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Abstract—In this paper, we present an autonomous cognitive
radio (CR) architecture that incorporates the main features of
cognition. This model, referred to as the Radiobot, is capable
of self-learning and self-reconfiguration to match its RF environ-
ment. The proposed CR architecture assumes a joint blind energy
and cyclostationary detection methods to classify the communi-
cation systems in its vicinity, without any prior knowledge of the
sensed signals. We derive the receiver operating characteristic
(ROC) of the energy detector and show, analytically, the impact
of the sliding window length on the energy detection. A learning
algorithm is proposed, allowing the Radiobot to independently
learn from its past experience in order to optimize its operating
parameters. By applying the learning algorithm to the sensing
module, we verify, through simulations, the convergence of the
proposed algorithm to the optimal solution.

I. INTRODUCTION

Inspired by the concept of robots in mechanical systems,

a next generation of autonomous cognitive radio (CR) archi-

tecture called the Radiobot was proposed in [1]. The notion

of Radiobots goes beyond the current trend of CR which

primarily aims at achieving dynamic spectrum sharing (DSS).

In [1], the authors laid out a broader and more ambitious

notion of autonomous radio devices that are capable of inde-

pendently finding and joining/avoiding any radio network in

their vicinity in order to achieve the best possible performance

in any given RF environment. To achieve this, one of the

most important requirements for the Radiobot is to be aware

of its RF environment [1]. More particularly, the Radiobot

should be able to identify/classify different activities in its

vicinity by using both effective and efficient sensing, feature

extraction and learning methods. For instance, by identifying

the types of active communication systems and the number

of users associated with each system, it makes it possible for

a Radiobot to adjust its communication mode to communi-

cate efficiently while avoiding harmful interferences, such as

jammers. Moreover, by knowing the number of users in each

sub-band, the Radiobot can estimate the available spectrum

resources, which helps to implement efficient spectrum sensing

and communication policies.

Given the importance of machine learning and reconfig-

urable hardware in the design of the Radiobots [1], we

propose, in this paper, a learning algorithm that allows the

Radiobot to improve its sensing techniques and adapt its

design parameters based on its past experience. This allows

realizing the Observe-Decide-Act-Learn (ODAL) cognition

cycle of [1] and leads to the design of a real cognitive engine

(CE).

Different learning algorithms, such as the reinforcement

learning (RL) [2], have previously been applied to CR ap-

plications to achieve autonomous cognitive behavior. The RL

is an unsupervised learning algorithm that allows an agent to

independently learn from past experience by trial-and-error

[2]. This algorithm was applied for interference control in CR

networks in [3] and for deriving distributed Medium Access

Control (MAC) protocols for CR’s in [4]. The RL is suitable

for Markovian environments in which it can assure certain

optimal behavior [2]. In our case, however, since we do not

assume any underlying Markovian framework, we propose

a different unsupervised learning algorithm that allows the

Radiobot to self-reconfigure its operating parameters. Our

proposed algorithm is similar to that in [5] and is intended to

optimize the spectrum sensing thresholds in order to achieve

a desired false alarm probability. According to [5], the false

alarm probability is updated during a training period in which

no signals are present. In contrast, our proposed algorithm

does not require a training period and can update the cy-

clostationary detector parameters during normal operation,

whenever no signals are detected by the energy detector.

Moreover, the proposed learning algorithm does not assume

any prior knowledge of the observed data, and it minimizes the

Kullback-Leibler distance [5] between the desired and actual

performance measures. Due to the convexity of the Kullback-

Leibler function, the proposed algorithm is guaranteed to

converge to the optimal solution, as verified in the simulations.

In contrast with previously proposed MAC sensing pro-

tocols which assume prior knowledge of either the primary

channels [6] or the cyclostationary properties of the sensed

signals [7], our proposed Radiobot architecture assumes no

such knowledge. Instead, it uses a blind joint energy and
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cyclostationary detection method without any prior informa-

tion to identify the carrier frequencies and cyclostationarity

properties of active signals. The performance of the carrier

frequency detector is evaluated through its Receiver Operating

Characteristic (ROC). Based on the ROC, we show analytically

that the carrier frequency detection can be improved by using

energy detection with a sliding window. This result was

previously shown, only through simulations, in [8]. Moreover,

in this paper, we develop a feature extraction algorithm that

allows determining both the types and the number of users

at each carrier frequency. Several signal classification and

feature extraction methods have been proposed in the liter-

ature, including, for example, the model in [9] which uses

support vector machines (SVM’s). In this paper, however, we

employ non-parametric learning for autonomous signal iden-

tification/classification. In non-parametric approaches, models

are extracted from the structures present in the data itself.

Similarly to [10], we classify the extracted features based

on a Chinese restaurant process (CRP). The proposed feature

extraction/classification and learning are validated through

simulations.

The remainder of this paper is organized as follows: Section

II defines the system model. Section III describes the Ra-

diobot’s learning mechanism. We show the simulation results

in Section IV and conclude the paper in Section V.

II. SYSTEM MODEL

The proposed Radiobot architecture is aimed to operate in

a wideband spectrum, which is split into N sub-bands that

are sensed sequentially in a round-robin style. To illustrate

the same operating procedures in each and every sub-band,

we consider a single sub-band and denote by N(t) the total

number of signals at time t in this particular sub-band. Prior

to sampling, the received signal is down-converted to interme-

diate frequency (IF) by using a local oscillator with frequency

fI . The corresponding IF signal y(t) can be expressed as

y(t) = ℜ
{

∑N(t)
k=1

[

[hk(t) ∗ xk(t)] ej2π(fck
−fI)t

]}

+ n(t) ,

where ∗ denotes the convolution, xk(t) denotes the baseband

signal of user k using carrier frequency fck
, and hk(t) denotes

the baseband equivalent channel impulse response of the

channel between the user k and the Radiobot. The receiver

noise is denoted by n(t), which is assumed to be a white

noise process with double-sided power spectral density (PSD)

of N0

2 . The average noise power at the output of the sweeping

IF filter will thus be Pn = N0B
2 , where B is the IF filter

bandwidth. The resulting signal-to-noise ratio (SNR) at the

output of the IF filter is SNR = Ps

Pn
, where Ps is the received

signal power. We denote by y = [y(1), · · · , y(M)]
T

an M -

length vector of the sampled discrete-time IF signal, such

that y(k) = y(kTs), for k ∈ {1, · · · ,M}, where Ts is the

sampling period.

A. Identification of RF Activities

We apply a cyclostationarity-based signal detection to the

sensed vector y in order to identify the RF activity in the

sub-band of interest. We identify the active signals by their

carrier frequencies and the associated cyclic frequencies that

are induced by their symbol rates and coding schemes [11].

By using the discrete-frequency smoothing method described

below [12], we compute an estimate of the Spectral Correlation

Function (SCF) Sα
x (t, f) for a general discrete signal {x(t −

kTs)}
M−1
k=0 , for each sub-band. Firstly, the corresponding FFT

at time t is defined as [12]:

X̃(t, f) =

M−1
∑

k=0

a(t − kTs)x(t − kTs)e
−j2πf(t−kTs)

, (1)

where a(t) is a triangular data tapering window. The FFT

X̃(t, f) is defined over the set of frequencies {− fs

2 ,− fs

2 +

Fs, · · · , fs

2 − Fs,
fs

2 }, where fs = 1
Ts

and Fs = 1
MTs

is the

frequency increment. An approximation to the SCF is [12]:

S̃α
x (t, f) =

1

LT

(L−1)/2
∑

ν=−(L−1)/2

X̃(t, f+
α

2
+νFs)X̃

∗(t, f−
α

2
+νFs),

where T = MTs is the time length of the data segment, α
is the cyclic frequency and L (an odd number) is the spectral

smoothing window length. By setting α = 0, we may obtain an

estimation of the PSD of the discrete signal {x(t−kTs)}
M−1
k=0 :

S̃0
x(t, f) =

1

LT

(L−1)/2
∑

ν=−(L−1)/2

∣

∣

∣
X̃(t, f + νFs)

∣

∣

∣

2

. (2)

The above PSD is equivalent to the sliding window energy

detector that is proposed in [8]. The authors in [8] showed,

through simulations, that sliding window improves the perfor-

mance of energy detectors. In our paper, however, we derive

in (10) of the Appendix the analytical ROC of the sliding

window-based energy detector as a function of the smoothing

window length L and prove that larger sliding windows lead

to higher detection probability, as illustrated in Fig. 1.

The active carrier frequencies in a certain sub-band are

determined by setting a threshold on the above PSD. The

threshold ηPSD is based on the Neyman-Pearson optimality

and is derived in (9) of the Apppendix. The carrier frequencies

are estimated as the midpoints of the segments formed by in-

tersection between the PSD curve and the threshold line ηPSD.

We denote by Fc the set of all detected carrier frequencies.

Next, an estimate of the spectral autocoherence function

magnitude [11], [12] is computed as follows:

|C̃α
x (t, f)| =

|S̃α
x (t, f)|

√

S̃0
x(t, f + α/2)S̃0

x(t, f − α/2)
. (3)

We denote the cyclic sub-domain profile of carrier frequency

fc ∈ Fc as Ĩx(t, α, fc) = maxf∈[fc−∆fL,fc+∆fU ] |C̃
α
x (t, f)|,

where fc −∆fL and fc +∆fU are the lower, and upper limit

of the considered frequency range for carrier frequency fc,

respectively.

In [11], it is shown that digital signals exhibit cyclostation-

arity at multiples of their symbol rates. Moreover, the digital

signals may exhibit other periodicities as well: For example,

due to coding. We denote the RF signature of the signal

centered at fc as RF(fc) = {α 6= 0 : IE Ĩx(t, α, fc) ≥ ζ},
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where IE denotes the indicator function of event E =
{Ĩx(t, α, fc) is a local maximum}, and ζ ∈ (0, 1). It is hard

to derive, analytically, an optimal choice for the parameter ζ
due to the complexity of the cyclic sub-profile function and

the environment randomness. However, as we show in Section

III, we apply a learning algorithm to optimize the value of ζ
for any unknown environment.

B. Feature Extraction Method

We define a feature extraction method that helps to estimate

the number of distinct signals at each carrier frequency. This

method estimates the number of periodic-peaks sequences in

each cyclic sub-profile that is centered at carrier frequency

fc. According to the periodicity properties of the cyclic sub-

profiles, if a signal exhibits a cyclic component at a certain

cyclic frequency α, then it also exhibits cyclic components

at integer multiples of α. Thus, each periodic-peaks sequence

corresponds to at least one communication signal type. By

detecting the number of periodic-peaks sequences in a certain

cyclic sub-profile, we may determine the minimum number of

distinct communication signals that are transmitted simultane-

ously at each carrier frequency1. Each of those detected signal

is represented by its carrier frequency fc and its fundamental

cyclic frequency component α, thus defining a 2-D feature

space for identifying the minimum number of users at each

carrier frequency2. The detected features will be classified in

a 2-D feature space based on the CRP, similar to [10].

III. SELF-RECONFIGURATION OF THE SPECTRUM SENSING

MODULE

The performance of the Radiobot is related to the quality

and accuracy of the sensing observations. It is required to

optimize the sensing module so that it best estimates the RF

activity in the surrounding environment. Several parameters

may need to be optimized during the sensing process, such

as the sensing duration, detector thresholds, spectrum sensing

policies, etc. based on the particular RF environment it encoun-

ters at a given time. Due to its learning and reasoning abilities,

the Radiobot can dynamically adapts these parameters based

on its past experience. To be specific, assume that the Radiobot

needs to optimize its cyclic sub-profile threshold ζ such that

it achieves a certain false alarm probability. It is very hard

to obtain analytical solutions to this problem due to the

complexity of the cyclic profile equation and to the uncertainty

in the surrounding environment. A possible solution is to learn

the optimal threshold value iteratively based on the sensing

observations, as in [5].

An online learning algorithm was proposed in [5] to adapt

the threshold value of Neyman-Pearson test when the prob-

ability distribution of the detected signals is unknown. The

threshold is thus dynamically updated to achieve a desired

1Including primary users, interferers and cognitive secondary users.
2The feature space can be extended to higher dimensions to account

for other signal features, such as the direction of arrival. This allows to
discriminate between simultaneous transmissions having the same carrier
frequency, symbol rate and coding rate.

false alarm probability. The learning process is conducted

during a training period in which the observed data are

drawn from a null hypothesis. In our case, however, we

do not assume a training period and we propose a learning

algorithm that updates the cyclic sub-profile threshold ζ during

the normal operation time itself to achieve a desired false

alarm probability φ. By the help of the energy detection,

the learning algorithm identifies the absence of transmitted

signals to perform the learning process. The objective of

the learning algorithm is to minimize the Kullback-Leibler

distance K(P ||Q) between two probability distributions P and

Q, similar to [5], where:

K(P ||Q) =
∑

i

P (i) log
P (i)

Q(i)
.

We denote by P and Q the desired and actual probability

distributions of the cyclostationary detector output, condi-

tioned on the absence of transmitted signals. These proba-

bility distributions correspond to Bernoulli random variables,

representing whether a signal is (1) or is not (0) detected.

By defining φ and Pf (ζ) as the desired and actual false

alarm probabilities (for a given threshold ζ), respectively, the

Kullback-Leibler distance can then be expressed as:

K(P ||Q) = K(φ, Pf (ζ)) = φ log
φ

Pf (ζ)
+(1−φ) log

1 − φ

1 − Pf (ζ)
.

The Kullback-Leibler distance K(φ, Pf (ζ)) is a non-

negative quantity representing the difference between φ and

Pf (ζ), with K(φ, Pf (ζ)) = 0 if and only if φ = Pf (ζ).
Due to its convexity in Pf (ζ), the Kullback-Leibler distance

guarantees a global minimum and makes a perfect candidate

for convex optimization problems. Moreover, it was shown in

[5] that K(φ, Pf (ζ)) is convex in ζ if and only if Pf (ζ) is

monotonous, which is satisfied in our case. However, since the

analytical expression of Pf (ζ) is unknown, it can be estimated

as the ratio of sample points that exceed the threshold ζ in

the cyclic profile I(α), when there is no transmitted signals.

As noted in [5], to achieve accurate estimate for Pf (ζ), the

recursive adaptation in ζ should not be too frequent. This

Algorithm 1 Learning algorithm to control the cyclic sub-

profile threshold ζ

Initialize: counter = 1.
while No signal is detected by the energy detector do

Update the false alarm probability Pf (ζ) and counter =
counter + 1.
if counter = Nc then

Update ζ such that: ζ ← ζ + ψ (Pf (ζ) − φ).
Reset counter = 1.

end if
end while

is taken into account in the proposed learning algorithm

(Algorithm 1), in which the threshold ζ is updated after each

Nc > 1 updates of the false alarm probability Pf (ζ). The

value of Nc is selected such that it achieves convergence of

the estimated false alarm probability Pf (ζ).
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Fig. 1. The impact of the sliding window length L on the ROC of the carrier
frequency detector.

The update rule in Algorithm 1 minimizes the Kullback-

Leibler function since it follows a gradient descent direction

that reduces the difference |Pf (ζ) − φ| at a learning rate of

ψ > 0. Moreover, due to the convexity of the Kullback-Leibler

function, this algorithm is guaranteed to converge to a unique

optimal threshold value.

IV. SIMULATION RESULTS

First, we show, in Fig. 1, the performance comparison

between the sliding window-based (L > 1) and conventional

(L = 1) energy detections. The ROC’s of Fig. 1 show that

higher detection probabilities can be achieved for larger sliding

window length L.

Next, in order to verify the proposed signal classification

and learning techniques, first, we assume two arbitrary users

that are operating in the sensed sub-band of interest. These

users are assumed to transmit simultaneously at a WiFi channel

centered at f1 = 2.437GHz. Their transmit signals are sensed

and downconverted to an intermediate frequency (IF) by using

a local oscillator of 2.35GHz (chosen such that the IF signal

can be sampled using a realistic ADC). We assume that the first

user uses a symbol rate of 14Mbauds and the second system

uses 12Mbauds with a coding rate of 1/2. In each sensing

period of 12µs, the feature points (fc, α) are detected and

classified into clusters based on the CRP [10]. Figure 2 shows

the clusters after 20 sensing periods. We notice two major

clusters (in bold circles) which occur with a probability higher

than 0.1. These clusters are distributed around fc = 87MHz,

representing the carrier frequency after IF conversion. The

cluster with α = 6MHz corresponds to the signal of 12Mbauds

with a coding rate of 1/2, and the other cluster at α = 14MHz

corresponds to the uncoded signal of 14Mbauds.

Next, we verify, in Fig. 3, the convergence of the learning

algorithm proposed in Section III. We let φ to be the desired

false alarm probability of the cyclostationary detection and let

ζ be the control threshold. Starting from ζ = 0, Algorithm

1 converges to constant threshold at which the actual false

alarm probability Pf (ζ) converges to φ. The learning rate

is set to ψ = 0.2 and the threshold ζ is updated after

each Nc = 20 updates of the false alarm probability Pf (ζ).
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This result shows that the proposed learning algorithm can

accurately reconfigure the Radiobot’s parameters and helps

achieving the desired performance levels.

V. CONCLUSION

In this paper, we have proposed an autonomous sensing

architecture for a futuristic autonomous CR, referred to as the

Radiobot [1]. The proposed system applies a blind cyclosta-

tionary detection method to identify/classify the active users

in the RF environment. An ROC was derived showing that

energy detection can be improved by using sliding window

averaging techniques. We developed an unsupervised learning

mechanism that allows the Radiobot to learn from its past

experience and to self-reconfigure its sensing parameters.

We showed, through simulations, that the proposed learning

algorithm optimizes the Radiobot’s parameters in order to

achieve a desired objective.
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APPENDIX

DERIVATION OF THE THRESHOLD AND THE ROC FOR

CARRIER FREQUENCY DETECTION

Consider a sampled data sequence {x(k)}M−1
k=0 , with Ts as

the sampling period. We denote by {X(n)}M−1
n=0 its discrete

Fourier transform (DFT) obtained by FFT:

X(n) =

M−1
∑

k=0

x(k)e−j2πn k

M , for n = 0, · · · , M − 1. (4)

The average power in a spectral window of odd length

L, centered at n, can be approximated by T (n) =
∑(L−1)/2

l=−(L−1)/2 |X(n+l)|2. In order to derive the receiver oper-

ating characteristic (ROC) of the Neyman-Pearson detector, we

determine the distribution of T (n) under the two hypotheses:

H0 : x(k) = w(k), (5)

H1 : x(k) = s(k) + w(k), (6)

where {w(k)}M−1
k=0 are modeled as i.i.d. Gaussian random

variables, s.t. w(k) ∼ N(0, Pn). The signal {s(k)}M−1
k=0 in

(6) can be modeled as i.i.d. Gaussian random variables, s.t.

s(k) ∼ N(0, Ps). This is a reasonable assumption for signals

that are perturbed by propagation through turbulent media and

multipath fading [13]. It is well-known that the energy detector

is the optimal detector for unknown (random) signals.

Let x = [x(0), · · · , x(M − 1)]T , X = [X(0), · · · , X(M −
1)]T , XR = [ℜ{X(0)}, · · · ,ℜ{X(M − 1)}]T and XI =
[ℑ{X(0)}, · · · ,ℑ{X(M−1)}]T , , where ℜ{} and ℑ{} denote

the real and imaginary parts, respectively. The DFT in (4) can

be expressed as:

X
C

,

[

X
R

X
I

]

= Ax , (7)

where A is a 2M -by-M matrix of DFT coefficients. Since

{x(k)}M−1
k=0 are zero-mean i.i.d. Gaussian random variables,

then XC is a jointly Gaussian random vector. It can be shown

that, under H0, E{XC
(

XC
)T

} = MPn

2 IM (where IM is an

M -by-M identity matrix) and under H1 E{XC
(

XC
)T

} =
M(Ps+Pn)

2 IM . Therefore, elements of XC are uncorrelated.

Since XC is jointly Gaussian with uncorrelated elements, the

elements of XC are then independent. Also, since all the

elements have the same variance under the same hypothesis,

elements of XC are assumed to be i.i.d. zero-mean Gaus-

sian random variables with variance MPn

2 under H0, and
M(Pn+Ps)

2 under H1.

Under the above assumptions, T ′(n) = 2
MPn

T (n) is a

sufficient statistic for the hypothesis testing and follows a χ2
2L

distribution. The threshold η for carrier frequency detection

is defined s.t. Pr{T ′(n) > η|H0} ≤ αF , where αF is

the acceptable false alarm probability. Note that the noise

power Pn can be estimated, for example, by using the method

proposed in [14].

The Neyman-Pearson decision rule δ for carrier frequency

detection is then defined as:

δ (T ′(n)) =

{

0 if T ′(n) < η
1 otherwise

, (8)

where η = 2γ−1 (L; (1 − αF ) Γ(L)), γ−1 is the inverse lower

incomplete gamma function (where γ(k;x) =
∫ x

0
tk−1e−tdt

and the inverse is w.r.t. the second argument) and Γ(k) =
∫

∞

0
tk−1e−tdt is the gamma function. By applying this to the

PSD in (2), the threshold is given by:

ηPSD =
ηPn

2TsL
=

γ−1 (L; (1 − αF ) Γ(L)) Pn

TsL
. (9)

The resulting detection probability of this detector can be

expressed as:

PD = Pr{T ′(n) > η|H1} = 1 −
γ

(

L; η
2(1+SNR)

)

Γ(L)
, (10)

which represents the ROC of the carrier frequency detector.
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