describes concepts

relevant to malware, malware detection, and the techniques and tools used to pack it.

2.2.1 Packers, Compressors, and Protectors

Generally, packers are tools that allow a user to perform compression, encryption,

bundling, or a combination of these on one or more executables or dynamic link libraries

(DLLs) [9, 27]. A “compressor” is a packer that strictly attempts to compresses an

executable and embeds a decompression algorithm that allows the compressed program to

run. A “protector” packer obfuscates and protects the code within a program from

detection by outside parties. Protectors typically accomplish protection through

combinations of various compression, encryption, anti-disassembly, anti-debugging, and

other advanced techniques such as using portable code machines. With respect to malware

detection, packers transform the code and data contained in an executable file into an

obfuscated form, encapsulated within another executable file. Figure 2.1 shows packer

tools used between Feb 2011 and Feb 2012 to obfuscate collected malware samples[22].

Although the code of a packed executable appears changed on disk, packers typically use

what are called packer stubs to maintain the code’s intended behavior at runtime. Thus,

malicious software developers can develop one actual version of their malware and

distribute alternate versions to evade signature-based anti-virus scanners [2]. Additionally,

the functionality of such an application is protected from simple reverse engineering

techniques and application programming interface (API) detection techniques since most

packers hide the original import tables used by the malware.
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Figure 2.1: Packer statistics (Feb ’11 through Feb ’12) [22]

To pack and unpack a program, a packing algorithm transforms the executable code,

data of interest, and relevant resources of an executable into an obfuscated and

compressed state. Typically, a packing tool then inserts this transformed information into

the program by altering the PE structure to accommodate this new information (data) with

a packer stub. The packer stub is usually inserted within one of the new PE sections as

executable code which allows the application or DLL to dynamically unpack and run the

packed code during execution. A typical stub unpacks code by saving the current register

state, performing decompression and or decryption on the target code, loading and linking

original libraries required by the file, restoring the register state, and transferring

execution to the original entry point (OEP) of the unpacked code. At this point the

original, or slightly modified but functionally equivalent, code that was packed is now

unpacked in memory.

2.2.2 Polymorphic versus Non-Polymorphic Packers

Polymorphic packers, such as msfencode, use encryption and mutation techniques to

generate mutated versions of the same packed executable. Potentially millions of

functionally equivalent, but statically altered, versions of the same executable can be

created using polymorphism [25]. However, non-polymorphic packers, such as UPX,
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generate the exact same version of an executable each time is packed. In addition,

non-polymorphic packers without protection methods use the exact or nearly exact

sequences of instructions within the packer stubs they generate. Therefore simple

signature-based detection of non-polymorphic packed executables is possible. Figure 2.2

shows partial disassemblies for the same executable packed with UPX and msfencode.

Figure 2.2: Partial disassemblies for same executable packed by UPX (non-polymorphic)

and msfencode (polymorphic)

2.3 Malware and Packer Detection Research

This section describes static malware and packer detection research efforts, and one

hybrid approach to detect malware and packers.

2.3.1 Pattern Based Malware Detection

Most commercial malware detection systems use pattern matching as a technique to

identify malicious code [3]. This approach searches for patterns of instructions or bytes in
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files to determine whether a unique signature of the malware is present. Although this

syntactic analysis can accurately determine the specific type of malware via exact

identification [25], it cannot typically detect new or modified versions of malware; simple

obfuscation techniques can render a signature based scanner useless against a modified

malware variant [2]. Therefore, many approaches that use pattern based detection

methods attempt to de-obfuscate or interpret and define patterns semantically versus

syntactically. This section describes a few of these efforts.

2.3.1.1 Control Flow Graph Based Signatures. Control flow signatures were

used for worm detection in [12]. Control flow graphs of x86 based executable code

discovered in network traffic was used to generate fingerprints to compare against code

transmitted between computers on a network to determine whether the traffic exhibited

worm-like behavior.

Using k-subgraphs, that is subgraphs of the overall control flow of the executable

code under analysis, the system determines any isomorphic substructures between

captured network traffic containing executable code. To determine the similarity of each

k-subgraph, instructions within these structures are assigned a “color” to characterize the

subgraph. This coloring technique ensures isomorphic k-subgraphs with different

functionality are not considered equivalent. The efficiency of the comparisons is increased

by using canonical graph labeling based on the Nauty library [13]. A worm is deemed

present when matching fingerprints of executable code in network traffic is observed

between a given number of distinct source-destination pairs, the traffic is observed on two

or more internal networked machines, or the traffic was communicated between two or

more hosts external to the network under analysis. The system is capable of identifying

polymorphic worms, but due to its focus on the flow of network traffic versus the analysis

of the executable code itself, high false positive rates occur when valid networked files are

accessed and transmitted by users within the network.
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2.3.1.2 Static Analyzer for Executables. The Static Analyzer for Executables

(SAFE) [4] distinguishes malware from benign code using static code and control flow

abstraction. Although signature based, it is capable of detecting morphed versions of

viruses due to a semantic interpretation of the signature. Generalized versions of both

malicious and non-malicious executables are used. Specifically, abstract representations of

known malicious executables in control flow form are stored in a database and used as

abstraction patterns. This database is referenced by the system when an unknown

executable is encountered to search for known malicious patterns within the executable’s

control flow graph representation. If malicious patterns are matched in the executable, a

positive detection occurs. This particular effort resulted in the detection of viruses with

zero false positives and negatives against the set of viruses tested.

2.3.1.3 Static Analyzer for Vicious Executables. An effort to resolve

detection issues in self-obfuscating malware, [24] proposed the Static Analyzer for

Vicious Executables (SAVE) anti-virus scanner. Unlike SAFE, which uses control flow

graphs, SAVE uses sequences of API calls used by known polymorphic malicious

executables versus the executables themselves.

To determine whether an executable is malicious, the scanner decompresses the PE

file (if compressed), parses the PE binary for the sequence of Windows API calls, and

compares any sequence of API calls against a database of API calling sequence signatures

which contains calling sequences from known variants of viruses that rely on the the

Windows API, or Win32 viruses. API sequences are compared via a score-based sequence

alignment algorithm that calculates a mean value using the Cosine measure [5], extended

Jaccard measure [23], and Pearson correlation measures averaged together. The highest

possible measure for each is one and therefore if the average measurement of a particular

executable in question exceeds a 0.90 threshold value, it is considered malicious.
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The SAVE scanner is implemented in [26] and detects all Mydoom, Bika, Beagle,

and Blaster variants with perfect accuracy and outperforms the SAFE scanner based on

time to scan Win32 PE files of various sizes.

2.3.2 Machine Learning Based Methods

Machine learning uses previously learned experiences to make decisions not possible

with signature based methods alone. Unlike searching for specific patterns, heuristics use

a historical approach and bases decisions on basic patterns from previous samples of

identified malware and non-malware. This allows previously unseen malware to be

detected. Furthermore, unlike signature based methods which require new signatures be

added to an ever-growing collection, machine learning based solutions avoid significant

amounts of storage overhead by using relatively small decision structures and classifiers

built from training sets. However, machine learning based approaches have drawbacks as

well. Two include the need to correctly identify and provide sufficient training samples as

well as higher false positive rates. Several machine learning based malware detection

schemes are discussed below.

2.3.2.1 Mining DLL Function Calls. Research performed by [18], uses a set

of malicious and non-malicious MS-DOS based programs to train and test the accuracy of

several data mining classifiers. The effort ultimately produced a detection rate of 97.76%.

An up-to-date virus scanner differentiated between malicious and non-malicious

executables for 4,266 files and it is assumed the scanner correctly identified each type. The

two groups of executables are then split into training and test sets. Features extracted from

the binary profiles of each executable consist of referenced DLLs, DLL function calls

within the binary, the total number of function calls within the referenced DLLs, strings

within the raw executable file, and byte strings obtained from hexadecimal editor dumps.

The features are used to create RIPPER, Naı̈ve Bayes, and Multi-Naı̈ve Bayes classifiers.
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The RIPPER algorithm is an inductive rule-based learner trained with the set of DLL

function features extracted. The specific set of rules that define a malicious executable

include no call to user32.EndDialog(), but a call to

kernel32.EnumCalendarInfoA(); no call to user32.LoadIconA(),

kernel32.GetTempPathA(), or any function in advapi32.dll DLL; one or more calls

to shell32.ExtractAssociatedIconA(); one or more calls to functions in Microsoft

Visual Basic Library DLL. If none of these conditions are met, the RIPPER algorithm

deems the executable non-malicious. The Naı̈ve Bayes classifier is trained with the sets of

extracted strings and byte sequences. The multi-class classifier consists of six Naı̈ve

Bayes classifiers, each voting whether a particular unknown sample exhibits malicious

behavior or not.

With regard to overall accuracy and detection rates, the Naı̈ve Bayes algorithm and

associated string features were the most accurate at 97.11% and produced the lowest false

positive rate at 3.8%. The multi-Naı̈ve Bayes and associated byte string features resulted

in the second highest overall accuracy of 96.88% with false positive rates at 6.01%. The

RIPPER algorithm and associated DLL features resulted in overall accuracies of 83.62%

for the DLLs used feature set, 89.36% for DLL feature set, and 89.07% for DLLs with

counted function calls.

2.3.2.2 N-Gram Classifiers. Similarly successful malware detection results

were achieved by [11] using n-gram based feature extraction and classification techniques

that produced a detector with 0.996 area under ROC curve.

Four-byte n-grams for 1,651 malicious executables and 1,971 non-malicious

executables are created and consist of overlapping bytes that result in 255,904,403 total

n-grams. As an example of 4-byte n-gram extraction, the following byte sequence of

bytes, 0x3FA1C935779B, would generate 3 unique n-grams consisting of 0x3FA1C935,

0xA1C93577, and 0x935779B. These unique n-grams are sorted by their calculated
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information gain as IG( j) =
∑

v j∈{0,1}

∑
C∈{Ci}

P(v j,Ci) log
P(v j,Ci)

P(v j)P(Ci)
. Instance-based learner,

Naı̈ve Bayes, support vector machine, and decision tree classification methods are applied

to the top 500 sorted n-grams per experimental run. In addition, a boosted support vector

machine, Naı̈ve Bayes, and decision tree are used as classifiers. The 0.996 area under

ROC curve was achieved for the boosted decision tree classifier.

In addition to detection, malicious executables were also classified. Malicious

executables are grouped into training and test sets for each class of malicious type. The

same feature extraction and classification methods were used to produce results for three

different types of malware: mass-mailer, backdoor, and executable virus with less

successful results.

2.3.2.3 Malware Target Recognition. The Malware Target Recognition

(MaTR) system [6] uses anomaly and structural features based on attributes of the PE

structure of executables to determine whether a given executable is malicious. MaTR is

contrasted against the performance of successful n-gram based research and is shown to

outperform n-grams with statistical significance. In addition, MaTR uses only over 100

features and avoids the overhead n-grams incur with feature extraction and selection of

grams from the millions of grams generated since the features extracted require little

overhead to process. This effort yielded malware detection accuracies above 99.9%, false

positive rates below 8.73e-4 and false negative rates below 8.03e-4.

2.3.3 Packer Detection

This section discusses research efforts that detect and or automatically unpack packed

code.

2.3.3.1 PolyUnpack. [17] formally defines executables that unpack

themselves prior to execution and additionally implements an automated un-packing tool.
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The definition of an unpack-executing program is any program that executes

instructions present at runtime in the text or data sections that are not decoded as the same

instructions before the program is loaded. In addition, instructions determined to be

executable in the code section, or those which were before the program was executed, also

classify an executable as an unpack-executing program. This definition is used in the

PolyUnpack tool which compares an executable before and after it is loaded to detect

packed code and capture its unpacked representation.

To automatically unpack code, PolyUnpack statically analyzes an executable,

executes it step-by-step and then compares the before execution and after execution

instructions of the executable. If an instruction loaded in the program counter during the

execution phase of detection cannot be found in any of the instructions from the static

analysis of the executable, it is deemed an unpacked instruction. Executable code packed

multiple times, i.e., packed code in packed code, is also detected by re-accomplishing the

entire static-dynamic analysis process on each unpacked section of code up to a chosen

number of iterations so that once one level of unpacking has finished, the system attempts

another iteration of unpacking starting at the first instruction of the unpacked code

previously discovered. Instructions within DLL calls are noted during the dynamic

analysis phase but not analyzed.

Determining whether a program exhibits unpack-execute behavior is not decidable

and reduces PolyUnpack’s recognition to the Turing Halting problem. Therefore, the

authors restrict the number of instructions executed during analysis of a program to a

sufficiently low value.

PolyUnpack obtained generally better results than PEiD, a popular and free packer

identifier, discovering 1,754 instances of packed executables versus 1,482 for PEiD, out of

a total of 3,467 total samples. However, the number of actual packed executables in the
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overall sample set and whether the most recent PEiD signatures were used is unknown,

leaving doubt as to the actual performance of the system.

2.3.3.2 PE File Header Analysis. The packed file detection technique

developed by [20] detects packed executables based on features extracted from their PE

headers. The characteristic vector of an eight element vector reveals variations that

indicate a file is packed. The eight characteristic entities include values based on the

number of executable and writable sections, the number of non-executable sections

containing executable code, the number of unprintable section header names, whether

there are any “no execute” sections, and whether the sum of all section sizes are larger

than the file’s overall size. These were chosen based on heuristic analysis performed on

packed and non-packed files. One hundred packed samples were analyzed and the

distances between the features compared to produce a minimum distance threshold to

distinguish packed from unpacked files. Experimental results yielded 93.6% detection and

4% false positive rates.

2.4 Opcode Based N-Grams

2.4.1 Unknown Malcode Detection Using OPCODE Representation

Research conducted in [14] applies a new and successful method of n-gram based

classification for malware detection using sample set of over 30,000 files. Instead of using

the sequences of bytes contained within executable files, this research extracts sequences

of opcodes, the operation portion of an instruction. These sequences are labeled as

‘OpCodes’. The OpCodes are based on the disassembly provided by the IDA Pro

disassembler. The authors state the sequences are created “in the same logical order in

which the OpCodes appear in the executable” and are based on “execution flow of

machine operations...” which implies control flow is respected, but a concrete example of

extraction is not available.
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The research centers around several questions regarding feature weighting, sequence

size performance, top-selection method performance, classifier performance, and the

classification imbalance problem. Term frequency and term frequency inverse document

frequency are used for feature weighting comparisons. Individual sequence sizes from 1

to 6 were tested separately as features, versus combinations of sizes. The top 50, 100, 200,

and 300 for along with document frequency, gain ratio and Fisher score are used to

evaluate selection performance. Artificial Neural Networks, Decision Tree (unspecified

version), Naı̈ve Bayes, and the Adaboost.M1 versions were used for classifier

performance comparisons. Finally, 5, 10, 15, 30, and 50 percent ratios of malware to

non-malware are tested as classification training sets.

Performance results include an accuracy above 99% for OpCodes against a training

set consisting of 15% malicious samples. The research results in best performance for

sequences of size 2 versus other sizes and shows that larger sizes decrease accuracy. The

Fisher score provides the best performance overall with the top 300 features and term

frequency text categorization. The boosted decision tree, decision tree, and neural network

classifiers provided the best classification performance.

2.4.2 Detecting Unknown Malicious Code by Applying Classification

Techniques on OpCode patterns

A subsequent OpCode research effort conducted in [21] extends the results of [14].

The performance results for combined gram sizes is measured and how often a classifier

should be trained is determined in addition to several questions from the previous work.

The effort shows no performance gains when OpCodes of different sizes are combined

into one feature set and reaffirms OpCodes of size 2 provide the best overall malware

classification.
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2.5 Summary

This chapter provides highlights on software analysis concepts, such as disassembly

and the PE format used by windows executables. The function and techniques used by

packer tools are described. In addition, prior work related to this research is discussed.
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3 Experimental Methodology

3.1 Background

Determining whether an arbitrary program executable is malicious or not is a

perennial problem. Malicious programs routinely steal usernames and passwords,

confiscate personal information, and take control of machines [19] each month. Static and

dynamic program analysis approaches assist in combating the propagation and use of such

malicious programs. Of the two analysis methods, the static method is a popular approach

because it analyzes programs in their pre or non-runtime states and avoids overhead

dynamic methods incur with real or emulated execution of programs. Packing, however,

can prevent static analysis by compressing, encrypting, or performing a combination of

these two operations on compiled code. Thus, packing an executable potentially renders

ineffective many static analysis techniques such as signature and heuristic based methods.

3.2 Problem Definition

This section describes the goals, hypothesis, and approach for this research.

3.2.1 Goals and Hypotheses

Packing an executable produces a statically different and often unrecognizable

version of an executable through the compression and or encryption of its bytes. Because

packing obfuscates the original bytes of an executable, simple static analysis methods may

not recognize packed malicious applications. Packers typically use routines called packer

stubs that decompress or decode packed code and data into program memory space when

the program executes. Once unpacked in memory, the executable’s original instructions

and data are restored to their original state. Thus, if only static signature-based methods

are employed for malware detection, a packed malicious application might execute

undetected. Because the packer stub routines are typically the only code visible to static
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methods, signature-based detection tools often target stub instruction bytes. For

non-polymorphic packers, such as UPX and ASPack, the packer stubs generated typically

consist of similar instructions and control flow structures independent of the executable

they pack. Therefore, signature-based detection of UPX and ASPack packed executables

is fast and effective. However, polymorphic packers, such as Metasploit’s msfencode tool,

use engines that produce mutated versions of the same executable and packer stub each

time the file is packed. Signature-based detection by virus scanners and packer detectors

often miss such polymorphic packers.

This research evaluates polymorphic, non-polymorphic, and general packed detection

performance of several disassembly based feature sets in conjunction with machine

learning methods. These sets consist of two main sources. One uses intra-procedural

path-insensitive instruction sequences (i-grams) with configuration options to include the

size of the grams and whether the op-codes of the instructions or both op-codes and

operands constitute the grams. The second source consists of three sets of generalized

disassembly based features: a control flow graph (CFG) set, a control flow instructions

(CFI) set, and an intermediate language (IL) set. A total of four classes representing two

non-polymorphic based, one polymorphic based, and one general packed class are used.

The general packed class provides classification results for packed versus not packed

executables, similar to previous works that classify malicious from non-malicious

executables. This research attempts to answer the following questions:

• Can i-grams be used to detect polymorphic and non-polymorphic packer tools?

• What packed classes do i-grams classify best?

• What gram sizes for i-grams perform the best?

• Do i-grams with or without operands provide better classification performance?
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• What are the overall best and worst i-gram configuration candidates for packer

classification?

• Can the CFG, CFI, and IL feature sets be used to detect polymorphic and

non-polymorphic packer tools?

• What packed classes do the CFG, CFI, and IL feature sets classify best?

• What is the best choice for packer classification between CFG, CFI, and IL feature

sets?

• What feature sets are the overall best and worst between the i-gram and CFG, CFI,

and IL feature sets?

Based on previous research [14, 21], 2-grams are expected to perform the best for the

i-gram group. It is expected that including operands with the grams will have a negative

impact on polymorphic detection performance because they make each instruction in the

gram more specific. In addition, classification results for the non-polymorphic classes

should achieve the highest results because the disassembled code they produce is static

compared to polymorphic packers. CFG, CFI, and IL feature sets are expected to classify

and detect various packers fairly well based on pilot experiments, but no conjecture is

made as to which one will perform the best. As a group, they are expected to perform

better on the two UPX and ASPack non-polymorphic classes, similar to i-grams.

3.2.2 Approach

Static disassembly provides meaningful information about an arbitrary executable.

Instructions and subsequent control flow information are used by reverse software

engineers to understand the intent of an executable. This research uses disassembly

information generated by the IDA Pro disassembler in conjunction with BinNavi, a control

flow graph and intermediate language generation tool, to extract i-gram, CFG, CFI, and IL
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features from a large set of packed and non-packed executables. The packed sample set

executables are created with several freely available packer tools. The non-packed

executables are gathered from a fresh install of Windows XP service pack 2. Non-packed,

polymorphic packed, and non-polymorphic packed type executables within this sample set

provide both training and testing sets to build and test decision tree based classification.

Classification results answer the performance questions poised in the previous section.

3.3 System Boundaries

The System Under Test (SUT) is the Polymorphic and Non-Polymorphic Packer

Detection (PNPD) system. It consists of the components shown in Figure 3.1. The IDA

Pro disassembler component converts the code and data sections of 32-bit Windows PE

executable files, into Intel Architecture (IA) 32-bit instructions. BinNavi’s control flow

graph generator organizes the disassembled instructions by procedure into basic blocks

with paths that describe the execution flow of the instructions and transforms IA

instructions into a proprietary intermediate language. The feature extraction component

extracts the i-gram, CFG, CFI, and IL sets of features from all procedures for each

executable. Finally, the classification component uses the extracted features and

associated classes to train and test a J48 decision tree classifier. The classification

component is the component under test (CUT) and its classification output represents the

SUT’s output. This output is used to derive the accuracy, true positive rate, and false

positive rate metrics used for performance evaluation. Finally, the SUT’s workload

consists of packed and non-packed executable files and their associated classes.

3.4 System Services

The PNPD system detects whether an executable has been packed by either a

polymorphic or non-polymorphic based packer. The output of the system is a

20



Figure 3.1: Polymorphic and Non-Polymorphic Packer Detection (PNPD) System

classification result that represents either a true positive, false positive, true negative, or

false negative. System output depends on the classification class sets used to train the J48

decision tree component. This research refers to a true positive as a result that correctly

identifies an executable within the classification class being detected. A false positive

occurs when the classifier result incorrectly indicates an executable is not in the

classification class when it actually is in the class. A true negative occurs when an

executable not in the classified class is detected as such. Finally, a false negative occurs

when an executable within the classified class is incorrectly determined as not in the class.

3.5 Workload

The workload for the PNPD system consists of packed and non-packed Win32 PE

executables. It is restricted to Win32 x86-based executables due to the disassembly tools

and packing software available for this format. Packed versions of windows system files

are created using several freely available packers and constitute one set of workload input.

These exercise the PNPD system’s ability to detect both polymorphic and

non-polymorphic packed files.
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Workload parameters include whether a file is packed or not, the packer used to

compress an executable, the version of the packer, configuration setting for the packer if

applicable, and a class type associated with a file. These parameters directly affect the

classification training and testing results, and therefore the overall classification

performance of the system.

3.6 Performance Metrics

System performance is based on the ability of the system to accurately detect packed

files as determined by the following:

True Positive Rate (TPR): A ratio of packed executables classified as such. This is

calculated as the number of hits over the sum of the number of hits plus the number

misses for the executable classified.

False Positive Rate (FPR): A ratio of non-packed executables incorrectly classified

as packed. This is defined as the number of false positives over the sum of the false

positives plus the true negatives for the executables classified.

Accuracy (ACC): A percentage of packed and non-packed executables correctly

classified as such. This is defined as the sum of the true positives and the true

negatives over the sum of the true positives, true negatives, false positives, and false

negatives for the executables classified.

3.7 System Parameters

The following parameters affect the PNPD system’s performance:

Decision Tree (DT) Type: The DT type affects the ability of the PNPD system to

detect packed executables. Classifier type trees are available in different variations.
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Decision Tree Configuration: The DT’s configuration options affect classification

accuracy. Various options are configurable and differ from one DT type to another.

Sample Sets Used to Train Decision Tree: The sample sets that train the DT can

greatly impact classification performance results and must be chosen carefully to

assure adequate training and meaningful testing. This ultimately determines how

well the DT can resolve whether an executable is packed or not.

Packer Tools Used: Different packers or combinations of packers that are classified

will lead to different classification performance results. Some packers generate

packed files that are detected with greater accuracy versus other packed files

Obfuscation Techniques in Executables: Obfuscation techniques can hide features

that would otherwise be extracted from the disassembled instructions and associated

CFG of an executable. The feature set chosen must account for obfuscation

techniques or assume obfuscation techniques are not used.

Type of Packing: Packers, in general, compress or encrypt executables or perform a

combination of these functions. The function of the packer stub is coupled with the

function of packer and therefore exhibits different characteristics. To build a robust

DT, the type of packing must be accounted for with sufficient training samples.

Features Selection: The specific features chosen have a large impact on

classification performance. However, due to the dimensional reduction inherent in

DTs, all features chosen are used to build the DT classifier for packer stubs.

Number of Features: The number of features used to build a decision tree can

negatively affect the DT’s ability to accurately determine whether an executable

contains a packer stub. If too few features are used, the DT runs the risk of not
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having enough features to split on, therefore reducing the accuracy of a DT

determined result.

Algorithm Used for Feature Extraction: The algorithm that extracts features from

the disassembled instructions and control flow graphs of executables affects the time

required to process a request. Depending on the desired set of features, the

algorithm may also impact the quality of information provided to the DT. For

instance, if various forms and sequences of no-operation instructions is a sought

after feature, the algorithm must understand the semantic equality between the NOP

instruction and two NOT AX instructions used in succession.

Control Flow Graph Generator: Responsible for the input into the feature

extraction component and therefore coupled with overall performance of the SUT.

Disassembler Type: Determines the way instructions are decoded. A recursive

descent type disassembler decodes instructions by following the control flow of

decoded instructions. A linear sweep type disassembler ignores control flow and

decodes instructions assuming one instruction follows another. Recursive descent

typically provides a more accurate representation of an executable’s instructions [8].

3.8 Factors

Factors are split into three groups. One for the i-gram features, one for the

disassembly based features, and another for both. These are summarized in Table 3.1.

3.8.1 i-gram configuration factors

The following i-gram configuration factors are tested:
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i-gram size: The i-gram size is the number of instructions in the instruction

sequence. For instance, an i-gram of size 2 would only consist of two sequential

instructions. Sizes 1 through 5 are used for experimentation.

Operand inclusion: Operands can either be included or not included for i-gram

sequences of instructions.

3.8.2 Disassembly based features configuration factors

The following disassembly based feature configuration factors are tested:

Feature set: The set of disassembly based features used for classification. Three

sets are used. One consists of structural attributes of control flow graphs labeled as

the CFG feature set. Another consists of the percentages of all IA x86 control flow

instructions. The last consist of percentages based on IA x86 instructions translated

into a proprietary set of intermediate language instructions.

3.8.3 i-gram and disassembly based features configuration factors

The following configuration factors are tested for both the i-gram and disassembly

based features groups:

Classification class: This determines what class is classified. UPX, ASPack,

Polymorphic, and Packed classes are used for experimentation.

3.9 Class Sample Set Creation and Descriptions

3.9.1 Non-packed executables

The non-packed executable files use for experiments consist of 623 Windows

executables gathered from a fresh install of Windows XP SP2. Sizes for these files range

from 1KB to 3.5MB with a median of 52KB and an average slightly above 153KB.
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Table 3.1: Factors and factor levels for the PNPD system experiments

Group Factor Levels

i-grams
i-gram size 1, 2, 3, 4, 5

Operand inclusion included, excluded

Disassembly based features Feature set CFG set, CFI set, IL set

Both i-gram and disassembly based features Classification class

UPX, ASPack,

Polymorphic(msfencode),

Packed

3.9.2 Packed executables

The packed executables used in the experiments are created by packing a subset of

the non-packed Windows executables. A total of 1879 packed samples are used. Table 3.2

summarizes the various packers and versions used. The composition of each packed

classification class sample set is discussed below and visible in figure 3.2.

3.9.2.1 UPX. The 650 UPX packed executable files are created using four

versions of UPX, specifically 1.2, 1.24, 2.03, and 3.08. Different configuration options are

used for several versions, but preliminary investigation revealed that with one exception,

neither changes in settings or version altered the features extracted from the compressed

executable outputs. The notable exception for this is the LZMA option that is available in

UPX version 3.08. Setting this option produced obvious differences in both the

disassembled instructions and control flow graphs. For this reason, Table 3.2 only

identifies the LZMA option for UPX. This class consists of the 650 UPX executables

which are classified against the remaining 1229 packed and 623 non-packed executables

from the sample pool.

26



(a) UPX class samples (b) ASPack class samples

(c) Poly class samples (d) Packed class samples

Figure 3.2: Executable sample sets for all classification classes

3.9.2.2 ASPack. The 392 ASPack packed executable files are generated using

seven different versions of ASPack, versions 2.0, 2.1, 2.11, 2.12, 2.2, 2.24, and 2.28.

Preliminary investigation indicates that 2.12, 2.2, and 2.24 produce the same IDA Pro

disassembly results consisting of two functions with only six instructions total between

them. The samples for this class consist of the 392 ASPack executables which are

classified against the remaining 1487 packed and 623 non-packed executables from the

sample pool.

3.9.2.3 Polymorphic. The polymorphic packed executable files are generated

using the msfencode tool included with Metasploit version 4.3.0. Specifically, msfencode

embeds a reverse tcp payload into a total of 15 different non-packed executables with both
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the generic/none and x86/shikata ga nai encoders. Numerous iterations using the 15 files

create the total 405 polymorphic packed samples used in experiments. The msfencode

tool generates a different, hence polymorphically packed, executable for each iteration it

outputs regardless of the encoder used. In other words, if the same executable, payload,

and generic/none encoder are used three times, the resulting three different executables

will have three different disassemblies generated. Therefore, the encoder chosen for

msfencode seems irrelevant, but is still noted in the table below for completeness. This

class consists of 450 msfencode executables which are classified against the remaining

1474 packed and 623 non-packed executables.

3.9.2.4 Packed. The Packed classification class represents a generalized

packed class of both polymorphic and non-polymorphic packed samples. It is composed

of all the packed samples from the UPX, ASPack, and Polymorphic classification classes

with additional samples generated from several other packer tools. Specifically, the FSG,

MPRESS, nPack, PEPaCK, and Yoda Protector tools. These additional tools do not use

polymorphic techniques. As a result, the majority of samples for the packed set are of the

non-polymorphic type. This class of 1879 packed executables is classified against the

remaining set of all 623 non-packed executables.

3.10 Feature Set Description and Extraction

This section describes the i-gram, CFI, CFG, and IL features sets and the methods

used to extract them.

3.10.1 i-grams

For each executable used in the experiments, unique i-grams are extracted from every

procedure produced by the IDA Pro disassembler and combined. i-Grams are represented

as strings of instruction sequences extracted from the control flow graphs of the
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Table 3.2: Sample sets used for experiments

Classification Class Tool/Version/Config Tool Sample Count

UPX

UPX/1.2 163

UPX/1.24 56

UPX/2.03 111

UPX/3.08/LZMA Off 165

UPX/3.08/LZMA On 155

ASPack

ASPack/2.0 55

ASPack/2.1 55

ASPack/2.11 55

ASPack/2.12 55

ASPack/2.2 55

ASPack/2.24 55

ASPack/2.28 62

Polymorphic
Metasploit msfencode/4.3.0/shikata 347

Metasploit msfencode/4.3.0/none 58

Packed

ASPack/(prev. listed) 392

FSG/2.0 57

Metasploit msfencode/(prev. listed) 405

Mpress/2.18 153

nPack/2.0 53

PEPaCK/1.0 54

UPX/(prev. listed) 650

Yoda Protector/1.0 115

procedures. Therefore, i-grams of size 2 or more incorporate instruction sequences that

follow control flow while grams of size 1 do not. In addition, markers for nodes without

entry or exit edges are also generated for i-grams of size 2 or greater. These are
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represented as a question mark character in the i-gram strings. To further illustrate this,

consider the sample control flow graph generated for a procedure in Figure 3.3. Extraction

for 1-grams without operands generates the following 5 unique i-grams: (cmp), (jbe),

(esi), (mov), (jmp). Extraction for 2-grams without operands generates 9 unique grams

consisting of the following: (?/cmp), (cmp/jbe), (jbe/inc), (jbe/mov), (inc/mov),

(mov/jmp), (jmp/cmp), (mov/cmp), (cmp/?).

Figure 3.3: Sample control flow graph

i-grams without operands use only the mnemonics, or opcodes, of instructions.

i-grams with operands include the operands in the string representation of the i-gram.

However, all numerical values within operands are generalized to a hash character for the

string representation of the i-grams with operands. For example, 1-grams with operands

consist of the following 7 unique i-gram strings for the sample figure: (cmp;byte

ds:[esi];byte #), (jbe;loc #), (inc;esi), (mov;ss:[ebp+var#];esi),

(jmp;loc #), (mov;byte al;byte ds:[esi]), (cmp;byte al;byte bl).

Once all unique i-grams are extracted from all executables, information gain,

IG( j) =
∑

v j∈{0,1}

∑
C∈{Ci}

P(v j,Ci) log
P(v j,Ci)

P(v j)P(Ci)
is applied to the unique grams based on what

classification class is tested. The i-grams are sorted by information gain values and the top

500 are selected for classification use.
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3.10.2 CFG, CFI, and IL feature sets

All features for the CFG, CFI, and IL sets use values based on percentages and

averages. CFG features are generated from the structural attributes of control flow graphs

for each executable. CFI features are created from the counts of control flow instructions

in each executable. Finally, the IL set is based on Reverse Engineering Intermediate

Language (REIL) instructions [7] generated by the BinNavi application for each

disassembled executable. Further details on each feature set is discussed below.

3.10.2.1 CFG structural features. Their are 14 CFG structural features. All

are averages or percentages relating to control flow based information such as the average

number of instructions per block, average number of instructions per loop, and

percentages of different types of edges.

3.10.2.2 CFI features. A total of 30 CFI features are generated by computing

the percentage of all instructions each control flow instruction accounts for. As an

example, if a total of 100 instructions are generated by the disassembly of an executable,

and out of the 100 instructions 3 are jnz instructions, the jnz feature value is 3 percent.

Control flow instructions include all variants of the x86 jump, return, call, loop, and

other control flow instructions. Percentages are chosen over the frequency of control flow

instructions to provide more generalized values for classification.

3.10.2.3 IL features. The IL feature set consists of 22 REIL-based percentage

values. Seventeen are the percentage of all REIL instructions in an executable that each

REIL instruction accounts for. For example, a disassembled executable might contain the

and instruction a total of 5 times out of a total of 100 instructions. A value of .05 is

therefore calcalated for the and feature. The other 5 features are based on the arithmetic,

bitwise, data transfer, logical, and “other” REIL categories of instruction functions. For

example, an executable might consist of 10 percent arithmetic, 30 percent bitwise, 30
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percent data transfer, 25 percent logical, and 5 percent other types of instructions

functions.

3.11 Evaluation Technique

Direct measurement is used to assess the PNPD system. Both simulation and analytic

techniques would require the design and implementation of systems more complex than a

working system.

Various sets of packed and non-packed executable samples are processed using the

Weka 3.6 machine learning software [10] to evaluate the PNPD system. The PNPD

system, IDA Pro, BinNavi, and Weka run on a computer with 64-bit Windows 7 operating

system, dual quad core 2.0 GHz processors, and 24GB RAM. IDA Pro 5.7 is used to

disassemble executables. BinNavi 4.05 is used for control flow graph generation and

provides the REIL instructions used as features. The PNPD system’s output is the comma

separated file generated by the Weka experimental environment. The file provides the

tabulated classification results for each experiment run.

3.12 Experimental Design

A full factorial design is used to test the system. To ensure robust results, a stratified

ten-fold cross-validation method creates the pseudo-random folds required for classifier

training and testing.

For each experiment, the 2502 executables used in all experiments are divided into

two sets. One set represents all executables in the class specified by the classification class

factor level and the other set contains all remaining executables out of the total 2502 not in

the selected classification class. Stratified 10-fold cross validation with random sampling

is used. Each fold is tested against the Weka J48 decision tree implementation[10] trained

by the other nine folds.
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There are 5 size and 2 operand inclusion levels for the i-gram factors. The CFG, CFI,

and IL sets represent the 3 feature set levels for the disassembly group. There are 4

classification class levels for both the i-gram and disassembly groups. Combined with the

10 cross-validation trials, a total of (5 i-gram sizes x 2 i-gram inclusion levels + 3

disassembly feature sets) x 4 classification classes x 10 folds = 520 experiments are

generated.

With 20 replications, each generating new randomized folds, the total number of

experiments is 520 x 20 = 10400. A 0.99 confidence level is used.

3.13 Methodology Summary

Obfuscation methods are often used to hide the malicious intent of malware from

reverse engineers and software security applications. Polymorphic and non-polymorphic

based packers transform the bytes and instructions of an executable into a form statically

unrecognizable from their original form. This chapter outlines the packer detection goals

of this research and the experimental approach and setup this research uses. Specifically,

the PNPD system, which detects both polymorphic and non-polymorphic packing, is

described. Operation is limited to x86 based 32-bit PE executables. A mixed set of both

packed and non-packed Win32 executables with ten-fold cross-validation generates the

training and test samples. Several common packers, including UPX, ASPack, and

Metasploit’s msfencode tool, generate the packed samples. A full-factorial design ensures

all factor effects are observed.
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4 Results and Analysis

This chapter begins with discussion of possible classification performance inflation

due to the composition of sample sets used in experiments. It then answers several

questions poised earlier regarding classification performance for the i-gram and

disassembly features. Accuracy, true positive rate, and false positive rate metrics describe

classification performance results. In addition, quantitative and qualitative observations

describe the computational and resource requirements of the various i-gram and

disassembly feature configurations. More emphasis is placed on results for msfencode

polymorphic packed executable detection classification results as UPX and ASPack are

easily detected using signature based methods.

4.1 I-gram Results and Analysis

This section discusses the results of all i-gram configurations.

4.1.1 Results across all i-gram configurations

This section discusses results across all i-gram configurations organized by class.

4.1.1.1 Non-polymorphic classes. The non-polymorphic UPX and ASPack

classes result in good classification performance. UPX packed executables are detected

with average accuracies at or above 99.76% and ASPack executables at or above 99.4%

for all i-gram configurations. Further results and associated reasons are discussed further

in this section.

Accuracy results in Table 4.1 show a general pattern of higher accuracy as gram size

increases and when operands are included. UPX is detected with perfect accuracy at gram

sizes of 2 or greater when operands are included and gram sizes of 3 or greater when

operands are excluded. These results are expected. As gram size increases so does the
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Table 4.1: Average accuracies, TPRs, and FPRs with confidence intervals for i-grams on

UPX class

Configuration Avg. ACC 99% CI Avg. TPR 99% CI Avg. FPR 99% CI

UPX/1 Gram/Excluded 99.76221 99.70604 – 99.81837 0.99854 0.99766 – 0.99942 0.00270 0.00197 – 0.00343

UPX/1 Gram/Included 99.96001 99.93789 – 99.98213 1.00000 1.00000 – 1.00000 0.00054 0.00024 – 0.00084

UPX/2 Gram/Excluded 99.95402 99.92726 – 99.98078 1.00000 1.00000 – 1.00000 0.00062 0.00026 – 0.00098

UPX/2 Gram/Included 100.00000 100.00000 – 100.00000 1.00000 1.00000 – 1.00000 0.00000 0.00000 – 0.00000

UPX/3 Gram/Excluded 100.00000 100.00000 – 100.00000 1.00000 1.00000 – 1.00000 0.00000 0.00000 – 0.00000

UPX/3 Gram/Included 100.00000 100.00000 – 100.00000 1.00000 1.00000 – 1.00000 0.00000 0.00000 – 0.00000

UPX/4 Gram/Excluded 100.00000 100.00000 – 100.00000 1.00000 1.00000 – 1.00000 0.00000 0.00000 – 0.00000

UPX/4 Gram/Included 100.00000 100.00000 – 100.00000 1.00000 1.00000 – 1.00000 0.00000 0.00000 – 0.00000

UPX/5 Gram/Excluded 100.00000 100.00000 – 100.00000 1.00000 1.00000 – 1.00000 0.00000 0.00000 – 0.00000

UPX/5 Gram/Included 100.00000 100.00000 – 100.00000 1.00000 1.00000 – 1.00000 0.00000 0.00000 – 0.00000

specificity of a gram’s context of an executable. As an exaggerated example, consider a

gram size of 100. Grams of this size extracted from the disassembled instructions of a

particular executable are specific to that executable. Finding a similar gram consisting of

the same sequence of 100 instructions in another executable is unlikely to occur unless the

the same procedures are present in both executables. Such is the case, however, for UPX

packed executables where the packer stub procedure used does not vary significantly or at

all between files packed by UPX. Therefore, as gram size increases, they are more specific

and identify longer sequences of instructions specific to only UPX packed executables.

The other extreme is represented by 1-grams which are considered the most general of the

gram sizes. They are defined by a single instruction and contain no control flow

information and therefore provide the smallest context about an executable’s disassembly.

For example, a 1-gram consisting of the call instruction alone is far too general to

discern between a UPX packed executable and any other arbitrary executable.

Furthermore, the inclusion of operands increases specificity of grams. This is clearly

evident within UPX results as 2-grams with operands included detect UPX with perfect
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accuracy. When operands are excluded, however, 2-grams are no longer specific enough

to detect UPX with perfect accuracy.

Table 4.2: Average accuracies, TPRs, and FPRs with confidence intervals for i-grams on

ASPack class

Configuration Avg. ACC 99% CI Avg. TPR 99% CI Avg. FPR 99% CI

ASPACK/1 Gram/Excluded 99.40449 99.31668 – 99.49231 0.97170 0.96714 – 0.97626 0.00180 0.00123 – 0.00237

ASPACK/1 Gram/Included 99.83018 99.78334 – 99.87701 0.98980 0.98699 – 0.99262 0.00012 -1e-04 – 0.00034

ASPACK/2 Gram/Excluded 99.76819 99.70862 – 99.82776 0.98980 0.98699 – 0.99262 0.00085 0.00039 – 0.00131

ASPACK/2 Gram/Included 99.68029 99.61733 – 99.74324 0.98980 0.98699 – 0.99262 0.00190 0.00139 – 0.00241

ASPACK/3 Gram/Excluded 99.77023 99.71741 – 99.82305 0.98980 0.98699 – 0.99262 0.00083 5e-04 – 0.00116

ASPACK/3 Gram/Included 99.84015 99.79595 – 99.88436 0.98980 0.98699 – 0.99262 0.00000 0.00000 – 0.00000

ASPACK/4 Gram/Excluded 99.84015 99.79595 – 99.88436 0.98980 0.98699 – 0.99262 0.00000 0.00000 – 0.00000

ASPACK/4 Gram/Included 99.84015 99.79595 – 99.88436 0.98980 0.98699 – 0.99262 0.00000 0.00000 – 0.00000

ASPACK/5 Gram/Excluded 99.55833 99.48449 – 99.63217 0.98980 0.98699 – 0.99262 0.00334 0.00261 – 0.00408

ASPACK/5 Gram/Included 99.84015 99.79595 – 99.88436 0.98980 0.98699 – 0.99262 0.00000 0.00000 – 0.00000

ASPack detection results are shown in Table 4.1 and roughly follow the same pattern

as those for UPX with notable differences for 5-grams without operands and 2-grams with

operands configurations. Overall, the 1, 3, 4, and 5-gram with operands and 4-gram

without operands configurations provide similar higher average accuracy results. The

lowest average accuracy, approximately 99.83% occurs for the 1-gram without operands

configuration. This accuracy is attributable to a relatively low true positive rate of 0.972

versus true positive rates of 0.99 and above for all other configurations. Results for

5-grams and 2-grams with operands configurations contrast the perfect classification

results observed for UPX. The lower ASPack performance for these and 1-gram without

operands configurations are likely due to the limited disassembly that IDA Pro produces

for the 2.12, 2.2, and 2.24 versions of ASPack. IDA disassembly produces only two

functions, one with a ‘pusha, call’ sequence and the other with a ‘pop ebp, inc
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ebp, push ebp, retn’ sequence. These short and general instruction sequences

comprise nearly half of the ASPack samples used to build the classification training and

test sets used for experimentation and negatively affects performance results.

4.1.1.2 Polymorphic (msfencode) class. Classification results for executables

packed by Metasploit’s msfencode tool are good with average accuracies above 97.0% for

all configurations. Table 4.3 shows accuracies, true positive rates, and false positive rates

for all i-gram configurations.

Table 4.3: Average accuracies, TPRs, and FPRs with confidence intervals for i-grams on

Poly class

Configuration Avg. ACC 99% CI Avg. TPR 99% CI Avg. FPR 99% CI

POLY/1 Gram/Excluded 99.19060 99.10481 – 99.27638 0.96865 0.96326 – 0.97403 0.00360 0.00285 – 0.00435

POLY/1 Gram/Included 99.37447 99.28708 – 99.46186 0.96137 0.95597 – 0.96678 0.00000 0.00000 – 0.00000

POLY/2 Gram/Excluded 99.50239 99.42084 – 99.58394 0.97745 0.97327 – 0.98163 0.00157 0.00086 – 0.00229

POLY/2 Gram/Included 99.56035 99.4874 – 99.6333 0.97783 0.97374 – 0.98191 0.00095 0.00058 – 0.00133

POLY/3 Gram/Excluded 99.30053 99.20256 – 99.39851 0.97350 0.96717 – 0.97982 0.00322 0.00236 – 0.00408

POLY/3 Gram/Included 99.17264 99.07558 – 99.2697 0.94891 0.94292 – 0.95491 0.00000 0.00000 – 0.00000

POLY/4 Gram/Excluded 99.14258 99.04809 – 99.23707 0.95273 0.94704 – 0.95842 0.00110 0.00067 – 0.00152

POLY/4 Gram/Included 98.47115 98.35151 – 98.59079 0.90559 0.89822 – 0.91295 0.00000 0.00000 – 0.00000

POLY/5 Gram/Excluded 98.22553 98.08166 – 98.3694 0.90426 0.89564 – 0.91287 0.00267 0.00203 – 0.00331

POLY/5 Gram/Included 97.00237 96.84484 – 97.15989 0.81662 0.80706 – 0.82618 0.00033 -2e-05 – 0.00069

A maximum average accuracy is observed at 2-gram configurations with diminishing

accuracies as gram size increases from thereon. This contradicts the general increase in

accuracy with increase in gram size observed for the non-polymorphic UPX and ASPack

results due to the specificity of grams. As gram sizes increase, the specificity of context

grows. For the non-polymorphic packed executables with similar or identical procedures,

grams with greater sizes increase the information gained. This occurs because similar and

longer instruction sequences common to all or most executables packed with a specific
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non-polymorphic packer are less likely present in executables not packed by the packer.

However, grams of longer instruction sequences are not as common across all msfencode

packed executables. Tables 4.4 and 4.5 affirm this. The top 2-grams are more common

between all msfencode packed executables while the top 5-grams are less common. This

results in lower information gain for higher sized grams concerning the polymorphic

msfencode class and thus lower accuracies.

Table 4.4: Presence of top 2-grams (based on information gain for all samples) in

polymorhpic (msfencode) class and non-polymorphic class executables

2-Gram Rank 2-Gram Presence in Msfencode Presence in Non-Msfencode

1 (nop/jmp) 396 of 405 4 of 2097

2 (push/nop) 395 of 405 10 of 2097

3 (call/nop) 390 of 405 4 of 2097

4 (jump/nop) 376 of 405 3 of 2097

5 (nop/call) 343 of 405 4 of 2097

Table 4.5: Presence of top 5-grams (based on information gain for all samples) in

polymorhpic (msfencode) class and non-polymorphic class executables

5-Gram Rank 5-Gram Presence in Msfencode Presence in Non-Msfencode

1 (nop/jmp/mov/nop/jmp/) 238 of 405 0 of 2097

2 (nop/jmp/call/nop/jmp/) 193 of 405 0 of 2097

3 (nop/jmp/push/nop/jmp/) 176 of 405 0 of 2097

4 (push/nop/jmp/push/nop/) 174 of 405 0 of 2097

5 (jmp/mov/nop/jmp/mov/) 173 of 405 0 of 2097

The stratified 10-fold cross-validation method used for experiments also provides

another explanation for the sharp drop in accuracy achieved by grams of size 5. Because

there are fewer 5-grams common across all msfencode packed executables, training sets
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may not reflect actual information gain of a gram for the entire sample set. For example,

the top 5-gram, (nop/jmp/mov/nop/jmp/), for the polymorphic class is present in 238

out of the 405 msfencode packed executables and 0 of the 2097 non-msfencode packed

executables. Stratified 10-fold cross-validation for the polymorphic set produces folds that

contain roughly 40 msfencode packed executables and 209 non-msfencode packed

executables. As an extreme example, random sampling fold generation might produce 5

folds that contain all 238 msfencode executables with the top 5-gram. If all 5 of these

folds are present in the training set, the gram remains the top gram and therefore splits the

J48 decision tree produced. However, because no msfencode packed executable in the test

set contains the top gram, a greater number of false negatives, or lower true positives, are

likely. This explains accuracy and true positive rates obtained using different gram

configurations for the polymorphic class.

Figure 4.1: Comparison of information gains (computed by Weka) for 2-gram operands

included and excluded configurations in polymorphic class

The average accuracy for the 1 and 2-gram with operands configurations are slightly

higher than their counterpart without operand configurations. Although the differences are

not statistically significant at the 0.99 confidence level, this difference is explained by the

information gained with operands included. Figure 4.1 shows the differences of these

information gains, calculated using Weka’s information gain attribute evaluation method,
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between 2-grams with and without operands included. The 2-grams with operands

included clearly shows higher information gains than those for operands excluded. This

distinguishes msfencode’s polymorphic engine against all other executables and reveals

operands are not morphed across all instructions and instruction sequences for msfencode

packed executables. However, accuracy for 3, 4, and 5-gram without operands decrease at

a smaller rate than 3, 4, and 5-gram configurations with operands. Relatively sharp drops

in accuracy for the 5-grams places them lower by 0.917% and 1.469% for operands

excluded and included respectively. Grams become too specific and less common across

msfencode packed executables for sequences of two instructions and including operands

seems to multiply the reduction in performance (cf. Figures B.1.

4.1.1.3 Packed class. Performances observed for the packed class are lower

overall than those for the UPX, ASPack, and polymorphic (msfencode) classes (cf.

Figure 4.6). This seems intuitive based on the relative greater diversity of executables in

the class. Specifically, the packed class consists of all 1879 packed executables and is

classified against the 623 non-packed executables used in all experiments. Therefore,

detection is generalized to a packed or not-packed result versus detection of a specific type

of packer, as is the case for the UPX, ASPack, and polymorphic classes. Performance

results show the 1-gram, operands excluded, configuration providing the significantly best

performance for accuracy and false positive rate. Consequently, this suggests there are

sets of common instructions across some packed executables that are not common across

other non-packed executables, and vice-versa. This is evident based on the decision tree

generated in Figure 4.2.

No other significant performance differences are observed between all other

configurations. However, the steep drop in accuracy observed for the polymorphic class is

not observed in results for the packed class, despite the presence of all msfencode packed
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Table 4.6: Average accuracies, TPRs, and FPRs with confidence intervals for i-grams on

Packed class

Configuration Avg. ACC 99% CI Avg. TPR 99% CI Avg. FPR 99% CI

PACKED/1 Gram/Excluded 99.34656 99.24521 – 99.44791 0.99611 0.99524 – 0.99698 0.01454 0.01138 – 0.01769

PACKED/1 Gram/Included 98.61909 98.48942 – 98.74876 0.99566 0.99461 – 0.99672 0.04238 0.03756 – 0.04719

PACKED/2 Gram/Excluded 98.84499 98.72695 – 98.96302 0.99492 0.99396 – 0.99588 0.03106 0.02723 – 0.03488

PACKED/2 Gram/Included 98.65911 98.53173 – 98.78649 0.99867 0.99813 – 0.9992 0.04984 0.04481 – 0.05488

PACKED/3 Gram/Excluded 98.73705 98.61479 – 98.85932 0.99308 0.992 – 0.99416 0.02985 0.02574 – 0.03397

PACKED/3 Gram/Included 98.55716 98.41526 – 98.69906 0.99662 0.9959 – 0.99734 0.04776 0.04224 – 0.05327

PACKED/4 Gram/Excluded 99.09676 98.9907 – 99.20283 0.99811 0.99758 – 0.99864 0.03058 0.02656 – 0.0346

PACKED/4 Gram/Included 98.43926 98.30289 – 98.57563 0.99646 0.99566 – 0.99727 0.05201 0.04692 – 0.0571

PACKED/5 Gram/Excluded 98.97691 98.858 – 99.09582 0.99822 0.99756 – 0.99887 0.03571 0.03121 – 0.0402

PACKED/5 Gram/Included 98.40535 98.26249 – 98.5482 0.99715 0.99639 – 0.99791 0.05546 0.04994 – 0.06098

Figure 4.2: J48 decision tree (generated by Weka) for 1-gram operands excluded for packed

class, all samples used

executables in the packed class. Once again, fold creation and information gain provide an

explanation. The top 10 5-grams for both operand included and excluded configurations

are present in most of the 623 non-packed executables and not present in most of the

packed executables. Therefore, all folds generated have a higher probability of containing
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grams with high information gain and thus negative classification impacts incurred and

previously discussed for the polymorphic class are not incurred by the packed class for

5-gram configurations.

4.1.2 Results for i-grams across classes independent of gram size and operand

inclusion

Overall, classification results vary greatly based on the presence or absence of

polymorphic packed executables. Performance details are discussed further.

Better i-gram performance for non-polymorphic packed executables is shown in

Table 4.7. When the size and operand inclusion factors are ignored, UPX is classified with

the highest average accuracy of 99.968% due to higher true positive rates and lower false

positive rates than any other classified class. ASPack is detected with nearly the same

performance of UPX with an average accuracy lower by a difference of 0.23 in percent,

true positive rate lower by a difference of 0.011, and false positive rate higher by a

difference of 4.9e-4. The low false positive rate indicates nearly perfect identification of

non-ASPack executables.

Table 4.7: Average i-gram classification results for each class

Class Accuracy True Positive Rate False Positive Rate

UPX 99.96762 0.99985 0.00039

ASPack 99.73723 0.98799 0.00088

Poly 98.89426 0.93869 0.00134

Packed 98.76822 0.99650 0.03892

Classification for msfencode and the classification of the combined packed set of

UPX, ASPack, msfencode, yoda, mpress, npack, pepack, and fsg executables show
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significant differences from the UPX and ASPack classified sets. Polymorphic

classification attains an average accuracy of 98.894% across folds. Packed classification

attains a statistically significant lower average classification accuracy of 98.768%. The

polymorphic performance is largely explained by the overall lower true positive rate, a

result of polymorphic modules being misclassified as non-polymorphic. Although results

for the packed class shows a true positive rate on par with the true positive rate for UPX, it

suffers from a high false positive rate that is roughly 29 times that of the polymorphic and

nearly a 100 times that of the UPX false positive rates. This explains the overall higher

accuracy for polymorphic class detection.

4.1.3 Results for i-grams across gram sizes independent of class and operand

inclusion

Overall, 2-grams perform the best closely followed by 1 and 3-grams. Poorer

performance for 4-grams and a significantly poorer performance by 5-grams is observed.

Results are discussed in detail below.

Two-grams attain the highest average accuracy, 99.496%, when classification class

and operand inclusion factors are ignored as shown in Figure 4.3. The Tukey Honest

Significant Difference (HSD) plot in Figure 4.4 shows 2-gram accuracies are not

significantly different from 1 and 3-grams at the 0.99 confidence level, however, 2-gram

true positive rates are the highest and do show significant difference from all other sizes

(cf. Figures B.4 and B.5).

The lowest false positive rates are achieved by 1-grams, at 8.2e-3, with a statistically

significant difference from 2-grams, at 1.08e-2 (Figures B.6 and B.7). The poorest false

positive rate occurs with 5-grams at 1.22e-2. This suggests simpler i-grams are better at

recognizing executables outside the classification class tested. Both 4 and 5-gram sizes

produce accuracies less than and significantly different from 2-grams. As discussed
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Figure 4.4: Tukey HSD plot comparing different i-gram sizes by accuracy

earlier, these gram sizes are poorer choices for detecting executables created by

msfencode.
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4.1.4 Results for i-grams across operand inclusion and exclusion

configurations independent of gram size and class

Grams without operands perform better when gram size and class factors are not

considered. Accuracy is 0.15849 higher in percent, true positive rate is higher by 7.12e-3,

and false positive rate is lower by 4.36e-3 for exclusion versus inclusion of operands

independent of class and gram size factors (cf. Table 4.8). The differences are all

statistically significant at the 0.99 confidence level.

Table 4.8: Average i-gram results for operand inclusion

Operands Accuracy True Positive Rate False Positive Rate

no 99.42108 0.98432 0.00820

yes 99.26259 0.97720 0.01256

As visible in previous figures and tables, grams with operands perform only slightly

better for the UPX and ASPack classes. However, operand inclusion results in statistically

significantly poorer classification for the polymorphic and combined classes when all

gram sizes are considered. A statistically insignificant exception exists for the

polymorphic class with the 1 and 2 gram sizes.

4.1.5 Best and worst i-gram configurations tested

The best and worst configurations are highly dependent on what is classified, but for

generalized use, this research argues 1 or 2-grams without operands provide the best

overall choice. Furthermore, any grams with sizes greater than 4 and any grams that

include operands should be avoided.
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Two-grams provide the most balanced results based on this research. As shown

earlier, they provide the best classification results for the polymorphic class and also

perform relatively well with the UPX and ASPack classes. However, 1-grams perform

nearly as well over all the classes and require less computational overhead as discussed in

the previous section. Furthermore, when polymorphic and combined packed performance

results are combined, 1-grams are the most accurate(cf. Figures 4.5, B.8, and B.9). As

observed earlier, two-grams without operands provide a statistically significant 0.091%

gain in accuracy over 1-grams without operands for detection of polymorphic class

executables. This supports the rationale of a qualitative tie between 1 and 2-gram without

operands configurations.
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Figure 4.5: Comparison of accuracies for the polymorphic and packed classes

Operands, as created and tested for this research, are not worth including. The time

required to compute and perform information gain calculations for i-grams that include

operands require hours versus minutes to process for sizes greater than one. More

information gain calculations and sorting is required due to the much larger number of
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unique grams generated (cf. Figure 4.6). Memory requirements obviously increase as well

when operands are included. For these reasons, operands should be avoided in general

when using i-gram information gain calculations.
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Figure 4.6: Unique gram totals for i-gram configurations

Grams larger than 4 should also be avoided. As seen in previous figures, there is a

steep drop off in accuracy and true positive rate detecting the polymorphic class with

grams of size 5 even when operands are excluded. Of course UPX and ASPack perform at

or near perfect accuracy for these configurations. However, UPX and ASPack are easily

detected using signature based packer scanners such as PEiD. Although 3 and 4-gram

without operand configurations perform fairly well when results are observed across all

classes, they are not considered as top choices due to the larger number of grams they

generate.

In summary, the results of these i-gram experiments reveal that no particular i-gram

configuration works best for all packers, but 1 and 2-grams without operands are effective

for general and more practical purposes. Additionally, operands and grams with sizes
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greater than 4 should not be considered for classification use due to little or no detection

benefit gained and higher resource cost incurred.

4.2 Disassembly Based Feature Sets Results and Analysis

This section discusses the performance results for the disassembly based CFG, CFI,

and IL feature sets.

4.2.1 Results across all disassembly-based feature configurations

Results are discussed below for the non-polymorphic, polymorphic, and packed

classes. CFG, CFI, and IL feature set results are shown in Tables B.10, B.11, and B.12.

Consistent with i-gram results, UPX and ASPack classification results are higher than the

polymorphic and packed classes. As discussed earlier, both UPX and ASPack generate

highly static versions of packer stubs independent of the executable modules they

compress. Therefore, the control flow graph, control flow instruction, and intermediate

language attributes vary little between each module and thus provide more definitive

classification. Disassembly based feature values for UPX and ASPack executables

contrast well against other executables.

4.2.1.1 Non-polymorphic classes. The CFI set performs the best and the IL

set performs the worst for UPX. The CFI feature set achieves the highest overall average

accuracy, at 99.918%, highest true positive rate at 0.9984, and lowest false positive rate at

5.67e-4. Results for the CFI set are significantly different from the IL feature set with a

0.99 confidence level as shown in Figures B.13, B.14, and B.15. The IL feature set attains

an average accuracy of 99.726%, true positive rate of 0.994, and false positive rate of

1.594e-3. CFI feature set performance is better than IL performance because IL features

are more generalized than the CFI features. As with i-grams, UPX is detected better by

features that contain more specific context. The CFI set consists of percentage values for
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all instructions within a disassembly for an executable. Because most of the UPX packed

executables used in all experiments produce little or no variation between the

disassemblies generated for them, higher specificity results in better classification.

Table 4.9: Average accuracies, TPRs, and FPRs with confidence intervals for disassembly

features on UPX class

Configuration Avg. ACC 99% CI Avg. TPR 99% CI Avg. FPR 99% CI

UPX/BasicCFG 99.78215 99.73805 – 99.82625 0.99438 0.99278 – 0.99599 0.00097 0.00056 – 0.00138

UPX/CF Ins 99.91805 99.88567 – 99.95043 0.99846 0.99761 – 0.99931 0.00057 0.00025 – 0.00089

UPX/IL 99.72621 99.66792 – 99.7845 0.99400 0.99238 – 0.99562 0.00159 0.00103 – 0.00216

ASPack results show the CFG feature set performs just slightly better than the CFI

set with average accuracy at 99.303% versus 99.293%, and true positive rate at 0.975

versus 0.9736 (cf. Table 4.10). However, the CFG set has a slightly higher average false

positive rate at 3.63e-3 versus 3.48e-3. Similar to the UPX results, the IL set shows poorer

overall performance than the other two sets for accuracy and true positive rate. The plots

in , have means that are significantly different between sets. Based on TukeyHSD results

(cf. Figures B.16, B.17 and B.18), CFI and IL set means are significantly different with

regard to accuracies. For true positive rates, the IL set true positive rate average is

significantly different from both the CFI and CFG sets. Finally, none of the sets show

significant difference between their average false positive rates. Once again, a reasonable

explanation for lower performance of the IL set is the more general nature of the IL set

feature values. The IL set is more generalized than the CFI set because it converts a larger

set of IA x86 instructions into a reduced set of only 17 possible instructions.

4.2.1.2 Polymorphic (msfencode) class. Results for the polymorphic class

show better performance for IL features as shown in Table 4.11. Specifically, the IL set
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Table 4.10: Average accuracies, TPRs, and FPRs with confidence intervals for disassembly

features on ASPack class

Configuration Avg. ACC 99% CI Avg. TPR 99% CI Avg. FPR 99% CI

ASPACK/BasicCFG 99.30252 99.19269 – 99.41234 0.97501 0.97027 – 0.97974 0.00363 0.00281 – 0.00444

ASPACK/CF Ins 99.29263 99.20523 – 99.38002 0.97360 0.96915 – 0.97806 0.00348 0.00279 – 0.00417

ASPACK/IL 99.14663 99.05175 – 99.24151 0.96540 0.96028 – 0.97053 0.00370 0.0029 – 0.0045

performs best, CFI second, and CFG worst. The more general IL set of features attain a

detection accuracy of 99.011% versus the CFG set with a statistically significant 98.721%

(cf. Figure B.19). The IL set attains a higher true positive rate average of 0.9576 versus

the CFI set, at 0.9504, and CFG set, at 0.9390 with statistically significant difference from

the CFG set (cf. Figure B.20). All sets perform roughly the same with respect to false

alarms with means between 3.48e-3 for CFG and 3.72e-3 for CFI and no significance in

difference between any features sets (cf. Figure B.21).

Table 4.11: Average accuracies, TPRs, and FPRs with confidence intervals for disassembly

features on Poly class

Configuration Avg. ACC 99% CI Avg. TPR 99% CI Avg. FPR 99% CI

POLY/BasicCFG 98.72104 98.5911 – 98.85097 0.93902 0.93217 – 0.94588 0.00348 0.00273 – 0.00423

POLY/CF Ins 98.88496 98.78034 – 98.98957 0.95042 0.94478 – 0.95606 0.00372 0.00283 – 0.00461

POLY/IL 99.01079 98.89832 – 99.12326 0.95758 0.95201 – 0.96314 0.00360 0.00275 – 0.00445

The IL performance suggests the instruction types (i.e. control flow, arithmetic, etc)

that msfencode generates are somewhat consistent across iterations. The performance of

CFI and CFG sets perform well and can characterize the polymorphic traits of msfencode.

The performance of the CFG set suggests that the control flow graph structural features

used have consistent values across iterations of msfencode. The same is true for the
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control flow instructions. Good detection results for the CFI set indicate control flow

instruction percentage values for the polymorphic class contrast well against the values of

executables not in the polymorphic class.

4.2.2 Packed class

As is the case for i-grams, detection results are lowest for the packed class (cf.

Table 4.12. The average true positive rate for the packed class is higher than ASPack and

polymorphic true positive rates. However, the packed set results are based on 1879 packed

versus 623 non-packed modules which weights the false positive rate heavier in accuracy

calculations than those for the UPX, ASPack, and polymorphic classes. In these other

classes true positive rate has greater impact on accuracy. The CFG set provides the lowest

detection rates for the packed class. It attains an average accuracy of 98.076%, a

statistically significant lower accuracy than 98.667% and 98.521% for the CFI and IL

features sets respectively (cf. Figure B.22). The CFG class results in an average false

positive rate of 0.0472, significantly different from the CFI rate of 0.0296 and IL rate of

0.0343 (cf. Figure B.23). The higher false positive rate indicates more non-packed

modules are misclassified as packed. Therefore, the CFG attributes of more non-packed

modules are possibly not as discernible from the packed modules as those for the CFI and

IL attributes.

Table 4.12: Average accuracies, TPRs, and FPRs with confidence intervals for disassembly

features on Packed class

Configuration Avg. ACC 99% CI Avg. TPR 99% CI Avg. FPR 99% CI

PACKED/BasicCFG 98.07561 97.91251 – 98.23871 0.98986 0.98853 – 0.99118 0.04725 0.04187 – 0.05262

PACKED/CF Ins 98.66699 98.54207 – 98.7919 0.99195 0.99076 – 0.99314 0.02956 0.02582 – 0.0333

PACKED/IL 98.52114 98.39479 – 98.64749 0.99155 0.99034 – 0.99277 0.03429 0.03052 – 0.03805

51



A significant difference exists between the CFI, at 0.9916, and CFG, at 0.9899, true

positive rates but not between these and the IL set, at 0.9915 (cf. Figure B.24). The true

positive rate performance of the CFG attributes indicates that packed modules are missed

by the classifiers more often than for the CFI and IL set based classifiers. Thus CFG

feature values cannot discriminate packed from non-packed executables as effectively as

the CFI and IL sets.

4.2.3 Results for disassembly features across classes independent of feature set

Classification results for the UPX, ASPack, polymorphic, and packed classes mimic

results for i-grams (cf. Figure 4.7). UPX is detected with highest average accuracy,

ASPack with second, the polymorphic class third, and finally the packed class fourth. All

accuracies are significantly different from one another as shown in Figure 4.8.
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Figure 4.7: Comparison of class accuracies

Since UPX and ASPack tools produce “signature-like” code in files they compress,

this provides better discrimination between the executables within the two classes versus

those outside of them. UPX classification accuracy is higher than ASPack classification
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accuracy because the UPX versions and settings used in the experiments produce virtually

no change in the instructions disassembled or control flow graphs generated. Most

ASPack versions, however, showed significant variation between their outputs.

Polymorphic classification results top those for the packed class due to higher information

gain attained by msfencode disassembly features versus those for the more diversified

packed and non-packed classes.

4.2.4 Results for disassembly features across feature sets independent of class

The CFI feature set is the best choice of the three utilized based on a combination of

its generally high performance and relatively modest computational costs. In contrast, the

CFG feature set is the worst classifier due to its significantly worse performance across the

polymorphic and packed classes.

When results are combined for all classes, the CFI set attains the highest accuracy

and true positive rate and the lowest false positive rate (cf. Figures 4.9, 4.10, and 4.11).

The CFI set also achieves the highest accuracy for the packed class, but the IL set attains

the highest accuracy for the polymorphic class. However, both the difference between the
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CFI and IL accuracies for polymorphic and packed classification are not significant at the

0.99 confidence level (cf. Figures B.19 and B.22). Computationally the CFI features

require less time and fewer resources to compute than the IL set, which must convert

every disassembled instruction into its intermediate form. For this reason and its overall

better performance, the CFI set is the best choice between the three feature sets.

Regarding the worst choice, the CFG features provided the lowest performance

relative to the other two sets for both the polymorphic and packed classes with significant

differences at the 0.99 confidence level. In addition, the CFG features require

computational resources above those for the CFI features. Even so, the features

themselves could be considered for classification purposes. Although they are less

effective than the other sets, they still provide an average accuracy near 99% and require

somewhat less computational resources than the IL set. In addition, they might provide for

better classification when combined with other features.
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Figure 4.11: Comparison of false positive rates for feature sets

4.3 Comparison of i-gram and structural and disassembly based features–What

top feature sets are the best and worst for packer classification?

Based on performance results and qualitative estimates of the computational

resources required to extract features for each configuration, 1-grams, operands excluded,

55



provide the best choice in general for packer classification compared to 2-grams and the

CFI feature set. However, 2-grams should be considered for polymorphic purposes when

the highest detection accuracy and true positive rate is desired. Finally, the CFI feature set

shows promise but achieves the lowest performance between all three.

One-grams without operands provide the best overall effectiveness for cost. As

mentioned in section previously, 1-grams without operands perform relatively well

compared to the other i-gram configurations and require less computational resources than

2-grams without operands. In addition, they outperform the CFI attributes with statistical

significance for all performance metrics across polymorphic, packed, and all classes

combined, except for the polymorphic classification false positive rate (cf.

Tables 4.13, 4.14, and 4.15). The Tukey HSD p-values in Tables 4.16, 4.17, and 4.18

indicate significant difference between the means at the 0.99 confidence level. The

difference in computational resources between 1-grams and the CFI attributes are small

because both require the inspection of all disassembled instructions within classified

executables. Therefore, 1-grams are chosen as the best general purpose features for

classification of packers.

Table 4.13: Performance averages for top choices (All classes)

Feature Set Accuracy True Positive Rate False Positive Rate

2 Grm 99.51740 0.99054 0.00853

1 Grm 99.42596 0.98375 0.00566

CF Ins 99.19066 0.97861 0.00933

Although 2-grams are more resource intensive than both 1-grams and the CFI

attributes, they provide the highest polymorphic classification performance. Based on the
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Table 4.14: Performance averages for top choices (Polymorphic class)

Feature Set Accuracy True Positive Rate False Positive Rate

2 Grm 99.50239 0.97745 0.00157

1 Grm 99.19060 0.96865 0.00360

CF Ins 98.88496 0.95042 0.00372

Table 4.15: Performance averages for top choices (Packed class)

Feature Set Accuracy True positive Rate False positive rate

1 Grm 99.34656 0.99611 0.01454

2 Grm 98.84499 0.99492 0.03106

CF Ins 98.66699 0.99195 0.02956

significantly higher average accuracy, higher true positive rate, and lower false positive

rate than either 1-grams or the CFI features for the msfencode executables, 2-grams might

also provide better discrimination for other polymorphic type tools. Furthermore, based

on successful classification for the polymorphic class, 2-grams might provide

classification for other purposes, such as identifying modules or procedures that provide

similar functions but whose disassemblies are different.

The CFI features used in these experiments are a poorer choice than 1-grams for

detecting polymorphic or packed classes, but show that simple statistics based on a

relatively few number of control flow instructions can still provide good classification

results. For this reason, more investigation into simple statistics based on executable

disassemblies should be done.
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Table 4.16: Tukey HSD mean comparisons for accuracy (ACC), true positive rate (TPR),

and false positive rate (FPR) for all classes

Configurations Compared p-val ACC p-val HR p-val FAR

2-Gram vs 1-Gram 0.00720 0.00000 0.00028

CFI vs 1-Gram 0.00000 0.00002 0.00000

CFI vs 2-Gram 0.00000 0.00000 0.51412

Table 4.17: Tukey HSD mean comparisons for accuracy (ACC), true positive rate(TPR),

and false positive rate(FPR) for polymorphic class

Configurations Compared p-val ACC p-val HR p-val FAR

2-Gram vs 1-Gram 0.00000 0.00456 0.00001

CFI vs 1-Gram 0.00000 0.00000 0.95870

CFI vs 2-Gram 0.00000 0.00000 0.00000

Table 4.18: Tukey HSD mean comparisons for accuracy, true positive rate, and false alarm

rate for packed class

Configurations Compared p-val ACC p-val HR p-val FAR

2-Gram vs 1-Gram 0.00000 0.07780 0.00000

CFI vs 1-Gram 0.00000 0.00000 0.00000

CFI vs 2-Gram 0.01287 0.00000 0.72377
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4.4 Summary of results and analysis

This section argues both 1 and 2-grams without operands provide the best overall

classification for the packers tested. Both perform well with average detection accuracies

above 98.84% true positive rates above 0.969, and false positive rates below 0.031 across

all four of the classes used in the experiments. In addition, both use fewer resources than

i-grams of greater sizes and with operands. For polymorphic type detection purposes,

2-grams are better but 1-grams may provide better classification results for diversified

classes. Simple disassembly based features also provide good packer detection results

with average detection accuracies above 98.08%, true positive rates above 0.939, and false

positive rates below 0.047.
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5 Conclusions

5.1 Research Accomplishments

The results of this research answer several classification performance questions

regarding i-grams and the CFG, CFI, and IL feature sets. I-grams classify and detect

executables packed by both polymorphic and non-polymorphic packer tools with high

accuracy, high hit rates, and low false alarm rates. Two-grams without operands provide

an average accuracy above 99.5%, average hit rate above 0.977, and average false alarm

rate below 1.6e-3 for Metasploit’s msfencode executable output. Thus i-grams might

detect other polymorphic tools as well if trained and tested. Regarding the best i-gram

configuration, results both agree and disagree with previous results [14, 21]. Specifically,

good performance for 2-grams without operands is observed, but 1-grams without

operands also show good performance results and with fewer i-grams. Operand inclusion

for i-grams leads to small performance gains over operand exclusion in some cases, but

with much higher computational costs, adding millions more i-grams for gram sizes

greater than 1.

Classification performance and computational requirements for the CFG, CFI, and IL

sets indicate the CFI feature set is the best choice of the three. The best choice between

the top two i-gram configurations and the CFI feature set are 1 and 2-grams based on

statistically significant higher performance results and resource requirements.

5.2 Research Impact

This research demonstrates that machine learning with sequences of disassembled

instructions and simple disassembly based features is successful for classification of the

packed executables used for experiments within this research. These methods might prove

useful for classification against larger sets of packed and non-packed executables. More

60



importantly, these methods might provide useful solutions to other software security

issues beyond the packer problem. Finally, this research expands upon previous

instruction sequence related efforts. It confirms 2-grams as one of the best configurations

for classification and tests the inclusion of generalized operands.

5.3 Future Work

5.3.1 Test i-grams and disassembly based features at procedural level

One technique employed by sophisticated malware creators involves deliberately not

using obfuscation tools, but rather hiding malicious code in plain sight. Approaching

problems at a more granular level, such as identification of procedures within an

executable based on their functions, might provide high level information about an

arbitrary executable useful for determining malicious or non-malicious intent. The i-gram

and disassembly based features used in this research might provide the accurate

classification necessary at this granular level.

5.3.2 Add inter-procedural support to i-grams

This research used i-grams based on and restricted to intra-procedural control flow.

Expanding i-grams to include inter-procedural control flow information might yield higher

performance results. This would require a more elaborate i-gram extraction procedure, as

the order calls are invoked would have to be maintained.

5.3.3 Time and resource performance improvement and analysis

This research addresses the classification performance of i-grams and makes only

obvious remarks regarding resources. The number of i-grams generated by each

configuration was used to qualitatively compare and estimate the resources needed.

However, if i-grams are to be used practically at an enterprise level, the time and resources
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required to extract, store, and use them should be measured. In addition, streamlining the

processes required by i-grams should also be considered for practicality purposes.

5.3.4 Frequency based i-gram classification

This research limits the values of i-grams to either present or not present values.

Incorporating frequency type information, similar to the averages and percentage values

used for CFG, CFI, and IL features sets, might provide performance improvements for

i-grams.
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APPENDIX A: All Confusion Matrices

This appendix provides all confusion matrices based on average TP, FP, TN, and FN

values for all experiments conducted by configuration. As discussed in the experimental

methodology chapter, a TP occurs when the classifier correctly identifies an executable in

the class specified by the configuration. A FP occurs when an executable not in the class

specified by the configuration is classified as such. A TN occurs when an executable not

in the class specified is classified as such. Finally, a FN occurs when an executable in the

class specified is classified as an executable not in the class.

Table A.1: Confusion matrix for all configurations based on 10-fold, cross-validation for

all classes

Configuration TP FP TN FN

ASPACK/1 Gram/Excluded 38.1 0.4 210.6 1.1

ASPACK/1 Gram/Included 38.8 0.0 211.0 0.4

ASPACK/2 Gram/Excluded 38.8 0.2 210.8 0.4

ASPACK/2 Gram/Included 38.8 0.4 210.6 0.4

ASPACK/3 Gram/Excluded 38.8 0.2 210.8 0.4

ASPACK/3 Gram/Included 38.8 0.0 211.0 0.4

ASPACK/4 Gram/Excluded 38.8 0.0 211.0 0.4

ASPACK/4 Gram/Included 38.8 0.0 211.0 0.4

ASPACK/5 Gram/Excluded 38.8 0.7 210.3 0.4

ASPACK/5 Gram/Included 38.8 0.0 211.0 0.4

ASPACK/BasicCFG 38.2 0.8 210.2 1.0

ASPACK/CF Ins 38.2 0.7 210.3 1.0

ASPACK/IL 37.8 0.8 210.2 1.4

PACKED/1 Gram/Excluded 187.2 0.9 61.4 0.7
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PACKED/1 Gram/Included 187.1 2.6 59.7 0.8

PACKED/2 Gram/Excluded 186.9 1.9 60.4 1.0

PACKED/2 Gram/Included 187.7 3.1 59.2 0.2

PACKED/3 Gram/Excluded 186.6 1.9 60.4 1.3

PACKED/3 Gram/Included 187.3 3.0 59.3 0.6

PACKED/4 Gram/Excluded 187.5 1.9 60.4 0.4

PACKED/4 Gram/Included 187.2 3.2 59.1 0.7

PACKED/5 Gram/Excluded 187.6 2.2 60.1 0.3

PACKED/5 Gram/Included 187.4 3.5 58.8 0.5

PACKED/BasicCFG 186.9 2.9 58.5 1.9

PACKED/CF Ins 187.3 1.8 59.6 1.5

PACKED/IL 187.2 2.1 59.3 1.6

POLY/1 Gram/Excluded 39.2 0.8 208.9 1.3

POLY/1 Gram/Included 38.9 0.0 209.7 1.6

POLY/2 Gram/Excluded 39.6 0.3 209.4 0.9

POLY/2 Gram/Included 39.6 0.2 209.5 0.9

POLY/3 Gram/Excluded 39.4 0.7 209.0 1.1

POLY/3 Gram/Included 38.4 0.0 209.7 2.1

POLY/4 Gram/Excluded 38.6 0.2 209.5 1.9

POLY/4 Gram/Included 36.7 0.0 209.7 3.8

POLY/5 Gram/Excluded 36.6 0.6 209.1 3.9

POLY/5 Gram/Included 33.1 0.1 209.6 7.4

POLY/BasicCFG 38.0 0.7 209.0 2.5

POLY/CF Ins 38.5 0.8 208.9 2.0

POLY/IL 38.8 0.8 208.9 1.7

UPX/1 Gram/Excluded 64.9 0.5 184.7 0.1
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UPX/1 Gram/Included 65.0 0.1 185.1 0.0

UPX/2 Gram/Excluded 65.0 0.1 185.1 0.0

UPX/2 Gram/Included 65.0 0.0 185.2 0.0

UPX/3 Gram/Excluded 65.0 0.0 185.2 0.0

UPX/3 Gram/Included 65.0 0.0 185.2 0.0

UPX/4 Gram/Excluded 65.0 0.0 185.2 0.0

UPX/4 Gram/Included 65.0 0.0 185.2 0.0

UPX/5 Gram/Excluded 65.0 0.0 185.2 0.0

UPX/5 Gram/Included 65.0 0.0 185.2 0.0

UPX/BasicCFG 64.6 0.2 185.0 0.4

UPX/CF Ins 64.9 0.1 185.1 0.1

UPX/IL 64.6 0.3 184.9 0.4
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APPENDIX B: Various Graphical Plots of Accuracy, TPR, FPR Results and

Associated Mean Comparison Plots

This appendix provides graphical views of results that complement discussion and

tables listed in the results and analysis chapter.

B.0.5 Accuracy, TPR, and FPR Plots for All i-gram Configurations
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Figure B.1: Accuracies for all i-gram configurations across all classes

66



0.
80

0.
85

0.
90

0.
95

1.
00

Gram True Positive Rate Comparisons
Operands Excluded

Gram Size

A
vg

. T
ru

e 
P

os
iti

ve
 R

at
e 

(n
=

20
0)

● ● ●
● ●● ● ● ● ●

1 2 3 4 5

   Class Type

●

●

upx
Packed
aspack
Poly

0.
80

0.
85

0.
90

0.
95

1.
00

Gram True Positive Rate Comparisons
Operands Included

Gram Size

A
vg

. T
ru

e 
P

os
iti

ve
 R

at
e 

(n
=

20
0)

●
● ● ● ●

● ● ● ● ●

1 2 3 4 5

   Class Type

●

●

upx
Packed
aspack
Poly

Figure B.2: True positive rates for all i-gram configurations across all classes
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Figure B.3: False positive rates for all i-gram configurations across all classes
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B.1 TPR, FPR, and Associated Tukey HSD Plots for i-gram Sizes
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Figure B.4: Comparison of true positive rates for different i-gram sizes
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Figure B.5: Tukey HSD plot comparing different i-gram sizes by true positive rate
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Figure B.6: Comparison of false positive rates for different i-gram sizes
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Figure B.7: Tukey HSD plot comparing different i-gram sizes by false positive rate
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B.2 TPR and FPR Plots for Polymorphic and Packed Classes Combined
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Figure B.8: Comparison of true positive rates for the polymorphic and packed classes
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Figure B.9: Comparison of false positive rates for the polymorphic and packed classes
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B.3 Accuracy, TPR, and FPR Plots for All Disassembly-based Feature

Configurations
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Figure B.10: Comparison of accuracies for disassembly based features
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Figure B.11: Comparison of true positive rates for disassembly based features
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Figure B.12: Comparison of false positive rates for disassembly based features

B.4 Mean Comparisons for UPX Class Disassembly-based Feature Configurations
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Figure B.13: Tukey HSD comparison plot of UPX accuracies for disassembly based

features
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Figure B.14: Tukey HSD comparison plot of UPX true positive rates for disassembly based

features
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Figure B.15: Tukey HSD comparison plot of UPX false positive rates for disassembly

based features
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B.5 Mean Comparisons for ASPack Class Disassembly-based Feature

Configurations
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Figure B.16: Tukey HSD comparison plot of ASPack accuracies for disassembly based

features
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Figure B.17: Tukey HSD comparison plot of ASPack true positive rates for disassembly

based features

74



−0.0010 −0.0005 0.0000 0.0005 0.0010 0.0015

IL
−

C
F

_I
ns

IL
−

B
as

ic
C

F
G

C
F

_I
ns

−
B

as
ic

C
F

G 99% family−wise confidence level

Differences in mean levels of ASPack Feature Sets for False Positive Rate 

C
on

fig
ur

at
io

n 
vs

. C
on

fig
ur

at
io

n

Figure B.18: Tukey HSD comparison plot of ASPack false positive rates for disassembly

based features

B.6 Mean Comparisons for Polymorphic Class Disassembly-based Feature

Configurations
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Figure B.19: Tukey HSD comparison plot of polymorphic accuracies for disassembly based

features
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Figure B.20: Tukey HSD comparison plot of polymorphic true positive rates for

disassembly based features
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Figure B.21: Tukey HSD comparison plot of polymorphic false positive rates for

disassembly based features
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B.7 Mean Comparisons for Polymorphic Class Disassembly-based Feature

Configurations
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Figure B.22: Tukey HSD comparison plot of packed accuracies for disassembly based

features
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Figure B.23: Tukey HSD comparison plot of packed false positive rates for disassembly

based features
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Figure B.24: Tukey HSD comparison plot of packed true positive rates for disassembly

based features
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APPENDIX C: Polymorphic Pilot Study Test Results for Polymorphic (msfencode)

Class versus Non-Packed

This section provides the results of a pilot study conducted with all 405 of the

msfencode packed executables classified against 619 of the 623 non-packed executables

used in the final experiments. These results show similar performances for various i-gram

configurations compared to final results gathered.

Table C.1: Average accuracies, TPRs, and FPRs with confidence intervals for i-grams on

poly pilot test

Configuration Avg. ACC 99% CI Avg. TPR 99% CI Avg. FPR 99% CI

POLY/1 Gram/Excluded 99.77546 99.69161 – 99.85932 0.99926 0.99816 – 1.00036 0.00323 0.002 – 0.00446

POLY/1 Gram/Included 98.79388 98.62207 – 98.96569 0.98060 0.97647 – 0.98473 0.00727 0.00485 – 0.00968

POLY/2 Gram/Excluded 99.34100 99.17223 – 99.50976 0.99840 0.9965 – 1.00029 0.00985 0.00737 – 0.01234

POLY/2 Gram/Included 98.92561 98.75459 – 99.09663 0.97777 0.97387 – 0.98167 0.00323 0.00193 – 0.00453

POLY/3 Gram/Excluded 99.24310 99.08369 – 99.40251 0.99209 0.9894 – 0.99478 0.00735 0.00531 – 0.00939

POLY/3 Gram/Included 98.36370 98.15111 – 98.57629 0.95859 0.95319 – 0.96398 0.00000 0.00000 – 0.00000

POLY/4 Gram/Excluded 97.10504 96.83368 – 97.37639 0.97087 0.96569 – 0.97606 0.02884 0.02468 – 0.033

POLY/4 Gram/Included 98.01309 97.764 – 98.26218 0.95014 0.94391 – 0.95637 0.00024 -0.00012 – 6e-04

POLY/5 Gram/Excluded 97.80273 97.54015 – 98.06531 0.99360 0.99096 – 0.99625 0.03215 0.02807 – 0.03624

POLY/5 Gram/Included 96.05054 95.70922 – 96.39187 0.98098 0.97682 – 0.98515 0.05292 0.04787 – 0.05796

79



Table C.2: Confusion matrix for all i-gram configurations in poly pilot test based on 10-

fold, cross-validation of msfencode executables versus non-packed executables)

Configuration TP FP TN FN

POLY/1 Gram/Excluded 40.5 0.2 61.7 0.0

POLY/1 Gram/Included 39.7 0.4 61.5 0.8

POLY/2 Gram/Excluded 40.4 0.6 61.3 0.1

POLY/2 Gram/Included 39.6 0.2 61.7 0.9

POLY/3 Gram/Excluded 40.2 0.5 61.4 0.3

POLY/3 Gram/Included 38.8 0.0 61.9 1.7

POLY/4 Gram/Excluded 39.3 1.8 60.1 1.2

POLY/4 Gram/Included 38.5 0.0 61.9 2.0

POLY/5 Gram/Excluded 40.2 2.0 59.9 0.3

POLY/5 Gram/Included 39.7 3.3 58.6 0.8
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