
NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

UAV TO UAV TARGET DETECTION AND POSE
ESTIMATION

by

Riadh Hajri

June 2012

Thesis Advisor: Timothy H. Chung
Second Reader: Raymond Buettner

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

NSN 7540-01-280-5500 Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

6–6–2012 Master’s Thesis 21-06-2010 – 15-06-2012

UAV to UAV Target Detection and Pose Estimation

Riadh Hajri

Naval Postgraduate School
Monterey, CA 93943

Department of the Navy

Approved for public release; distribution is unlimited

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.IRB Protocol Number: NA.

The objective of this thesis is to investigate the feasibility of using computer vision to provide robust sensing capabilities suitable for
the purpose of UAV to UAV detection and pose estimation using affordable CCD cameras and open coding libraries. We accomplish
this by reviewing past literature about UAV detection and pose estimation and exploring comparison of multiple state-of-the-art
algorithms. The thesis presents implementation studies of detection approaches including color-based detection and
component-based detection. We also present studies of pose estimation methods including the PosIt algorithm, homography-based
detection, and the EPFL non-iterative method. The thesis provides a preliminary strategy for detecting small UAVs and for estimating
its six degree of freedom (6DOF) pose from image sequences within the prescribed airspace. Discussion of its performance in
processing synthetic data is highlighted for future applications using real-life data sets.

UAV detection, Pose estimation, Computer Vision, Obstacle Avoidance, Edge Detection, Morphological Filtering.

Unclassified Unclassified Unclassified UU 89

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release; distribution is unlimited

UAV TO UAV TARGET DETECTION AND POSE ESTIMATION

Riadh Hajri
Captain,Tunisian Air Force

Systems and Network Engineer, Tunisian Air Force Academy, June 2003

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SYSTEMS TECHNOLOGY

from the

NAVAL POSTGRADUATE SCHOOL
June 2012

Author: Riadh Hajri

Approved by: Timothy H. Chung
Thesis Advisor

Raymond Buettner
Second Reader

Dan Boger
Chair, Department of Information Sciences

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

The objective of this thesis is to investigate the feasibility of using computer vision to provide
robust sensing capabilities suitable for the purpose of UAV to UAV detection and pose estima-
tion using affordable CCD cameras and open coding libraries. We accomplish this by reviewing
past literature about UAV detection and pose estimation and exploring comparison of multiple
state-of-the-art algorithms. The thesis presents implementation studies of detection approaches
including color-based detection and component-based detection. We also present studies of
pose estimation methods including the PosIt algorithm, homography-based detection, and the
EPFL non-iterative method. The thesis provides a preliminary strategy for detecting small UAVs
and for estimating its six degree of freedom (6DOF) pose from image sequences within the pre-
scribed airspace. Discussion of its performance in processing synthetic data is highlighted for
future applications using real-life data sets.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

List of Acronyms and Abbreviations xiii

1 Introduction 1
1.1 Motivation . 1

1.2 Literature Review . 4

1.3 Main Contributions . 9

1.4 Organization of Thesis . 9

2 Model Formulation 11
2.1 Scenario Development . 11

2.2 Conventions . 13

3 Computer Vision Methods for UAV to UAV Detection 21
3.1 UAV Detection Algorithms . 21

3.2 Implementation and Experimental Results 27

3.3 Summary of Results . 31

4 Computer Vision Methods for UAV Pose Estimation 33
4.1 Pose Estimation Methods . 33

4.2 Implementation . 44

4.3 Simulation Setup . 45

4.4 Experimental Results. 46

4.5 Summary of Results . 51

5 Conclusions and Recommendations 55
5.1 Summary and Conclusions . 55

vii

5.2 Recommendations and Future Work 55

Appendix: Selected Matlab Source Code 57

List of References 65

Initial Distribution List 69

viii

List of Figures

Figure 1.1 Swarm vs.Swarm Unmanned Systems 3

Figure 1.2 General S&A system . 4

Figure 1.3 Thesis Organization . 10

Figure 2.1 Collision Course Manoeuvre . 12

Figure 2.2 Crossing Manoeuvre . 13

Figure 2.3 UAV Body Coordinate Frame . 14

Figure 2.4 Camera and Image Plane Coordinate Frame 15

Figure 2.5 Orthographic Projection . 17

Figure 2.6 Perspective Projection . 17

Figure 2.7 Scaled Orthographic Projection . 18

Figure 2.8 Camera Rotation and Translation . 19

Figure 3.1 UAV Detection using Edge Detection and Image Smoothing 21

Figure 3.2 Median Filtering . 22

Figure 3.3 Light Beacon Design . 24

Figure 3.4 Basic Morphological Operations . 26

Figure 3.5 Advanced Morphological Operations 26

Figure 3.6 Frame Grabbing . 27

Figure 3.7 Frame Cropping . 28

Figure 3.8 Detection using Edge Detection and Image Smoothing 28

ix

Figure 3.9 Color Bands Extraction . 30

Figure 3.10 Threshold Extraction . 30

Figure 3.11 Red Color Detection . 30

Figure 3.12 Color Blobs’ Centers of Mass . 30

Figure 4.1 Pose Estimation Process . 33

Figure 4.2 Perspective Projection . 34

Figure 4.3 PosIt Projections . 40

Figure 4.4 Coplanar Pose . 43

Figure 4.5 PosIt Feasible Solutions . 44

Figure 4.6 Calibration Pattern . 44

Figure 4.7 Calibration Images . 45

Figure 4.8 Simulation Setup . 47

Figure 4.9 EPFL Algorithm Rotation Angles Error 48

Figure 4.10 EPFL Algorithm Translations Error 48

Figure 4.11 EPFL Algorithm Execution Time . 49

Figure 4.12 PosIt Algorithm Rotation Error . 50

Figure 4.13 PosIt Algorithm Translation Error . 50

Figure 4.14 PosIt Algorithm Execution Time . 51

Figure 4.15 Homography Algorithm Rotation Error 51

Figure 4.16 Homography Algorithm Translation Error 52

Figure 4.17 Homography Algorithm Execution Time 52

x

List of Tables

Table 1.1 General Aviation Mid-Air Collision History 1

Table 1.2 Existing Guidance for Detection Search Areas 2

Table 3.1 Detection Rates for UAV Detection using Edge Detection and Image Smooth-
ing . 28

Table 3.2 Detection rates for Morphological filtering and color-based detection . . 31

Table 4.1 Numerical study parameter ranges . 47

Table 4.2 Summary of Results . 53

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

List of Acronyms and Abbreviations

UAV Unmanned Aerial Vehicle

UAS Unmanned Aerial System

CAS Collision Avoidance System

NAS National Airspace

FAA Federal Administration Agency

TCAS Traffic Alert and Collision Avoidance System

DoD Department of Defense

6DOF six Degrees of Freedom

IMU Inertial Measurement Unit

DGPS Differential Global Positioning System

FOV Field Of View

AGL Above Ground Level

MAC Mid-Air Collision

VO Vision Odometry

VFR Visual Flight Rules

FPS Frames Per Second

RGB Red, Green, Blue

ROI Region of Interest

SOP Scaled Orthographic Projection

xiii

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

Executive Summary

The objective of this thesis is to investigate the feasibility of using computer vision to provide
robust sensing capabilities suitable for the purpose of UAV to UAV detection and pose estima-
tion using affordable CCD cameras and open coding libraries. We accomplish this by reviewing
past literature about UAV detection and pose estimation and exploring comparison of multiple
state-of-the-art algorithms. The thesis presents implementation studies of detection approaches
including color-based detection and component-based detection. We also present studies of
pose estimation methods including the PosIt algorithm, homography-based detection, and the
EPFL non-iterative method. The thesis provides a preliminary strategy for detecting small UAVs
and for estimating its six degree of freedom (6DOF) pose from image sequences within the pre-
scribed airspace. Discussion of its performance in processing synthetic data is highlighted for
future applications using real-life data sets.

xv

THIS PAGE INTENTIONALLY LEFT BLANK

xvi

Acknowledgements

All praise to Allah Most Gracious, Most Merciful, Who, Alone, brings forgiveness and light
and new life to those who call upon Him; and to Him is the dedication of this work.

I gratefully acknowledge my advisor Professor Timothy Chung for his patient guidance and
thoughtful insight throughout this effort. I would also like to thank my second reader, Professor
Raymond Buettner, for his time and patience.

To my loving and supportive wife, Khira, who has always been dedicated to our family and
my career. I could not have done this without you.

xvii

THIS PAGE INTENTIONALLY LEFT BLANK

xviii

CHAPTER 1:
Introduction

1.1 Motivation
The collision of the Cessna 172 in Visual Flight Rules (VFR) conditions with a Cirrus SR22
in Aug 10, 2008 put to the test “big sky, little plane” theory, that states that wide-open spaces
generally prevent two aircraft from colliding. The National Transportation Safety Board deter-
mined that the probable cause(s) of this accident was the failure of both pilots to see and avoid
each other’s aircraft [1]. Table 1.1 gives statistics on the number of Mid-Air Collision (MAC)
in U.S. airspace between 1991 and 2002.

Year MAC Events Operating Hours (millions) Rate per 106 Flight Hours
1991 18 27.2 0.66
1992 11 24.8 0.44
1993 13 22.8 0.57
1994 11 22.2 0.50
1995 14 24.9 0.56
1996 18 24.9 0.72
1997 13 25.5 0.51
1998 14 26.8 0.52
1999 15 29.5 0.51
2000 19 30.8 0.62
2001 5 25.9 0.19
2002 7 25.9 0.27

Average 13.17 25.93 0.51

Table 1.1: This table shows the number of MAC for each year starting from 1991 to 2002 for the number
of operation hours. We can see that the year 1991 has the highest MAC rate and 2001 has the lowest rate
(from: [2]).

The introduction of Unmanned Aerial Vehicle (UAV)s into the National Airspace (NAS) is
challenging for the Federal Administration Agency (FAA) and the aviation community. Under
existing regulations in the U.S., UAV operations require special approval if operating higher
than 500 feet Above Ground Level (AGL) or over populated areas [3]. Furthermore, UAV oper-
ations beyond Line-of-Sight (LOS) may require an automated sense-and-avoid (S& A) system
due to potential communications latencies or failures. FAA policy to date has been to enforce
highly restrictive operating requirements that involve segregating UAV operations from those

1

of piloted aircraft, and confining the former to specially designated airspaces. Table 1.2 depicts
the azimuth and elevation boundaries.

Source Azimuth Elevation
FAA P-8740-51: How to Avoid

a Mid-Air Collision +/- 60 degrees +/- 10 degrees
International Standards,

Rules of the Air, Section 3.2 (ICAO) +/- 110 degrees No guidance
FAA Advisory Circular 25.773-1

(Transport Aircraft Design) +/- 120 degrees Variable: +37 and -25
degrees (varies with azimuth)

Table 1.2: Existing Guidance for Detection Search Areas (from: [2])

In addition to the safety concern, a major threat is that future warfighters may have to
face a UAS-equipped opponent [4] since many players have been active in acquiring their own
UAVs, requiring allied nations to refine techniques to counter hostile drones. In this respect
Department of Defense (DoD) has begun a series of research projects and exercises to test out
what functionality should the UAV offer to detect and counter such a threat. Thus the research
detailed in this thesis is part of an ongoing research project on “Swarm vs. Swarm Unmanned
Systems.” In this thesis UAV to UAV detection is considered one of the most important issues
to be addressed for both collision avoidance and any manoeuvre against enemy UAV. The
DoD performs a yearly exercise known as “Black Dart,” which aims to check the ability of a
variety of manned and unmanned aerial systems to detect and identify enemy Unmanned Aerial
System (UAS) platforms in flight. Figure 1.1 illustrates the overall components of the project
and fits this thesis’s research into the context of the larger project.

Whether the case is to safely fly UAVs, in the NAS or to counter enemy UAS, an auto-
mated “sense and avoid” system is key to enabling UAVs to routinely fly within shared airspace.
That is, an S&A system should be able to distinguish the target UAV from the background with
a performance that equals or exceeds that of a human pilot, as stated in flight regulations. Such
a detection system should provide:

• High detection rates
• Low false alert rates
• Early detection
• Real-time operation

2

Figure 1.1: Swarm vs. Swarm Unmanned Systems: This figure shows how the whole project is organized
and subdivided into smaller projects. In most cases, these smaller projects are theses being worked on
by Naval Postgraduate School students.. This thesis addresses local perception, which deals with target
segmentation, relative coordinates, and pose estimation using computer vision.

A general description of a sense and avoid system will involve the following steps:

• Sensing: obtaining accurate and reliable information about the airspace where the UAV
operates.

• Detection: Identify and prioritize collision threats based on the information sensed.
• Action: Determining Manoeuvre necessary to maintain safe separation or to engage in

3

some kind of operations.

Figure 1.2 illustrates the general description of such a sense and avoid system.

Figure 1.2: General S&A system (from: [5]): It is a Sensing Detection Threat identification and Avoid-
ance (a.k.a. SDTA) loop where the surrounding environment is continuously sensed, potential obstacles
are detected followed by a decision whether they are considered as threat or not and then the avoidance
manoeuvre is performed

The detection step is considered one of the most important component of the collision
avoidance system because of the critical information that it provides to systems responsible for
determining and executing appropriate action [5].

1.2 Literature Review
The global objective of the Collision Avoidance System (CAS) is to allow UAVs to operate
safely within the non-segregated civil and military airspace on a routine basis. Generally speak-
ing, a CAS can be achieved via cooperative or non-cooperative means, and the physical sensors
that collect the information may be categorized as either active or passive.

1.2.1 Sensors
UAV target designation devices are either passive or active sensors. Passive sensors rely on
radiated energy from the targets of interest. Passive sensors include optical cameras (such as
CMOS or CCD cameras), infrared cameras such as forward looking infrared (FLIR), and radio
receivers as well as radio direction finding equipment. Active sensors, on the other hand, re-
quire interaction with targets. They transmit energy and detect the energy reflected directly or
indirectly from these targets. There are several target acquisition sensors which can be carried
by each UAV as a payload. They are:

4

Electro-Optics
Optical sensors include both imaging and non-imaging sensors; many are based on the use of
lasers, imaging systems. Among these sensors we can mention FLIR or thermal imagers, which
is a device that enhances target acquisition in low visibility situation utilizing heat or thermal
images from the target. Many UAVs carry IR sensors on their payloads that detect heat as is the
case of the Global Hawk UAV [6] (along with synthetic-aperture radar as well as electro-optical
sensors). As a case study of the IR sensor’s effectiveness, it was used to assess the damage
inside the Japanese nuclear reactors after the 2011 earthquake and tsunami. Its IR sensors were
able to acquire images of the reactors showing which parts of them were at what temperatures.
IR requires heat from an object to perform object detection, which is most suitable for night-
time use. In addition to FLIR, we can mention high resolution charge coupled device (CCD)
cameras, which can help target detection and recognition during daylight where weather is clear.
It requires an advanced image processing and pattern recognition algorithm to analyze picture
and video imagery for target recognition tasks.

Radar/Lidar
Radar is the sensor of choice for long-range collision avoidance [2]; the problem with radar is
that long-range sensors require a lot of power and beam localization requires a large antenna
neither of which is suitable for small UAVs. Some work has been done to miniaturize radar so
that it will fit in small UAVs, but it is still in the experimental phase. Synthetic aperture radar
(SAR) and Light Detection And Ranging (Lidar) are also used as active sensors for various
missions, especially for target recognition and detection. Such active sensors can be helped by
the use of a moving target indicator (MTI) which enables the radar to designate a moving target
and engage the target continuously until a decision is made concerning the target or it is outside
the radar’s detection range.

Acoustic Sensors
Acoustic wave sensors are electronic devices that can measure sound levels [7]. When an acous-
tic wave travels through a certain material or along the surface of a material, it is influenced by
the different material properties and obstacles it travels through. Any changes to the charac-
teristics of this path affect the velocity and/or amplitude of the wave. These characteristics are
translated into a digital signal (output) using transducers and can be monitored by measuring
the frequency or phase characteristics of the sensor. These changes can then be translated to
the corresponding physical differences being measured. For example, Scientific Applications &
Research Associates, Inc. has developed a compact acoustic sensor system for detecting aircraft

5

known as Passive Acoustic Non-Cooperative Collision-Alert System (PANCAS) [2]. PANCAS
works by detecting the noise generated by aircraft. This system shows good performance in
adverse weather and battlefield conditions, but it suffers from low bearing resolution. The data
gathered from acoustic sensor can be used to cue optical sensors and other narrower Field Of
View (FOV) sensors to potential targets.

1.2.2 Operational Mode
Cooperative Collision Detection
A cooperative collision detection system includes all communications equipment that enables
exchange information (such as position, heading, speed and waypoints) between the cooper-
ative aircraft. Among these devices there is the Traffic Alert and Collision Avoidance Sys-
tem (TCAS) [8], which is based on a transponder and provides a highly reliable detection sensor
for cooperative threats. Other emerging technologies include Airborne Separation Assistance
Systems (ASAS) and Automatic Dependent Surveillance Broadcast (ADS-B) [9] [10]. The
Military Airborne Surveillance System (MASS) is the military counterpart to TCAS. Though
designed for manned aircraft, TCAS will likely work with larger UAVs though it may present
problems with smaller UAVs, which have limited payloads and low electrical generation ca-
pabilities. Another drawback of TCAS is seen when one of the UAVs fails to cooperate with
others; in this case, the system becomes useless.

Non-Cooperative Collision Detection
In non-cooperative collision detection systems, the solution requires new sensors from the avail-
able technologies including laser range finders, optical flow sensors such as Electro-Optical/Infra-
Red (EO/IR), radar systems or stereo camera pairs, or single moving camera. These sensors
provide situation awareness about the surrounding environment and all the processing and de-
cisions are made by the concerned aircraft without cooperation or feedback from others.

1.2.3 Related Works
This section introduces an extensive UAV target detection literature followed by works related
to UAV pose estimation while focusing on computer vision methods as the selected approach.

Target Detection
There has been extensive research on the subject of target detection and, more precisely, UAV
collision avoidance. Current research in this field has experimented with a variety of sensor
technologies, such as radar, laser range finders, sonar sensors, infrared sensors, and cameras.

6

The use of long-range high-resolution laser scanners on larger UAVs provided success-
ful navigation in cluttered environments [11]. Nevertheless, these UAVs are constrained to use
most of their payload capability to carry the laser scanner. Although laser scanners have been
miniaturized for use on small and Micro Unmanned Vehicles, the result is a loss of both resolu-
tion and sensing directions [12]. Radar has been also used as a reliable detection sensor suitable
for large UAVs, to the author’s knowledge there is no miniaturized implementation of radar to
fit in small UAVs; in addition, long-range radar requires significant power and a large antenna
to localize the beam.

The first feasibility study of hear-and-avoid was presented in [13] using acoustic vector
sensors on small UAVs; the study’s findings suggest that sounds as produced by civil aircraft
will be clearly detectable by the sensors, but that will not be effective for electrically powered
UAVs that produce very little sound.

An extensive focus has been given to the use of cameras for outdoor UAV sense-and-
avoid. This is because the camera is a passive sensor that consumes less energy compared to
radar, laser scanners, and active sensors in general and also because it has a relatively light
weight and fits easily in small UAVs.

S. Grzonka et al. [12] used passive, stereo image-based obstacle detection. The main
drawback of the use of stereo vision is that it has a limited detection range, which depends on
the resolution of the images and also the distance between the two cameras. Symington et al.
presented in [14] a probabilistic target detection by camera-equipped UAVs which considered
the problem of detecting and tracking a static target from a camera mounted below a quadrotor
UAV. For purposes of image registration, Speeded-Up Robust Features (SURF) were used [15].

The results of experiments with multi-source remote sensing images show that the ap-
proach used can achieve acceptable accuracy and satisfy real-time demand. However, registra-
tion error is difficult to analyse because it is hard to distinguish wrong features from features of
the area with local distortion. To solve this problem, a better feature-matching method should
be researched to eliminate incorrectly matched pairs [15].

Dae-Yeon and Tahk explored in [16] the use of a light source-aided computer vision
system for UAV landing using some colored LED (red and green) on the edge of the recovery
net and devising an algorithm to accurately detect these lights using image processing stage.

Continued advances in the fields of image-processing and computer vision have pro-

7

moted their suitability for target detection. That is, extensive work has been published such
as in [17] and [18]. The majority of the research that has been published on the topic of au-
tomatic target detection using computer vision employs different approaches including spatial
techniques, such as morphological filtering [19] which used a close-minus-open filter to extract
point-like features from large-scale clutter, such as clouds. The preliminary analysis of the data
set has yielded encouraging results, achieving first detection times at distances of approximately
6.5km (3.5nmi), and median filters [20] which deal with the problem of detection and tracking
of low observable small-targets from a sequence of IR images against a structural background
and non-stationary clutter, and temporal-based techniques such as 3D matched filtering [21] and
dynamic programming [22].

Pose Estimation
Pose estimation is considered to be a main function for UAV navigation which aims to determine
the position in term of x, y, and z coordinates and orientation in term of roll, pitch, and roll angles
(Chapter 2 provides more details about the subject) of an object, i.e., its six Degrees of Freedom
(6DOF). There are many approaches and technologies to detect and track the pose of an object.
For example, mechanical, magnetic, inertial, vision, and hybrid solutions exist, each having its
pros and cons [23]. Current systems use Inertial Measurement Unit (IMU)s with Differential
Global Positioning System (DGPS); however, DGPS requires an active communication channel
between the two aircraft.

There has been a variety of indoor pose estimation systems developed for aerial vehicles.
A well-known algorithm for pose estimation is the PosIt (Pose with Iterations) algorithm, which
estimates the pose of the camera with respect to an object and optimizes the error by using an
iterative process. This algorithm will be one of the approaches studied and implemented in the
current thesis.

Much of the prior research in using visual information for pose estimation has been in
Vision Odometry (VO) where a pose is computed directly from the motion of points in the
camera view. Another approach focuses on fusing information from a camera with a GPS/IMU
system to achieve more accurate pose estimation. In this respect, two fusion approaches were
used:

• The first uses visual information to gauge the accuracy of the GPS/IMU estimates [24],
which requires that the 3D location of points in the camera view be accurately estimated.

• The second approach directly estimates pose by aligning successive images; this method

8

can reach accurate results but requires extensive computation time.

Computer vision (a.k.a CV) has been largely used in pose estimation for both co-planar
and non-coplanar features points. In 1995, Daniel DeMenthon published a method called Pose
from Orthographic Projection and Scaling with Iterations (PosIt) [25] for non-coplanar points.
Its is a fast method that works with orthographic projection instead of perspective, which is
simpler to work with and can approximate the correct pose. DeMenthon also developed another
method [26] because the first version of PosIt does not work well for planar or close to planar
point clouds. The coplanar case will be the focus of this thesis, since the shape of the UAV of
interest is nearly planar.

Yang et al. [27] used computation of homography between planes for pose estimation
based on four coplanar points. This study achieved promising results in determining the pose of
four markers on a compact disk. Vincent Lepetit et al. developed a non-iterative pose estima-
tion [28] method that works well for many points, since the system of equations has the same
computation time for higher amount of points. This method uses four control points that are not
coplanar, and it defines all points according to these control points so only the control points
need to be found.

1.3 Main Contributions
This thesis shows the feasibility of UAV detection and pose estimation using commercially
available off-the-shelf (COTS) camera and computer vision approaches and libraries. The re-
sults of this thesis can be used as a starting point in a future design and implementation of
real-time vision based UAV detection and pose estimation. This thesis serves also as proof
of concept and foundation for computer vision techniques for both UAV detection and pose
estimation.

1.4 Organization of Thesis
Chapter 1 provides background and condensed literature on the various components of collision
avoidance system. Chapter 2 presents conventions, coordinates frames and camera model and
projections that will be used by computer vision algorithms. Chapter 3 explores two computer
vision algorithms for UAV detection, and presents their implementation and experimental re-
sults. Chapter 4 presents three pose estimation methods, discusses the simulation environment,
and evaluates the performance of each algorithm. Chapter 5 summarizes findings and explores
follow-on research questions. The thesis organization is depicted graphically in Figure 1.3.

9

Figure 1.3: Thesis Organization: After presenting a literature review, a description of different sce-
narios and conventions used is provided. UAV to UAV detection methods are discussed, algorithms
implementation are provided, and results are discussed. Three pose estimation approach are analyzed,
implemented and tested. The last chapter discusses conclusions and recommendations.

10

CHAPTER 2:
Model Formulation

This chapter details the modeling process for target detection and pose estimation. Included in
the chapter are descriptions of scenarios and evaluation measures, different coordinate frames,
camera models, and projections that will be used in computer vision algorithms to perform both
detection and pose estimation.

2.1 Scenario Development
While flying in a shared airspace the UAV should be able to detect and localize the target UAV
in both collision course where target flies head on directly toward the host UAV (Figure 2.1) and
crossing object manoeuvre where target UAV flies perpendicular to the host UAV (Figure 2.2).
The work will be based on the following assumptions:

• Flight speed is fixed at around 50 knots
If the velocity of the host UAV is denote by Vh, and the velocity of the target UAV) as Vt

then Vh = Vt = 50 knots.
• Airspace dimensions are 4km by 500m by 2km
• No counter manoeuvre or chasing is envisaged

Minimum Time for Detection
In the case of collision course manoeuvre, the target UAV will not appear to be moving in the
image plane because of its low relative velocity. For this reason, the detection will be difficult
and the time left to both detect and perform any action will be short. This time is function of the
two vehicles’ range of speeds and banking angles (banking angle, or roll, is the angle at which
the vehicle is inclined about its longitudinal axis with respect to its path).

In order to avert collision, the host UAV needs to begin the avoidance manoeuvre no
less than tmin_avoid seconds, which is translated as starting the manoeuvre when the target UAV
is outside the radius rmin = Vclos tmin_avoid, where Vclos is the closing velocity (assuming exact
head-on collision course, as in Figure 2.1), given by the following equation [2]:

Vclos =Vh +Vt (2.1)

11

It has been shown in [2] that, for for the instantaneous banking angle φmax, the minimum re-
quired time to make decision to avoid the target UAV. (It is the last chance to avoid a collision).

tmin_avoid =
√

2 rmin cot(φmax) = 5.6
√

π/2−φmax (2.2)

The approximate distance between the two aircraft at the start of the collision avoidance ma-
noeuvre must be:

davoid =Vclos tmin_avoid =
√

2 rmin cot(φmax) = 5.6Vclos
√

π/2−φmax (2.3)

These computed parameters provide constraints for the real-time computation required
to detect and identify potential targets in real-time which will be measure of effectiveness of
any proposed approach.

Figure 2.1: Collision Course Manoeuvre: Both host and target UAV are flying at constant speed vt = vh
= 50 knots. They are flying head on a collision course. The distance davoid is the threshold for collision
avoidance

Minimum Detection Arc Width
This section attempts to determine what the size of the target UAV must be in order to allow
detection to avoid a probable collision. The angle α subtended by the target UAV of width w as
viewed at a distance d [2] is given by

α = w/d (2.4)

12

Figure 2.2: Crossing Manoeuvre:Target UAV is flying perpendicular to the flight direction of the host
UAV. Both UAVs are flying at the same speed vt = vh =50 knots.

This case uses a fixed CCD camera so no revisit time: since it is not a scanning sensor. The
total time could take up to

ttotal = tdetect + tmin_avoid (2.5)

And the angle subtended in this situation is:

α = w/(ttotal ∗Vclos) (2.6)

Therefore for a given target UAV with a velocity Vt , the sensing system needs to be able to
detect it whose arc width is at least as small as α calculated above.

2.2 Conventions
2.2.1 Coordinate Systems
Multiple coordinate systems are often used to describe the positions of an object in a complex
environment.

UAV Body Coordinate Frame
The UAV body frame is noted by {B} and has its coordinates axis XB, Y B, ZB as shown in
Figure 2.3. The rotation angles are defined as:

• roll: φ B refers to whether the body is upside-down or not, i.e., its orientation within the

13

Figure 2.3: UAV Body Coordinate Frame:The frame origin is at the UAV’s center of gravity, the x-axis
points forward along the longitudinal axis of the aircraft, the y-axis points outwards towards the right
wing, and the z-axis is in the upward direction.

Y BZB plane, or rotating around the XB axis
• pitch: θ B refers to whether the body is tilted, i.e., its orientation within the XBZB plane,

or rotating around the Y B axis
• yaw: ϕB refers to the direction in which the body is facing i.e., its orientation within the

XBY B plane, or rotating around the ZB axis.

Camera Coordinate Frame
This is a right-hand orthogonal coordinate system whose origin is located at the focal point of
the camera, where the XC-axis points forward along the longitudinal axis of the camera, the
YC-axis points outwards toward the right hand side, and the ZC-axis points downward from the
origin (Figure 2.4).

Image Plane Coordinate Frame
The camera model used in this thesis is the pinhole camera. This model can be used to map
a three dimensional coordinates of a series of three dimensional coordinates of a point Mi,
represented in the camera coordinate frame to two dimensional coordinates in Image Plane
Coordinate Frame.

The coordinates of an object point Mi in the camera coordinate frame is MC
i = [XC

i ,Y
C
i ,ZC

i]
T

and its projection onto the image plane is the point mi whose coordinate in the image plane co-
ordinate frame is [xI

i ,x
I
i]

T as shown on Figure 2.4. The equation that expresses the mapping

14

Figure 2.4: Camera and Image Plane Coordinate Frame (after: [29]): The point c is the origin of camera
coordinate frame, or the camera center. The ZC axis is called the principal axis or optical axis for the
camera system.The principal point(p) is where the optical axis intersects the image plane. It establishes
the origin of the image plane coordinate system.The image plane coordinate frame is defined by the
origin p , the x-axis X I , and the y-axis Y I . The distance between the point c and p is called focal
length(f).

from camera coordinate frame to image plane coordinate frame is:[
xI

i

yI
i

]
= f/ZC

i ×

[
XC

i

YC
i

]
(2.7)

2.2.2 Camera Models
From a computer vision stand point and in order to work with a given camera, a camera model
and several camera related parameters must be fixed and computed in advance.

Pinhole Camera Model

Also known as Camera Obscura model, the pinhole camera model represents the mathematical
relationship between the coordinates of a 3D point and its projection onto the image plane.
The basis of projection comes from a model where all light from a scene passes through a
single point and projects an inverted image on the opposite side. Figure 2.4 illustrates a pinhole
camera model where the image points are in front of the camera center. A 3D point is projected
through origin C to the image plane (G) along ZC the relationship between the 3D and 2D

coordinates is given by Equation 2.7.

15

Camera Calibration
The purpose of camera calibration is to determine the intrinsic camera parameters that affect
the imaging process. These parameters are:

• Position of image center on the image: commonly noted by (cx,cy) which are the coordi-
nates of points p in Figure 2.4

• Different scaling factors for row pixels (sx) and column pixels (sy), i.e., pixels are not
typically square

• Focal length: denoted by f having two scaled components fx= f/sx and fy= f/sy

• Lens distortion: represents the radial distortion coefficient

For a CCD camera the lens distortion is assumed to be zero. The corresponding camera calibra-
tion matrix is given by:

K =

 fx 0 cx

0 fy cy

0 0 1

 (2.8)

In the current thesis the scaling factors are assumed to be equal to one and therefore f = fx = fy.
There is a very large body of literature on the subject of camera calibration, mainly influenced
by Roger Tsai’s work [30]. These can be roughly classified into two main methods:

• conventional method: uses 2D and 3D data to compute camera parameters. may work
with single view of image.

• camera self-calibration: only need image data for camera calibration but need image data
from multiple views.

Several calibration toolboxes has been implemented in both Matlab and C as in [31]. This
work has used a publicly-available calibration toolbox created by George Vogiatzis and Carlos
Hernández and can be found on [32]. A detailed description of the implementation will further
be discussed in Chapter 4.

2.2.3 Projection Models
Orthographic Projection
In an orthographic projection, a camera is at infinite distance from a 3D scene. All projection
lines are parallel to optical axis X I

i = XC
i and Y I

i = YC
i as seen in Figure 2.5 (because the focal

length is neglected in front of the infinite distance). Orthographic projections are a small set of
transformations often used to show profile, detail, or precise measurements of a 3D object.

16

Figure 2.5: Orthographic Projection (after: [29]): In this projection camera is at infinite distance from
the 3D world and all projections lines are parallel to the optical axis (ZC)

Perspective Projection

A distant object in perspective projection appears smaller than objects nearby. In general, a
camera frame is not aligned with the world frame. Image frame is not at image center, but it is
still parallel to the camera frame. Perspective projection equations for point Mi (Figure 2.6) are

X I
i = XC

i f/ZC
i (2.9)

Y I
i = YC

i f/ZC
i (2.10)

Figure 2.6: Perspective Projection (after: [29]): A 3D feature point Mi is projected onto an image plane
(G) on point mi with perspective rays originating at the center of projection (c), which would lie within
the physical camera

.

17

Scaled Orthographic Projection

A Scaled Orthographic Projection (SOP) is a first order approximation of the perspective pro-
jection. It assumes that the variation in the direction of the optical axis is small compared to the
viewing distance. In SOP, the image of a point Mi of an object is a point mi of the image plane
G which has coordinates:

X I
i = XC

i f/ZC
0 (2.11)

yI
i = YC

i f/ZC
0 (2.12)

where ZC
0 is the z-coordinate of reference point M0 in the camera coordinate frame, the ratio

s = f/Z0 is called the scaling factor of the SOP.

Figure 2.7: Scaled Orthographic Projection (after: [29]): An object is given by three points M0 the
reference point and Mi,M j. The coordinates of all objects points are expressed in function of the Z
coordinate of the reference point.

Camera Rotation and Translation

Rotations: Three basic rotations are performed separately [33]. These rotations are:

• Rotation along x-axis with angle φ also known as Roll

Rx(φ) =

 1 0 0
0 cosφ −sinφ

0 sinφ cosφ

 (2.13)

• Rotation along y-axis with angle θ also known as Pitch

18

Figure 2.8: Camera Rotation and Translation

Ry(θ) =

 cosθ 0 sinθ

0 1 0
−sinθ 0 cosθ

 (2.14)

• Rotation along z-axis with angle ψ also known as Yaw

Rz(ψ) =

 cosψ −sinψ 0
sinψ cosψ 0

0 0 1

 (2.15)

The resulting overall rotation matrix is

R = Rz(ψ)×Ry(ψ)×Rx(φ) =

 R11 R12 R13

R21 R22 R23

R31 R32 R33

 (2.16)

19

where

R11 = cosψ cosθ

R12 =−sinψ cosφ + cosψ sinθ sinφ

R13 = sinψ sinθ + cosψ sinθ cosφ

R21 = sinψ cosθ

R22 = cosψ cosφ

R23 =−cosψ sinφ + sinψ sinθ cosφ

R31 =−sinθ

R32 = cosθ sinφ

R33 = cosθ cosφ

Translation Vector: The translation vector is a 3D vector composed of displacement along
x-axis, y-axis, and z-axis

T =

 Tx

Ty

Tz

 (2.17)

20

CHAPTER 3:
Computer Vision Methods for UAV to UAV Detection

This chapter provides the theoretical foundation for the computer vision algorithms that will be
used. The first section deals with the detection problem by presenting two approaches, where the
former uses edge detection and image smoothing while the latter uses a morphological filtering
and color-based detection approach. The second section of this chapter presents discussion on
the implementation of these approaches and the experimental results.

3.1 UAV Detection Algorithms
3.1.1 UAV Detection using Edge Detection and Image Smoothing
Several steps are involved in this algorithm (Figure 3.1).

Figure 3.1: UAV Detection using Edge Detection and Image Smoothing

The first step in this approach is the “frame grabber,” in which the input video is con-
verted into frame sequences at a regular rate called Frames Per Second (FPS). The second step
is “Red, Green, Blue (RGB) to Gray scale conversion.” In an RGB image, a color pixel is de-
scribed by a triple (red (R), green (G), and blue (B)) of color values. The purpose of this step is
to map the color values to a single number, such as a gray scale value for intensity, to represent
each pixel. For example, the intensity information is composed exclusively of shades of gray,
varying from black at the weakest intensity to white at the strongest. Several methods have been
used to perform this conversion to generate a single representative value for each pixel:

21

• The lightness method averages the most prominent and least prominent colors:

max(R,G,B)+min(R,G,B)
2

• The average method simply averages the three color values:

R+G+B
3

• The luminosity method is a more sophisticated version of the average method [34]. It also
averages the values, but it forms a weighted average to account for human perception.
The formula for luminosity is:

0.21R+0.71G+0.07B

The next step is “median filtering,” which is a non-linear spatial filter widely used in
image processing because it preserves useful detail in the image while reducing noise. This is
a preliminary step to improve the later effort of edge detection. Roughly speaking, the median
filter takes the median value of pixels in a predefined window [35].

Figure 3.2: Median Filtering (from: [35]): The window size is 3×3 pixels. If we consider the pixel at
coordinates (2,2) in the image matrix which has a value equal to 200, its neighborhood values (inside
the defined window) are: 100,100,100,100,205,100,195,200, for which the median value is 100 and
replaces the first value (200).

After median filtering is performed, the frame is passed through Sobel edge detection.
Edge detection is a fundamental operation in computer vision. Edges are significant local
changes of intensity in an image and they typically occur on the boundary between two dif-

22

ferent regions in an image. Edge detection extracts salient features of the image and produces
a line drawing of the image. The Sobel edge detector is a 2D spatial gradient measurement
on an image. It uses a convolution kernel to create a series of gradient magnitudes so that it
emphasizes regions of high spatial frequency that correspond to edges [36]. The Sobel edge
detector uses a pair of 3×3 convolution kernels. An example of two associated kernels is:

Gx =

 −1 0 1
−2 0 2
−1 0 1


The next step is to perform “connected components extraction and image labeling.” In

image processing, a “connected components” algorithm groups pixels into components based
on pixel connectivity. That is, it finds regions of connected pixels that have the same value. Once
all components have been determined, each pixel is labeled according to the unique identifier
of its blob, identifying blob membership. Finally, a filtering operation is performed to eliminate
outliers and non-persistent features and to isolate and detect the object. The resulting output is
the center location of the detected object, usually represented in the image plane.

3.1.2 Morphological Filtering and Color-Based Detection
This algorithm is based on the use of a finite number of color markers attached to the UAV,
as in Figure 2.1 with six markers. They are spatially placed in an asymmetric manner that
helps facilitate robust detection and, as will be seen in later in this thesis, assist in accurate pose
estimation for planar points. The goal here is to detect these six colored patches and determine
their positions in the image plane.

Color Recognition
In order for a computer to process images acquired by external electro-optical sensors, the
image is encoded using different colors spaces. A color space describes the range of colors
that the camera can see. The color space is used to represent each color pixel in an image.
For this thesis, we introduce the two main color spaces used in computer vision, which are the
RGB-space and the HSV-space.

• RGB Color Space: The RGB color space [37] uses additive color mixing; it is “all
possible colors” that can be made from three colorants for red, green and blue. It describes
what kind of light needs to be emitted to produce a given color. In the RGB color space,

23

Figure 3.3: Light Beacon Design: This figure depicts six red markers placed in an asymmetric manner
on the UAV’s surface. These markers are coplanar as we are dealing with coplanar case

individual values for red, green and blue are stored as described in thevus section. A
common notation for RGB pixels is I(x,y,band) where I is the image; x,y are the x and y

pixel coordinates, and band is the color channel, either one for red, two for green or three
for blue.

• HSV Color Space: The HSV (hue, saturation, value) color space [37], also known as
HSB (hue, saturation, brightness), is often used by artists because it is generally more
natural to think about a color in terms of hue and saturation rather than in terms of ad-
ditive or subtractive color components. The HSV-space is a transformation of the RGB
colorspace, and its components and colorimetry are relative to the RGB colorspace from
which it was derived.

Detection Process
Here, a colored image of three channels, that is, R, G, and B, is taken. Thus, each pixel has a red,
green and blue value. The aim is to retrieve these values from an image, then extract and isolate
specifically the red patches. (Red is selected arbitrarily and the described approach extends
naturally to other colors.) In an ideal case, a red pixel means R=255, G=0, and B=0. However, in
reality, there will also be green and blue components, too. In order to do segmentation according
to color, the following three-step algorithm are applied, as developed in open source [38]:

Thresholding: Image thresholding is a basic technique used for image segmentation. The main
purpose is to extract the object of interest from the background. That is, it is necessary to select
a threshold δ that separates these two image components. If we consider that the binary image

24

is represented by I(x,y) (neglecting band), then those pixels (x,y) for which I(x,y) ≥ δ are
considered points representing the object.

Morphological Filtering: Morphological filtering [39] is based on two primary morphological
operations known as dilation and erosion. The dilation of a gray scale image, I(x,y), by a
morphological structuring elements, SE(x,y), is defined by Equation 3.1(from: [40]), where ⊕
denotes the dilation operator and p is a pixel in the image I:

I⊕SE =
⋃
p∈I

SEp (3.1)

Dilation is used for filling gaps in images; it gradually adds more individual pixels to the output
image when sweeping I with SE (Figure 3.4). That is, it grows image regions. For each pixel in
the image I we superimpose the structuring element SE on top of the image matrix so that the
origin of the structuring element coincides with the current pixel position. If the origin of SE

matches the underneath pixel in I, the contents of SE are copied to the resultant image.

In contrast, the erosion of a gray scale image, I(x,y), by morphological structuring
elements, SE(x,y), is denoted by the 	 operation and its definition is given by Equation 3.2
(from: [40]), where p is a pixel in the image I and s is a pixel in the structuring element SE:

I	SE = {p|p+ s ∈ I∀s ∈ SE} (3.2)

Erosion is used to eliminate unwanted noise in a processed image by shrinking image
regions (Figure 3.4). For each pixel in the image I, the structuring element SE is superimposed
on the image matrix, so that the origin of the structuring element coincides with the current pixel
position. If every pixel underneath the structuring element coincides with the pixel of SE, the
current pixel is considered a foreground pixel and set to one; otherwise, the pixel is considered
a background pixel and set to zero.

The combination of these two basic operations form morphological opening and mor-

phological closing. The morphological opening is an erosion followed by a dilation (Fig-
ure 3.5), using the same structuring element SE for both operations. The opening operation
has basically the same effect as erosion, but it is less destructive in the sense that it tends to
preserve foreground pixels that have a similar shape as SE.

25

Figure 3.4: Basic morphological operations (after: [39]): The figure illustrate a binary image I to which
we apply a morphological erosion and dilation using the structuring element SE.

On the other hand, the morphological closing is a dilation followed by an erosion (Fig-
ure 3.5), using the same structuring element SE for both operations. It is similar to dilation, but
it is less destructive in a sense that fills in holes and narrows valleys along edges in the image,
I.

Figure 3.5: Advanced morphological operations (after: [39]): A dilation followed by an erosion gives a
morphological closing, and an erosion followed by dilation gives morphological opening using the same
structuring element SE.

Blob Masking and Filtering Process: After morphological filtering, the next step is “blob
masking and filtering process,” where the resulting image form the previous steps is used to fill
background holes, for example, by using the Matlab function imfill. A mask for red color
is then created, so that when applied, the masked image extracts the red blobs with a black
background (that is, non-masked pixels are set to zero). A filtering step is needed to suppress
residual noise from the previous operations. The last step is to compute the centroid of the
individual red blobs in the image coordinate frame (Figure 3.12).

26

3.2 Implementation and Experimental Results
3.2.1 Detection Metrics
Many measures of detection performance that are commonly used can readily be found in the
literature, including:

• High correct (positive) detection rate
• Low false alarm rate
• Real-time operation measured by computation time (of algorithms)

3.2.2 UAV Detection using Edge Detection and Image Smoothing
To evaluate and test this approach video of one approaching plane on USS JOHN C. STENNIS

(CVN-74) was used, courtesy of previous work done by Ryan S. Yusko [39].

As mentioned in Section 3.1.1, the first step is to perform the frame grabbing. The
approach video was stored in MPEG-2 format with a resolution of 720 pixels wide by 480
pixels high, interlaced at 29.97 FPS [39]. We developed a Matlab function to read the video
frame by frame and save each frame as a JPEG image. Figure 3.6 illustrates the collection of
grabbed frames.

Frame 1 Frame 100 Frame 200

Frame 300 Frame 500 Frame 700

Figure 3.6: Frame Grabbing: Illustration of frame grabbing that takes as input the test video and converts
it to individual frames at near 30 frames per seconds.

The second step is “frame cropping.” After some experiences with these frames, we
noted that the annotations that show on the video make the detection difficult, so it was decided
to define a Region of Interest (ROI) as being the upper right quadrant of the image frame to
keep only the ROI (Figure 3.7). The “cropping function” developed in Matlab can be found in
the Appendix.

27

Cropped frame 1 Cropped frame 100 Cropped frame 200

Figure 3.7: Frame cropping: It has been noted that most of time the approaching plane is on the upper
right corner where both x and y coordinate are positive, so a cropping operation was needed eliminate
the digital numbers that comes with the recorded video, which makes the detection harder.

For illustration purposes, we chose frame number 20 for application of, respectively,
RGB to gray scale conversion, Sobel detection to detect connected components, and filtering
and outlier suppression as outlined previously. The sequence of the process is illustrated in
Figure 3.8.

(a) (b) (c)
Figure 3.8: Detection using Edge Detection and Image Smoothing, showing application of (a) RGB to
gray scale conversion, (b) connected components detection, and (c) filtering and outliers suppression

Detection Rate Results
We performed object detection experiments using the edge detection and image smoothing ap-
proach over 191 frames, with the following results:

Number of tested frame Detection Missed detection Mean execution time [sec]
191 169 22 1.4

Table 3.1: Detection rates: The probability of detection is 0.884 and the probability of missed detection
is 0.115

Indeed, this approach shows high detection rate with a detection probability of 0.884 and
a mean execution time of 1.4 seconds. The mean execution time is the average computation time

28

measured after running the algorithm on 191 frames with a HP laptop Intel Core i5 and Matlab
as programming environment. The assumption under which this approach was implemented is
that there are no other objects on the scene having the same size as the target UAV. That is, this
approach exhibits high false alarm rates in highly cluttered image environments where many
objects appear to have in the same shape as the target UAV. Investigation of methods to address
this issue are reserved for future work.

3.2.3 Morphological Filtering and Color-Based Detection
This approach is mainly inspired by the work in [38]; however, that study used HSV as color
space, while the present study use RGB. Though the emphasis in this section is to describe the
approach as applied to UAV detection, its use is further motivated by our intent to apply it to
the pose estimation problem in Chapter 4. Six red patches are used in an asymmetric configu-
ration on the UAV plane as previously shown in Figure 3.3. This method uses a morphological
structuring element having a disk shape with a radius = 2 pixels using the Matlab function call
(see also Appendix):
structuringElement = strel(’disk’, 2)

Then the morphological closing operation is applied to the image to enlarge the bound-
aries of foreground (bright) regions and shrink background color holes in such regions using
the following Matlab function:
redObjectsMask = imclose(redObjectsMask, structuringElement)

The next step in this approach is to determine the color threshold (Figure 3.10). using
the individual color bands, as illustrated in Figure 3.9. After determining the upper and lower
bound of each color band’s threshold, these thresholds are applied to mask green and blue
colors, while keeping the red. These thresholding steps provide the input to the morphological
filter, namely the image showing only red objects, as illustrated in Figure 3.11.

The next step in the detection process extracts connected components (red markers) and
determines their center of mass locations in the image plane coordinate frame, as illustrated in
Figure 3.12. These locations are then recorded and used to register detection of the UAV.

Detection Rate
The metric for the presented detection algorithm is the number of red spots detected. That is,
if more than four red patches are successfully detected, the detection process for localizing the
UAV object within an image is considered successful. To test this algorithm, we generated a

29

(a) (b)

(c) (d)
Figure 3.9: Color Band Extraction: Individual color bands of red, green, and blue (panels (b), (c), (d),
respectively) were extracted and saved, from the original image shown in (a).

(a) (b)
Figure 3.10: Threshold Extraction: Determine a threshold for each color, e.g., by use of color his-
tograms: (a) histogram for all three color bands, (b) histogram associated only with the red band.

Figure 3.11: Red Color Detection: The individual color thresholds are applied to mask green and blue
colors, while keeping the red. The resulting image is shown, highlighting the locations of the six red
patches placed on the UAV body.

Figure 3.12: Color blobs’ Centers of Mass: The center of gravity for each individual red blob is deter-
mined and saved. Their coordinates are computed on the image plane coordinate frame.

30

large number of images in laboratory settings using different configurations of red patches on
the UAV, and obtained the following results.

Number of runs Detection Missed detection Mean execution time (seconds)
40 38 2 2

Table 3.2: Detection rates: Where “number of runs” are the number of randomly generated red color
markers in a planar distribution. In this approach the probability of detection was 0.95 and the probability
of missed detection was 0.05

Indeed, this approach shows high detection rate with a detection probability of 0.95 and
a mean execution time of 2 seconds measured after running the algorithm on 40 runs with a
HP laptop Intel Core i5 and Matlab as the computation environment. The assumption under
which this approach was implemented is that there are no other red objects on the scene and the
lighting conditions are suitable for detection red color. That is, this approach exhibits high false
alarm in the presence other sources of red color and in a poor lighting conditions. Robustness
studies are left for future study.

3.3 Summary of Results
The first detection method “UAV detection using edge detection and image smoothing” shows
high detection rate with a detection probability 0.884 and a mean execution time of 1.4 seconds,
which means the average computation time measured after running it on 191 frames with a HP
laptop Intel Core i5 and Matlab as the computation environment. This approach was imple-
mented under the assumption that there are no other objects in the scene having the same size as
the target UAV. That is, it exhibits high false alarm in highly cluttered sky environments where
many objects appear to be the same shape as the target UAV. A tracking function can be used to
help eliminate these false alarms.

The second detection method “morphological filtering and color-based detection” where
red color markers are placed on the surface of the target UAV in an asymmetric configuration.
This method shows high detection rate with a detection probability 0.95 and a mean execution
time of 2 seconds, which means the average computation time measured after running it on 40
random red patch distribution. This approach was implemented under the assumption that the
target UAV is detected if it is possible to detect four red patches. That is, it exhibit low detection
rate in low lighting condition and the target UAV orientation with respect to the camera. It also
faces false alarm problem when there are other sources of red color.

31

THIS PAGE INTENTIONALLY LEFT BLANK

32

CHAPTER 4:
Computer Vision Methods for UAV Pose Estimation

This chapter addresses the UAV pose estimation problem. The first section presents a theoretical
foundation for three pose estimation methods including one that provides pose estimation using
planar homography, a non-iterative pose estimation approach developed by researchers at EPFL,
and application of the Posit algorithm for coplanar points to estimate pose. The second section
presents their implementation and experimental results, followed by a summary of results.

4.1 Pose Estimation Methods
The goal of pose estimation is to get the position and orientation of an object (i.e., six degrees
of freedom) from a 2D image (e.g., from a CCD camera). That is, given a calibrated camera, an
object with identifiable feature points, and their corresponding points on the image plane, the
goal is to obtain the rotation (roll, pitch, yaw) and the translation (x, y, z) of the object relative
to a known reference frame, as illustrated in Figure 4.1. As we mentioned in Chapter 1, this
study focuses on planar feature points, as the UAV model used has a nearly planar shape.

Figure 4.1: Pose Estimation Process: A generic pose estimation algorithm takes as input the 3D features
points, the image coordinates of these features points on the image plane, and the camera intrinsic
parameters and provides as output the rotations angles and the translation vector.

4.1.1 Pose Estimation using Planar Homography
The technique used herein follows from the method proposed by Yang and his colleagues [27],
although pose estimation using homographies has extensive literature with applications includ-
ing finding ground planes, walls, and roads.

Problem Formulation
Suppose there are N object points represented by its homogeneous coordinates in the UAV
reference frame, where the ith point is represented by coordinates, Mi = (XB

i ,Y
B
i ,ZB

i ,wi)
T . Recall

that the superscript B denotes the (UAV) body-fixed frame. The corresponding homogeneous

33

coordinates of their images with respect to the image plane reference frame are denoted by
superscript I, such that each ith point is represented by mi = (xI

i ,x
I
i ,λi)

T . The terms wi and λi

are the homogeneous parameters and for simplicity, are usually set to one. The geometry and
associated reference frames are illustrated in Figure 4.2. Taking into account that all points
are coplanar points, the UAV body frame is adjusted in a way that the plane Π, the plane that
contains all the feature points, coincides with the plane OXB Y B which will let ZB

i = 0 for all
object points. Given these definitions, the objective is to compute the homography, H, from
which it is possible to extract the rotation and translation matrices, R and T , respectively.

Figure 4.2: Perspective Projection (after: [27]): A set of features points {M1,M2,M3,M4} are projected
into the image plane using perspective projection resulting in four image points {m1,m2,m3,m4} having
their coordinates represented on the image plane reference frame.

The points Mi and their perspective projections mi are related by Equation 4.1:

mi = KR
[

I3×3 T
]

Mi (4.1)

where K is the 3× 3 camera calibration matrix (c.f. Chapter 2, Equation 2.8) and R is 3× 3
rotation matrix that represents the rotation of the object relative to camera coordinate frame and
T is 3× 1 translation vector. Mi is 4× 1 homogeneous coordinate of object points i, while mi

is 3× 1 homogeneous coordinate of the corresponding image points. The augmented matrix[
I3×3 T

]
is a 3× 4 matrix formed by concatenating a 3× 3 identity matrix and the 3× 1

vector, Mi.

34

Equation 4.1 can be rewritten as

mi = K
[

R1 R2 RT
]

M̂i (4.2)

mi = HM̂i (4.3)

where M̂i = (XB
i ,Y

B
i ,wi)

T , which is equivalent to point Mi without the z-component. R1 and R2

are the first two columns of the rotation matrix R. As shown in [27], the matrix
[

R1 R2 RT
]

is invertible and as a consequence, defines a planar homography, H, which relates mi and M̂i,
defined as

H = K
[

R1 R2 RT
]

(4.4)

Using the fact that the calibration matrix K is known (from prior calibration or from
provided specifications), we can multiply both sides of Equation 4.2 by the inverse, K−1. The
product K−1mi is denoted by m′i resulting in the following equation:

m′i = K−1mi =
[

R1 R2 RT
]

M̂i = H ′M̂i (4.5)

where K−1 is the inverse of matrix K and m′i = (ui,vi,λi)
T . The transformed homography

matrix, H ′, (with elements hi j) is given by

H ′ = K−1 H =

 h11 h12 h13

h21 h22 h23

h31 h32 h33

 (4.6)

Note that m′i is equal to HM̂i up to a scaling factor; therefore their cross product is
zero, i.e., m′i×HM̂i = 0 where × represents the cross product of two vectors. This planar
constraint can be rewritten as a homogeneous linear system of equations for each point m′i and

35

Mi according to

Aih =

(
01×3 −λiM̂i

T viM̂i
T

λiM̂i
T 01×3 −uiM̂i

T

)



h11

h12

h13

h21

h22

h23

h31

h32

h33


= 0 (4.7)

where 01×3 denotes a zero row-vector, M̂i
T is the transpose of M̂i, Ai ∈ R2×9 is defined for

each point i, and h ∈ R9×1 is the column vector comprising elements of the scaled homography
matrix, H ′. For n object points, the augmented matrix A ∈ R2n×9 for all points represents a
system of linear equations

A h =


A1

A2
...

AN

 h = 0,

for which singular value decomposition can be used to solve for the solution, h. The scaled
homography matrix, H ′, can be reconstructed from reshaping the column vector h.

The desired homography matrix, H, can now be computed by normalizing H ′. The
Euclidean distance was used for normalization purpose.

H = H ′/norm
(
H ′1
)

(4.8)

The final steps include using the homography matrix, H, to determine the object’s rel-
ative rotation and translation matrices. The first and second columns of H will be (after being
converted to unit vectors) the first and second columns of the rotation matrix R as defined in
Equation 4.4. The third column in the rotation matrix can be computed as the cross product of
the first two columns, such that

R =
(

H1 H2 H1×H2

)
(4.9)

36

The translation vector, T , can be computed using the following expression, where H3 =

H1×H2 :
T =−RT H3 (4.10)

4.1.2 Non-iterative Pose Estimation
A group of researchers from the École Polytechnique Fédérale de Lausanne (EPFL) proposed
a non-iterative solution approach (referred to as the “EPFL algorithm” in this thesis) to the
“Pose from n Points” (PnP) problem. They showed that their solution’s computational com-
plexity grows only linearly with n, the number of features points, and possesses the advantage
of applying to both planar and non-planar feature point configurations.

Formulation
Recall that in the previously presented approach, it is assumed that the camera intrinsic param-
eters given by its calibration matrix K are known, and a set of n correspondences between 3D

reference points (a.k.a, object points) and their 2D projections is available. The main idea be-
hind the EPFL approach presented in this section is to define the coordinates of the n reference
points as a linear combination of four known locations called control points. Denote by Mi, for
i = 1,2, ...,n the ith reference point in a general reference frame, and the jth control point by C j,
for j = 1,2,3,4.

Using the idea of the four control points as the bases for each reference point, the point
coordinates of each Mi in the UAV body coordinate frame (denoted by superscript B) can be
expressed as follows:

MB
i =

4

∑
j=1

αi jCB
j , with

4

∑
j=1

αi j = 1 (4.11)

where the αi j are the normalized barycentric coordinates, which are uniquely defined for a given
point Mi [28]. In the same way, the reference points in the camera coordinate frame (superscript
c) are expressed as

Mc
i =

4

∑
j=1

αi jCc
j (4.12)

It remains to define the coordinates of the control points such that the above definitions
in Equations 4.11 and 4.12 hold. The stability of the proposed approach has been shown in the

37

literature to be improved by taking the centroid of the n reference points as one of the control
points, and then selecting the remaining three control points such that they form a basis aligned
with the principal directions of the reference points.

Recalling the camera calibration matrix, K, the 2D projections of the n reference points
Mi, i = 1,2, ...,n are represented by

wi

 ui

vi

1

= KMc
i = K

4

∑
j=1

αi jCc
j (4.13)

where wi are scalar projective parameters, the projections in 2D are denoted ui and vi, and the
elements of the control point coordinate vector are:

Cc
j =

 xc
j

yc
j

zc
j

 .

Notice from Equation 4.13, combined with the definition of K in Equation 2.8, that

wi =
4
∑
j=1

αi jzc
j. Substitution of this expression in the first two rows of Equation 4.13 results in

the following two linear equations:

4

∑
i=1

(
αi j fuxc

j +αi j(cx−ui)zc
j
)
= 0 (4.14)

4

∑
i=1

(
αi j fvyc

j +αi j(cy− vi)zc
j
)
= 0 (4.15)

If these two linear equations are concatenated for all n reference points, the resulting
homogeneous linear system can be represented as Ax = 0, where the solution is given by x ∈
R12×1:

x =


Cc

1

Cc
2

Cc
3

Cc
4


which comprises the camera coordinates of each control point, and A is a 2n×12 matrix. That

38

is, the solution for the homogeneous linear system belongs to the kernel of matrix A; therefore
it is expressed as

x =
dimN (AT A)

∑
l=1

βlvl (4.16)

where dimN
(
AT A

)
is the dimension of the null-space of AT A, and vl are the right-singular

vectors of A corresponding to the singular values of A, from which the coefficients, βl , can be
determined. A more detailed description of this method and its derivation can be found in [28].

4.1.3 Pose Estimation using Posit Algorithm for Coplanar Points
DeMenthon and Davis [25] developed a method called “Pose from Orthographic Projection and
Scaling with Iterations,” also known as the PosIt algorithm. The method can estimate a pose
of an object from a single image provided that four or more point correspondences between 3D

and 2D are given. Two main parts involved in this method are:

• POS (i.e., Pose from Orthography and Scaling), which uses scaled orthographic projec-
tion to approximate the perspective projection and finds the rotation matrix and translation
vector from a linear system of equations, and

• PosIt (POS with Iteration), which iteratively uses a scale factor for each point to enhance
the found orthographic projection and then uses POS on the new points instead of the
original ones until a threshold is met.

Notation

Figure 4.3 depicts the classic pinhole camera [25] with the following parameters:

• The camera center of projection is the point C

• The image plane G at a distance f (focal length) from C

• CXC and CYC axis points along the rows and columns of camera sensor, the CZC points
along the optical axis. Their unit vectors noted î, ĵ, k̂ , respectively.

It also shows the UAV body coordinate frame having its center at point M0, called the reference
point, and its three axes, M0XB, M0Y B , and M0ZB. The plane K is the plane parallel to image
plane G passing through M0. The images of the feature points Mi are called mi with (xi,yi) as
image coordinates.

39

Problem Definition
The purpose is to compute the rotation matrix R and the translation vector of the UAV coordinate
frame. The rotation matrix is given by:

R =

 iBx iBy iBz
jB
x jB

y jB
z

kB
x kB

y kB
z

=

 iBT

jBT

kBT

 (4.17)

where the matrix rows are the coordinates of the unit vectors î, ĵ, and k̂ of the camera coordinate
frame as expressed in the UAV coordinate frame. In order to compute R, it is only necessary
to compute vectors î and ĵ in the UAV coordinate frame. The vector k̂ can be computed as the
normal vector found by the cross-product î× ĵ, referring to Figure 4.3.

Figure 4.3: PosIt Projections (after: [25]): This figure illustrates a feature point Mi as well as the refer-
ence point M0. The perspective projection of Mi is the point mi, and its SOP is the point pi. The point
M0 has the same image m0 in SOP and perspective projections.

The translation vector is the vector C M0 between the center of projection, C, and the

40

reference point M0. This vector is aligned with C m0 and equal to

Z0/ fCm0 (4.18)

so the translation is fully determined if Z0 is computed. Each object point Mi is projected onto
point mi on the image plane, which leads to the following equalities:

x0 = f X0/Z0 (4.19)

xi = f Xi/Zi (4.20)

for x coordinates and similarly for y coordinates:

y0 = fY0/Z0, (4.21)

yi = fYi/Zi. (4.22)

Equation 4.20 can be expanded into

xi = f
M0Mi · î+X0

M0Mi · k̂+Z0
(4.23)

=
(f/Z0×M0Mi) · î+ x0

(1/Z0×M0Mi) · k̂+1
(4.24)

where the second equation is found by dividing numerator and denominator by Z0.

It has been shown [25] that a necessary and sufficient condition for a pose defined by
i, j,x0,y0, and Z0 to be exact pose is that these parameters satisfy, for all points Mi, the equations:

M0Mi · I = xi(1+ εi)− x0 (4.25)

M0Mi · J = yi(1+ εi)− y0 (4.26)

where

J = f × ĵ/Z0 (4.27)

I = f × î/Z0,and (4.28)

εi = (1/Z0)M0Mi · k̂. (4.29)

41

The terms xi(1+εi) and yi(1+εi) are the coordinates x
′
i and y

′
i of the point pi, which are

the scaled orthographic projections of features points Mi (refer to Figure 4.3). The z coordinate
of the vector M0Mi is the dot product M0Mi.kZi−Z0, so

(1+ εi) = 1+(Zi−Z0)/Z0 (4.30)

= Zi/Z0 (4.31)

where the second expression is found using Equation 4.20. Since pi is the perspective pro-
jection of the point Pi that has the same x-coordinate as Mi and a z-coordinate equal to Z0.
If we substitute the value of xi found on Equation 4.20, the x-coordinate x′i of pi is precisely
determined.

x′i = xi((1+ εi) = xiZi/Z0 (4.32)

x′i = f Xi/Z0 (4.33)

Finding Poses

Equation 4.25 and Equation 4.26 provide a linear systems of equations in which the only un-
known are I and J for a given values of εi . Solving for I and J leads to i and j by normalization
and Z0 will be the norm of I. This algorithm is called POS (Pose from Orthography and Scaling)
which provides an approximation of the pose. But once i and j have been computed, more exact
values can be recomputed using Equation 4.26 solving the linear system again. This iterative
application of POS is called PosIt (POS with Iterations).

Solving the System of Equations

The dot product in Equations 4.25 and 4.26 can be expressed in terms of vector coordinates in
the UAV coordinate frame.

[
XB

i Y B
i XB

i

][
IB
x IB

y IB
z

]T
= xi(1+ εi)− x0 (4.34)[

XB
i Y B

i XB
i

][
JB

x JB
y JB

z

]T
= yi(1+ εi)− y0 (4.35)

42

Writing the last two equations for the n objects points results in the following two linear
systems:

A I = x′

A J = y′

The matrix A represents the coordinates of the objects points Mi in the UAV coordinate
frame. Since this study is dealing with coplanar points, the matrix A has rank 2 so additional
constraints are required to form a well-posed system of linear equations. The ambiguity of
solution can be seen as illustrated in Figure 4.4.

Figure 4.4: Same pose from different planes (from: [25]): In this case, the object plane can have two
very different positions that returns the same 2D image correspondences.

When dealing with coplanar points, several poses that are very different have the same
orthographic projection as shown in Figure 4.4. That is, the PosIt algorithm for coplanar points
aims to find all the poses and then chooses the best match. More specifically, it finds two poses
for each iteration and either picks one or continues with both options (see Figure 4.1.3). This
process can be illustrated graphically as a tree with n iterations and 2n solutions but only two
poses are kept at any time (though they may both be feasible). For each pose, it is further
verified that all the points are in front of the camera (i.e., all Zi > 0); otherwise the pose is
discarded. More details about the method can be found in [25].

43

(a) (b)
Figure 4.5: PosIt Feasible Solutions (from: [25]): (a) Case 1: the algorithm yields one feasible pose
represented by + sign and one unfeasible pose representation by− sign; (b)Case 2: two feasible solution
but one of them is better then the other and they are represented by ++ and + sign, respectively.

4.2 Implementation
This section addresses the implementation of the different pose estimation algorithms explored
in this thesis and their corresponding experimental results. A crucial step before using any pose
estimation method is to compute the camera intrinsic parameters (a.k.a camera calibration). The
purpose of camera calibration is the recovery of the principal distance parameter, i.e., the focal
length, f (assuming f = fx = fy), and the principal point coordinates (cx,cy). To achieve this
goal, an open source calibration Matlab toolbox [32] was used, where a dot pattern, such as
seen in Figure 4.6, is used to compute the camera intrinsic parameters.

Figure 4.6: Calibration Pattern (from: [32]): The calibration toolbox uses a planar pattern comprising
randomly distributed black dots where an object will be placed in different orientations to help compute
the camera intrinsic parameters.

The present study uses the iPhone 4s camera with an empty plastic bottle in front of the
calibration pattern in several orientations, as shown in Figure 4.2.

44

Figure 4.7: Calibration Images: The empty plastic bottle is placed over the calibration pattern and its
orientation changed four times to compute the camera intrinsic parameters.

Use of the calibration matrix toolbox on the calibration images in Figure 4.2 yields the
the following calibration matrix:

K =

 608.7 0 314
0 608.7 320
0 0 1

 (4.36)

where f = 608.7 is the focal length and the principal point coordinates are cx = 314 and cx =

320.

4.3 Simulation Setup
The experiment was carried out with synthetic data for the three approaches discussed in Sec-
tion 4.1. The experiment can roughly be summarized in the following steps, also graphically
illustrated in Figure 4.8:

1. Generate n random points in the object plane
• In this thesis, we use n = 6 reference points

2. Generate three random angles and build the corresponding rotation matrix, R

3. Generate three translations along the x, y, and z axes to form the translation vector, T

• These three steps were performed by a Matlab function called Generate_Data(NP)

where NP is the number of feature points.
4. Perform 3D to 2D perspective projections using camera calibration matrix A, the n object

points, the rotation R and translation T :
• The Matlab function imgsynthesis(NP,points,R,T,FOCAL_L) is used, where

45

points are the random points generated using the Generate_Data function de-
scribed above

• R is the rotation matrix, computed from randomly generated angles and using the
Matlab function rotation

• T is the randomly generated translation vector
• FOCAL_L is the camera focal length from the camera calibration matrix

5. Add Gaussian noise to the image

• This step is performed using a Matlab function called AddNoise(ImagePoints,NOISE_AMPL)
where ImagePoints is a three dimensional array that contain the randomly gener-
ated features points and NOISE_AMPL is the noise amplitude

6. Use the noisy image points and the object points to estimate real rotation and translation

• After obtaining the simulated image points and their corresponding features points,
the pose estimation algorithm is used to estimate the rotation and translation vector

• Once the rotation matrix has been found, the three rotation angles can be extracted
using the function GetANG_fromRotMat(Rp) where Rp is the calculated rotation
matrix

7. Compare the estimated parameters with the generated ones and compute the errors

• The computed rotation and translation parameters are compared to the known (ran-
domly generated) rotation angles and translation values which were used to compute
the original image points.

• The mean and standard deviation of errors between the estimated and generated
rotation matrix and translation vector are computed and recorded

The aforementioned steps are repeated over 100 runs in which new random set of object
points, random rotation matrix, and random translation vector are generated to evaluate the
three approaches highlighted in Section 4.1. The mean error and the standard deviation for the
three rotation angles as well as for the three translations are then computed. The effect of noise
amplitude on the pose estimation and the execution time for each methods is also investigated.
The parameter ranges used in these numerical studies are shown in Table 4.3.

4.4 Experimental Results
This section presents the results for each pose estimation method by illustrating the rotation and
translation errors as well as their respective execution times.

46

Figure 4.8: Simulation Setup: Once a rotation matrix R and a Translation vector T are generated from
random data they are used to project the features points on the image plane to get the images points.
Both features points and image points are fed to the pose estimation method to estimate the object pose
and compare the estimated rotation and translation with the generated ones.

Parameter Min Max
Rotation -π/2 π/2

Translation [X ,Y ,Z] 0 1000
Object coordinates

X -40 40

Y -40 40

Z 0 0

Table 4.1: Parameter ranges for randomly generated data: The rotation angles are defined to be between
-π and π , the translation for X , Y , and Z to be between zero and 100. The object feature points are
defined between −40 and 40 for both X and Y and zero for Z coordinates since the study is dealing with
coplanar features points.

4.4.1 Non-iterative Pose Estimation Algorithm
The EPFL algorithm was executed over 100 random runs where three rotations angles, three
translation values, and six features points were randomly generated. The estimated rotation
angles were found to be very accurate, where their mean error (in degrees) was around zero for
roll, pitch angle, and yaw angle, as reported in Figure 4.9. Concerning the translation estimation
error, the EPFL non-iterative algorithm provided encouraging results, where the highest mean
error was 0.390 m for the Z translation (see Figure 4.10).

47

Figure 4.9: EPFL Algorithm Rotation Angles Error: This figure plots rotation errors for each rotation
angle as a function of number of runs with a fixed number of feature points and a noise amplitude equal
to one pixel. The mean error and standard deviation of error are computed over these 100 random runs.

Figure 4.10: EPFL Algorithm Translations Error: This figure plots the error for the three translations
along X , Y , and Z axes as a function of number of runs with a fixed number of feature points and a noise
amplitude equal to one pixel. The mean error and standard deviation of error are computed over these
100 random runs

The computation cost of this method, shown in Figure 4.11, remained almost the same
around 0.025 seconds for 100 random runs except for some outliers that does not exceed 0.2

48

seconds. (These few longer computation times may be due to the performance of the laptop
computer used to perform these tests.)

Figure 4.11: EPFL Algorithm Execution Time: This figure plots execution time (in milliseconds) for
each run as well as the overall mean and standard deviation for the execution time.

4.4.2 PosIt Algorithm
This algorithm was executed over a 100 random runs where we randomly generated three rota-
tions angles, three translations, and six features points. The estimated result for yaw angle was
very accurate, having a mean error around zero for all 100 runs. However, the estimated result
for pitch and roll angles were not accurate, having a standard deviation of 15.54 and 25.65 de-
grees, respectively (Figure 4.12). Concerning the translation estimation error, acceptable results
were obtained for Z-translation, but not for X and Y translations. This algorithm needs further
tuning to get better results to be competitive with the EPFL algorithm.

The computation cost of this method remained almost the same around 0.1 seconds for
100 random runs except for some outliers that does not exceed 0.2 seconds (Figure 4.14).

4.4.3 Homography-Based Pose Estimation Algorithm
This algorithm was executed over 100 random runs where three rotations angles, three trans-
lation, and six features points were randomly-generated. The estimated result for yaw angle
was very accurate, with a mean error and standard deviation near zero. However, the estimated
results for pitch and roll angles were not acceptable, having standard deviations of 25.48 and
28.78 degrees, respectively, as shown in Figure 4.15. The translation estimation error for Z

translation was found to be acceptable, but not those for X and Y translations, which had a
standard deviation of 153.52 and 66.02 meters, respectively (see Figure 4.16). The implemen-
tation of this algorithm may need further improvement and optimization to get better results as

49

Figure 4.12: PosIt Algorithm Rotation Error: This figure plots rotation errors for each rotation angle as
a function of number of runs with a fixed number of features points and a noise amplitude equal to one
pixel.

Figure 4.13: PosIt Algorithm Translation Error: This figure plots error for the three translation alon
X , Y , and Z-axis as a function of number of runs with a fixed number of features points and a noise
amplitude equal to one pixel.

compared to the EPFL algorithm. Finally, the computation cost of this method remained con-
sistently around 0.15 seconds for the 100 random runs, except for some outliers that reached
0.35 seconds (Figure 4.17).

50

Figure 4.14: PosIt Algorithm Execution Time: This figure plots execution time for each run as well as
the overall mean and standard deviation for the execution time. It was noted that the execution time for
this algorithm is random.

Figure 4.15: Homography Algorithm Rotation Error: This figure plots rotation errors for each rotation
angle as a function of number of runs with a fixed number of features points and a noise amplitude equal
to one pixel.

4.5 Summary of Results
The three pose estimation algorithms were tested over a 100 randomly generated parameters
using six object features points. The EPFL algorithm showed very accurate results in estimating

51

Figure 4.16: Homography Algorithm Translation Error: This figure plots error for the three translation
alon X , Y , and Z-axis as a function of number of runs with a fixed number of features points and a noise
amplitude equal to one pixel.

Figure 4.17: Homography Algorithm Execution Time: This figure plots execution time for each run as
well as the overall mean and standard deviation for the execution time.

the pose for these coplanar points. The other two algorithms, PosIt and the homography-based
approaches, showed some acceptable results on estimating Z translation and yaw angle values,

52

but failed to provide a good estimate for the remaining parameters, highlighting the need for
further improvement and tuning. Table 4.2 summarizes this study’s findings.

Estimated parameters EPFL PosIt Homography
roll STD (degrees) 0.315 15.84 2.96×10−6

pitch STD (degrees) 3.47×10−8 6.30 25.65
yaw STD (degrees) 0.375 6.402×10−5 15.54

X-Translation STD (meters) 3.814 59.9 151.92
Y -Translation STD (meters) 5.57 160.77 153.61
Z-Translation STD (meters) 3.92 6.69 4.11

Mean execution time (seconds) 0.0057 0.124 0.56

Table 4.2: Summary of Results: In comparing the performance of each algorithm in estimating rotation
angles and translation vectors, it was noted that EPFL gives very accurate results and near real-time
execution.

53

THIS PAGE INTENTIONALLY LEFT BLANK

54

CHAPTER 5:
Conclusions and Recommendations

This chapter presents the results achieved in this thesis, the limitations and problems faced, and
then highlights the eventual avenues for future research.

5.1 Summary and Conclusions
This thesis presented different computer vision algorithms for both UAV detection in still im-
ages and pose estimation of that UAV. The first task was addressed by investigating and imple-
menting two computer vision algorithms for UAV detection. The first algorithm was based on
using edge detection and image smoothing. This approach gave a high detection rate, but only
works under the assumption that there is no other object in the scene having the same size as the
target UAV. The second algorithm applied morphological filtering and color-based detection,
where red color markers were placed on the surface of the target UAV in an arbitrary configura-
tion. This method showed promising results but suffered from requiring constant illumination,
lighting conditions, and target orientation, thereby limiting its robustness in realistic contexts.

The pose estimation task was addressed using three pose estimation algorithms. The
first one used planar homography, which showed barely acceptable results; the translation stan-
dard error was around 150m which is not acceptable in a real UAV avoidance (or engagement)
application. This inaccuracy could be due to the incorrect assumption that feature points and
their image points are related via planar homography and may need better implementation and
improvement. The second approach was based on a non-iterative pose estimation algorithm pre-
sented by researchers from EPFL. This algorithm gave good results for both rotation and trans-
lation (refer to Figure 4.9) and can work for both co-planar and non-coplanar feature points. The
last algorithm studied represents a well-known Pose from Orthographic Projection and Scaling
with Iterations (PosIt) approach; however, we find that although this algorithm gives acceptable
results for the rotation angles, the translation vector achievable renders this approach less useful
for real-time UAV pose estimation purposes.

5.2 Recommendations and Future Work
This thesis can be considered as an initial proof of concept and a foundation for the implemen-
tation of computer vision algorithms for both UAV detection and pose estimation. There are

55

several issues to be addressed and future research avenues to be considered. Matlab provided
a simulation and a test environment in the lab environment. That is, an alternative implemen-
tation would be using OpenCV (open computer vision) for real-time implementation and faster
computation since OpenCV has precompiled libraries that may work better for real image data.

Another avenue for future research would be to design and build light-based beacons
(e.g., LEDs) mounted to the UAV body and test the detection and pose estimation in field
experiment conditions. In addition, it may be possible to investigate and test different detec-
tion approaches such as the use of RANdom SAmple Consensus (RANSAC) algorithms [41],
implementation of Scale-Invariant Feature Transform (SIFT) features [42], and optical flow
approaches that have been shown to also have promising results for such applications.

56

Appendix: Selected Matlab Source Code

All source code developed and used for this thesis can be found online at https://faculty.
nps.edu/thchung under the Software section.

Frame Grabbing Function
This function converts a MPEG-2 video to a sequence of frame in JPEG format at a rate of 30
frame per seconds (FPS).

f u n c t i o n framegrabber (vidrostream)
%movie2f rames g e n e r a t e f r a m es from t h e g i v e n v i d e o
% v i d i s t h e v i d e o f i l e name
% USAGE : > > f r a m e g r a b b e r (' v i d e o . av i ')
%mmreader wi th t h e r e a d method used t o r e a d v i d e o d a t a from a m u l t i m e d i a
%f i l e i n our c a s e ' av i ' f i l e

readerobj = mmreader (vidrostream) ;
vidFrames = read (readerobj) ;

% g e t t h e number o f f r a m es u s i n g FPS = 30 (FPS frame p e r s e c o n d s
numFrames = g e t (readerobj , ' numberOfFrames ') ;

% i n i t i a l i s a t i o n o f w a i t b a r a s a debugg ing t o o l
h = waitbar (0 , ' Grabb ing Frames ') ;

f o r k = 1 : numFrames
% g e t t h e i n d i v i d u a l f r a m es from t h e f rame s e q u e n c e s
mov (k) . cdata = vidFrames (: , : , : , k) ;
mov (k) . co lormap = [] ;
%imshow (mov (k) . c d a t a) ;
imagename=strcat (i n t 2 s t r (k) , ' . j p e g ') ;

cd (' . \ f r a m es \ ') ;
% w r i t e each f rame t o t h e ' f r a m es ' f o l d e r

imwrite (mov (k) . cdata , strcat (' f rame ' , imagename)) ;
waitbar (k / numFrames , h) ;

f p r i n t f (1 , ' s a v i n g f rame %d : \ r ' , k) ;

%e x t r a c t C o m p o n e n t s (mov (k) . c d a t a) ;
cd . .
end
f p r i n t f (1 , ' Done . . : number o f f r a m es %d \ r ' , numFrames) ;
end

Image Cropping Function
This function extract a Region Of Interest (ROI) defined by the upper right corner of the frame
where both x and y are positive.

57

%##
% c r o p p i n g : e x p l o r e t h e f rame f o l d e r and c rop down them t o r e d u c e t h e i r
% s i z e and keep t h e p i x e l s t h a t r e p r e s e n t t h e UAV and g e t r e a d o f t h e
% o u t l i e r t o h e l p t h e d e t e c t i o n p r o c e s s
%###
% go t o t h e f rame f o l d e r and l i s t t h e . png f i l e s
cd (' . \ images \ ') ;
files = d i r (' * . png ') ;
% s o r t t h e s e images and c o u n t them
files = s o r t ({ files . name }) ;
nframes = s i z e (files , 2) ;

h = waitbar (0 , ' Cropping Frames ') ;
% loop ove r t h e number o f f r a m es and r e s i z e them
f o r k = 1 : nframes
imagename=strcat (i n t 2 s t r (k) , ' . png ') ;
imgn = strcat (' f rame ' , imagename) ;
rgb = imread (imgn) ;
% change d i r e c t o r y t o copped f o l d e r where we w i l l s ave t h e r e s i z e d images
cd (' . \ c ropped \ ') ;

rgb = rgb (1 2 0 0 : 1 4 0 0 , 8 0 0 : 1 8 0 0 , :) ;
imwrite (rgb , imgn) ;
waitbar (k / nframes , h) ;

cd . .
end
c l o s e (h) ;
cd . .
f p r i n t f (1 , ' Done c r o p p i n g . . . \ r ') ;

Generate_Data function
This function generates random planar feature points, random rotation angles, and random
translation vector to be used for image synthesis and to test the pose estimation algorithm.

f u n c t i o n [points , Rotang , Trans] =Generate_Data (NP)
%++++ F u n c t i o n c r e a t e d by H a j r i Riadh
%++++ Th i s f u n c t i o n g e n e r a t e s random p l a n a r f e a t u r e p o i n t s , random r o t a t i o n
%++++ a n g l e s , and random t r a n s l a t i o n v e c t o r
%++++ I n p u t :++
%++++ NP : number o f p o i n t s
%++++ Outpu t :++
%++++ p o i n t s : m a t r i x o f randomly g e n e r a t e d p o i n t s
%++++ Rotang : Three r o t a t i o n a n g l e s
%++++ Trans : T r a n s l a t i o n v e c t o r
%### we c o n s i d e r h e r e a 80 x80 s q u a r e (u n i t : cm)
X_min =−40;
X_max =40;
Y_min =−40;

58

Y_max =40;
f o r i=1: NP
points (i , :) = [(X_max−X_min) * r and (1 , 1) +X_min , (Y_max−Y_min) * r and (1 , 1) +Y_min , 0] ;
end
ang_lo = −p i / 2 ; ang_hi = p i / 2 ; % d e f i n e a n g l e i n t e r v a l
Rotang = [(ang_hi−ang_lo) * r and (3 , 1) + ang_lo] * 1 8 0 / p i ;
trans_lo = 0 ; trans_hi = 1000 ; % i n t e r v a l f o r t r a n s l a t i o n
Trans = (trans_hi−trans_lo) * r and (3 , 1) + trans_lo ;

Image Synthesis Function
This function performs a perspective projection of the n feature points to get the corresponding
image points using the randomly generated rotation matrix and translation vector.

f u n c t i o n [ImagePoints] = imgsynthesis (Npoint , WorldPoints , rotationM , trans , Flength)
%++++ f u n c t i o n c r e a t e d by H a j r i Riadh
%++++ Th i s f u n c t i o n pe r fo rm a p e r s p e c t i v e p r o j e c t i o n o f t h e f e a t u r e p o i n t s
%++++ t o g e t t h e c o r r e s p o n d i n g image p o i n t s
%++++ I n p u t : ++
%++++ Npoin t : number o f f e a t u r e s p o i n t s . In our Npoin t = 6
%++++ W o r l d P o i n t s : a m a t r i x o f f e a t u r e p o i n t c o o r d i n a t e s
%++++ r o t a t i o n M : t h e randomly g e n e r a t e d r o t a t i o n m a t r i x
%++++ t r a n s : t h e randomly g e n e r a t e d t r a n s l a t i o n v e c t o r
%++++ F l e n g t h : camera f o c a l l e n g t h
%++++ Outou t : ++
%++++ I m a g e P o i n t s : a m t r i x c o n t a i n i n g t h e r e s u l t i n g image p o i n t s

%+++ add t h e t r a n s l a t i o n f o r x , y , and z c o o r d i a n t e s
moved = z e r o s (Npoint , 3) ;
moved (: , 1) =moved (: , 1) +trans (1) ;
moved (: , 2) =moved (: , 2) +trans (2) ;
moved (: , 3) =moved (: , 3) +trans (3) ;

%+++ per fo rm t h e p e r s p e c t i v e p r o j e c t i o n
f o r i=1: Npoint

f o r j=1:3
f o r k=1:3
moved (i , j) = moved (i , j) +rotationM (j , k) *WorldPoints (i , k) ;
end

end
end

f o r i=1: Npoint
f o r j=1:2

ImagePoints (i , j) = Flength*moved (i , j) / moved (i , 3) ;
end

end

59

end

Rotation Angle Extraction from Rotation Matrix
This function was created based on the paper of Gregory G. Slabaugh it computes the euler
angles from the give rotation matrix.

f u n c t i o n [rotUC , rotWC , rotZC] = GetANG_fromRotMat (Rm)
%++++ c r e a t e d by H a j r i Riadh
%++++ i n s p i r e d from p a p e r o f Gregory G. S labaugh : " Computing E u l e r a n g l e s
%++++ from a r o t a t i o n m a t r i x "
%++++ u r l : h t t p : / / g r e g s l a b a u g h . name / p u b l i c a t i o n s / e u l e r . pdf
%++++ t h i s f u n c t i o n has as imput t h e r o t a t i o n m a t r i x and i t o u t p i u t a r e t h e
%++++ t h r e e r o t a t i o n a n g l e s

rotUC = a t a n (Rp (3 , 2) / Rp (3 , 3)) ;
rotWC = a t a n (−(Rp (3 , 1) * s i n (rotUC)) / Rp (3 , 2)) ;
rotZC = a t a n (Rp (2 , 1) / Rp (1 , 1)) ;

rotUC = rotUC *180 / p i ;
rotWC = rotWC *180 / p i ;
rotZC = rotZC *180 / p i ;
%+++ End of f u n c t i o n

Color Detection Function
This function performs RED color detection by extracting color threshold, then applying mor-
phological closing operation and image mask to isolate and localize the red markers.

f u n c t i o n ColorDetect ()
%++++++++++++++++++++ RED marke r s D e t e c t i o n ++++++++++++++++++++++++++++
%++++ Th i s f u n c t i o n was a d a p t e d by H a j r i Riadh from t h e t u t o r i a l i n
%++++ h t t p : / / www. mathworks . com / m a t l a b c e n t r a l / f i l e e x c h a n g e
%++++ /28512− s imple−c o l o r−d e t e c t i o n−by−hue done by Image A n a l y s t
%++++ C o p y r i g h t (c) 2010 , Image A n a l y s t A l l r i g h t s r e s e r v e d
%++++ Th i s f u n c t i o n pe r fo rm RED c o l o r d e t e c t i o n by e x t r a c t i n g c o l o r t h r e s h o l d , t h e n a p p l y
%++++ m o r p h o l o g i c a l c l o s i n g and image maske t o keep t h e r e d band and d e s i r e d
%++++ o b j e c t p i x e l s i z e
%++
c l c ; % C l e a r command window .
c l e a r ; % D e l e t e a l l v a r i a b l e s .
c l o s e a l l ; % Close a l l f i g u r e windows e x c e p t t h o s e c r e a t e d by i m t o o l .

% i m t o o l c l o s e a l l ; % Close a l l f i g u r e windows c r e a t e d by i m t o o l .
workspace ; % Make s u r e t h e workspace p a n e l i s showing .

60

c l o s e a l l ;
fontSize = 1 6 ;
f i g u r e ;

% Maximize t h e f i g u r e .
s e t (gcf , ' P o s i t i o n ' , g e t (0 , ' S c r e e n S i z e ')) ;

% Change t h e c u r r e n t f o l d e r t o t h e f o l d e r o f t h i s m− f i l e .
% (The l i n e o f code below i s from B r e t t S ho e l s o n o f The Mathworks .)
i f (~ isdeployed)

cd (fileparts (which (mfilename))) ;
end

% Change d e f a u l t d i r e c t o r y t o t h e one c o n t a i n i n g t h e d e f a u l t image
% f o l d e r
originalFolder = pwd ;
folder = 'C : \ Use r s \ d r a g o n i s t o \ s t u d i e s l a s t \ compute r v i s i o n \ dotm F i l e s \UAV ' ;
i f ~ e x i s t (folder , ' d i r ')

folder = pwd ;
end
cd (folder) ;
% Browse f o r t h e image f i l e .
[baseFileName , folder] = u i g e t f i l e (' * . * ' , ' S p e c i f y an image f i l e ') ;
fullImageFileName = fullfile (folder , baseFileName) ;
% S e t c u r r e n t f o l d e r back t o t h e o r i g i n a l one .
cd (originalFolder) ;

%end
% Read i n image i n t o an a r r a y .
[rgbImage storedColorMap] = imread (fullImageFileName) ;
[rows columns numberOfColorBands] = s i z e (rgbImage) ;

% I f i t ' s monochrome (i n d e x e d) , c o n v e r t i t t o c o l o r .
% Check t o s e e i f i t ' s an 8− b i t image needed l a t e r f o r s c a l i n g) .
i f strcmpi (class (rgbImage) , ' u i n t 8 ')

% Flag f o r 256 g ray l e v e l s .
eightBit = true ;

e l s e
eightBit = false ;

end
i f numberOfColorBands == 1

i f i s e m p t y (storedColorMap)
% J u s t a s i m p l e g ray l e v e l image , n o t i n d e x e d wi th a s t o r e d c o l o r map .
% C r e a t e a 3D t r u e c o l o r image where we copy t h e monochrome image i n t o a l l 3 (R , ←↩

G, & B) c o l o r p l a n e s .
rgbImage = cat (3 , rgbImage , rgbImage , rgbImage) ;

e l s e
% I t ' s an i n d e x e d image .

61

rgbImage = ind2rgb (rgbImage , storedColorMap) ;
% i n d 2 r g b () w i l l c o n v e r t i t t o d oub l e and n o r m a l i z e i t t o t h e r a n g e 0−1.
% Conver t back t o u i n t 8 i n t h e r a n g e 0−255 , i f needed .
i f eightBit

rgbImage = uint8 (255 * rgbImage) ;
end

end
end

% E x t r a c t o u t t h e c o l o r bands from t h e o r i g i n a l image
% i n t o 3 s e p a r a t e 2D a r r a y s , one f o r each c o l o r component .
redBand = rgbImage (: , : , 1) ;
greenBand = rgbImage (: , : , 2) ;
blueBand = rgbImage (: , : , 3) ;

[countsR , grayLevelsR] = imhist (redBand) ;
maxGLValueR = f i n d (countsR > 0 , 1 , ' l a s t ') ;
maxCountR = max (countsR) ;

[countsG , grayLevelsG] = imhist (greenBand) ;
maxGLValueG = f i n d (countsG > 0 , 1 , ' l a s t ') ;
maxCountG = max (countsG) ;

[countsB , grayLevelsB] = imhist (blueBand) ;
maxGLValueB = f i n d (countsB > 0 , 1 , ' l a s t ') ;
maxCountB = max (countsB) ;

% Dete rmine t h e max gray l e v e l f o r t h e t h r e e bands
maxGrayLevel = max ([maxGLValueR , maxGLValueG , maxGLValueB]) ;

% d e f i n e t h r e s h o l d f o r each c o l o r band , our f o c u s i s on r e d c o l o r
redThresholdLow = graythresh (redBand) ;
redThresholdHigh = 255 ;
greenThresholdLow = 0 ;
greenThresholdHigh = graythresh (greenBand) ;
blueThresholdLow = 0 ;
blueThresholdHigh = graythresh (blueBand) ;
% i f i t i s 8 b i t image we pe r fo rm a s u i t a b l e c o n v e r s i o n
i f eightBit

redThresholdLow = uint8 (redThresholdLow * 255) ;
greenThresholdHigh = uint8 (greenThresholdHigh * 255) ;
blueThresholdHigh = uint8 (blueThresholdHigh * 255) ;

end

% Now a p p l y each c o l o r band ' s p a r t i c u l a r t h r e s h o l d s t o t h e c o l o r band
redMask = (redBand >= redThresholdLow) & (redBand <= redThresholdHigh) ;
greenMask = (greenBand >= greenThresholdLow) & (greenBand <= greenThresholdHigh) ;
blueMask = (blueBand >= blueThresholdLow) & (blueBand <= blueThresholdHigh) ;

62

redObjectsMask = uint8 (redMask & greenMask & blueMask) ;

% d e f i n e t h e s m a l l e s t a c c e p t a b l e a r e a s h o u l d be a d j u s t e d wi th t h e l i g h t
% beacon s i z e on t h e image

smallestAcceptableArea = 1 0 ;
% removes a l l c o n n e c t e d components t h a t have fewer t h a n ' s m a l l e s t A c c e p t a b l e A r e a ' p i x e l s

redObjectsMask = uint8 (bwareaopen (redObjectsMask , smallestAcceptableArea)) ;

% d e f i n e a m o r p h o l o g i c a l s t r u c t u r i n g e l e m e n t h av ing a d i s k shape wi th a
% r a d i u s = 2 p i x e l s

structuringElement = strel (' d i s k ' , 2) ;
%per fo rm m o r p h o l o g i c a l c l o s e o p e r a t i o n t h a t e n l a r g e t h e b o u n d a r i e s o f f o r e g r o u n d (b r i g h t)←↩

r e g i o n s i n an image (and
%s h r i n k background c o l o r h o l e s i n such r e g i o n s)
redObjectsMask = imclose (redObjectsMask , structuringElement) ;

% f i l l background h o l e s c r e a t e d by t h e p r e c e d i n g o p e r a t i o n s
redObjectsMask = uint8 (imfill (redObjectsMask , ' h o l e s ')) ;
redObjectsMask = cast (redObjectsMask , class (redBand)) ;
% p r e p a r e mask f o r each c o l o r band
maskedImageR = redObjectsMask . * redBand ;
maskedImageG = redObjectsMask . * greenBand ;
maskedImageB = redObjectsMask . * blueBand ;

%c o n c a t e n a t e t h e t h r e e c o l o r band ' s mask
maskedRGBImage = cat (3 , maskedImageR , maskedImageG , maskedImageB) ;

imshow (maskedRGBImage) ;
fontSize = 1 3 ;
caption = s p r i n t f (' Red Beacom on ly ') ;
t i t l e (caption , ' F o n t S i z e ' , fontSize) ;

% save t h e r e s u l t i n g image t o t h e d i s k f o r f u r t h e r p r o c e s s i n g
Img = maskedRGBImage ;
tmp = rgb2gray (Img) ;
imwrite (tmp , ' tempimage . g i f ') ;

r e t u r n ;
%++++++++++++++++++ End of C o l o r D e t e c t f u n c t i o n +++++++++++++++++++++++++++

Connected Components Extraction Function
The purpose of this function is to isolate connected component in the input image, extract and
then locate the centroid of each connected component.

f u n c t i o n conectedcomponent (image)
%++++++++++++++++++ Connec ted component e x t r a c t i o n +++++++++++++++++++++++
% t h e p u r p o s e o f t h i s f u n c t i o n i s t o i s o l a t e c o n n e c t e d component i n t h e i n p u t image , e x t r a c t
% and t h e n l o c a t e t h e c e n t r o i d o f each c o n n e c t e d component .
I = imread (image) ; % r e a d t h e i n p u t image

63

g ray = medfilt2 (I , [9 1 0]) ; % per fo rm a median f i l t e r t o t h e image t o g e t r i d e o f n o i s e and ←↩
u n d e s i r e d e f f e c t s

level = graythresh (g r ay) ; % Image t h r e s h o l d i n g u s i n g a u t o m a t i c t h r e s h o l d
bw = gray > 0 . 2 ;
imwrite (bw , ' bw . j p g ') ; % save t h e b i n a r y image i n a t e m p o r a r y image

[L , num] = bwlabel (bw) ;%b w l a b e l r e t u r n s a m a t r i x L , o f t h e same s i z e as BW, c o n t a i n i n g l a b e l s ←↩
f o r t h e

%c o n n e c t e d o b j e c t s i n BW.

M = im2uint8 (L / num) ;
imwrite (M , j e t , ' l a b e l . j p g ') ;% save t h e l a b e l e d image i n t o l a b e l . j p g

f o r i =1: num

area (i) = bwarea (L==i) ; % e s t i m a t e s t h e a r e a o f t h e o b j e c t s i n b i n a r y image

end
% keep o b j e c t w i th a r e a >210
x = f i n d (area >210) ;
s = regionprops (L , ' P i x e l I d x L i s t ' , ' P i x e l L i s t ' , ' C e n t r o i d ') ;
centroids =[s . Centroid] ;

% show t h e i s o l e d c o n n e c t e d component a s w e l l a s t h e i r c e n t e r o i d
imshow (L)
t i t l e (' Red Blobs c e n t e r o f mass ' , ' F o n t S i z e ' , 13) ;
ho ld on
f o r k = 1 : num

idx = s (k) . PixelIdxList ;
pixel_values = double (L (idx)) ;
sum_pixel_values = sum (pixel_values) ;
x = s (k) . PixelList (: , 1) ;
y = s (k) . PixelList (: , 2) ;
% d i s p l a y t h e c e n t r o i d o f each c o n n e c t e d component w i th each i n d e x
% " P o i n t x "
xbar = sum (x . * pixel_values) / sum_pixel_values ;
ybar = sum (y . * pixel_values) / sum_pixel_values ;

p l o t (xbar , ybar , ' * ')
t e x t (xbar+2 , ybar , ' P o i n t ')

end
ho ld off

64

REFERENCES

[1] Kathryn’s Report. Cirrus SR22 mid-air collision Cessna 172 NTSB Report , 2008.
http://thekathrynreport.wordpress.com/2009/08/21/

cirrus-sr22-mid-air-collision-cessna-172-ntsb-report/.
[2] C. Lyle, G. Christopher, and S. Sanjiv. Avoiding Collisions Between Aircraft: State of the Art

and Requirements for UAVs operating in Civilian Airspace. 2008.
http://www.frc.ri.cmu.edu/projects/senseavoid/Images/CMU-RI-TR-08-03.pdf.

[3] M.D. Nelson and Gregory M. Prospective Unmanned Aerial Vehicle Operations in the Future
National Airspace System. 2004. http://wwwsrv2.mitre.org/work/tech_papers/
tech_papers_04/04_0936/04_0936.pdf.

[4] UAS Vision - daily news related to Unmanned Aircraft Systems and Unmanned Aerial
Systems - Part 117, 2012. http://www.uasvision.com/page/117/.

[5] John Lai B.E. A hidden markov model and relative entropy rate approach to vision-based dim

target detection for UAV sense-and-avoid. Phd., School of Engineering Systems of the
Queensland University of Technology, 2010.

[6] Evan Ackerman. Global Hawk UAV to Peek Inside Damaged Reactors : Discovery News.
2011. http:
//news.discovery.com/tech/global-hawk-uav-damaged-reactors-110318.html.

[7] Bill. Drafts. Acoustic wave technology sensors. Microwave Theory and Techniques, IEEE

Transactions on, 49(4):795 –802, apr 2001. ISSN 0018-9480.
[8] K. Kuchar James and Ann C. Drumm. The Traffic Alert and Collision Avoidance System. 16

(Lincoln Laboratory Massachusetts Institute of Technology), 2007.
[9] MIL Newsletter. Eurocontrol- European Organisation for the Safety of Air Navigation. 2005.

[10] Federal Aviation Administration (FAA). Automatic Dependent Surveillance-Broadcast
(ADS-B). In Federal Aviation Administration (FAA), 2007.

[11] D. Shim, H. Chung, H.J. Kim and S. Sastry. Autonomous Exploration in Unknown Urban
Environments for Unmanned Aerial Vehicles. In AIAA Guidance, Navigation, Control Conf.

Exhibit. AIAA, San Francisco,CA, 2005.
[12] S. Grzonka, G. Grisetti, and W. Burgard. Towards a Navigation System for Autonomous

Indoor Flying. In Robotics and Automation, 2009. ICRA ’09. IEEE International Conference

on, pp. 2878 –2883, may 2009. ISSN 1050-4729.
[13] G.C.H.E. de Croon, C. De Wagter, B.D.W. Remes, and R. Ruijsink. Sky Segmentation

Approach to Obstacle Avoidance. In Aerospace Conference, 2011 IEEE, pp. 1 –16, March
2011. ISSN 1095-323X.

65

[14] A. Symington, S. Waharte, S. Julier, and N. Trigoni. Probabilistic Target Detection by
Camera-equipped UAVs. In Robotics and Automation (ICRA), 2010 IEEE International

Conference on, pp. 4076 –4081, May 2010. ISSN 1050-4729.

[15] Hui Guo, Chengqi Cheng, and Yubo Yang. An Automated Registration of Remote Sensing
Images Based on SURF and Piecewise Linear Transformation. In Environmental Science and

Information Application Technology (ESIAT), 2010 International Conference on, volume 3,
pp. 133 –136, July 2010.

[16] Dae yeon Won and Min-Jea Tank. Light Source Target Design for Vision-based Blended Wing
Body UAV Recovery. In SICE Annual Conference, 2008, pp. 2612 –2615, Aug. 2008.

[17] L. Mejias, S. McNamara, J. Lai, and J. Ford. Vision-based Detection and Tracking of Aerial
Targets for UAV Collision Avoidance. In Intelligent Robots and Systems (IROS), 2010

IEEE/RSJ International Conference on, pp. 87 –92, Oct. 2010. ISSN 2153-0858.

[18] D. Debadeepta, G. Christopher, S. Sanjiv, and Matthew D. A Cascaded Method to Detect
Aircraft in Video Imagery. In The International Journal of Robotics Research October 2011,
volume 30, pp. 1527–1540, May 2011.

[19] R. Carnie, R. Walker, and P. Corke. Image Processing Algorithms for UAV "sense and avoid".
In Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International

Conference on, pp. 2848 –2853, May 2006. ISSN 1050-4729.

[20] S.D. Deshpande, H. Venkateswarlu, and P. Chan. Max-mean and max-median filters for
detection of small targets. In Signal and Data Processing of Small Targets, pp. 74 –83, 1999.

[21] M. Diani, G. Corsini, and A. Baldacci. Space-time processing for the detection of airborne
targets in ir image sequences. Vision, Image and Signal Processing, IEE Proceedings -, 148
(3):151 –157, Jun 2001. ISSN 1350-245X.

[22] R. Kasturi L. Coraor O. Camps M. Yang, T. Gandhi and J. McCandless. Real-Time
Implementations of Obstacle Detection Algorithms on a Datacube MaxPCI Architecture. In
Real-Time Imaging, volume 8, pp. 157–172, 2002.

[23] G. Welch and E. Foxlin. Motion tracking: No Silver Bullet, but a Respectable Arsenal.
Computer Graphics and Applications, IEEE, 22(6):24 –38, Nov.-Dec. 2002. ISSN 0272-1716.

[24] E.D. Andersen and C.N. Taylor. Improving MAV Pose Estimation Using Visual Information.
In Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on,
pp. 3745 –3750, 29 2007-Nov. 2 2007.

[25] D. DeMenthon and L. Davis. Model-based object pose in 25 lines of code. In International

Journal of Computer Vision, 1995. IROS 2007. IEEE/RSJ International Conference on,
volume 15, pp. 123 –141, 1995.

66

[26] D. Oberkampf, D.F. DeMenthon, and L.S. Davis. Iterative Pose Estimation Using Coplanar
Points. In Computer Vision and Pattern Recognition, 1993. Proceedings CVPR ’93., 1993

IEEE Computer Society Conference on, pp. 626 –627, Jun 1993. ISSN 1063-6919.
[27] Yang Yang, Qixin Cao, Charles Lo, and Zhen Zhang. Pose Estimation Based on Four Coplanar

Point Correspondences. In Fuzzy Systems and Knowledge Discovery, 2009. FSKD ’09. Sixth

International Conference on, volume 5, pp. 410 –414, Aug. 2009.
[28] F. Moreno-Noguer, V. Lepetit, and P. Fua. Accurate Non-Iterative O(n) Solution to the PnP

Problem. In Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on, pp.
1 –8, oct. 2007. ISSN 1550-5499.

[29] Leow Wee. Kheng. Camera Models.
http://www.comp.nus.edu.sg/~cs4243/lecture/camera.pdf.

[30] Berthold K.P. Horn. Tsai’s Camera Calibration Method Revisited, 2000.
http://people.csail.mit.edu/bkph/articles/Tsai_Revisited.pdf.

[31] Jean-Yves Bouguet. Camera Calibration Toolbox for Matlab.
http://www.vision.caltech.edu/bouguetj/calib_doc/.

[32] George Vogiatzis Hernández and Carlos. camera Pose Estimation from Dot Pattern.
http://george-vogiatzis.org/calib/.

[33] Gregory G. Slabaugh. Computing Euler Angles from a Rotation Matrix.
http://gregslabaugh.name/publications/euler.pdf.

[34] John D. Cook. Three Algorithms for Converting Color to Grayscale. 2009. http:
//www.johndcook.com/blog/2009/08/24/algorithms-convert-color-grayscale/.

[35] Yao Wang. Image Filtering: Noise Removal, Sharpening, Deblurring. 2006.
http://eeweb.poly.edu/~yao/EE3414/image_filtering.pdf.

[36] K. Engel. Real-time volume graphics, 2006.
http://en.wikipedia.org/wiki/Sobel_operator.

[37] Mike Doughty. Graphics Color Models. http://www.sketchpad.net/basics4.htm.
[38] Simple Color Detection by Hue - File Exchange - MATLAB Central.

http://www.mathworks.com/matlabcentral/fileexchange/

28512-simple-color-detection-by-hue.
[39] Ryan S. Yusko. Platform Camera Aircraft Detection for Approach Evaluation and Training.

Master, Naval Postgraduate School (NPS), 2007. 83 pp.
[40] Linda G. Shapiro Stockman and George C. Computer Vision. New Jersey, Prentice-H edition,

2001.
[41] D. Nister. Preemptive RANSAC for Live Structure and Motion Estimation. In Computer

Vision, 2003. Proceedings. Ninth IEEE International Conference on, volume 1, pp. 199 –206,
Oct. 2003.

67

[42] Gang Xu and Chen Ma. SIFT-NMI Algorithm for Image Matching. In Control, Automation

and Systems Engineering (CASE), 2011 International Conference on, pp. 1 –4, July 2011.

68

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Dr. Timothy Chung
Naval Postgraduate School
Monterey, California

4. Dr. Raymond Buttener
Naval Postgraduate School
Monterey, California

5. CAPT Jeff Kline, USN(ret)
Chair of Warfare Innovation
Naval Postgraduate School
Monterey, California

6. Dan Boger, Ph.D.
Chair, Information Sciences Department
Naval Postgraduate School
Monterey, California

69

