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1.0 SUMMARY 
 
The global advancement and proliferation of high performance radio frequency (RF) 

commercial-off-the-shelf (COTS) technologies has created significant challenges to electronics 
intelligence (ELINT) and Communication Intelligence (COMINT) operations. As a 
consequence, entirely new methods of signal exploitation must be developed and fielded to meet 
these challenges.  This work focused on multi-sensor algorithmic approaches for the geo-location 
of LPI signals in environments with significant multipath and co-channel signals.  While many 
classical techniques exist, new methods are needed that will allow accurate location of LPI 
emitters despite low signal-to-noise ratio (SNR) and multipath propagation.  Geo-location 
systems based on time-difference-of-arrival (TDOA) and frequency-difference-of-arrival 
(FDOA) estimate the TDOA/FDOA between a pair of signals by computing their cross-
ambiguity function (CAF) and finding the location of the peak on the surface of this 2-D 
function.  However, when multipath signals are received at each platform they give rise to 
spurious peaks on the CAF that can perturb the location of the true peak, especially if the 
spurious peaks are located close to the true peak. 

This classical approach uses two stages to estimate the signal position. In the first stage, 
TDOA/FDOA are estimated by several pairs of sensors and then used in the second stage to 
locate the emitter.  However, this two-stage method is known to perform poorly in low SNR 
cases and especially in the presence of multipath and multiple co-channel emitters.  To address 
the drawbacks of the two-stage method, recent work has proposed a single-stage method based 
on TDOA/FDOA; that method is called Direct Position Determination (DPD). However, that 
improvement comes at a cost of significantly more computational complexity, and unfortunately 
that complexity is all concentrated at one computing node, unlike in the classical method where 
the computations are distributed evenly among the sensors. As originally proposed, the single-
stage method transmits all data to a single sensor, which then forms a myriad of matrices (one for 
each possible emitter location grid point) and computes the maximum eigenvalue of each one.  
The largest of these maximum eigenvalue then indicates the emitter location. 

We developed several methods to ease the application of the new single-stage method.  In 
particular, we show how to reduce the load of data computation and data transmission using 
distributed data computation and processing, applying data compression methods, exploiting the 
CAF properties, taking advantage of CAF relationships in the sensor network and exploiting 
some kind of beneficial approximations.  We proposed three alternative processing schemes.  
The Approximated DPD method exploits the simplicity of Gershgorin’s theorem to 
approximately compute the maximum eigenvalue without the high cost of exactly computing it.  
This enables each sensor to locally make its best estimate of the location based on that data it 
has.  These locally-generated estimates are then transmitted to a central location where a final 
decision is made.  In Decentralized DPD method, we applied the distributed computation idea to 
divide the mathematical calculation load among all sensors of the network. In this method, we 
don’t use any other approximation more than data compression and the quality of this method is 
the same as the Original DPD for reasonable bit rates.  Finally, in Semi-Optimal Decentralized 
DPD, we used the same idea of Decentralized DPD in addition to exploiting the relationship 
between different CAFs to eliminate the data redundancy and this idea leads to a large data 
transmission reduction.  All of the proposed methods allows DPD to be implemented in a 
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decentralized manner where no single sensor is required to do an unfair share of the 
computations, yet the performance improvement of DPD is not sacrificed. 

Although the DPD method provides improved location performance at low SNR it is not as 
robust as desired in the presence of multipath and/or multiple co-channel emitters. To provide 
better performance in these challenging real-world scenarios we developed a one-stage 
TDOA/FDOA localization method based on spatial sparsity of emitters. In this method, we 
imagine assigning a non-zero number to each one of the grid points containing an emitter and 
zero to the rest of the grid points. Thus, the vector formed from these numbers will be a sparse 
unknown vector that we aim to estimate. Since each element of this vector corresponds to one 
grid point in the (x,y) plane, we can estimate the location of emitters by extracting the position of 
non-zero elements of the sparsest vector that satisfies the TDOA/FDOA relationship between 
transmitted signals and received signals. The proposed sparsity-based method has better 
performance (especially in multi-path and multi-emitter cases) compared to direct position 
determination (DPD) and two-stage Classic localization methods.  
 

2.0 INTRODUCTION 
 
The global advancement and proliferation of high performance radio frequency (RF) com-

mercial-off-the-shelf (COTS) technologies has created significant challenges to electronics 
intelligence (ELINT) operations. Typically ELINT refers to RADAR signals, however the same 
issues have also faced Communication Intelligence (COMINT).  For example, technology 
advances such as digital arbitrary waveform generators (DAWGs), solid state transmitters, active 
electronically scanned arrays (AESAs), high speed analog-to-digital converters (ADCs), and 
spread spectrum low-probability-of-intercept (LPI) waveforms, have given rise to a new class of 
signals that are extremely difficult to detect, de-interleave and characterize. While ELINT 
receivers have increased their operating bandwidths, that alone is insufficient to guarantee 
successful intercept as this is a necessary but not sufficient condition. As a consequence, entirely 
new methods of signal exploitation must be developed and fielded to meet these challenges. 

This work focused on multi-sensor algorithmic approaches for the geo-location of LPI 
signals in environments with significant multipath and co-channel signals.  While many classical 
techniques exist, new methods are needed that will allow accurate location of LPI emitters 
despite low signal-to-noise ratio (SNR) and multipath propagation.  Geo-location systems based 
on TDOA/FDOA estimate the TDOA/FDOA between a pair of signals by computing their cross-
ambiguity function (CAF) and finding the location of the peak on the surface of this 2-D 
function.  However, when multipath signals are received at each platform they give rise to 
spurious peaks on the CAF that can perturb the location of the true peak, especially if the 
spurious peaks are located close to the true peak. 

   

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 
 

One of the most accurate and common methods for passive radio signal geolocation is based 
on TDOA/FDOA estimation. The classical approach to this method uses two stages to estimate 
the signal position. In the first stage, frequency-difference-of-arrival (FDOA) and time-
difference-of-arrival (TDOA) are estimated from the cross-correlation of signals received by 



 

Approved for Public Release; Distribution Unlimited. 
3 

 

several pairs of sensors [1]; this is done by computing the cross ambiguity function (CAF) [2] 
and finding the peak of its magnitude surface [1], [2]. In [4] and [5], a Fisher Information based 
data compression method has been suggested to reduce the amount of data transmission and 
improve the communication performance between each pair of sensors. In the second stage of 
the classic method, the TDOA/FDOA estimates are used in statistical processing to locate the 
emitter [3].  

Suppose that the lowpass equivalent (LPE) model of the received signal is: 
   

 ˆ ˆ( ) ( ) ( )dj t
r ds t e s t tωα τ ν= − + , (1) 

 
where ˆ( )s t  is the LPE of the transmitted signal, wd is the Doppler, τd is the delay for the received 
signal, α is a complex number and ( )v t  is the LPE of the noise [11].  Now, suppose that two 
sensors R1 and R2 receive the LPE signals 1ˆ ( )rs t  and 2ˆ ( )rs t , respectively. Stein [1] showed that 
the maximum likelihood (ML) estimate for TDOA and FDOA can be obtained by finding the 
peak of the magnitude of the CAF: 
 

 *
12 1 2ˆ ˆ( , ) ( ) ( ) i t

r rCAF s t s t e dtωτ ω τ
+∞

−∞
= −∫ , (2) 

 
which measures the correlation between 1ˆ ( )rs t  and a Doppler-shifted by 𝜔 and delayed by τ 
version of 2ˆ ( )rs t . The accuracy of the first stage is governed by the Cramer-Rao lower bounds 
(CRLB) for TDOA and FDOA. Stein [2], Wax [20], Fowler and Hu [21] and Yeredor and Angel 
[22] derived formulas for the CRLB on TDOA and FDOA. Yereder [22] have derived the CRLB 
for general unknown deterministic signals and the simulation results show that his approach 
obtains more accurate results compared to other CRLB formulas. 

Recently, some new methods based on TDOA/FDOA emitter location have been proposed 
that estimate the emitter location in one stage without extracting the TDOA/FDOA in a separate 
stage. The goal of these methods is to improve the overall accuracy of the emitter location 
estimate especially in low SNR cases. Weiss and Amar [7], [8], [9] showed that the two-stage 
methods are not necessarily optimal because in the first stage of these methods, the TDOA and 
FDOA estimates are obtained by ignoring the fact that all measurements should be consistent 
with a single emitter location. In other words, we can say that each TDOA/FDOA estimation is 
optimal in the first stage. Also in the second stage, the location estimation is also optimal based 
on TDOA/FDOA’s obtained from the first stage. But, it does not necessarily mean that the whole 
two-stage method is optimal.  

In related work, Kay and Vankayalapati [19] developed the generalized likelihood ratio 
(GLR) detector based on the received signals from all sensors and the DPD location result 
appears as the ML estimate used in the GLR.  This shows another advantage of DPD over the 
classical two-stage method: the classical method can’t make use of the data from a CAF whose 
peak is undetectable due to low SNR – yet the DPD method can.   

However, there are some issues that need to be addressed.  Namely, the implementation of 
the DPD method has many challenges, such as how to distribute the computation across the 
participating sensors and how to efficiently communicate the necessary data between the sensors.  
Furthermore, the performance of the DPD method in the presence of multipath and multiple co-
channel emitters was previously unknown.  This report addresses the distributed 
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computation/communication issues of DPD and also demonstrates that DPD performance can 
suffer in the presence of multipath and multiple co-channel emitters.  To address these 
shortcomings we have extended the general single-stage idea to be able exploit the sparsity of 
emitters in the geometrical region.  

4.0 RESULTS AND DISCUSSION 

4.1 Communication and Distributed Computation for Single-Stage TDOA/FDOA 
Location 

 
In the DPD method, we need all the received signals together at a single point to start the 

location estimation processing. Consequently, all sensors have to transmit their received signals 
to a common site, which usually is one of the sensors so we will refer to this as the common 
sensor. The common sensor then uses the received signals to form a series of matrices (one for 
each point on an x-y location grid) and computes the maximum eigenvalue of each of these 
matrices; the location estimate is the grid point that produced the largest of these maximum 
eigenvalues. 

As mentioned above, the one-stage DPD method achieves more accurate results compared to 
classic two-stage methods. However, in the published papers, the authors did not address the 
issues of computation and data transmission for DPD and there are some difficulties that may 
limit DPD applications in practice.  The first problem is the large amount of computations that 
are to be done by only the common sensor. As mentioned above, in DPD method we need all 
received signals together to start the estimation process. Thus, all sensors should send their 
received signals to one common sensor to start the estimation process. The common sensor will 
do all mathematical computations having all received signals. This leads to a large computational 
load on only one point in the network and no computational load on other members of the sensor 
network, which requires any one sensor in the system to be computationally capable of doing the 
complete set of computations needed to locate an emitter.  In scenarios where the amount of 
computational capabilities any one sensor possesses is limited this centralized approach is not 
desirable.  

 The second problem is the large amount data transmission to one single point. In other 
words, large bandwidth data links are required to transfer all received signals to the common 
sensor and it leads to have a bottle-neck at the common sensor channel.  

The third problem is the high dependence of the whole network on the common sensor. In 
this scenario, if we lose the common sensor during computations, we will lose everything. In 
other words, it is not desirable to rely on only one point in the sensor network for computations 
and data collection, because if we lose that sensor for any reason, then we will lose all 
intermediate and final results.  

In this paper, we develop some methods to increase the flexibility and feasibility and 
improve the performance of one-stage geolocation methods. We use distributed data 
compression to reduce the amount of data transmission in suggested methods and also we use 
distributed computations in the sensor network to reduce the mathematical computational load on 
the common sensor. Comparisons will be made to determine the advantages and disadvantages 
of each method in terms of estimation accuracy, computation load, transmission load and 
reliability.  
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4.1.1 Background  
In this section we provide some more details about the DPD single-stage localization method and 
its formulation [9]. Suppose that there are L moving sensors in a sensor network receiving the 
transmitted signal in one short snapshot. The complex signal observed by the lth sensor is 
  
 2ˆ ( ) ( ) ( )lj f t

rl l l ls t s t e w tπα τ= − +  
 
where ( )s t  is the transmitted signal, lα  is an unknown complex path attenuation, ,  fl  is the 
Doppler shift, lτ is the signal delay and ( )lw t is a white, zero mean, complex Gaussian. Assume 
that each sensor collects N time samples sampled with sampling frequency 1/s sF T= .Then, we 
have 
 

ˆ ˆl l l lα= +rls W D s w  
 

1 22 2 2

1 2

1 2

{ , , ... , }

ˆ ˆ ˆ ˆ[ ( ) , ( ) , ... , ( )]

[ ( ) , ( ) , ... , ( )]

l l l Nj f t j f t j f t
l

T
rl rl rl N

T
l l l l N

diag e e e

s t s t s t

w t w t w t

π π π=

=

=

rl

W

s

w

 

 
where ˆrls  is N samples of the received signal at lth sensor, ŝ  is N samples of the transmitted 
signal, fl  is the Doppler shift and Dl  is the time sample shift operator by ( / )l l sn Tτ= samples. 
We can write ln

l =D D where D  is an N N× permutation matrix defined as [ ] 1 if 1ij i j= = +D  , 

0, 1[ ] 1N − =D  and [ ] 0ij =D otherwise. 
According to [9] and [19], the estimated transmitter’s position in TDOA/FDOA-based one-

stage method is found as follows.  Let { } 1

G
i i=

p be grid points of possible emitter locations.  For 
each grid point form the matrix  

 

1 1 1 2 2 2ˆ ˆ ˆ ,
i

H H H H H H
r r L L rL =  pV D W s , D W s , ... , D W s

 

where the dalay and Doppler operators correspond to the path between the grid point and the 
respective sensors [9]. For each grid point, then form the L L×  matrix 

i i i

H=p p pQ V V  and find its 
largest eigenvalue.  The location estimate is the grid point that maximizes the largest eigenvalue, 
that is 
 maxˆ arg max{ ( )}

i
i

λ= p
p

p Q . (3) 

 
Since all of this process should be done for each one of the grid points, it is clear that a large 
amount of computation must be done to find the location and all of it is done at the common 
sensor. 
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It is interesting to mention that in TDOA/FDOA based one-stage method, the (i,j)th element 
of the matrix Q is the value of CAF between the signals received by sensors i and sensor j [9], 
[19] and that is why in [19], this matrix is called the Cross Ambiguity Matrix (CAM): 

 
 ( , )ˆ ˆ[ ] [ ] [ ]H H H H

ij ij ri i i j j rj ij τ ω= = =Q V V s W D D W s CAF , (4) 
 
where τ and ω  are the corresponding TDOA and FDOA between sensors i and j and emitter 
located at a specific emitter position. Note that the diagonal elements in CAM are the Auto 
Ambiguity Function of the received signals at TDOA = 0 and FDOA = 0 which is equal to the 
energy of the received signals. 

In the following, we develop some methods to increase the flexibility and feasibility and 
improve the performance of one-stage geolocation method. 
 

4.1.2 Approximated DPD  
As mentioned above, in one-stage geolocation method, we need all the received signals 

together to start the location estimation process. To achieve that, all sensors need to transmit 
their received signals to a common point. The common site performs a huge mathematical 
computation on the raw received signals to form a series of matrices used in location estimation 
[7],[8], [9]. In this section we develop a method to distribute and reduce the amount computation 
based on the eigenvalue approximation.  

Definition (Gershgorin’s disc)[29]: Assume that A is an n n×  complex valued matrix 
with entries ija and i ijj i

P a
≠

= ∑ is the summation of the absolute values of all non-diagonal 

elements of the ith row. Then, the set { }:i ii iD z C z a P= ∈ − ≤  is called the ith Gershgorin’s disc 
of A , where C is the set of complex numbers.  This disc contains the interior and boundary 
points of a circle with radius of iP and centered at iia in complex plane. 

     Theorem 1 (Gershgorin’s Theorem) [29]: Every eigenvalue of matrix n n
ija C × = ∈ A  

lies within at least one of the Gershgorin’s discs. In other words, every eigenvalue λ of matrix A 
satisfies: 
 

 
, ,

.
ii i

i ij
j i

i a P

P a

λ λ

≠

∀ ∃ − ≤

= ∑  (5) 

     
Theorem 2 [29]: Assume that A is an n n×  complex valued matrix with entries ija , 

i ij
j

R a= ∑ is the summation of the absolute values of all elements in the ith row and j ij
i

T a= ∑
is the summation of the absolute values of all elements in the jth column. Let max ii

R R=  and 

max jj
T T= . Then, the absolute value of each eigenvalue λ of matrix A satisfies: 

 
 , min( , )R Tλ λ∀ ≤ . (6) 
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As mentioned above, in TDOA/FDOA based one-stage method, the (i,j)th element of the 

CAM or Q in (3) is the value of Cross Ambiguity Function between the signals received by 
sensors i and sensor j ([9],[19]) and we name it by ijCAF . The emitter location is estimated by 
computing the maximum eigenvalues of the CAM (or Q) in each grid point. Since the CAM is 
Hermitian and positive definite, the eigenvalues of CAM are real and positive. Moreover, since 
CAM is a Hermitian matrix, we have, R T=  in Theorem2 and consequently, min( , )R T R= . 
Thus, for the CAM, the inequality in (6) can be replaced by: 

 

 

max

, max( )

ˆ max( )

ii

i ij
j

ii

CAF

CAF CAF

CAF

λ λ

λ

∀ ≤

=

=

∑  (7) 

 
where maxλ̂  is the upper bound on eigenvalues of the CAM.  

Suppose that we have L receiving sensors and each one of them broadcasts its received signal 
to all other sensors in the sensor network. Then, each sensor i is able to compute all ijCAF  for  

j=1... L  and consequently, it is able to compute 
1

L

i ij
j

CAF CAF
=

= ∑ . Now, if we approximate the 

largest eigenvalue of CAM by the upper bound on the eigenvalues ( max max
ˆλ λ≈ ), then the 

location estimation will be determined by the point having the largest maxλ̂ .  
Here is the scenario:  
1- Each sensor broadcasts its received signal in the sensor network. 
2- Each sensor i computes ijCAF ’s in TDOA/FDOA plane and then maps them from 

TDOA-FDOA plane to X-Y (emitter position) plane. The mapping will be done very 
easily knowing the position and velocity of the sensors and also the grid point 
position. 

3- Each sensor i computes 
1

L

i ij
j

CAF CAF
=

= ∑  by adding up the ijCAF ’s and then finds the 

peak of iCAF  (named ,i peakCAF ) and its location , ,( , )i peak i peakx y  and then transfers the 
three numbers , ,,i peak i peakx y and ,i peakCAF  to a common sensor (or to all other sensors 
since there are just three numbers and there is no communication load to transfer 
them). Note that this step is motivated by Gershgorin’s Theorem. 

4- According to (3) and (7), the emitter location estimated is taken as the , ,( , )i peak i peakx y
corresponding to the largest ,i peakCAF  over all i. 

Note that in the original DPD method, we need to re-compute and form the matrix CAM (or 
Q) for each grid point and find the largest eigenvalue of that matrix each time, which leads to a 
huge amount of computation especially when the number of receiving sensors gets larger. 
Moreover, all of these computations would be done at one single point. But, the method outlined 
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above does not need to form the matrix CAM (or Q) at all nor does it need to do computationally 
expensive computations of the largest eigenvalue each time. Thus, in the new method, not only 
has the costly eigenvalue computation been removed, but also the process is distributed among 
all receiving sensors. When implementing DPD in a scenario where each sensor has limited 
computational abilities it is desirable to minimize the amount of computation done by each 
sensor rather than minimize the total computational complexity.  To compare the computational 
load suppose that there are L sensors trying to estimate the emitter location in an N N× grid 
plane. In the original DPD method, the common sensor needs to compute the CAM for each grid 
point. Since CAM is a Hermitian L L× matrix formed by CAFs, the common sensor just needs to 

find all the entries on and above the main diagonal. This is equivalent to computing ( 1)
2
L L −  

CAFs (as non-diagonal elements) and L signal energies (as diagonal elements). Moreover, the 
common sensor needs to calculate the largest eigenvalue of the matrix for each grid point ( 2N
times). On the other hand, in the suggested method, each sensor just needs to find ( 1)L −  CAFs 
and one signal energy. In addition, they don’t need to form the matrix CAM and find its 

eigenvalues. Thus, rather than having one sensor compute ( 1)
2
L L −  CAFs as in the original 

DPD, in the method propose here each sensor computes only (L – 1) CAFs; furthermore, each 
sensor performs a simple Gershgorin estimation rather than a complex eigenvalue computation. 

 It is worth saying that in the proposed method, if we lose anyone of the sensors or even if we 
lose a couple of them, it may reduce the accuracy of estimation because of missing some data 
but, the rest of the receivers can continue the estimation process with no interruption. 

In the proposed method, if we ignore the maximum operator term in (7) and just take 

max
ˆ

iCAFλ =  for only one arbitrary sensor i , then the results will be equivalent to a method 
named CAF-MAP in [6] which has less quality compared to DPD and Approximated DPD. In 
[19], we can also see another approach named as pair-wise maximum CAF detector that is based 
on comparing the value of 

,
max max ijj

CAF
τ ω

 with a threshold CAFγ for only one arbitrary i as 

reference sensor ( ,τ ω  are TDOA and FDOA). The results in [19] showed that this method also 
has much lower quality in detection compared to the GLRT detector based on largest eigenvalue; 
no results were provided in [19] on the location accuracy of the pair-wise maximum CAF 
method. 

The simulation results for many different cases show that the eigenvalue upper bound is very 
close to the true largest eigenvalue. However, this approximation lowers the quality of the 
estimation slightly. We examined the effect of the proposed approximation on the estimation 
accuracy using Monte-Carlo computer simulations (with 500 runs each time). In this simulation, 
a set of 8 moving sensors and one stationary emitter are placed in a configuration as shown in 
Figure 1. There exists a cross ambiguity function for each two of the sensors. The sampling 
frequency is 80 kHz and the number of samples is equal to 4096. Figure 2 shows the effect of 
eigenvalue approximation on RMS error of emitter location estimation for X and Y dimensions.  
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Figure 1: Placement of the sensors and the emitter position used for simulation. 

 
 

(a) (b)

 

Figure 2: RMS errors for X and Y versus SNR. 
 
 

In the suggested method, if we ignore the maximum operator term in (7) and just take 

max
ˆ

iCAFλ =  for only one arbitrary sensor i , then the results will be equivalent to a method 
named CAF-MAP in [6] which has less quality compared to DPD and Approximated DPD. In 
[19], we can also see another approach named as pair-wise maximum CAF detector that is based 
on comparing the value of 

,
max max ijj

CAF
τ ω

 with a threshold CAFγ for only one arbitrary i as 

reference sensor ( ,τ ω  are TDOA and FDOA). The results in [19] showed that this method also 
has much less quality in detection compared to the GLRT detector based on largest eigenvalue. 
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4.1.3 Decentralized DPD  
In this section, we develop another method to implement DPD with the goal of reducing the 

computation load on the center point by distributing the mathematical computations among all 
receivers and using data compression to reduce the amount of data transmission. In this method, 
we don’t apply any approximation more than data compression. Thus, the accuracy of this 
method is as same as original DPD for high enough bit rates. 

4.1.3.1 Distributed Computation 
As mentioned above, in DPD method a common site performs a huge mathematical 

computation on the raw signals received from all other sensors to form a series of matrices used 
in location estimation. If each sensor or pair of sensors can do some pre-processing on its own 
data before transmitting to the common site, it can help to do the estimation in shorter time and 
with less processing load on the common site. It also helps to reduce the sensitivity of the 
common site’s role and the dependence of the whole process to one single point in the sensor 
network.  

As mentioned above, in TDOA/FDOA based one-stage method, the (i,j)th element of the 
cross ambiguity matrix (CAM in [20] or Q in [9] and (3)) at grid point p is the value of Cross 
Ambiguity Function (CAF) between the signals received by sensors i and sensor j at 
TDOA/FDOA point corresponding to the grid point p. Thus, sensor i and sensor j can contribute 
to compute the (i,j)th element of CAM (and (j,i)th element as well since CAM is a Hermitian 
matrix). In the other word, each pair of sensors i and j can share their received signals together to 
compute the CAFij in TDOA/FDOA domain. Then the computed CAFs can be transmitted to the 
common site. The common site only maps the received CAFs to X-Y plane and uses them to 
form the CAM matrix. 

Figure 3 shows a simple case with three receiving sensors. In Figure 3(a), we can see the 
sensors sharing their received signals. Sensor 1 sends its received signal to sensor 2, sensor 2 
sends its received signal to sensor 3 and sensor 3 sends its received signal to sensor 1. Then, 
sensor 1, sensor 2 and sensor 3 are able to compute CAF13, CAF12, CAF23 respectively. The 
terms A11, A22, A33 are the Auto Ambiguity Function of the received signals at the origin of 
TDOA/FDOA plane that are equal to the energy of the received signals at each receiver. In 
Figure 3(b), we can see the receivers transmitting the computed CAFs and Energies to a common 
site (that obviously can be any one of the three sensors) to form the matrix CAM. Note that each 
one of the CAF13, CAF12 and CAF23 is a complex-valued matrix used to fill out the off-diagonal 
elements of the CAM and A11, A22, A33 are just three real numbers sitting on the diagonal 
elements of the CAM.  
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Figure 3: Decentralized DPD for three receivers. 

 
 
In this method, all sensors contribute in the process of estimation and the computation load is 

divided among all members of the sensor network. However, this method does not help to 
eliminate the bottle-neck we have in data transmission since we need to transmit all CAFs to the 
common point. In next sub-sections, we develop some data compression ideas to compress the 
CAF before transmission to the common site to reduce the amount of data transmission. We 
exploit some of the CAF properties to eliminate the redundancy and obtain a larger compression 
rate.  

 

4.1.3.2 Exploiting CAF Properties for Data Compression 
To reduce the amount of data transmission and channel bandwidth in our sensor network and 

obtain a better performance, we apply some data compression methods in different levels of data 
transmission. In [4] and [5], Fowler and Chen have derived some fisher information based 
methods to compress the received signal in each pair of sensors. Here, we develop and apply 
some proper compression methods on computed CAFs before transferring it to the center site.  

CAF is a two-dimensional complex valued function. Thus, we can consider the CAF to be an 
image (albeit a complex valued image) and apply image compression methods to it. For example, 
Embedded Zerotree Wavelet (EZW) [10] can be used to compress the CAF. One of the most 
important reasons that encourage us to use EZW method is that EZW is an embedded algorithm. 
It attempts to provide a sequence of bits that if truncated anywhere gives the best distortion for 
that rate.  The EZW compression causes two kinds of distortion on the data. The first distortion 
refers to the effect of data quantization which can be modeled by an additive noise. The second 
distortion is the result of throwing away the insignificant coefficients of the wavelet transform 
which can be roughly modeled as passing the data through a lowpass filter.  Note that a typical 
CAF contains a large main lobe and (usually) various small side lobes. An important aspect for 
compression of the CAF is that it is a relatively slowly changing function. The fast changing 
parts (which are equivalent to very high frequency points) come from the effect on the CAF of 
the additive noise of received signals. Thus, viewed as an image, it seems that the important part 
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to be retained is a spatially low-pass type signal that should show up in the medium and low 
frequency parts of the wavelet transform used in EZW. Because most of the data concentrated in 
medium and low frequency parts, it helps to obtain lots of zero tree roots and that is another 
encouraging reason to use EZW method. Because the high frequency parts of the wavelet 
transform will contain mostly noise and will be discarded (except at the very highest data rate, 
when little or no truncation is done), the EZW algorithm will also perform a denoising operation. 

There are some other special properties with CAF that can be exploited to get better 
compression performance. One of the most important properties of CAF is the symmetry. In the 
Appendix we have proved that CAF is symmetric around its magnitude peak: 
 
 | ( , ) | | ( , ) |ij P P ij P Pτ τ ω ω τ τ ω ω− + − + = + +CAF CAF  (8) 
 
where ijCAF is the cross ambiguity function between the signals received by sensor i and sensor j 
and �𝜏𝑝,𝜔𝑝� is the peak of CAF magnitude. This result provides a kind of symmetry of the CAF 
around the point �𝜏𝑝,𝜔𝑝� or the peak of CAF magnitude which can be exploited for data 
compression. In practice, the received signals received signals are the delayed and Doppler-
shifted version of transmitted signal plus noise. This noise perturbs the CAF a little bit from the 
perfect symmetry. Thus, we rewrite (8) as, 
 
 | ( , ) | | ( , ) |ij P P ij P P Eτ τ ω ω τ τ ω ω− + − + = + + +CAF CAF  (9) 
 
where E can be the error from perfect symmetry which is a negligible value.  Thus, using the 
symmetry property, it is possible to extract the entire CAF magnitude by transmission of only 
half of the CAF magnitude plus the small residual amount of E.  

We examined the performance of the proposed method using Monte Carlo computer 
simulations. In this simulation, a set of 4 moving sensors and one stationary emitter are placed in 
a configuration as shown in Figure 4. There exists a cross ambiguity function for each two of the 
sensors that should be compressed and transmitted to a common site to do the location 
estimation. The signals are Binary Phase Shift Keying (BPSK) signals, the sampling frequency = 
400 kHz, SNR = -10 dB and the number of samples is equal to 65536.Two different compression 
methods have been examined in this simulation. In the first method, we just applied the EZW 
algorithm to compress the CAF (labeled “simple compression” in the figures). In the second 
method, we applied the EZW algorithm to compress the CAF and we used the symmetry 
property to reduce the amount of transmitted data (labeled “symmetric compression” in the 
figures). The effect of data compression on RMS error of emitter location estimation for X and Y 
dimensions is illustrated in Figure 5 (a) and (b), respectively.  Obviously, the RMS error will 
decrease by increasing the bit rate. Comparing the two curves in each plot shows that the 
symmetric compression method gives us more accurate results for the same bit rates.  
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Figure 4: Placement of the sensors and the emitter position used for simulation. 

 
 

(a) (b)
 

Figure 5: RMS errors for X and Y versus bits/element. 

 
 

4.1.3.3 SVD-based Data Compression for CAF 
The singular value decomposition (SVD) is an important tool with many useful signal 

processing applications. For a complex valued M N×  matrix X, the SVD representation will be 
 

 
1

r
H H

i i i
i

σ
=

= = ∑X UΣV u v  
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where U  is an M M×  unitary matrix consisting of M left singular vectors as its columns, V is 
an N N× unitary matrix consisting of N right singular vectors as its columns and Σ  is a pseudo-
diagonal M N×  matrix with nonnegative real singular values (𝜎𝑖) on the main diagonal ordered 
such that 1i iσ σ +≥ , r is the number of non-zero singular values, iu is the ith left singular vector 
and H

iv is the Hermitian transpose of the ith right singular vector. By truncating the above 
summation to k < r terms, we get a rank-k matrix 
 

 
1

k
H H

k k k k i i i
i

σ
=

= = ∑X U Σ V u v  

 
that approximates X better than any other rank-k matrix in the least square error sense [23], [24]. 
This is the main idea of SVD data compression. 

The complex-valued M N×  matrix X contains MN complex values or equivalently 2MN real 
values. However, the truncated-SVD version Xk uses only kM complex values to represent 
matrix kU , kN complex values for matrix kV , and k real values to represent the singular values. 
Thus, in approximation X by Xk, the compression ratio is: 
 

 2
2 2

MNCR
kM kN k

=
+ +

. 

 
For example, for a 128 ×32 matrix truncated for k = 1 the compression ratio is 25:1. 

As mentioned in [25], the singular value decomposition of an image is conceptually similar 
to its Karhunen-Loeve decomposition but in a different manner. The first difference is that 
Karhunen-Loeve decomposition basis are determined by the covariance matrix of the random 
process that generates the image but, SVD is defined on the image itself. The second difference 
is that if both representations are truncated for the purpose of data compression, SVD is the best 
approximation in least square error sense, while Karhunen-Loeve is the best approximation in 
mean square error sense. 

CAF usually contains a big main lobe and several small side lobes that if we slice each of 
them up at different points, we will always get a curve with a similar shape. It has been shown 
that for a time-frequency localization operator there are several large singular values at the 
beginning, followed by a sharp plunge in the values, with a final asymptotic decay to zero [26]. 
Since the cross Ambiguity function is considered to be a member of Cohen’s class of time-
frequency representations [27], these properties imply that CAF is very close to a low rank 
matrix. Thus, most of the data is concentrated in the first few singular vectors and values. 

In reality, the received signals are noisy. The effect of the noise on the singular values is 
spread among all the singular values but, as mentioned before, most of the data is concentrated in 
the first few singular vectors and values. Thus, by SVD truncation we reduce the amount of noise 
and equivalently we increase the SNR [28]. The singular values of a sample 128 ×32 CAF are 
illustrated in Figure 6 for two cases: (a) noiseless signals and (b) noisy signals. As we can see, 
there are only 3 to 5 significant singular values in Figure 6(a) showing that the CAF is very close 
to a low rank matrix. But, Figure 6(b) shows that in the noisy case the number of significant 
singular values increases to 12. Therefore, it is clear that the signal to noise ratio can increase by 
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applying SVD data compression and retaining the first few singular values and discarding the 
rest. 
 
 

(a) (b)

 
Figure 6: Singular Values of CAF: (a) Noiseless signal, (b) Noisy signal 

 
 

We have applied an SVD-based data compression on CAF. The results show that SVD 
approach is a beneficial method for CAF data compression and also it is a strong tool for CAF 
denoising. Simulation results show that by applying SVD Data Compression it is possible to 
perform accurate location estimation in spite of the fact that we transmit fewer bits. Also for 
smaller compression ratio (higher bit rates), we even achieve an improvement in performance of 
location estimation compared to the case that we do not compress the data at all and that is 
because of the de-noising effect of the SVD.  

We examined the performance of the proposed method using Monte Carlo computer 
simulations (with 500 runs each time). In this simulation, a set of 4 moving sensors and one 
stationary emitter are placed in a configuration as shown in Figure 7. There exists a cross 
ambiguity function for each two of the sensors that should be compressed and transmitted to a 
common site to do the location estimation. In this simulation, the signals are BPSK, the sampling 
frequency = 20 kHz and the number of samples is equal to 4096.  Figure 8 shows the effect of 
data compression on RMS error. The four curves compare the cases (i) without compression, (ii) 
SVD-based compression with compression ratio of 25:1, (iii) SVD-based compression with 
compression ratio of 8:1, and (iv) SVD-based compression with compression ratio of 5:1. As we 
can see, even for high compression ratio of 25:1, the estimation accuracy is pretty close to the 
case without compression. Surprisingly, the case with the compression ratio of 5:1 (and even the 
case with the compression ratio of 8:1 in some points) yields more accurate results than without 
compression case. This improvement is obtained because of the de-noising property of SVD-
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based data compression. 
 

 
Figure 7: Placement of the sensors and the emitter position used for simulation. 

 
 

(a) (b)

 
Figure 8: Location error using SVD-based CAF compression for various compression ratios.  
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4.1.4 Semi-Decentralized DPD  
Comparing the classic method to DPD method, we can see that in classic method we only 

transfer the TDOA/FDOA values to the center site that leads to a very low data transmission 
load; but in DPD we transfer the whole received signals (or the whole CAFs as suggested in 
previous section) to the center site that ends up with more accurate results in localization. In this 
section, we develop a method taking the advantages of both classic and DPD scenarios. In fact, 
we use the same idea of Decentralized DPD exploiting the relationship between different CAFs 
to reduce the amount of data transmission in the sensor network 

Suppose that two sensors R1 and R2 receive the LPE signals 𝑢(𝑡) and 𝑣(𝑡), respectively. 
Under the so-called narrowband approximation and assuming that we can estimate the antenna 
and electronic devices attenuations, the lowpass equivalent (LPE) model of the received signal 
for noise-free case will be [11]:  
 

 
1
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2
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where 1τ  and 2τ  are the time delays and 1ω  and 2ω  are the Doppler shifts for the first and 
second received signals, 1  cje ω τα −= , 2    cje ω τβ −=  and cω  is the carrier frequency in rad/sec [11].  
Now, we can write one of the received signals in terms of the other one: 
 
 12 12 1 12

12( ) ( ) cj j t jv t u t e e eω τ ω ω ττ= +  (10) 
 
where 12 1 2( )τ τ τ= −   is the TDOA and 12 1 2  ( )ω ω ω= −  is the FDOA. Then, the CAF is:  
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where the second line follows from (10) and the third line follows after defining 
 

 ( ) ( ) ( )*
11 ,     j tA u t u t e dtωτ ω τ

+∞

−∞

= −∫ , 

which is the Auto Ambiguity function (AAF). With a similar approach for three sensors and 
applying (10) for the signals received by first and second receivers, we will have: 
 
 12 1 12( )

23 13 12 12( , ) ( , )cjCAF e CAFω ω ω ω ττ ω τ τ ω ω− − + += + +  (12) 
 
where CAFmn is the cross ambiguity function between signals received by sensor m and sensor n. 
In equation (12), having 12 12( ,  )τ ω  and one sample point of CAF23 and CAF13 it is possible to 
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compute 1ω . In the noisy case, the point 12 12( ,  )τ ω  can be estimated as the position of peak of the 
CAF12 magnitude in the (TDOA-FDOA) plane and that is why we named this method as Semi 
Optimal Decentralized DPD. Also, note that this estimation is applicable as long as we are able 
to find the peak of the CAF12 magnitude. Thus, having 12 12( ,  )τ ω , CAF13 , it is possible to 
reconstruct the whole CAF23 and we don’t need to transmit the CAF23 to the center site anymore.  
Similarly, in a sensor network when L sensors receive a signal from a single emitter, we can 
show that: 
 
 ( )( , ) ( , )mp c p mpj

mn pn mp mpCAF e CAFω ω ω ω ττ ω τ τ ω ω− − + += + +  (13) 
 
where mpτ  and   mpω  are the TDOA and FDOA between signals received by sensor p and sensor 
m. As a special case when p = 1, we have: 
 
 1 1 1( )

1 1 1( , ) ( , )m c mj
mn n m mCAF e CAFω ω ω ω ττ ω τ τ ω ω− − + += + +  (14) 

   
Exploiting (14), it is possible to construct the Cross Ambiguity Matrix (CAM in [19] or Q in 

[9]) by transferring only the first element in each column of the matrix (in other word, by 
transferring the first row of the matrix) plus the corresponding TDOA/FDOAs and it leads to a 
large reduction in computation load and amount of data transmission. 

Figure 9 illustrates a simple case of 4 receiving sensors. As we see in Figure 9(a), sensor1 (it 
can be obviously each of the sensors) propagates its received signal into the network. Each one 
of the other sensors can compute the CAF between sensor1 and itself. Then, each sensor can 
transmit the computed CAF to a common site (which can be one of the sensors). In Figure 9(b), 
we assumed sensor2 as the common point. After receiving CAF13 and CAF14 , sensor2 is able to 
compute CAF23, having CAF12 (computed by itself) and CAF13 (received from sensor3) applying 
(14). It is also able to compute CAF24 and CAF34 having CAF12, CAF13 and CAF14 easily. Now, 
sensor2 has everything to form the matrix CAM and do the location estimation. Note that 
according to (14), all of the CAF calculations are nothing more than delay, Doppler and phase 
shifts. Thus, the sensor2 does not suffer from extra CAF calculations. 
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Figure 9: Semi Decentralized DPD for four receivers. 
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We examined the proposed method using Monte-Carlo computer simulations (with 500 runs 
each time). In this simulation, a set of 3 moving sensors and one stationary emitter are placed in 
a configuration as shown in Figure 10. In this simulation, we compute CAF12 and CAF13 directly 
using stein method [2] and then compute the CAF23 using (12). Then having all of the elements, 
we formed matrix CAM and apply the DPD method. The sampling frequency is 20 kHz and the 
number of samples is equal to 4096. Figure 11 shows the RMS error of emitter location 
estimation for X and Y dimensions compared to original DPD and Classic methods.  

 

 
Figure 10: Placement of the sensors and the emitter position used for simulation. 

 
Semi Decentralized DPD leads to a large reduction in computation load compared to DPD 

and large reduction in the amount of data transmission compared to Decentralized DPD with the 
cost of lower accuracy, but as we can see in Figure 11, it is still much more accurate compared to 
classic TDOA/FDOA method.  
 



 

Approved for Public Release; Distribution Unlimited. 
20 

 

(a) (b)
 

Figure 11: RMS errors for X and Y versus SNR. 
 
 

4.1.5 Summary  
The one-stage localization method is a major new development in TDOA/FDOA-based 

emitter location that provides significant improvement in performance at low SNR levels.  
However, that improvement comes at a cost of significantly more computational complexity.  
Worse, as DPD was proposed, that complexity is all concentrated at one computing node, which 
is different from the classical method where the computations are distributed evenly among the 
sensors. Furthermore, unlike the classical method, the location processing is highly complex 
(requiring the computation of eigenvalues for each grid point). The large amount of 
mathematical computations that should be done by a single center point may make some 
restrictions in processing. Moreover, a complete dependence of the whole process (in both data 
collection and data processing) on only one single point is also a problem that may reduce the 
reliability of the system. In this paper, we developed several methods to reduce the load of data 
computation and data transmission using distributed data computation and processing, applying 
data compression methods, exploiting the CAF properties, taking advantage of CAF 
relationships in the sensor network and exploiting some kind of beneficial approximations. 

The Approximated DPD method proposed here exploits the simplicity of Gershgorin’s 
theorem to approximately compute the largest eigenvalue without the high cost of exactly 
computing it.  This enables each sensor to locally make its best estimate of the location based on 
that data it has.  These locally-generated estimates are then transmitted to a central location 
where a final decision is made.  

In Decentralized DPD method, we applied the distributed computation idea to divide the 
mathematical calculation load among all sensors of the network. In this method, we don’t use 
any other approximation more than data compression and the quality of this method is the same 
as the Original DPD for proper bit rates.  
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Finally, in Semi-Optimal Decentralized DPD, we used the same idea of Decentralized DPD 
in addition to exploiting the relationship between different CAFs to eliminate the data 
redundancy and this idea leads to a large data transmission reduction.  

All of the proposed methods allows DPD to be implemented in a decentralized manner where 
no single sensor is required to do an unfair share of the computations, yet the performance 
improvement of DPD is not sacrificed. 
 

4.2 Spatial Sparsity-Based Approach to Emitter Location 
 
Passive emitter localization is a challenging issue in statistical signal processing. The 

position can be estimated by measuring one or more location-dependent signal parameters. One 
of the most popular and common emitter location methods is based on TDOA and FDOA 
estimations. In the classical approach to this method, FDOA and TDOA are estimated from the 
cross-correlation of the signals received by several pairs of sensors [1]; this is done by 
computing the cross ambiguity function (CAF) [2] and finding the peak of its magnitude surface. 
Then these TDOA/FDOA estimates are used in statistical processing to locate the emitter [3]. 

However the classic two-stage method is not necessarily optimal because in the first stage of 
these methods, the TDOA and FDOA estimates are obtained by ignoring the fact that all 
measurements should be consistent with a single emitter location [9]. In other words, each stage 
is itself optimal but the cascade of the two stages is not necessarily optimal.  

In this section, we exploit spatial sparsity of the emitter on the x-y plane and use convex 
optimization theory to estimate the location of the emitter directly without going through the 
intermediate stage of TDOA/FDOA estimation. It is obvious that in emitter location problems, 
the number of emitters is much smaller than the number of all grid points in a fine grid on the x-y 
plane. Thus, by assigning a positive number to each one of the grid points containing an emitter 
and assigning zero to the rest of points, we will have a very sparse grid plane matrix that can be 
reformed as a sparse vector. Since each element of this vector corresponds to one grid point in 
the x-y plane, we can estimate the location of emitters by extracting the position of non-zero 
elements of the sparsest vector that satisfies the TDOA/FDOA relationship between transmitted 
signals and received signals. In principle, sparsity of the grid vector can be enforced by 
minimizing its 0 -norm (i.e., the number of non-zero elements in the grid vector). However, 
since the 0 -norm minimization is an NP-hard non-convex optimization problem, it is very 
common (e.g in compressive sensing problems) to approximate it with 1 -norm minimization, 
which is a convex optimization problem and also achieves the sparse solution very well [30]. 
Thus, after formulating the problem in terms of the sparse grid vector, we can estimate this 
vector by pushing sparsity using 1 -norm minimization on the grid vector, subject to the 
TDOA/FDOA relationship between the signals transmitted from the grid point and the signals 
received by the sensors. 

In [31], the authors suggested a source localization method based on TDOA in a multipath 
channel exploiting the sparsity of the multipath channel for estimation of the line-of-sight 
component. In this method, the sensors don’t need to know the information on the specific 
transmitted symbols but, they require knowledge of the pulse shape of the transmitted signal. In 
[32], the authors suggested a compressive-sensing based distributed target localization using 
TDOA. In this method, each sensor approximates the transmitted signal by its own received 
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signal mapped to each one of the grid points. This idea helps to reduce the amount of data 
transmission in the sense of distributed localization but it lowers the quality of the estimation 
since each sensor estimates the transmitted signal just using its own received signal. Also, each 
sensor computes its own location estimation that is not necessarily equal to other sensors’ 
estimations. Weiss and Amar  [7], [8], [9] developed a single-stage Least-Squares method using 
TDOA and FDOA, named direct position determination (DPD). Vankayalapati and Kay [19] also 
derived similar results based on a detection theory point of view; the DPD estimator was derived 
as the ML estimator needed for the generalized likelihood ratio detector. The performance of the 
DPD method is better than the two-stage classic method (especially for low SNRs). However, the 
simulation results show that DPD does not obtain accurate results in the case of multipath or 
multi-emitter scenarios. 

In this paper, contrary to [31] and [32], we developed a method based on both TDOA and 
FDOA to take advantage of both delay and Doppler shifts. Contrary to [6], our method does not 
need any knowledge of the transmitted signal’s pulse shape nor any other a priori information.  
Similar to [32], we exploit the grid point spatial sparsity but, we consider the transmitted signal 
as a deterministic unknown signal that will be estimated in the sensor network using all received 
signals. Similar to [19] and [9], we estimate the emitter location directly without going through 
the intermediate stage of TDOA/FDOA estimation. However, the Monte-Carlo simulation results 
show the higher performance of the proposed method compared to DPD method and classic two-
stage method especially in multipath scenarios. 

Suppose that an emitter transmits a signal and L sensors receive that signal. The complex 
baseband signal observed by the lth sensor is  

 
 2( ) ( ) ( )lj f t

l l l lr t s t e w tπα τ= − +  (15) 
 
where ( )s t  is the transmitted signal, lα  is the complex path attenuation, ,  fl  is the Doppler shift, 

lτ is the signal delay and ( )lw t is a white, zero mean, complex Gaussian noise. Assume that each 
sensor collects Ns signal samples at sampling frequency 1/s sF T= . Then, we have 
 

 l l l l lα= +r W D s w  (16) 
with 

1 2

1 2

1 2

1 2
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=

=

=

=
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where lr  is the vector containing Ns samples of the received signal by lth sensor, s  is Ns samples 
of the transmitted signal, fl  is the Doppler shift and Dl  is the time sample shift operator by 

( / )l l sn Tτ= samples. We can write ln
l =D D where D  is an s sN N×  permutation matrix defined 

as [ ] 1 if 1ij i j= = +D  , 0, 1[ ] 1N − =D  and [ ] 0ij =D otherwise. 
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Now, we assign a number ,x yz  to each one of the grid points (x,y). Assume that ,x yz is one for 

the grid points containing an emitter and zero for the rest of the grid points. Thus, the signal 
vector received by lth sensor will be 

 
 , , , , , , , ,l x y l x y l x y l x y l

x y
z α= +∑∑r W D s w  (17) 

 
where , ,l x yW  and , ,l x yD are the Doppler shift and time sample shift operators w.r.t sensor l 
assuming that the emitter is located in the grid point (x,y) and the summations are over all grid 
points in the desired (x,y) range. Now, if we reform all of the grid points in a column vector and 
re-arrange the indices, we will have   

 , , ,
1

.
N

l n l n l n l n l
n

z α
=

= +∑r W D s w  (18) 

 
 

In (18), we consider the transmitted signal s as a deterministic unknown signal (a common 
signal model in localization problems). Then, for each grid point, we estimate the transmitted 
signal using the Minimum Variance Unbiased estimator (MVU) as   
 

 1 1
, ,

1

1ˆ ,
L

n l n l n l
lL

− −

=

= ∑s D W r  (19) 

 
where ˆns is the MVU estimate for the transmitted signal from grid point n. 

We define the matrix nΓ  as the Doppler and delay operator w.r.t all L sensors, assuming that 
the received signal comes from the grid point n (there is an emitter at grid point n):  
 

1, 1, 1,

2, 2, 2,

, , ,

.

s s

n n n

n n n
n

L n L n L n LN N

α
α

α
×

 
 
 =
 
 
 



W D
W D

Γ

W D

 

 
Then, we can define { }, 1, 2, ,n n N∈ θ as an 1sLN ×  vector containing all signals received 

by all L sensors when the emitter is in grid point n as 
 

 



 

Approved for Public Release; Distribution Unlimited. 
24 

 

 ˆ .n n n= ×θ Γ s  (20) 
 
 
If we arrange all vectors nθ  for n:1...N  as the columns of a matrix Θ  as  
 

 1 2[ ... ] ,
sN LN N×=Θ θ θ θ  (21) 

 
 
and then, we have 
 

 = × +r Θ z w  (22) 
with 

1 2 1[ ... ]
s

T T T T
L LN ×=r r r r  

1 2 1[ ... ] ,T
N Nz z z ×=z  

where r is the vector of all L received signals, z is the sparse vector of z-values assigned to each 
grid point and w  is the noise. Now, we can solve our problem by forming a BPIC (Basis Pursuit 
with Inequality Constraints) problem [33] as following:  
 

 1

2

ˆ arg min

.s t ε

=


× − ≤

z z

Θ z r
 (23) 

 
or regularized BPDN (Basis Pursuit Denoising) problem [33] as: 
 

 2 1
ˆ arg min λ= × − +z Θ z r z  (24) 

 
We examined the performance of the proposed method and compared the results using 

Monte-Carlo computer simulations for different scenarios. In the first simulation, we assumed 
that 3 moving sensors receive the signal from one stationary emitter placed in a configuration as 
shown in Figure 12 (the location of the emitter has been chosen randomly). In this simulation, 
the sampling frequency is 80 kHz and the number of samples is equal to 1024. In Figure 13, we 
can see the RMS Error vs. SNR (with 500 runs for each SNR) for estimating the location of the 
emitter in ( )x y−  plane. As we see, the proposed method has better performance compared to 
DPD and Classic methods. 
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Figure 12: Placement of the sensors and the emitter position used for simulation. 

(a) (b)

 
Figure 13: Location error versus SNR for single-emitter single-path case. 

 
One of the challenging topics in source localization problems is emitter location estimation in 

the presence of multipath reflections. We evaluated the capability of the proposed method in 
dealing with multipath scenarios using Monte-Carlo simulation. In this simulation, we assumed 
that 4 moving sensors receive the signal from one stationary emitter placed in a configuration as 
shown in Figure 14 (the location of the emitter has been chosen randomly). Figure 15 shows the 
RMS Error vs. SNR (with 500 runs for each SNR) for estimating the location of the emitter in 
multipath case. The following plots show better accuracy of the proposed method over DPD and 
Classic methods. As we see, none of the DPD and Classic methods provide unbiased estimates 
for higher SNRs. 
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Figure 14: Placement of the sensors and the emitter position used for simulation. 

(a) (b)

 
Figure 15: Location error versus SNR for multipath scenario. 

 
 

In another simulation, we evaluated the performance of the proposed method and compared 
the results to DPD and Classic method for multi-emitter scenarios when we have more than one 
transmitter in the range of interest and we aim to estimate the location of all emitters. In this 
simulation, we assumed that 6 moving sensors receive the signal from two stationary emitters 
placed in the configuration as shown in Figure 16 (the location of the emitters has been chosen 
randomly). Figure 17 shows the RMS Error vs. SNR (with 500 runs for each SNR) for estimating 
the location of two emitters. Comparing the RMS Error curves, we see that the proposed method 
achieves much better accuracy with significantly smaller error compared to DPD and Classic 
methods. As we see, similar to multipath case, both DPD and Classic methods provide biased 
estimates at high SNRs. 
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Figure 16: Placement of the sensors and the emitter position used for simulation. 

 

(a) (b)

(c) (d)
 

Figure 17: Performance for locating two emitters. (a), (b) 1st emitter; (c), (d) 2nd  emitter. 
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We developed a one-stage TDOA/FDOA localization method based on spatial sparsity of 
emitters. In this method, we assign a non-zero number to each one of the grids containing an 
emitter and zero to the rest of the grid points. Thus, the vector formed from these numbers will 
be a sparse unknown vector that we aim to estimate. Since each element of this vector 
corresponds to one grid point in (x,y) plane, we can estimate the location of emitters by 
extracting the position of non-zero elements of the sparsest vector that satisfy the TDOA/FDOA 
relationship between transmitted signals and received signals. We evaluated the performance of 
the proposed method using Monte-Carlo simulation. Comparing the three curves in each plot in 
Figure 13, Figure 15 and Figure 17  shows that the proposed method has better performance 
(especially in multi-path and multi-emitter cases) compared to direct position determination 
(DPD) and two-stage Classic localization methods. Simulation results show that contrary to DPD 
and Classic methods, the proposed method is a very reliable and strong tool to deal with 
multipath and multi-emitter scenarios. 
 
 
 

5.0 CONCLUSIONS 
 

For several decades now emitter location has been done using a two-stage approach but 
recently it has been shown that a single-stage method (called DPD) has some performance 
advantages.  However, this comes at the cost of some difficulties that hinder easy 
implementation.  In particular, the original formulation of DPD calls for the transmission of all 
signals to a single sensor.  This causes several problems: (i) communication limitations restrict 
transmission of all data to a single sensor, (ii) all computation is performed at a single sensor – 
resulting in an excessive burden for one sensor and (iii) if that single computing sensor is 
prevented from completing the location (due to failure or enemy action) then no location can be 
made available.  The first set of results provided here address these issues and make strides 
toward a feasible implementation of the DPD method – thus helping to make DPD’s improved 
performance more readily available in practice. 

However, in scenarios of multipath and multiple co-channel emitters we demonstrated that 
even though the DPD method does improve upon the classical methods it still leaves a need for 
further improvement. We showed that it is possible to implement a single-stage method that is 
similar to DPD but that also exploits the sparsity of emitters in space.  The simulation results 
showed that this method significantly improves the performance buy at least 2 orders of 
magnitude!  This is a tremendous improvement and – once developed to be feasible in the real 
world – will provide accurate locations in environments previously found to be unworkable. 
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APPENDIX 
 

As mentioned above, we can consider the CAF as an image and we can apply image 
compression methods to compress it. However, not all of the CAF points have the same 
importance for location estimation, thus it is possible to assign different weights to different CAF 
points and therefore allocate larger number of data bits to transmit the more significant area, 
which contains the mainlobe area.  

Price and Hofstetter [12] have done detailed research on the bounds of the ambiguity 
function volume distribution.  Wilcox [13] showed that the contour of ambiguity function 
magnitude close to the peak is always an ellipse. This contour can be formed by the intersection 
of the mainlobe magnitude and a level plane. It is possible to find the approximate equation of 
this ellipse in terms of signal bandwidth, signal duration, signal energy and a specific level. The 
width of this ellipse along the TDOA axis is proportional to the reciprocal of the signal’s rms 
bandwidth; likewise, the width of the ellipse along the FDOA axis is proportional to the 
reciprocal of signal’s rms duration [14]:  

 
 

 
 ∆𝜏 ∝ (1/𝐵𝑟𝑚𝑠) 

 
 ∆𝜔 ∝ (1/𝑇𝑟𝑚𝑠) 

 
where 𝐵𝑟𝑚𝑠 is rms value of signal bandwidth and 𝑇𝑟𝑚𝑠 is rms value of signal duration. 

Thus, it is possible to determine the approximate significant area which is more important for 
the purpose of location estimation. Note that it is always possible to rotate the ambiguity function 
when it is tilted. An interesting property of ambiguity function is that the new function under the 
transformation that rotates the 𝜏 − 𝜔 plane through some angle 𝜃 will be another ambiguity 
function. This new ambiguity function is corresponding to the new signals which are related to 
the old signals and the angle 𝜃 [14],[15]. 

Under the so-called narrowband approximation the lowpass equivalent (LPE) model of the 
received signal will be:  

 
𝑠̂𝑟(𝑡) = 𝑒−𝑗𝑤𝑐𝜏𝑑 𝑒−𝑗𝑤𝑑𝑡 𝑠̂(𝑡 − 𝜏𝑑)       (A1) 

 
where 𝑠̂(𝑡) is the LPE of the transmitted signal, wd is the Doppler and 𝜏𝑑 is the delay for the 
received signal [11].  Now, suppose that two sensors Rx1 and Rx2 receive the LPE signals 
𝑠̂𝑟1(𝑡) and 𝑠̂𝑟2(𝑡), respectively. The ML estimate for TDOA and FDOA can be obtained using 
the magnitude of the CAF: 
 

𝐴12(𝜏,𝜔) =  ∫ 𝑠̂𝑟1(𝑡)𝑠̂𝑟2
∗(𝑡 − 𝜏)𝑒𝑗𝜔𝑡𝑑𝑡  +∞

−∞     (A2) 
 
which measures the correlation between 𝑠̂𝑟1(𝑡) and a Doppler-shifted by 𝜔 and delayed by 𝜏 
version of 𝑠̂𝑟2(𝑡). 

The auto ambiguity function (AAF) (or just ambiguity function as in some papers) is defined 
as: 
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𝐴𝑢𝑢(𝜏,𝜔) =  ∫ 𝑢(𝑡)𝑢∗(𝑡 − 𝜏)𝑒𝑗𝜔𝑡𝑑𝑡  +∞
−∞                (A3) 

 
where 𝑢(𝑡) can be the LPE signal. In fact, auto ambiguity function shows the correlation 
between a signal and a Doppler-shifted by 𝜔 and delayed by 𝜏 version of itself. It is straight 
forward to show that AAF has a kind of symmetry around the origin [13], [14], [16]. 
 

𝐴𝑢𝑢(−𝜏,−𝜔) =   𝐴𝑢𝑢∗ (𝜏,𝜔) 𝑒𝑗𝜏𝜔     (A4)  
 

|𝐴𝑢𝑢(−𝜏,−𝜔)| =   |𝐴𝑢𝑢 (𝜏,𝜔)|  
 
 where 𝐴𝑢𝑢∗ (𝜏,𝜔) is the complex conjugate of AAF and  |𝐴𝑢𝑢 (𝜏,𝜔)|  is the magnitude of AAF. 

It is also simple to prove a similar property for CAF [14],[16]: 
 

𝐴𝑢𝑣(−𝜏,−𝜔) =  𝐴𝑣𝑢∗ (𝜏,𝜔) 𝑒𝑗𝜏𝜔 
 

|𝐴𝑢𝑣(−𝜏,−𝜔)| =   |𝐴𝑣𝑢 (𝜏,𝜔)|  
 
where 𝐴𝑢𝑣(𝜏,𝜔) is the CAF between signal 𝑢(𝑡) and 𝑣(𝑡). However, 𝐴𝑣𝑢(𝜏,𝜔) is the CAF 
between arbitrary signals 𝑣(𝑡) and 𝑢(𝑡), not specifically related by delay and Doppler to a single 
transmitted signal. To develop a result that we can exploit for our purpose we explore a similar 
result for the case when the signals are received from a transmitter. Then (A1) gives  

 
𝑢(𝑡) = 𝑒−𝑗𝜔𝑐𝜏1 𝑒−𝑗𝜔1𝑡 𝑠̂(𝑡 − 𝜏1) 

 
𝑣(𝑡) = 𝑒−𝑗𝜔𝑐𝜏2 𝑒−𝑗𝜔2𝑡 𝑠̂(𝑡 − 𝜏2) 

 
where 𝜏1 and 𝜏2 are the time delays and 𝜔1 and 𝜔2 are the Doppler shifts for the first and second 
received signals.  Now, we can write one of them in terms of the other one, 
 

                                   𝑣(𝑡) = 𝑢�𝑡 + 𝜏𝑝�𝑒𝑗𝜔𝑐𝜏𝑝  𝑒𝑗𝜔𝑝𝑡 𝑒𝑗𝜔1𝜏𝑝                (A5) 
 
where 𝜏𝑝 = (𝜏1 − 𝜏2)  is the TDOA and 𝜔𝑝 = (𝜔1 − 𝜔2) is the FDOA. 
 
 

              𝐴𝑢𝑣(𝜏,𝜔) =  ∫ 𝑢(𝑡)𝑣∗(𝑡 − 𝜏)𝑒𝑗𝜔𝑡𝑑𝑡 +∞
−∞         

(𝐴5)
���      

 
                               = 𝑒𝑗𝜔𝑝𝜏−𝑗𝜔𝑐𝜏𝑝−𝑗𝜔1𝜏𝑝 ∫ 𝑢(𝑡)𝑢∗�𝑡 − (−𝜏𝑝 + 𝜏)� 𝑒𝑗�𝜔−𝜔𝑝�𝑡𝑑𝑡 +∞

−∞  
 

                =  [𝑒𝑗𝜔𝑝𝜏−𝑗𝜔𝑐𝜏𝑝−𝑗𝜔1𝜏𝑝] 𝐴𝑢𝑢�𝜏 − 𝜏𝑝,𝜔 − 𝜔𝑝�                                             (A6) 
 

 
Thus, the CAF is rewritten in terms of AAF. Then, by replacing the 𝜏 by (𝜏 + 𝜏𝑝) and 𝜔 

by (𝜔 −𝜔𝑝), the following equations are concluded, 
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𝐴𝑢𝑣�𝜏 + 𝜏𝑝,𝜔 + 𝜔𝑝� = 𝑒𝑗𝜔𝑝�𝜏+𝜏𝑝�−𝑗𝜔𝑐𝜏𝑝−𝑗𝜔1𝜏𝑝  𝐴𝑢𝑢(𝜏,𝜔)                        (A7) 
 

𝐴𝑢𝑢∗ (𝜏,𝜔) = 𝑒𝑗𝜔𝑝�𝜏+𝜏𝑝�−𝑗𝜔𝑐𝜏𝑝−𝑗𝜔1𝜏𝑝  𝐴𝑢𝑣∗ �𝜏 + 𝜏𝑝,𝜔 + 𝜔𝑝�                       (A8)     
 
Now, by negating the 𝜏 and 𝜔 in (A7), we have:  
 
 
𝐴𝑢𝑣�−𝜏 + 𝜏𝑝,−𝜔 + 𝜔𝑝�  = 
 

 
(𝐴7)
���   = [𝑒𝑗𝜔𝑝�−𝜏+𝜏𝑝�−𝑗𝜔𝑐𝜏𝑝−𝑗𝜔1𝜏𝑝] 𝐴𝑢𝑢(−𝜏,−𝜔) 
 

(𝐴4)
���   = �𝑒𝑗𝜔𝑝�−𝜏+𝜏𝑝�−𝑗𝜔𝑐𝜏𝑝−𝑗𝜔1𝜏𝑝   𝑒−𝑗𝜔𝜏� 𝐴𝑢𝑢∗ (𝜏,𝜔) 

 

 
(𝐴8)
���   = �𝑒𝑗𝜔𝑝�−𝜏+𝜏𝑝�−𝑗𝜔𝑐𝜏𝑝−𝑗𝜔1𝜏𝑝   𝑒−𝑗𝜔𝜏 𝑒𝑗𝜔𝑝�𝜏+𝜏𝑝�−𝑗𝜔𝑐𝜏𝑝−𝑗𝜔1𝜏𝑝  �𝐴𝑢𝑣∗ �𝜏 + 𝜏𝑝,𝜔 + 𝜔𝑝� 
 

    =   [𝑒(𝑗2𝜔𝑝𝜏𝑝−𝑗2𝜔𝑐𝜏𝑝−𝑗2𝜔1𝜏𝑝)  𝑒−𝑗𝜔𝜏] 𝐴𝑢𝑣∗ �𝜏 + 𝜏𝑝,𝜔 + 𝜔𝑝� 
 
                =   𝑒−𝑗(𝜔𝜏+𝛽) 𝐴𝑢𝑣∗ �𝜏 + 𝜏𝑝,𝜔 + 𝜔𝑝� 
 
where 𝛽 is defined as �2𝜔𝑝𝜏𝑝 − 2𝜔𝑐𝜏𝑝 − 2𝜔1𝜏𝑝� and finally,  
 

𝐴𝑢𝑣�−𝜏 + 𝜏𝑝,−𝜔 + 𝜔𝑝� =    𝑒−𝑗(𝜔𝜏+𝛽) 𝐴𝑢𝑣∗ �𝜏 + 𝜏𝑝,𝜔 + 𝜔𝑝�                   (A9) 
and 
 

| 𝐴𝑢𝑣�−𝜏 + 𝜏𝑝,−𝜔 + 𝜔𝑝� |  = | 𝐴𝑢𝑣 �𝜏 + 𝜏𝑝,𝜔 + 𝜔𝑝� |                       (A10) 
 
 
which is the symmetry property we can exploit for data compression. This result provides a kind 
of symmetry of the CAF around the point �𝜏𝑝,𝜔𝑝� or the peak of CAF magnitude.  

Now, it is possible to exploit this property in data compression. In practice, the received 
signals 𝑢(𝑡) and 𝑣(𝑡) are the delayed and Doppler-shifted version of transmitted signal plus 
noise. This noise perturbs the CAF a little bit from the perfect symmetry.  

Thus, we rewrite (A10) as, 
 

| 𝐴𝑢𝑣�−𝜏 + 𝜏𝑝,−𝜔 + 𝜔𝑝� |  = | 𝐴𝑢𝑣 �𝜏 + 𝜏𝑝,𝜔 + 𝜔𝑝� |  +  𝐸                          (A11) 
 
where E can be the error from perfect symmetry which is a negligible value.  Thus, using the 
symmetry property, it is possible to extract the entire CAF magnitude by transmission of only 
half of the CAF magnitude plus the small residual amount of E. In this scheme we apply the 
EZW data compression method on only half of CAF as well as on E. 
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LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS 
 
 
AAF   auto ambiguity function 
ADC   analog-to-digital converter 
AESA  active electronically scanned array 
BPDN   basis pursuit denoising 
BPIC   basis pursuit with inequality constraints 
BPSK   binary phase shift keying 
CAF   cross-ambiguity function 
CAM   cross ambiguity matrix 
COMINT  communication intelligence 
COTS   commercial-off-the-shelf   
CRLB  Cramer-Rao lower bound 
DAWG  digital arbitrary waveform generator 
DPD   direct position determination 
ELINT  electronics intelligence  
EZW   embedded zerotree wavelet 
FDOA  frequency-difference-of-arrival 
GLR   generalized likelihood ratio 
LPE   lowpass equivalent 
LPI    low-probability of intercept 
ML  maximum likelihood 
RF   radio frequency 
SNR  signal-to-noise ratio 
SVD   singular value decomposition 
TDOA  time-difference-of-arrival 
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