ik

NAVAL
POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

VIRTUALIZATION OF SYSTEM OF SYSTEMS TEST AND
EVALUATION

by
Seth F. Gibson
June 2012

Thesis Advisor: John Osmundson
Second Reader: Brad Naegle

Approved for public release, distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.

2. REPORT DATE
June 2012

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

1. AGENCY USE ONLY (Leave blank)

4. TITLE AND SUBTITLE Virtualization of System of Systems Test and
Evaluation

5. FUNDING NUMBERS

6. AUTHOR(S) Seth F. Gibson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
N/A AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government. IRB Protocol number N/A .

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release, distribution is unlimited A

13. ABSTRACT (maximum 200 words)

Virtualization is the use of a software application to emulate the physical performance of a computer,
including the Central Processing Unit (CPU), storage, network device, Random Access Memory (RAM),
and Operating System (OS) through executable data files. The virtualization software application allows for
multiple virtual machines to exist on a single set of physical hardware. This technology can increase the
flexibility of the hardware while reducing hardware configuration time. Virtualization technology will improve
the Department of Defense (DoD) system of systems (SoS) Test and Evaluation (T&E) process. The
implementation of virtualized systems within SoS will create three primary benefits. First, test personnel
can improve configuration management for all component systems. Second, test personnel can reduce test
environment setup time. Third, test personnel can improve the scalability of SoS architectures. The
success of a DoD information system depends on its ability to meet the established criteria of cost,
schedule, and performance. By appropriately integrating virtualization technology into the SoS T&E
process, system program managers can improve the likelihood of meeting these criteria.

14. SUBJECT TERMS Virtualization Test and Evaluation T&E Virtual Machine System of 15. NUMBER OF
Systems PAGES
101
16. PRICE CODE
17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION OF
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF ABSTRACT
REPORT PAGE ABSTRACT
Unclassified Unclassified Unclassified UuU

NSN 7540-01-280-5500

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

THIS PAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution is unlimited

VIRTUALIZATION TECHNOLOGY FOR SYSTEM OF SYSTEMS TEST AND
EVALUATION

Seth F. Gibson
Major, United States Marine Corps
BS, University of Colorado at Boulder, 2001

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEM TECHNOLOGY

from the

NAVAL POSTGRADUATE SCHOOL

June 2012
Author: Seth F. Gibson
Approved by: John Osmundson

Thesis Advisor

Brad Neagle
Second Reader

Dan Boger
Chair, Department of Information Sciences

THIS PAGE INTENTIONALLY LEFT BLANK

ABSTRACT

Virtualization is the use of a software application to emulate the physical
performance of a computer, including the central processing unit (CPU), storage,
network device, random access memory (RAM), and operating system (OS)
through executable data files. The virtualization software application allows for
multiple virtual machines to exist on a single set of physical hardware. This
technology can increase the flexibility of the hardware while reducing hardware
configuration time. Virtualization technology will improve the Department of
Defense (DoD) system of systems (SoS) test and evaluation (T&E) process. The
implementation of virtualized systems within SoS will create three primary
benefits. First, test personnel can improve configuration management for all
component systems. Second, test personnel can reduce test environment setup
time. Third, test personnel can improve the scalability of SoS architectures. The
success of a DoD information system depends on its ability to meet the
established criteria of cost, schedule, and performance. By appropriately
integrating virtualization technology into the SoS T&E process, system program
managers can improve the likelihood of meeting these criteria.

THIS PAGE INTENTIONALLY LEFT BLANK

Vi

TABLE OF CONTENTS

INTRODUCTION . ..o 1
A. BACKGROUND AND HYPOTHESES.ccoooiiiiiii 1
B. BENEFITS OF STUDY ..o 2
C. RESEARCH QUESTIONS ... 2
D. THESIS ORGANIZATION ...uttiiiiiiieiiieieieeieeeeeeseesesaesseeesessssssssssseneseeenees 3
VIRTUALIZATION AND CLOUD COMPUTINGccooiiiiiieiiees 5
A. BACKGROUND ...t 5
1. Early Virtualizationccooovviiiiiiiee e 5

2. Virtualization System Elements............oooviiiiiiiieieiiis 5

3. Virtualization Archit@Ctureccooooioiiiiiiiii s 6

B. COMPONENTS OF VIRTUALIZATION ...cooiiiiiiiiiee, 8
1. HAIAWAIE ... s 8

a. SV et eee 8

b. ClBNT s 9

C. Storage Area Network (SAN).......cooviiiiiiiiiiieeeeiis 10

2. Software Architecture ... 11

a. X86 Platforms ... 11

b. Virtual Machine Monitor (VMM) or Hypervisor 12

C. Virtual Machine Operating Systemccccevvvvnnnnnnn. 12

d. Virtual Machine Configuration Management 13

3. NEIWOTK .o e 13

a. COMPONENTS .. 13

b. LAIENCY i 14

C. ProtoCOIS ..uuiiiiiiiiiii 14

4. Server Virtualization ..o 15

5. Virtual Desktop INfrastruCtureccceeevvvvviiiiciiee e 15

C. VIRTUALIZATION: THE BUILDING BLOCK OF THE CLOUD......... 16
1. Cloud Service Models ... 16

2. Cloud Deployment ModelS.........ooooviiiiiiiiiiiie e 18

a. Private CloUduuueiiiiiiii 18

b. Community Cloudcoooeiiiiiii e 18

C. PUDIIC CloUduiiiiiiiii 19

d. Hybrid Cloudoueieii e 20

D. DEPARTMENT OF DEFENSE VIRTUALIZATION INITIATIVES 21
1. United States Maring COrPSuuceeeeeriirieeiiiiiinee e ee e 21

2. United StateS NaVY ...ccoeeeeieeieeeciee e 22

3. United Stat@S AIrMY ... 23

E. LIMITATIONS .o 23
1. HarAWAIE ... s 23

2. SOFIWAIB...co i 24

3. NEIWOTK .o e 24

4, Real-Time SYSteMSccci e e 24

Vii

F. CONCLUSION ..o 25
TEST AND EVALUATION IN SYSTEM OF SYSTEMS

ARCHITECTURES ... 27

A. TEST AND EVALUATION ...ottiiiiiiiiiiiiiiiiiiiiiiiieieesesessssesssssssssssssseeeenes 27

1. OVEIVIBW ...ttt e e e e e e e e e e 27

2. P UMD OSE e 28

3. Test and Evaluation Strategy (TES)coovvviiiiiiiineieeeeeeeiies 29

4, Test and Evaluation Master Plan (TEMP).........cccccccevvvvennnee. 30

B. SYSTEMS BACKGROUNDccvviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeseeeeeeeeeeeenees 30

1. SYStEMS SCIENCE ..o 30

2. SYStems ENQINEEIING ..cccuuuuiieiieeiiiieiiiiiee et 30

3. SYStems FrameWOorKuuiiiieeeeiiieeiiee e 31

4. System Of SYStEMS ... 35

5. System of Systems in the Department of Defense.............. 36

C SYSTEM TEST METHODOLOGIES........coovvviiiiiieiiiieieeeieeeeeeeeeeeeeeee 36

1. BOttomM-UpP TESHING ..uoieeieeeeeeeeee e 38

2. TOP-DOWN TESTING eeeeiiiiiiiiee et 39

3. Black-Box Testing (Functional).......ccccevviieiieiieeeeieen 39

4. White-Box Testing (Structural)cccoeeviveiiiiiiiiiieeeeeeeeeeiies 39

5. Regression TeSHING ..cooeeeeiviieicice e 40

6. Mission Thread Based TeStingcccovvvevvviiiiiniieeeeeeeiiiinnn 40

D. CONCLUSION ..., 40
CASE STUDY OF THE DISTRIBUTED GLOBAL INFORMATION GRID

(GIG) INTELLIGENCE AUTOMATION SYSTEMccovviiiiiiiiiiiiiiiieeeieiieeeee, 43

A. INTRODUCTION ...ttt s 43

B. DGIAS SUITABILITY ANALYSIS ... 43

C. DGIAS SYSTEM COMPOSITIONoiiiiiiiieiccieieeeeeeeeees s 44

1. [T of g]] £ o | o [44

2. Component Systems of DGIAS ... 47

a. KIOSK SYSTEM ..o 47

b. Fixed Camera SyStem........coooiiiiiiiiii i 50

C. Middleware SYStemcccccevvviiiiiiiiiie e 53

d. Watchman Viewer System..........cceeiieeieiiiiieiiiiiinnn. 54

D. PROPOSED DGIAS VIRTUALIZATION ... 56

1. DESCIIPLION e e e 56

E. DGIAS TEST AND EVALUATION PROCESS MODEL...........ccccune. 59

F. CONCLUSION ..., 65

CONCLUSION ...ttt et e e et e et e e e e e eeseeeeeeeeeees 67

A. SUMMARY .ottt e et e e eeaeeeeeeeeaseeaeessaeneeeeeeneneees 67

B. FURTHER RESEARCH AND RECOMMENDATIONSccccooiiinnnnn 68

1. Limits of Virtualizationccoooiiiiiiiiiiii e 68

2. Improved Capabilitiesccoovvvviiiiiie e 68

3. Further Case StudiesS.......coooviiiiiiiiii e 69

4, Specific Measuring TOOl.....cccooeeeviiiiiiiee e 69

viii

APPENDIX A 71
APPENDIX B

... 73
LIST OF REFERENCES...... ..o 75
INITIAL DISTRIBUTION LIST ..o 79

THIS PAGE INTENTIONALLY LEFT BLANK

Figure 1.
Figure 2.
Figure 3.

Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 1.
Figure 2.
Figure 3.
Figure 4.

Figure 5.
Figure 6.
Figure 7.

Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.

Figure 14.
Figure 15.
Figure 16.

Figure 17.

Figure 18.
Figure 19.
Figure 20.
Figure 21.

Figure 22.
Figure 23.
Figure 24.

LIST OF FIGURES

Four VMs on a Single Set of Hardware (After: Swaminathan &

MUFtNY, 2006) ...eeeveeeiieee e ee e e e e e e e e et e e e e e e e e e eeaaa e e e e e e e eeeaannnn 7
Six VMs on Two Sets of Hardware (After: Swaminathan & Murthy

2006) .ttt ittt ettt e et e ettt e ettt ittt e e nnneeeennnes 7
Depiction of x86 Platform Hosting Windows- and Linux-Based OS

(From: Smith & Nair, 2005)......ccccciiiiiiiiiiiie e 12
Depiction of Server Application Virtualization..............ccuueeiiiiiiiiiineinnnnns 15
Cloud Service MOEIS........coooiiiiiiii 17
Private Cloud MOElcoooiiiiiie e 18
Community Cloud MOdElccooeeiiiiiieecc e 19
Public Cloud MOlcoooii e 20
Hybrid Cloud MOdEl.........ccooiiieeiee e 21
Marine Corps Virtualization Strategy (From: Brodhun, 2008)................ 22
DoD Decision Support Systems (From: DoD, 2012, p. 6)........ccccvvvenneee 27
Test and Evaluation Framework (From: Naegle, 2011).........cccceeeeennnee. 29
Overview of Phases in the Systems Engineering Core Model (From:

GOShOIN, 2010) .. 32
Systems Engineering Core Model (From: Goshorn, 2010).................... 33
Systems Engineering of a System (From: Goshorn, 2010) 34
Applied Methodology for Systems Engineering of Systems of

Systems (From: Goshorn, 2010)uuvuiiiiiiiiiiieiiiicee e 35
VV&T Techniques (From: Balci, 1995, p. 152)cccovvvvviiviiiieeeeeeeeeeienns 38
System View Diagram for DGIAS (After: Goshorn, 2010)een.... 45
Selected DGIAS Systems (After: Goshorn, 2010)cccoeeeeevvvveeiieennnnnnn. 46
Physical Architecture of Selected DGIAS Systemscccceeeveeeiviveinnnns 47
Kiosk System Physical ArchiteCtureccceeveiieeiiiiieiiiicie e 48
Kiosk System’s Dell Latitude™ D820 Hardware Specifications (From:

Dell, 2005@) ..o 49
Kiosk System’s Dell D820 Latitudes..........ccuuuuiiieeeeiiiiiiiiiiiee e 49
Fixed Camera System Physical Architecture...........cccccccveiiiiiiieiiveeennnns 51
Fixed Camera System’s Dell Precision™ 490 Desktop Hardware

Specifications (From: Dell, 2005b).........ccooviiiiiiiieiiiiiiieee e 52
Fixed Camera System’s Dell Precision™ 490 Desktop (From:

IMageShack, N.0.) ... 52
Middleware System (Geospatial Hub) Server Physical Architecture 54
Watchman Viewer System Physical Architecture............ccccooeeeeeevviennnes 55
Watchman Viewer System Virtualization Architecture..............c............ 55
Watchman System’s Mac Pro Hardware Specifications (From: Apple,

120) IO PP P PP 56
Watchman System’s Mac Pro Server (From: Apple, 2012) 56
Proposed Physical Architecture of DGIAS..........coooo i 57
Virtualization Architecture of vAlpha & vBetacccoevvceiieiiceeveeennn, 58

Xi

Figure 25. Core Model (From: Goshorn, 2010)coeiieeiiiieiiiiiiiiee e
Figure 26. DGIAS ECO Implementation Modelcccooooviiiiiiiiiiiiee e,

Figure 27. System Build Times

Xii

Table 1.

Table 2.
Table 3.
Table 4.

LIST OF TABLES

DGIAS ECO Integration With Core Model Hours Breakdown for 40-

[[0 T | = =T 0T USRS 60
DGIAS ECO Integration PartiCipantS..............uoeoieeeeiiieiiiiiiiiieee e eeeeeeiienns 61
ACHVILY TIMES ..t e e e et e e e e e e e e e e e e e e e e eeeeennnnnns 63
DGIAS ECO Integration Phase C—Process TasksS.........cccccevvvieeeeennnnnn. 65

Xiii

THIS PAGE INTENTIONALLY LEFT BLANK

Xiv

LIST OF ACRONYMS AND ABBREVIATIONS

ADCCP Army Data Center Consolidation Plan

AFATDS Advanced Field Artillery Tactical Data System

C2 Command and Control

C4l Command, Control, Communication, Computers, and
Intelligence

CAC2S Common Aviation Command and Control System

CoC Combat Operation Center

COl Community of Interest

COTS Commercial Off-the-Shelf

CPOF Command Post of the Future

CPU Central Processing Unit

DAS Defense Acquisition System

DCGS Digital Common Ground System

DDR Double Data Rate

DGIAS Distributed Global Information Grid (GIG) Intelligence Automation
System

DIPR Detect—Identify—Predict—React

DoD Department of Defense

DVD Digital Video Disc

E2E End to End

ECO Engineering Change Order

EMD Engineering and Manufacturing and Development

FCS Fixed Camera System

FoS Family of Systems

XV

GB
GHub
GHz
GPS
GUI
HDX
laaS

IBM

LUN
Mbit/sec
MAGTF
MC3T
MCIC
MCTSSA
MHz

ms
NGO
NIC
NIST

ODBC

Gigabyte

Geospatial Hub

Gigahertz

Global Positioning System
Graphical User Interface

High Definition User Experience
Infrastructure as a Service
International Business Machine
Internal Clock

Internet Protocol

Intelligence Surveillance and Reconnaissance

Information Technology

Joint Capabilities Integration Development System

Logical Unit Number

Megabit per second

Marine Air Ground Task Force

MAGTF C4l Capability and Certification Test
MAGTF C4l Integration and Certification
Marine Corps Tactical Systems Support Activity
Megahertz

Millisecond

Non-Governmental Organization

Network Interface Card

National Institute of Standards and Technology

Open Database Connectivity
XVi

(O Operating System

PaaS Platform as a Service

PC Personal Computer

PColP Personal Computer over Internet Protocol
PM Program Manager

PoE Power over Ethernet

PPBE Planning, Programming, Budgeting, and Execution
QFD Quality Function Deployment
R&D Research and Development
RAM Random Access Memory

RDP Remote Desktop Protocol

RTC Real Time Clock

SaaS Software as a Service

SAN Storage Area Network

SDK Software Development Kit

SoS System of Systems

SQL Standard Query Language

T&E Test and Evaluation

B Terabyte

TEMP Test and Evaluation Master Plan
TES Test and Evaluation Strategy
UAV Unmanned Aerial Vehicle

USB Universal Serial Bus

VDI Virtual Desktop Infrastructure
VM Virtual Machine

XVii

VMM Virtual Machine Monitor

VV&T Validation, Verification, and Testing
WIPT Working-Level Integrated Product Team
Y2K Year 2000

XViil

ACKNOWLEDGMENTS

| would like to thank my dear wife, Natalie, for her support and
encouragement throughout my time at the Naval Postgraduate School. You are
my best friend, and | am blessed to have you as my wife. Thank you to my
children, Shey, Megan, and Cole, for their inspiration to enjoy each moment and
their reminder that | was a kid once, too. Special thanks to my parents, who have
provided unwavering support and continue to inspire me to reach new personal,
professional, and academic heights. | also want to share my appreciation with my
advisors, Dr. John Osmundson, Dr. Deborah Goshorn, and LTCOL Brad Neagle
(Ret.). Professor Osmundson, your insight, and experience have allowed me to
develop a thesis worthy of the Naval Postgraduate School. Professor Goshorn,
without the aid of your research, | would have been unable to complete this
thesis. LTCOL Neagle, your instruction in the field of acquisition has transformed
my professional and educational experience. Finally, | would like to express my
gratitude for the tremendous guidance and support of Ms. Karey Shaffer and Ms.
Tera Yoder and the team of staff and editors of the Acquisition Research
Program, thank you all for your effort in support of my research.

XiX

THIS PAGE INTENTIONALLY LEFT BLANK

XX

INTRODUCTION

A. BACKGROUND AND HYPOTHESES

An information technology (IT) or command and control (C2) system’s
performance in the test and evaluation (T&E) phase of a program’s life cycle will
impact its success or failure. Program managers (PM) must choose wisely where
to distribute their budget in order to control development costs and program
schedules. To maximize limited budgets, it is a manager’s duty to find improved
productivity in business processes and ensure the effective use of IT
infrastructure. One technology designed to achieve both efficient business
processes and the efficient use of infrastructure is virtualization. Virtualization
software decomposes the physical elements of a computer into a set of
executable software files. This transformation allows for the emulation of a
physical computer through software, which provides administrators with improved
process efficiencies throughout the IT infrastructure. The implementation of
virtualization technology in T&E can reduce hardware and manpower costs while
decreasing lab configuration schedules. This increase in productivity reduces
schedule time and cost, thus managers can apply resources to other critical

areas of the program.

To realize the efficiencies gained by virtualization in T&E, the test
environment should ideally mimic a large system of systems (SoS) setting.
System of systems architectures incorporate multiple IT systems working
together either in sequence or in parallel to produce some output. For example,
the DoD intelligence community relies on multiple intelligence surveillance and
reconnaissance (ISR) platforms such as unmanned aerial vehicles (UAVS) or
manned fixed-wing aircraft to collect data on a given target. The collection data
must be processed by unique systems and then transmitted to analysts for
further study. These disparate inputs will eventually come together within a single
system to provide a cohesive understanding of a given target. To ensure each of

these systems work together, they must be tested together in an environment

closely matching the operational setting. By creating SoS architectures in
virtualization, administrators can create functional models of systems, which
allow for new software updates or patches to be easily integrated or new
products to be tested without adjusting the existing system connections.

To demonstrate the benefits of virtualization in the test environment, a
study was completed of the Distributed Global Information Grid (GIG) Intelligence
Automation System (DGIAS). The DGIAS Ilaboratory combined numerous
systems working together to connect several collection platforms and database
systems. To validate the hypothesis, a hardware consolidation plan and a
process model of the system were developed to verify a reduction of hardware

requirements and configuration time.

B. BENEFITS OF STUDY

With this thesis, | seek to identify the efficiencies gained from the use of
virtualization in system of systems test and evaluation. Given the large scale of
most SoS environments, a solution must be developed which combines IT
flexibility and scalability without increasing manpower. In this thesis, | outline for
system testers the benefits and limitations of implementing virtualization

technology in an SoS T&E setting.

C. RESEARCH QUESTIONS

1. What are the ideal system traits for implementing virtualized

system of systems test and evaluation?

2. What type of virtualization environment should be created to

benefit the system of systems test and evaluation process?

3. What are the efficiencies achieved through the use of

virtualization in system of systems test and evaluation?

4. What are the limitations of using virtualization in a system of

systems test and evaluation environment?

D. THESIS ORGANIZATION

Following the current chapter’s introduction to virtualization and SoS T&E,
in Chapter IlI, | introduce some important concepts in the field of virtualization.
Then, | discuss the concept of cloud computing, including the different service
and deployment models. Finally, | review the limitations of the virtualization

technology.

In Chapter lll, I discuss the fundamentals of system of systems T&E in the
DoD acquisition process as well as T&E methodologies. Although numerous T&E
methodologies exist, | only discuss the most accepted and practiced techniques.

Next, | introduce the DoD SoS initiatives as a framework for DoD acquisition T&E.

Following the presentation of the background information, in Chapter IV |
examine in detail the Distributed Global Information Grid (GIG) Intelligence
Automation System (DGIAS). This chapter explores the physical hardware,
software, and processes of the DGIAS. Then | propose a virtualized architecture
for the DGIAS to determine the differences between a fully physical
implementation and a hybrid (physical and virtualized) architecture. Finally, |
present a process model of the system to identify efficiencies achieved by a

virtualization implementation in a T&E environment.

In Chapter V, | summarize the findings of this thesis and suggest several
opportunities for future research at the intersection of virtualization or cloud

computing and SoS T&E.

THIS PAGE INTENTIONALLY LEFT BLANK

. VIRTUALIZATION AND CLOUD COMPUTING

A. BACKGROUND
1. Early Virtualization

Throughout their history, virtual machines (VMs) have sought to divide the
computing components of hard disk storage, random access memory (RAM),
and central processing unit (CPU) of a single large computer into several smaller
computers for use by multiple users. The separation of components is achieved
through virtualization software. Virtualization software has matured since its first
introduction in the late 1960s at IBM® (International Business Machine). The
production of the CP-40 (Control Program-40), developed in concert with the IBM
System/360 Model 40 (Adair, Bayles, Comeau, & Creasy, 1966), was the first
system to host multiple operating systems (OSs) on a shared platform and
provided the foundation for virtualization (Varian, 1991). Current computer
capabilities and network throughput have completed the original vision of
virtualization. Today, organizations can operate the equivalent of a historic
mainframe on a single rack of servers. This is made possible by continued
miniaturization and commoditization of computer components. Computers in the
form of blade servers now contain multi-terabyte internal storage, hundreds of
gigabytes of RAM, and multi-core processors. This computing power is
equivalent to seven to ten desktop computers and is the primary enabler for

virtualization.

2. Virtualization System Elements

Parmalee, Peterson, Tillman, & Hatfield (1972) outlined the capabilities of
virtualization in the early days of VM with some guiding principles. The following
four principles define the VM tenets and have influenced current virtualization
software:

e Concurrent running of dissimilar operating systems by
different users. While one virtual machine is used to develop

and test code for the current release level of an operating
system, another virtual machine can be using a back-level
release of the same system.

e Both system and application programs may be developed
and debugged for machine configurations that are different
from that of the host machine. Thus, a host machine with a
modest amount of main storage can provide the environment
for development and testing of a system to run on a machine
with a large amount of main storage.

e One virtual machine is totally insulated from the effects of
software failures occurring in other virtual machines.

e The host machine can aid in the measurement of hardware
and software usage by the various virtual machines. Specific
virtual machines built for monitoring can communicate
directly with the host without impacting the machines being
monitored. (Parmalee et al.,1972, p. 109)

It should be intuitive that a single powerful set of hardware or platform
could perform the work of several smaller sets of hardware. This is what
virtualization seeks to achieve. As the age of mainframes in the 1960s and 1970s
gave way to the personal computer (PC) in the 1980s, the need to develop large
powerful systems diminished. Only major corporations, universities, and
governmental agencies continued to maintain and operate large mainframes.
The business world’s focus on the PC reduced the need for virtualization as a
means to service multiple VMs and multiple users. Today, consumers can
purchase small, high-performance computers as commodities, thus removing the
size and cost barriers of the past. The industry’s current emphasis on cloud-
based architectures will further push the IT market to a greater reliance on a

centralized server-based model.

3. Virtualization Architecture

The application of virtualization to SoS architectures will provide a platform
for multiple system designers to share a common infrastructure. “This leads to
ease of use and optimal product design and testing, which decreases costs and

lead times.” (Swaminathan & Murthy, 2006, p. 67). Swaminathan and Murthy

used the concept of virtualization to develop the representation shown in Figure
1. The architecture as depicted allows VMs to communicate with each other,
much like hosting an entire network from a single computer. The structure
illustrated represents an ideal environment for testing complex network
topologies given the multiple possibilities for VM connectivity. The authors also
acknowledge a possible work around to traditional virtualization architectures by
adding non-virtual machine entities into the environment to help simulate a piece

of hardware that is not easily virtualized, seen in Figure 2 as a stub.

VM 1 VM2

VM 3 VM 4

Figure 1. Four VMs on a Single Set of Hardware (After: Swaminathan &
Murthy, 2006)

VM 1 VM 2 VM 4 VM 5

VM 3 Stub - Stub VM 6

Figure 2. Six VMs on Two Sets of Hardware (After: Swaminathan & Murthy
2006)

The stub represents a physical component such as a switch or a network
device that allows communication between two virtualization environments that
normally would not have the capability to organically communicate. For example,

a stub would provide the necessary interface for a system hosted in a virtual

environment that requires a satellite communication link. The stub would be
physically connected to the server to translate the message into the appropriate
format for transmission. Because many components of a system cannot be
virtualized, it is important to understand how alternatives can be developed to
simulate or replicate interactions from end-to-end of the system. This is
specifically important for testing of systems given the need for operationally

accurate and repeatable test conditions.

B. COMPONENTS OF VIRTUALIZATION
1. Hardware
a. Server

The server provides the processing power necessary to begin a
virtual environment. Servers have replaced the mainframes of previous
generations. For the purposes of this thesis, a server is defined as a set of
hardware components (CPU and RAM) that perform the tasks of a given set of
software. The term server can also be associated with a type of software such as
an email server, which performs the function of organizing and distributing emails
to a group of users. Throughout this thesis, the term server refers to the
hardware, unless explicitly stated. Servers are traditionally housed in racks with
multiple servers per rack. This configuration allows for the centralized access to
electricity, air conditioning, and high bandwidth networking necessary for
maximum performance. Today’'s servers can contain multiple CPUs and

hundreds of gigabytes of RAM.

The continued improvement of the hardware components has
enhanced the types of functions performed by servers. With the improved
performance many servers are capable of hosting a virtual environment with
dozens of VMs. By hosting multiple VMs on a single set of hardware,
administrators gain efficiency in power consumption, physical footprint of

computing devices, and ease of management of the hosted VMs.

b. Client

In a traditional client—server architecture, the workstation or client is
a desktop or laptop computer. A client may also be known as a node in a network
architecture. A network in the physical world is comprised of multiple nodes or
clients. In a virtual environment, the client can take many forms such as a thin-
client, thick-client, zero-client, or web-client. Each type provides characteristics
specific for a given environment. The administrator of the network must
determine which types of clients provide users with the required functionality. All
clients offer a user the requisite keyboard, video display, and input options such
as a Universal Serial Bus (USB) or Digital Video Disc (DVD) drive.

A thin-client contains a specially designed client software with
minimal functionality required to perform hardware interface and to communicate
with the server. The use of a thin-client requires a specially designed hardware
device with onboard processing, memory, and networking. These devices
contain the minimal components necessary to provide an operative user
experience. A thin-client is normally housed in a device approximately 6" x 6" x 2".
The small size and onboard processing is ideal for organizations looking to
reduce the physical footprint and power consumption, without sacrificing

computing performance.

A thick-client is a traditional desktop with an additional virtualization
software application installed to enable communication with the server. The
desktop does not perform any application instructions, but it does provide video
display and network messaging, much like that of a thin-client. The thick-client
initiative is an attempt to repurpose or reuse existing desktops within an
organization without having to dispose of desktops or purchase new hardware.
Although physical footprint and power consumption efficiencies are not achieved
with a thick-client, it does give access to multi-core processing, increased

memory, and storage from the existing desktop.

The zero-client is a form of a virtual client that makes use of the

PColP (personal computer over Internet protocol), discussed later in this chapter,

to stream images of the VM state from the server to a device that does not
contain any internal processing, memory, or storage capacity. The device does
not record any portion of a virtual session; it displays images or screenshots of
the VM hosted on the server. This type of device is the smallest in scale of all

clients and the most secure of the options available to administrators.

A virtualized web-client allows a VM to be accessed through an
Internet web browser. Any computer with access to the network can operate a
VM through the host-based OS remote protocol made available through a
browser plug-in. Remote protocols are discussed later in this chapter. The web-
client provides the greatest degree of flexibility for a user. However, because the
hardware and software were not designed specifically for the purpose of web-
based virtualization, some performance is degraded due to latency.

C. Storage Area Network (SAN)

All servers are designed with some amount of storage available to
them, usually on the scale of multiple terabytes per server. However, in a virtual
environment, it may become necessary to make additional storage available,
such as for the purposes of maintaining VMs or creating snapshots of VMs in a
test environment. Given reduced costs and greater accessibility to storage,
administrators have employed racks of storage and allocated them to the virtual
environment. These dedicated storage devices, called storage area networks
(SAN), contain multiple terabytes of data and can be shared by several servers,
thus increasing the flexibility of the resources available through virtualization.
Servers can be assigned a specific LUN (logical unit number) or memory address
on a SAN, or the storage can be dynamically assigned according to the need of a
given VM. Not all VMs perform the same functions or execute the same
applications; therefore, the architecture should offer flexible storage options
based on user needs.

10

2. Software Architecture

Three specific types of software enable a virtual environment, as depicted
in Figure 3 These software allocate the physical hardware among the VMs,
provide OS platforms, and manage the entire VM architecture. The first type,
known as the virtual machine monitor (VMM), or hypervisor, is installed upon a
set of hardware, much like an OS is installed upon a traditional desktop computer.
The VMM does not perform all of the traditional OS functions; instead, it controls
access to the CPU, RAM, network interface card (NIC), and storage between the
VMs. Next is the VM OS, such as Microsoft® Windows, Ubuntu Linux, or Red
Hat Linux. The VM OS sends requests to the VMM for central processing,
memory usage, storage, and network access. Finally, to manage the
configuration of the VMs, management software is installed on a specific VM
within the environment. This management software, such as VMWare’s VCenter
Server, provides several functions including software application access and

update support to the entire group of VMs.

a. x86 Platforms

Today, virtualization, in its most developed form, has remained
within the x86 platform. The x86 platform includes the traditional Microsoft®
Windows—based OS family in its many versions (XP, Windows 7, Windows 8)
and Ubuntu with its Linux OS. The platform, created by the chipset technology of
Intel and AMD Corporations, allows software that resides three layers above the
hardware to have direct access to the hardware. In 2006, Intel and AMD modified
the CPU instructions to allow virtualization to occur more easily, thus reducing
the need for software workarounds to achieve the resource sharing (Neiger,
Santoni, Leung, Rodgers, & Uhlig, 2006; AMD, n.d.). The VT-x technology by
Intel (Neiger et al.,, 2006) and AMD-V by AMD (AMD, n.d.) provide the
virtualization chipset instructions necessary to enable resource sharing. Figure 3
illustrates the concept of a bare metal or full virtualization implementation, in

which the VMM is installed directly on top of the x86 platform or server.

11

‘Windows

Figure 3. Depiction of x86 Platform Hosting Windows- and Linux-Based OS
(From: Smith & Nair, 2005)

b. Virtual Machine Monitor (VMM) or Hypervisor

The VMM performs a central role in a virtualization environment. It
is a small encapsulated piece software that may appear to perform as an OS,
however, its functionality is more limited. The VMM is able to control the
hardware, that is, make calls to the CPU, RAM, and storage, like an OS, but it
does this in support of the VMs installed upon it. A bare metal VMM configuration,
as seen in Figure 3, is known to be the most efficient means of allowing VMs
access to the physical hardware. This configuration reduces the software calls, or
messages, transmitted between a VMM and the platform for the purposes of
providing resources to the VMs. In a typical server rack, multiple servers would
be mounted, each with a VMM installed. The mix of two or more servers is known
as a cluster. These clusters provide one of the unique benefits of virtualization,
which is the ability to share resources based on CPU and RAM demand. As the
workload of a group of VMs increases, the VMM can allocate more resources to

the VMs in need to provide the most efficient instruction execution.

C. Virtual Machine Operating System

The OS installed on a VM is the software component most familiar
to users. It is the family of Microsoft® or Ubuntu OSs most often used in a
traditional desktop or laptop environment. The OS in a virtual environment
executes the same functions performed in a traditional user environment, such

as running applications, controlling access to the network, managing system

12

attributes, and performing basic calls to the CPU, RAM, and storage. Within a
virtual environment, the performance of an OS and its associated applications

remains the same as it would if it existed in a physical machine.

d. Virtual Machine Configuration Management

To manage the VMs hosted upon a VMM, server configuration
management software has been developed to manage the VMs hosted in an
environment. This software allows for the creation of new VMs from a template or
by copying an existing VM. The software also provides the ability to take
snapshots or back-ups of a system state of a VM in a certain state or
configuration. These snapshots allow a VM to be restored in the case of file
corruption or a system conflict with the integration of new software. One
efficiency provided through VM management software is the ability to roll back or
revert to a previous system state. In the case of a disaster, the management
software can recognize if a VM or a cluster of VMs has shut down unexpectedly
and quickly boot up a new cluster of VMs to compensate. This type of

administrator control cannot be easily duplicated with physical machines.

3. Network
a. Components

In a virtual environment, the network is the heart of the architecture.
It provides the connectivity necessary for both the physical components (e.qg.,
fiber, cables, wireless, backplane, switch, router) and the virtual components
(e.g., virtual LAN, virtual switch). Although it is not the purpose of this thesis to
discuss all of the detailed components of the network and their functionality, it is
necessary to mention two basic ideas that impact a virtual environment,
specifically in a virtual desktop infrastructure (VDI) implementation: latency and
protocol. With the following discussions, | explore the impact these ideas have on

virtual environment.

13

b. Latency

The metric of latency, often used within the field of IT, and
specifically virtualization, “can be measured one-way, from source to destination,
or two-way round-trip, from source to destination and back to source (usually
excluding the processing time at the destination to generate the response)”
(Fehse, 2011, p. 12). For virtual systems, which interact with a server and a
possible VDI client, the latency can determine the success of a virtual
environment. Given that processing occurs at the server, a user must rely on a
high-speed transmission of an input, the processing of that input, and the
retransmission of the output. If this process exceeds 20 milliseconds (ms), the
user is delayed in performing any other action until the last request has been
completed. For multi-step processes, this interaction can inhibit user productivity
if the delay becomes significant. Therefore, networks must minimize latency to

improve user experience.

C. Protocols

To address latency and the communication between the server and
the client, three types of protocols are widely accepted as standards. These
standards facilitate the server—client communication necessary to perform any
set of instructions. The Remote Desktop Protocol (RDP), developed by the
Microsoft® Corporation, is designed to create remote displays and application
support for users operating a Microsoft® OS. The protocol contains a “bandwidth
reduction feature comprised of data compression, caching of graphical elements,
and network load balancing” (Fehse, 2011, p. 16). These features reduce latency

while improving the user experience and enhancing screen refresh rates.

The PColP technology, developed by the Teradaci™ Corporation
for use by VMWare, focuses on bandwidth reduction through pixel transmission
to reduce latency. This type of protocol streams the video of the user’s screen to

the client. No data transmission occurs between the server and the client, which

14

removes the need to have any client-side processing or storage capability. The
technology uses a series of video codecs to encode and decode the video

stream at real-time speeds (Teradaci, n.d.).

The HDX™ (High Definition User Experience), developed by Citrix,
relies on server, network, and client processing to effectively transmit data
according to network congestion and available bandwidth (Citrix, n.d.). HDX’s
dynamic adjustments to network latency by the VMM, VMs, and network devices
suggests that users will experience improved VM performance.

4, Server Virtualization

Server virtualization has been the focus for most businesses seeking to
adopt virtualization technology. Server virtualization makes use of the position
that any server that consistently operates below 50% of capacity is wasting
capacity. To remove the waste, additional services must be hosted on the
hardware. Virtualization provides the means for multiple server-based
applications such as a web or email server to be hosted on separate VMs within

a single set of hardware, as seen in Figure 4.

Web Server Email Server DNS Server

VM 05 VM 05 VM 05

Virtual Machine Monitor (VMM)

Server Hardware

Figure 4. Depiction of Server Application Virtualization

5. Virtual Desktop Infrastructure

The VDI initiative has recently grown into a significant portion of the
virtualization movement. In its purest form, VDI is a return to the server-terminal
architecture of the 1960s and 1970s. Within VDI, the application hosting,

15

processing, and networking all occurs at the server with a user interface in the
form of a thin-client or thick-client. The clients are connected to the server via a
switch/router, Ethernet cable, or wirelessly. This type of implementation is ideal
for established environments with high bandwidth.

C. VIRTUALIZATION: THE BUILDING BLOCK OF THE CLOUD

From virtualization has emerged the concept of “cloud computing.” The
National Institute of Standards and Technology (NIST; 2011) offers the following
definition for cloud computing: “... a model for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and services) that can
be rapidly provisioned and released with minimal management effort or service
provider interaction” (NIST, 2011, p. 2). This definition shares those early ideas
of virtualization by allocating the computer resources across multiple VMs. By
understanding the different service models available, the DoD can implement the
appropriate model to assist in the T&E process. The services maintain a great
deal of server and workstation hardware that can, in effect, be repurposed to

implement private clouds in the T&E environment.

1. Cloud Service Models

The cloud service models provide a road map for future virtualization
implementations. Figure 5 depicts the three enterprise service models: software
as a service (SaaS), platform as a service (Paas), and infrastructure as a service
(laaS). Figure 5 distinguishes between a cloud service provider's control
(highlighted in gray) and consumer’s control (highlighted in white) for each type
of service. Each model provides an enterprise different levels of control for the
key elements of an IT infrastructure. SaaS limits a user to only minor application
configuration settings without providing full access to the OS. This differs from

PaaS, where consumers are authorized full application permissions, that is, they

16

can install, uninstall, and manage applications through the OS. The laaS model
provides a consumer the option to create unique VMs or platforms, install specific

OSs, and manage all applications.

(" SaaS \(PaaS \ ([1aas)
Application Application Application
Operating Operating Operating

System System System
Platform Platform Platform
Virtualization L Virtualization Virtualization
Physical Physical Physical
hardware hardware hardware
Network Netwaork Network
Data center Data center Data center

Cloud Service
: Consumer
Provider
Figure 5. Cloud Service Models

An organization’s ability to manage its own infrastructure determines the
appropriate service model. Virtualization enables SaaS, PaaS, and laaS to fulfill
the desired user functionality. Virtualization provides the organization the ability
to create a variety of VMs tailored to their needs. For example, if a developer
requires a Windows-based x86 platform on which to test a specific application’s
performance, in an laaS agreement, the developer can specify that requirement
and build a VM to those criteria. The developer can then execute the testing in
the Windows environment. Once complete, if he or she desires to test in a Linux

environment, a new environment can be established all from the same client.

17

2. Cloud Deployment Models
a. Private Cloud

The private cloud model, depicted in Figure 6, limits access of the
computing resources to consumers of a specific organization (NIST, 2011). This
is the most secure form of the cloud deployment models and is ideal for test
activities or system development, because it provides the best possible
computing resources with little risk of compromise. Test environments could be
quickly established, employed, and saved for future use in this type of model.
The private cloud gives an administrator the maximum amount of control, while

providing consumers with the available computer resources on request.

Private
Cloud

! [
-
: ‘ Business Unit 3

Business Unit 1 -

Business Unit 2

Figure 6. Private Cloud Model

b. Community Cloud

In a community cloud, the computing resources are shared among
a community of consumers with mutual interests. A community of interest (COI),
could leverage a community cloud to share limited applications or to give access
to a common set of tools for consumers with a specific skill set. This type of cloud
also allows for common concerns such as security issues, policy compliance, or
mission accomplishment (NIST, 2011). For example, TopCoder Inc., has
established a community of software developers and provided them with the
necessary software development kit (SDK) through their community cloud
(TopCoder, n.d.). As stated by NIST a community cloud, “may be owned,

managed, and operated by one or more of the organizations in the community, a

18

third party, or some combination of them, and it may exist on or off premises”
(NIST, 2011, p. 3). Figure 7 depicts how three disparate organizations share the

same resources to accomplish common goals.

Cammunity
Cloud

e »
E,EEI University

Corporation
|] =]

wm

Government Agency

Figure 7. Community Cloud Model

C. Public Cloud

The public cloud model, depicted in Figure 8, permits open use by
the public (NIST, 2011). The cloud provider enforces the goals or purposes of the
architecture. The figure illustrates how non-governmental organizations (NGOSs),
small businesses, individuals, academic institutions, governmental agencies, and
major corporations can all work together to achieve a common goal. An example
of this coordination is evident in organizations such as InRelief.org, which
provides improved response time for “Humanitarian Assistance and Disaster
Relief (HADR) events by connecting military/civilian organizations” (InRelief,
2012).

19

Small Business

Public
Cloud

University

Corporation -E

Government Agency

Figure 8. Public Cloud Model

d. Hybrid Cloud

The hybrid cloud permits the combination of two or more
established clouds. The independent cloud architectures remain private objects,
but allow for sharing of resources to accommodate load-balancing, fail-over
protection, and application sharing (NIST, 2011). The hybrid cloud represented in
Figure 9 portrays the combination of three unique clouds connected via common
standards for the purposes of shared interests. This type of model represents the
greatest degree of collaboration, because the communication standards
established within an individual cloud must be duplicated across multiple cloud
providers.

20

-

(%
=

Cloud 1

Cloud 2

Cloud 3

Figure 9. Hybrid Cloud Model

D. DEPARTMENT OF DEFENSE VIRTUALIZATION INITIATIVES

The Department of Defense (DoD), in an attempt to adopt virtualization,
has released service-based IT strategies that reflect the capabilities gained by
implementing the technology. Each department has unique virtualization goals
that focus on primary missions and existing IT platforms. For the focus of this
thesis, | discuss the United States Marine Corps’, the United States Navy’s, and

the United States Army’s virtualization and cloud strategies.

1. United States Marine Corps

The Marine Corps operational forces were early adopters of virtualization
technology. During the 2005 tsunami in South East Asia, the Marine
Expeditionary Unit used server virtualization to consolidate the host nation’s
critical systems by partitioning the blade server hardware for multiple applications
(Brodhun, 2008). In 2008, the information architect for Product Group—10 at
Marine Corps Systems Command outlined a goal of 98% server virtualization.
The objective was to achieve this goal in a three-phase process, as outlined in
Figure 10. At the completion of the Marine Corps’ implementation, the VM to

physical server consolidation should be 2:1.

21

Value Stream Implementation
PLANNING / EXECUTION

Complexity

Dependencies
Process Change

Risk Mitigation

POC _ Block 1 Block 2
Steps to Tipping Point '
Maturity £ inifial Repeatable Defined Managed Optimized
=INTRODUCE / ADOPT =EXPAND STANDARDIZE
= Minimal Process Changes = Key IT Process = Process Optimization
S = Organizational Learning Integration = Global Deployment
= Tier 2 Workloads = Multiple LOB
= Tier 1 Workloads
2-3 Servers 8-20 Servers 20-500 Servers
15-20 VMs 50-200 VMs 200-1000 VMs
| = Availability * Continuity = Consolidation |
u i
a9 = Security * Recoverability = Compression
» Mobility
Figure 1. Marine Corps Virtualization Strategy (From: Brodhun, 2008)

2. United States Navy

In NAVADMIN 008/11 (U.S. Navy, 2011), VADM Dorsett, Deputy Chief of
Naval Operations for Information Dominance, outlined several future Navy
initiatives that focus on virtualization. The first step outlined the requirement to
reduce the number of data centers operated by the Navy. To achieve a goal of a
25% reduction, the Navy would need to leverage server virtualization: “Maximum
effort should be applied to reduce the IT footprint and infrastructure in an effort to
save Navy resources in hardware, software, manpower and to promote Navy
green IT efforts” (U.S. Navy, 2011). To find this reduction, the Navy must
consolidate server-based applications to “increase server utilization by 40
percent or more (not to exceed 80 percent utilization) and increase server

virtualization by 50 percent” (U.S. Navy, 2011).

In addition to server virtualization, the Navy will also begin a thin-client
pilot program: “DDCIO [Department of Navy Deputy Chief Information Officer], in
coordination with the Navy Technical Authority, will lead a thin-client initiative,

replacing traditional computing desktops with less expensive, mobile hardware

22

that is engineered to support migration to a mobile workforce environment” (U.S.
Navy, 2011). The Navy’s stated virtualization goals exhibit the impact of the
technology in increasing IT efficiency and flexibility. By entering the early
adoption phase of VDI, the Navy can eliminate the excess hardware associated
with traditional desktops and shift to the PaaS, laaS, and SaaS service models
(U.S. Navy, 2011).

3. United States Army

As part of the Army Data Center Consolidation Plan (ADCCP), the Army
will replace data centers with a unified cloud-computing architecture (U.S. Army,
2011). The US Army plans will “reduce expenses associated with data center
hardware, software and operations, and will be able to shift IT investments to
more efficient computing technologies” (U.S. Army, 2011). The Army, like the
aforementioned Marine Corps and Navy, must adhere to the DoD mandate to
accommodate a reduction of data centers and a move to more energy-efficient IT
solutions. This requirement paves the way for technologies like virtualization to

play a greater role in IT strategies.

E. LIMITATIONS
1. Hardware

The principles of virtualization allow hardware to be allocated easily to the
required virtual environment. However, it does not adequately allow for the
hardware to simulate a system of greater capability than the existing hardware.
For example, if the hardware contains a single dual-core processor and 100
megabytes of RAM, the hardware cannot host VMs emulating computers with
quad-core processors and 200 megabytes of RAM. Virtualization can only divide
the existing hardware into smaller elements. If a user were to allocate the
hardware in excess of the system specifications, the system would stop
functioning and crash. Therefore, when designing virtual environments, it is

critical to match the existing hardware to the expected VM architecture.

23

2. Software

Virtualization software requires several components to achieve full
functionality. The functions of the VMM, environment management software, and
client-side software must all work together. This requirement limits the options
that administrators can take to implement a virtualization environment. Once a
vendor of the virtualization software is selected, the remainder of the architecture
must, in most situations, remain with that vendor. The different elements of the
virtualization hierarchy do not work well with different developer models. This
realization can create problems for administrators who are trying to find a hybrid
solution for each element of the environment. For example, if Citrix is selected for
the client-side software, the client software must work with the management
software, which must work with the VMM. This requirement often limits

architectures to a single vendor based on interface requirements.

3. Network

To sufficiently host a virtual environment, the organizational network must
be robust. The data rate required to host server-side VMs without a client does
not require a network at all, given that all communication between the VMs
occurs at the backplane of the server rack. However, if the VMs require a VDI
implementation, then the throughput requirement increases substantially. Each
VDI client requires a connection of 25 megabits per second (Mbit/sec). This type
of connection ensures that the latency of the server to client communication is
minimized to 20 ms. When the network is unable to sustain the 25 Mbit/sec level,
the client-side interface can slow to an unusable level, limiting the user’s ability to
perform any functions. Therefore, the network must account for the number of
VMs hosted by the server and prepare for high throughput requirements both in

wireless and cabled environments.

4. Real-Time Systems

Real-time systems do not perform well in virtualization environments due

to the problem of time drift or clock drift. Computers account for time traditionally

24

with a physical clock in the hardware known as the real-time clock or RTC (the
term internal clock or IC has also been used). However, in virtualization, no
physical RTC exists inside the VM and the RTC must be replaced through
methods of time correction such as a Network Time Protocol server. Although the
software shows promise in the scalability and management of virtual
environments, it does not satisfactorily handle requirements for precise timing.
The concept of time keeping or time synchronization is important to computers
because it provides a system with an understanding of how it relates to other
systems. If a system or application requires precision timing, such as those found
in track-based systems which use a GPS (Global Positioning System) to indicate
the time, the system could be at a disadvantage given the time drift induced
between the hardware and the VM's.

F. CONCLUSION

Virtualization has evolved significantly in the decades since the CP-40.
However, from the early days at IBM to the cutting edge developments today with
companies such as Citrix and VMWare, the tenets have remained the same.
Developers and users have sought to find efficiency in maximizing computer
resources across multiple users. Virtualization does not represent a single
solution for all the technological challenges of today's IT environment. Yet, it
does provide a specific set of ideal capabilities for establishing large computer

environments quickly and completely.

25

THIS PAGE INTENTIONALLY LEFT BLANK

26

[ll. TEST AND EVALUATION IN SYSTEM OF SYSTEMS
ARCHITECTURES

A. TEST AND EVALUATION
1. Overview

The test and evaluation aspect of a system’s development is a small piece
of three larger DoD support systems: the Defense Acquisition System (DAS), the
Joint Capabilities Integrated Development System (JCIDS), and the Planning
Programming, Budgeting and Execution (PPBE) Process. Figure 11 illustrates
how the three separate processes mutually support and overlap to form a system
of checks and balances. The DAS provides the specific management of the T&E
processes, with JCIDS providing program oversight, and PPBE providing the

program funding.

DoD Decision Support Systems

|CJCS 3170.01 Series | Joint Capabilities
/ Integration &

e Development

| System (JCIDS)

VCCS/IROC
Oversight

MID 913 PPBS to PPBE

Planning, Programming,
Budgeting & Execution
{PPBE) Process

DEPSECDEF
versight

DoD 5000 Series

Figure 2. DoD Decision Support Systems (From: DoD, 2012, p. 6)

27

2. Purpose

The purpose of T&E is to provide information to help mitigate the risks
involved in developing systems and capabilities (Under Secretary of Defense for
Acquisition, Technology, & Logistics [USD(AT&L)], 2008). A system’s test and
evaluation methodology is developed based on the system’s requirements. To
understand the methodology, it is necessary to discuss the elements of test and
evaluation. The test is an action to verify operability, supportability, or
performance of an item by subjecting it to real or simulated conditions with
special test equipment or tools to obtain measurements or data for analysis
(Blanchard, 2011). The test is designed to measure a specific system objective
or requirement. An evaluation is a continuous iterative process to examine and
assess a system or an element of a system with regard to relative worth, quality
of performance, degrees of effectiveness, and anticipated cost (Blanchard, 2012).
T&E standards are initially defined during the conceptual design period of a
system by translating user needs into formal statements. Subsequently, specific
test methods are established to determine the system’s performance against the

requirements.

Test and evaluation gauges the progress of a system and its capabilities
throughout development. It provides awareness of system capabilities and
limitations to the DAS for use in improving performance. To be effective, T&E
must be integrated at the beginning of the system development to identify system
strengths and weaknesses. The objective is to recognize system defects so
components or processes can be retooled prior to system release (USD[AT&L],
2008). Figure 12 depicts the multiple test activities that are required throughout a
system life cycle. Two key documents that inform the test processes are the Test
and Evaluation Strategy (TES; or Eval Strategy) and the Test and Evaluation
Master Plan (TEMP).

28

MILESTOME & B C FRPDA
TECH DEV SYSTENM DEV & PRODUCTION & OPERATIONS &
DEMONSTRATION DEPLOYMENT SUPPORT
PHASE !
SYS INTEGR 5Y5 DEMO LRI
DEVELOPMENT TEST AND EVALUATION (DT&E) PRODOUCTION MODIFICATION
ACCEPTANCE TESTING
T4E
ENVIRONMENTAL TESTING e
0sD DT RELILBILITY DEVELOPMENT TESTS
OVERSIGHT (TEST-ANALYZE-FIX-TEST [TAFT])
LIFE TESTING » »
DESIGN LIMIT TESTING # *
— DESIGN-FOR-TESTABILITY—— BIT, BITE, ATE—
QUALIFICATION TESTING .
COMBINED DTBE/OT&E-CONCURRENT DT&E/OTAE |
[
DOTEE EARLY OPERATIONAL ASSESSMENTS OPERATIONAL LFTEE poLLow.oN
QOVERSIGHT (EOA) ASSESSMENTS (O4) IOT&E QOTEE {(FOTAE]
T
EVAL PRELIMINARY TEMP TEMP TENP
STRATEGY APPROVAL URDATE UPDATE
HARDWARE MOCK-UP& | BRASSBOARD ENGINEERING LOW RATE FULL RATE UPGRADED
CONFIGURATION| BREADBOARD PROTATYPE DEY MODEL PRODUCTION | PRODUCTION SYSTEM
ARTICLE ARTICLE
030 T4E ASSESSMENT T&E | LIVE FIRE REPORT
BEPORTS ASSESSMENT | BEYOND LRIP REPORT
Figure 3. Test and Evaluation Framework (From: Naegle, 2011)

3.

The TES describes the concept for tests and evaluations throughout the
program life cycle, starting with technology development and continuing through
engineering and manufacturing development (EMD)
deployment. The TES requires approval prior to Milestone A. The TES informs
the TEMP at Milestone B, which becomes the primary source of guidance for all
test activities. Development of a TES involves testers, evaluators, and program
managers to ensure buy-in and suitability of the test procedures and timeline.
These personnel specify the technical, functional, and operational test details to

Test and Evaluation Strategy (TES)

ensure the TES meets the established criteria (DAG, 2012).

29

into production and

4. Test and Evaluation Master Plan (TEMP)

The TEMP describes the total T&E planning from component development
through operational T&E into production and acceptance. The T&E Working-level
Integrated Product Team (WIPT) provides input for the TEMP to the PM
regarding each test event. The TEMP identifies the T&E activities and the
personnel and infrastructure requirements. The TEMP is reevaluated throughout
the production phase to adapt to changes to system requirements (DAG, 2012).

B. SYSTEMS BACKGROUND
1. Systems Science

In the physical world, systems can exist as organic or human-made
systems. In both types of systems, the elements of components, attributes, and
relationships define the system and its purpose. In the sphere of IT, systems
predominantly take the form of some combination of computer hardware or
software. Therefore in IT, the components traditionally define the parts of a
system, whether defined in software or hardware. The attributes are the
characteristics which describe the components, such as the speed of the CPU or
the type of user interface. The relationships or connecting medium of IT systems
would be the physical cable lines or the protocol used to transmit data between
components. These components work together to achieve a common purpose or
goal and the system components depend on each other to achieve the purpose
(Blanchard & Fabrycky, 2011).

2. Systems Engineering

The discipline of systems engineering has become a core piece of the
DoD acquisition process. The DoD Instruction 5000.02 defines it as

An approach to translate operational needs and requirements into
operationally suitable blocks of systems. The approach shall
consist of a top-down, iterative process of requirements analysis,
functional analysis, and allocation, design synthesis and
verification, and system analysis and control. Systems engineering

30

shall permeate design, manufacturing, test and evaluation, and
support of the product. Systems engineering principles shall
influence the balance between performance, risk, cost and
schedule. (USD[AT&L], 2008)

The system purpose drives the design, development, and T&E of a
systems engineering approach. In turn, requirements determine the system
components, attributes, and relationships. Systems engineers use a top-down
approach to verify the interfaces of the system components by observing the
interactions. Then as part of the systems engineering process, system
components and relationships are analyzed from a life-cycle perspective from the
system’s first operational use to its retirement. By completing this analysis,
system upgrades and future changes can be anticipated and built-in to the
system design. To achieve these varied tasks, system engineers use
interdisciplinary teams to meet technical demands and management to ensure
that each design discipline is represented and that their methods, techniques,
and tools are integrated in the development of the system (Blanchard & Fabrycky,
2011).

3. Systems Framework

The emergence of SoS engineering, integration, and testing has given rise
to several theories or frameworks to understand the complexities of working
within SoS or FoS architectures. For this thesis, the work of Goshorn (2010)
provides a fundamental structure to categorize both system and SoS engineering.
Figure 13 lists the Systems Engineering Core model phases from (X)—The Need,
to J—Disposal. The eleven phases of the Core model denote the processes of
the systems engineering life cycle. The Core model and other systems
engineering activities, begin with an operational need. This need determines the
form, function, and technical specifications of the system to be developed.

31

* (X)) - The Need (the Customer)
* A - Conceptual Design
* B - Detailed Design
— Test and Evaluation Plans
*+ C - Implementation
— Detailed sub-system and component design
Build
* D - Bring all parts together — one whole system
— Debugging
System Works
Customer signs off on system — it’s what they want
+ E - Clean-up
— Manuals
* System
= Traming
* Manufacturing
— Other documentation
+ F, G, H, 1, J - Other: Production, Operational Use, Refinement, Retirement,
Disposal

fime

Figure 4. Overview of Phases in the Systems Engineering Core Model
(From: Goshorn, 2010)

After the customer’s operational need has been defined, the Core model
phase of Conceptual Design (A) begins. This phase mirrors the work of Boehm’s
nine-level waterfall life cycle (1981) and allows designers to determine the
technical feasibility of a system for a given need. In Phase A, a top-down
approach to the system design is started and a refinement of the customer needs
is completed. The refined customer needs ensure a thorough understanding of
the problem by the engineers and the customer, much like that of a quality
function deployment (QFD; Yang, 2008). Phase B, Detailed Design, follows the
conceptual design as the big picture architecture is decomposed into functional
diagrams (Goshorn, 2010). The design plans should include the system
description, components, and technical specifications. The Implementation
process of Phase C enacts the detailed designs of Phase B. System components
are built to specifications. System domain activities work largely independently as
they prepare their component or subsystem for integration testing. Phase D,

termed Bring all parts together, integrates the components for test and evaluation

32

and debugging. This phase is a targeted phase of this thesis, given the focus on
T&E. Phase D requires a fast-paced tempo relative to the other aspects of the life
cycle (Goshorn, 2007). The dimension of pace becomes more important given
the impending end of the Core model. The speed of the decision making and
autonomy of the system integrators create a more compressed schedule to
deliver the system to the customer on time (Goshorn, 2007). Following the T&E
and the approval of the system by the customer is the Clean-up phase (E). This
phase is marked by the creation of operating and training manuals, as well as the
necessary instructions to manufacture or change the system. The subsequent
phases of F through J do not apply specifically to this thesis. Although they do
play an important role in the life cycle of a system, they are not relevant to the
discussion of system development and system testing.

Figure 14 depicts the phases on an X,y axis to demonstrate the linear
progression of the phases through time and their relative cost per unit. The
proportions indicate approximations of where designers and engineers spend
their time and resources for a given phase of the system development. The Core
model, in Figure 14, is carried forward as a basic framework for how all systems

and subsystems progress through the development cycle.

) Area under curve = total cost
Cost per unit C
(X) *Needs

Customer
5-10%

«Systems integration
& test

65%

Implementation of Sub-systems
(units) and unit tests

. Other=>
+Ci rmc:f{)t s ks
Definition ‘<*Clean up design
*Preliminary fiine rDocumentation

System Design

Figure 5. Systems Engineering Core Model (From: Goshorn, 2010)

As a system is developed, multiple components and subsystems are

created in support of the larger system. A system or SoS upgrade is completed

33

by an engineering change order (ECO). As ECOs are implemented and changes
are made to the system, new versions of the system are created as indicated by
the Version 2.0 or V2 classification. Throughout the upgrade or ECO process, it
is essential for system developers to deliver a functional system or SoS to
complete the testing process. To meet the system availability requirement,
developers should ensure that ECOs meet the necessary design traits prior to
integration. Figure 15 helps show the relationship between subsystems and a
higher level system.

C
h N \ L
J%d | 1 omers) R ouers

;u— — | ssemi v

ECO Subsystem to
System 1, vl

ECO Subsystem to
System 1, v1

Figure 6. Systems Engineering of a System (From: Goshorn, 2010)

A system or SoS hierarchy is depicted in Figure 16, which reveals the
relationship of changes for systems and SoS. This overall picture of the SoS
helps a test director (TD) or program manager see the progression of an SoS

and the component systems that constitute the SoS.

34

e
| Pones

System of Systems, v2

e _4_ o '_,,,.l'--"' - /)l' ,_ /_,/""" e, P T Ty

L — | System1,v2 . L.M_| System N, v2 { ECO system to

v1 System of Systems

o]

ECO Subsystem to ECO Subsystem to |
vl System, vl \ vl System N

oo 2 &

.ECO Subsystem to
vl System 1
Figure 7. Applied Methodology for Systems Engineering of Systems of
Systems (From: Goshorn, 2010)

......

4, System of Systems

The DoD established a systems engineering methodology for program
development, which required a modular open-systems approach for systems
development. This vision for component-based systems gave way to the system
of systems and family of systems (FoS) framework. The SoS or FoS approach is
applied throughout the DAS. The DoD defines SoS design as the following:

A set or arrangement of interdependent systems that are related or

connected to provide a given capability. The loss of any part of the

system could significantly degrade the performance or capabilities

of the whole. The development of an SoS solution will involve trade

space between the systems as well as within an individual system
performance. (Chairman of the Joint Chiefs of Staff [CICS], 2007)

The purpose of system of systems (SoS) testing is to integrate multiple
component systems into a single TEMP. Each system tested within an SoS
architecture may prove operational in a stand-alone environment, but may fail
when combined with other component systems. Given that most command,

control, communication, computers, and intelligence (C4l) systems were

35

developed and fielded independently, SoS testers attempt to link the systems
together into a single network to measure the combined performance, or the

overall SoS functionality.

5. System of Systems in the Department of Defense

There have been several initiatives within the DoD which have sought to
develop SoS engineering methodologies and integrate them into the field of T&E.
This SoS method sprung from the increased complexity and individuality of our
systems. As stated by Miller (2008), “early C4l systems were designed, acquired,
and fielded independently. Each addressed a single warfighting function, such as
logistics, fire support, or intelligence” (Miller, 2008, p. 1). Programs such as the
Marine Air Ground Task Force (MAGTF), Command Control Communication
Computer (C4l) Capability and Certification Test (MC3T) sought to integrate
several Marine Corps programs of records, such as the Combat Operation
Center (CoC) Digital Common Ground System (DCGS; Marine Corps Tactical
System Support Activity [MCTSSA], 2010). MC3T fulfilled the requirement for a
metric to compare SoS performance to the needs of a warfighter (Miller, 2008).
The follow-on program to MC3T, known as MCIC (MAGTF C4l integration and
certification), seeks to continue the goal of linking multiple systems such as the
Advanced Field Artillery Tactical Data System (AFATDS), Common Aviation
Command and Control System (CAC2S), and the Command Post of the Future
(CPOF) to verify that the system of systems integration performs as expected.
The MC3T and MCIC SoS events provide end-to-end thread-based or task-
based mission simulations which link forward-deployed systems to rear-echelon
systems via a direct link or intermediary systems. By recreating these operational
architectures in test environments, MCTSSA strives to improve the integration of

these systems when they are fielded.

C. SYSTEM TEST METHODOLOGIES

The testing methodologies discussed in this section all have origins in

software developmental testing. The methods contain testing elements unique to

36

the field of software design. In the work of Abu-Taieh & El Sheikh (2007), the
authors consider several test methods, from cursory to detailed, such as audit,
inspections, face validity, structured walkthrough, syntax analysis, Turing tests,
bottom-up, top-down, black-box (functional), white-box (structural), regression,
and thread-based testing. The work of Abu-Taieh and El Sheikh, based on the
work of Balci (1994, 1995), and Balci et al. (1996), seeks to organize types of

tests and to align requirements to the appropriate type of test.

Test methodologies also make use of what is known in the software
domain as validation, verification, and testing (VV&T). These processes are akin
to the T&E processes that focus on software stability, functionality, and security.
The field of VV&T as organized by Balci (1995) includes the following types of
techniques: informal, static, dynamic, symbolic, and formal (depicted in Figure
17). Each category of technique has a stylistic approach suited for testing the
different states of a system. In the following section of this chapter, | review the

techniques most suited for SoS testing.

37

A

Sunsa L, Xog-ouA
UOTIBZIENE A
Fusa], umog-dog,
Swddnqaq anoquuids
Twisa], |opowqng
Funsa] ssang
sanbinsa [, [eonsneg
sIsAEUY AANISUaS
Funsa [, uorssoardoy
UOHEPIRA SanMpald
suosLedwo O eoanjdeiny

§53L1091107) JO Jooid funsa] platg syAnonyTAL
O B0 SURL], 318 Mpal] Fuer] uonnaaxsg sIsA] Ry XMuilg 1sa], Sunmy,
SO [E]) S IPaL] Fujyosg uonnaaxg sIsA|eUY [Rmnann g SMIAY
uonanpag] [vaido] uonnIaxy Mjoquis SO0 UonNoaxNy SISAEUY ommwag suonzadsuy
STN2| 8D wpLe] SUOINSSY IATINPU] siskjeuy yimed FmFdngeq siskeuy paswg-ydeln) | | uonepyea aovq
aouaLagu] siskpuy Awpunog sisd] By uonmg funsay, dn-wonog sisApuy mol meg | | Fub{2eyd) ysag
uonnpu| Aupppay) uomessy | |Fumydesn joayyg-osney Munsal, Xog-ov|d Bupjoey) Louaysisuor) npny
[I [I [I
7 WLy 7 UL TV 7 _ qpquisg _ _ qusuiq 7 mmg 7 _ |

sanbjmpa] Sunsa] pue ‘WoREINI LI A CUOPEMIE A _

VV&T Techniques (From: Balci, 1995, p. 152)

Figure 8.

Bottom-Up Testing

1.

In bottom-up testing, the lowest level of a system’s components are tested

first, with subsequent testing building on the successful tests of these

components contribute to subsystem testing,

components. The lowest level

38

which leads to overall system testing. This type of methodology can be applied at
any level of T&E, both in the system development phase and the operational test

phase. Bottom-up testing produces benefits such as the following:

e assessment of the lowest level components first,
e future testing built upon verified components, and

e reduced complexity at initial stages of testing.
2. Top-Down Testing

In top-down testing, high-level components are tested followed by lower
level components. This type of testing relies on substitute components, also
known as stubs, to perform in place of lower level components to mimic
functionality to be developed later. This type of testing requires an understanding

of the high-level architecture to account for all the primary systems.

3. Black-Box Testing (Functional)

The focus of black-box testing is the output of the test. The test originates
with some input, and the resultant output is measured against some existing
criteria. The test does not explicitly examine if the system is performing the tasks
properly; instead, it determines if the results of the process produce the expected
values. This type of testing is a more pragmatic approach to system development
and is most likely performed by users or higher level operators who do not have
the knowledge base to understand the interworkings of a given system (Abu-
Taieh & El Sheikh, 2007).

4, White-Box Testing (Structural)

White-box testing examines the internal systems and subsystems of a
given application to determine if the precise tasks are being executed in the
manner in which they were designed. This form of testing requires a detailed
understanding of each module and how each module handles a given piece of
information. This type of testing can become complex and, therefore, should be
performed with low-level components with few processes (Abu-Taieh & El Sheikh,
2007).

39

5. Regression Testing

In order to perform regression testing, an administrator must understand
the previous states of the system. The system tester regresses, or returns to, a
previous system state to understand how a modification, in the form of an update
or engineering change order (ECO), may have led to a system failure or
undesired state (Abu-Taieh & El Sheikh, 2007). This type of testing is preferred
within a virtual environment given the ease of system state snapshots and

rollbacks.

6. Mission Thread Based Testing

Mission thread based testing is the evolution of thin thread based testing
first used by the DoD for end-to-end (E2E) Year 2000 (Y2K) testing. Thin-thread
testing executed a software macro that would link multiple systems to determine
the integration of the systems (Pham, 2006). The value in thread testing is the
ability to use small amounts of software to link several systems. The code was
easily understood by the systems integrators of the multiple systems and the
threads did not rely on a single programming language to achieve their goals.
The threads did have weaknesses; for example, several threads were required to
determine the functionality of the system, and they often required manual
development and verification (Pham, 2006). These weaknesses were addressed
with scenario based or mission thread based testing. Mission thread based
testing identifies the critical processes that must work and exercises them across
multiple systems. By using mission thread testing, the SoS performs as a single
system, thus verifying the interconnections between component systems and

component system performance.

D. CONCLUSION

The test and evaluation of a system of systems architecture is a
complicated endeavor requiring a detailed understanding of the system
capabilities, technologies involved, program costs, and program timelines. The
process is driven by system requirements and stakeholder input into the Test and

40

Evaluation Master Plan to achieve the desired system performance at the time of
delivery to the customer. To assist in the process, systems engineering provides
a repeatable framework to address many of the difficulties encountered during
T&E. The Core model (Goshorn, 2010) offers one approach for how to view
system and SoS development. With a structure in place, specific testing of the
system performance can be completed using many of the methods outlined by
Abu-Taieh & El Sheikh (2007). To achieve thorough and efficient T&E for an SoS,
engineers and test officers must understand the processes to complete the tests

and they must have the environment capable of performing the tests.

41

THIS PAGE INTENTIONALLY LEFT BLANK

42

IV. CASE STUDY OF THE DISTRIBUTED GLOBAL
INFORMATION GRID (GIG) INTELLIGENCE AUTOMATION
SYSTEM

A. INTRODUCTION

The purpose for this chapter is to use as a case study the application of
virtualization to an SoS T&E environment. In this chapter, | seek to answer
proposed research questions as they apply to the Distributed Global Information
Grid (GIG) Intelligence Automation System (DGIAS). The work of Goshorn
(2010) provides the necessary information about the component systems of the
DGIAS including the architecture of the system, the physical hardware, and the
software components. Then, | provide an analysis of the suitability of the current
system for virtualization. Next, | discuss a proposed virtualized architecture of the
DGIAS. Following that, | introduce a process model incorporating the Core model
to determine the efficiencies gained through virtualization in the test and
evaluation of a new engineering change order. Finally, | discuss the limitations of

virtualization as they apply to the DGIAS.

B. DGIAS SUITABILITY ANALYSIS

As one of the guiding principle of this thesis, the research question, what
are the ideal system traits for implementing virtualized system of systems test
and evaluation?, helped to shape a series of questions for assessing a system’s
suitability for virtualization. Given that not every system is right for virtualization,
these questions help determine the qualities of the system that need to be
assessed to determine whether the system fits into a virtualization environment.
The questions were designed around the operating systems of the clients, the
processor requirements of the operating systems and applications, and the
storage requirements of the data. These constraints are the minimum to consider
and do not fully account for every possibility but they provide a guideline for
system designers. As a note, the system processor and storage specifications of

the clients and servers were compared against the capabilities of the Dell

43

PowerEdge R610 server (Dell, 2010) with two six-core processors and the
Hewlett-Packard P4300 G2 SAS Starter SAN Solution (Hewlett-Packard [HP],
2012) with 20 terabytes (TB) of available capacity. The following are the
guestions | developed to assess a system’s suitability for virtualization:

. Are the system nodes or clients comprised of Windows or Linux
x86 operating systems? Answer: Yes, the clients use the Windows
XP operating system and the servers use Windows Server 2004.

. Can the number of CPU cores currently used by the system clients
be hosted by the available server? Answer: Yes, the minimum
number of CPU cores employed throughout the system is 16. The
hardware available can support up to 24 CPU cores.

. Can the storage requirement of the system clients be stored on the
available Storage Area Network? Answer: Yes, the maximum
amount of storage required by all the clients and servers is 16,240
GBs or less than 17 TBs of storage. The storage available can
support up to 20 TBs.

Affirmative answers to all three of these questions indicate that the system
would likely be suited for virtualization. A negative response to any one of the
three questions indicates that a system would not support using the technology.

C. DGIAS SYSTEM COMPOSITION
1. Description

The DGIAS demonstrates the capability of an SoS that integrates multiple
ISR assets for the purpose of fusing video collection with real-time facial analysis.
The DGIAS uses commercial off-the-shelf (COTS) products in the design and
development of the system. The DGIAS is a proof-of-concept SoS which
combines top-down, bottom-up systems, and middleware to Detect—ldentify—
Predict-React (DIPR) to a set of inputs and provides cueing to higher level
intelligence systems. Figure 18 depicts the original DGIAS high-level architecture

with the component systems and their relationships.

The bottom-up systems are the Fixed Camera System, a Kiosk System,
Unmanned Ground Vehicle System, Unmanned Aerial Vehicle System, and
Cyber System. The middleware system is made of service-oriented architecture

which supports smart “push/pull” of sensor data and intelligence products

44

between GIG-nodes. The top-down systems are the Command and Control
System for supporting viewers for commanding officers, intelligence analysts,

and tactical operators of sensors (Goshorn, 2012).

LANL IS NRL-DC NRL-Stennis SMC
ONR systemsyike Sarnoff,...) (ITSFAC)
Key
Outside System
Outside Systems’ Interfaces Gateway
Hosted by server
PISSA Cloud . Security
System
Top Down
System
GHub Viewer GHub Viewer Middleware
GIG-Node #1 GIG-Node #1 Tactical Y — GHub Viewer . System
i Switchboard i #2
Al : . v Bottom-up
L _ Hosted by server System
& monitor
{Unclas) Disadvantaged
User System

Middleware for GIG-Node #1
Hosted by 2 servers (Unclas and
simulated Classified) for SOA,

Services

. i Ground
Klo?k Robots
System
System System
of
of of

Syste Syst:
ystems Systems ystems Systems

Middleware for GIG-Node #2
Hosted by 2 servers for SOA,
Replication, Intelligence Automation Al IntEIhg.EHCE S Cch

Services

|A & Cybersecurity
Controls
Hosted by server

Air
Blimps
System

of
Systems

Other
Bottom-
L
Systems

Figure 9. System View Diagram for DGIAS (After: Goshorn, 2010)

As part of this research, | discuss four of the twelve component systems:
the Kiosk System, Fixed Camera System, Middleware, and Watchman Viewer
System. These systems are representative of the entire top-down and bottom-up
system functionality. Figure 19 highlights the systems of the DGIAS to be

analyzed.

45

LANL J5l NRL-DC NRL-Stennis sMC

S [OMR systemslike Sarnaff,. / e (ITSEAC)

— L3 -
e -

Key

Outsade System

|] L J Gateway
—) -
| ——

PISSA Cloud= =\ PS Cloud Lok

System

Top Down
System

Middieware
| System

N Bottom.-up
W) System

Disadvantaged
User System

Figure 10. Selected DGIAS Systems (After: Goshorn, 2010)

Figure 20 illustrates the DGIAS physical architecture of the selected Kiosk
System, Fixed Camera System, Middleware System (Geospatial Hub [GHub]),
and Watchman Server System.

46

=
| 2
A Ethernet Cable § Ethernet Cable T
2X Camera v
2X Kiosk Laptop
Ethernet Cable
S
Ethernet Cable
(]
—_
¢ - 5
5 =
! oE Cable w Ethernet Cable O
o £ -
6X Camera a8 2 Ethernet Cable e
[¥s]
6X Fixed Camera
Desktop
Figure 11.

Switch

Ethernet Cable

Ethernet Cable

Ethernet Cable

-

Watchman Server

-

GHub Server 1

ww-

GHub Server 2

Physical Architecture of Selected DGIAS Systems

2. Component Systems of DGIAS

a. Kiosk System

The Kiosk System

is an assemblage of multiple hardware

components including two Dell D820 Latitude™ laptop computers with the

Windows XP OS, two Sony pan tilt zoom (PTZ) cameras, a network switch, one

wireless microphone system, seven microphones, two speakers, an audio mixer,

and cabling. The system’s purpose is to act as a component system in the larger

DGIAS architecture by providing “interactive facial recognition, audio recording,

and analysis” (Goshorn, 2010, p. 303). Figure 21 represents the Kiosk System

architecture.

47

TS

PTZ Camera

E |

PTZ Camera

mrnet @t‘

Ethernet Cable

Figure 12.

The visual and auditory data collected by the two Kiosk Laptops is
sent to the Watchman server for further analysis and integration with other
component system data. The Video Kiosk laptop uses MATLAB software to
detect known faces through a detection algorithm. The MATLAB writes facial
recognition data to the Watchman Server in SQL (Standard Query Language)
format to the Watchman database. This database messaging is completed using
Open Database Connectivity (ODBC) standards across each node and server.
The Audio Kiosk laptop uses Audacity software to provide spectral analysis of
collected audio data. Both laptops have the following software installed: Mozilla
Firefox, Filezilla FTP Server, and Wireshark. As part of the network plan, each
Kiosk laptop was assigned a unique IP address for deconfliction (Goshorn, 2010).

Figure 22 lists the hardware specifications of the Dell Latitude™ D820 laptops,

?hemet Cable

Kiosk/Audio Control
Laptop

D-Link Ethernet Switch

Microphone

Ethernet (ﬁe

7X Audio Mixer

Ethernet Cable

Wireless
Microphone

Video Kiosk
Laptop

Kiosk System Physical Architecture

and Figure 23 is a photo of the laptops in the Kiosk System.

48

FEATURES Dell Latitude D820
SYSTEM

Processor Type Intel* Core™ Solo and Duo processors 667MHz Front Side Bus & 2M Smart L2 Cache
Processor Features Intel® Core™ Solo processor T1400 {1.88 GHz)
Intel® Core™ Duo processor T2300E (1.66GHz) T2400 (1.86GHz) T2500 (2.00GHz) and T2600 (2.16GHz)
Intel® Core™ 2 Duo processor T7200 (2.00GHz), T7400 {2.13GHz), T7600 (266GHz)
Operating systems Microsoft® Windows® XP Professional SP2, Microsoft Windows XP Home 5P2
Chipset $45GM (667MHz front side bus) with Intel onboard graphics or 945PM with NVidia graphics
Memory Min: 512MB DDR2 shared’ 533 or 6B67TMHz
Max: 4GB? DDR2 shared' 533 or B57MHz
Displays 154" WXGA {1280 X 800 resolution); 15.4” WSXGA+ {1660 X 1050 resolution); 15.4” WUXGA {1920 X 1200 resalution)
External Display Supports up to a maximum resolution of WUXGA (1920 x 1200}
Graphics Choice of Intel” Graphics Media Accelerator 350 (Up to 224MB shared); 256MB NVIDIA® Quadro NVS 110M TurboCache™ % or 512MB NVIDIA®
Quadra NVS 120M TurboCache™ *
Hard drives 40, 60, 80, 100 and 120GB* primary; BIGE* secondary
Keyboard 87-Key US; 88-Key Europe; 31-Key Japen; key travel 25mm; key spacing 19.05mm
Pointing Device Touch Pad - PS/2 compatible, Track Stick - PS/2 compatible
Audio High Definition Audic codec. Dual speakers, 8 ohm. Integrated omni-directional microphone.
Dimensions H: 35.3mm/1.39" x W: 361 mm/14.2" x D: 262.6mm/10.34~
Weight Starting at 6.0Lbs/2.73Kgs"
POWER

Power Supply %0 Watt AC adapter with cord wrapping
Batteries Primary 6-cell/53 WHr “Smart” Li-lan batery featuring ExpressCharge™
Primary 9-cellf85 WHr “Smart” Li-lon battery featuring ExpressCharge™
Secondary B-cell/43 WHr "Smart” Li-Polymer battery featuring ExpressCharge™
CONNECTIVITY

Wired 56K'v.92 Internal Modem; 10/100/1000 Gigabit® Ethernet netwark interface adaptor
Mobile Broadband: Cellular Broedband:
Dell Wirzless 5500 Mobile Broadband 3G HSDPA (Cingular US)
Dell Wirgless 5700 Mabile Broadband COMA EVDO (Verizon US)
Wi-Fi: Intel® PRO/Wireless 3345A/G (802.11a/q), Dell Wireless 1490 {BDZ.11a/g), Dell Wireless 1330 (B02.11g}
Bluetooth: Dell Wireless 350 Bluetooth internal wireless card
EXPANDABILITY

Express Card 54mm Express Card Slot; supports both 54mm and 34mm Express Cards

PCCard One Type | or Type Il

I/0 Ports Serial, 1394, docking connector, 4 USE, powered USB {D-Bay), VGA, headphone/speaker out, infrared port, RJ-11, RJ-45, AC power

Docking D/Port, D/Dock, D/View Motebook Stand, D/Monitor Stand

Modular Options 24X CO-ROM, BX DVD-ROM®, BX DVD+/-RW*, 24X CORW/DVD, Flappy Disk Drive, Secandary 6-cell/48 WHr “Smart” Li-Polymer battery, 2* 80GB*
hard drive, or TravelLite module
USB Memory Keys 128MB, 256MB and 512MB USB Memory Keys® {optional)
SECURITY

Physical Security Cable Lock Slots, Media Module and Hard Drive locks
User & System Security Integrated Smert Card Reader, Trusted Platform Module 1.2 and optional UPEK® finger print reader. Dell Embassy® Trust Suite by Wave Systems
security software.
MNetwork Security 802.11 WiFi Protected Access (WPA), B02.11i (WPA2), Virtual Private Networks (VPN) and 802.1x with EAP modes, CCX V4.0

Figure 13. Kiosk System’s Dell Latitude™ D820 Hardware Specifications
(From: Dell, 2005a)

Figure 14. Kiosk System’s Dell D820 Latitudes

49

b. Fixed Camera System

The Fixed Camera System (FCS), like the Kiosk System, is a mix of
multiple hardware components, primarily a series of cameras and laptop
computers. The system hosts 36 WiLife cameras which are controlled by a
correlating laptop computer. The laptops are connected via cabling to a switch
that also links the Watchman Server where data is stored and facial recognition
analysis applications are hosted. The system’s purpose is to provide persistent
observation of the second floor of Bullard Hall at Naval Postgraduate School. To
ensure maximum coverage, the 36 cameras were distributed between the major

corridors of the building and select rooms.

The WiLife Logitech cameras used for the system provide an
onboard 400 Megahertz (MHz) processor with 24 bits per pixel and 8-bit color
data. The camera resolution of 320 x 240 or 640 x 480 pixels may be selected,
as well as frame rates of 5, 10, or 15 frames per second. The cameras are
connected by Power over Ethernet (PoE) cabling into a PoE injector to provide
continuous 48-VDC power to the camera as well as connectivity for data
transmission (Goshorn, 2010). The PoE injectors then connect to a switch which
links the camera data to the controller laptop. Given a software constraint of the
WiLife Command Center application, only six cameras can be paired with a
single laptop. This requirement dictated the need to operate and maintain six
laptops as part of the system function. Figure 24 depicts the physical architecture

of the Fixed Camera System.

50

H Ethernet Cable Ethernet Cable Ethernet Cable L;‘/
6X Fixed
Cameras Fixed Camera Desktop
*i Ethernet Cable Ethernet Cable I:.--".‘ -
o Ethernet Cable =
6X Fixed _8
Cameras] Fixed Camera Desktop
=
3 |
Ethernet Cable 8 Ethernet Cable Ethernet Cable =
— -
6X Fixed)] _B
Cameras _E § Fixed Camera Desktop
L wv)
—
0 |
Ethernet Cable 8 Ethernet Cable Ethernet Cable L
6X Fixed o
Cameras ; Fixed Camera Desktop
[®]
- |
*I Ethernet Cable Ethernet Cable Ethernet Cable \3;2/_/
6X Fixed
Cameras Fixed Camera Desktop
*I Ethernet Cable Ethernet Cable Ethernet Cable L;,j/
6X Fixed
Cameras Fixed Camera Desktop

Figure 15. Fixed Camera System Physical Architecture

The six desktops used for the Fixed Camera System are Dell
Precision™ 490 Desktops. The desktops use the Windows XP OS and 17-inch
monitors to perform the functions of the system. Figure 25 lists the hardware
specifications for the desktops and Figure 26 is an image of the computer
chassis.

51

Dell Precision™ 490 Workstation

FEATURES Dell Precision™ 430 Workstation
SYSTEM
Processors Dual-cora Intal™ Xeon™ 5100 series processors with up to 1333MHz front side bus and 4MB shared cache; Quad-cora Intel X2on 5300 series
processors with up to 1333MHz front side bus and 2 x 4MB shared cache; All processors ara B4-bit, XD and VT capable
Dperating Systems Genuine Windows™® XP Pro 5F2
Ganuina Windows® XP Prafessional x64 Edition
Windows Vista™ capable®
Red Hat Entarprise Linuws WS v.4 (Intel EME4T]
Chipset Intel® 5000 chipset
Memory Upto 32GB° guad-channal architecture DORZ Fully Buffared DIMM {FBD) 533 and B§7MHz ECC memory; Eight DIMM slots
Flash BIOS 8MB flash memory for system BIOS; SMB10S 2.3.4 support
Graphics Support for PCI Express x16 graphics cards up to 150 watts and with up to 512MB graphics memory including: NVIDIA Quadro®™ FX 4500; NYIDIA
Quadro® FX 3500; ATI FiraGL 7200; NVIDIA Quadra® FX 3450; NVIDIA Quadro® FXS50; ATI™ FireGL™ V3400; NVIDIA Quadra® NVS 285; All graphics
cards support dual monitor configurations
Hard Drives SATA 3.0Gh/s with MCO 7200 APM with 16MB DataBurst Cacha™ up to 750 GB'; SATA 3.0Gh/s with NCQ 7200APM with EMB DataBurst Cacha™ up ta
250GB’; SATA 10K RPM with 16MB DataBurst Cache™ up to 160G87; SAS 10K APM up to 300GB"; SAS 15K RPM up to 146GB'; Chassis supports up to
three internal drives {2.0TB’ maximum storage capacity)
Hard Drive Contraller Integrated SATA 3.0Gk/s controller with suppart for RAID 0, 1, and 5; SAS RAID 0, 1 with aptional SAS Sifr PCI-E card; $AS RAID 0, 1, 5, (in mini-
towar orientation only| with aptional PERC 5(PCl-e card
Integratad Broadcom™ 57%* Gigabit4 Ethernet controller
Audio C 1l High Definition Audia (Rev 1.0 Specification] with Sigmatel STACI200 High Definition Audio CODEC and Intel ESB2's ACTIS High Definition
digital cantroller
Standard 10 Ports Eight USB 2.0: two on frant panal, five on back panel, one intarnal an metherboard; Two serial; Ona parallel; Two PS/Z: One RJ-45; Steraa lina-in and
haadphana line-out on back panael; Microphone and headphone connector an front panal
Optional /0 |EEE 1334 cannactor available on front panal with add-in card
CHASSIS
Dual-orientation Desktop Deskiop orientation with feet: (WixHxD} 17.64" x 5.73" x 18.54" {maximum including badgel; 44.8 cm x 17.1 cm = 47.1 cm [maximum including
badgelMini-tower orientation with feet: (WxHxD] 633« 17.64 x 16.547 17.1 cm x 44.8 cm x 47.1 cm (maximum including badge|Two internal 35" HOD
bays; Twa external 5.25 optical bays, one of which can accommedate a third HDD in mini-tower orientation.Onz axternal 3.5 flex bay for floppy or
media card reader, ona of which can accommodate a third HDD in desktop orientation; One PCl-e x16 graphics slot, Two PCl-g x8 slots wired as x4,
Two PLI-X B4hit'100MHz slots with suppart for 3.3v ar universal cards, One PCI 32bit33Mhz siot; 750 watts Power Factor Correcting (PFC) pawer
supply
PERIPHERALS
Monitors Performance flat panel displays, Dell UltraSharp™ widescreen and standard flat panal displays from 17 viewable to 30" viawable; Analog flat panel
displays and CRT monitors alsa available
Keyboard Dell Enhanced Quietkey USB; Enhanced Multimedia USS; Smart Card keyboard USE
Mouse Dell USB two-buttan mouse and Dell USB optical two-button scroll mouse
Optional Speakers Internal chassis spaaker; Dell bwo and threa piece starec system; Dell sound bar availabla for all flat panel disalays
STORAGE DEVICES

Optional Remavable Storage
Dptional Modem

CD-ROM, CO-AW, CO-RW/DVD Combo, DVD-ROM, DVD+/-RW', USB Floppy Drive, USB media card reader
Dell 56K w82 Data/Fax PCI modem

SECURITY

Software Trusted Platform Modula 1.2 (TPM 1.2); Chassis intrusion switch; Setup/BIOS Password; /0 Intarface Sacurity
ENVIRONMENTAL & REGULATORY

Standards TCO9S, Blue Angal, Green PC, Enargy Star, BSMI, C-TICK, CE, FCC, IRAM, NEMKD, NFPA 35, SABBS, SAS0, TCO, TUV, UL, VCCI, USE 2.0; WEEE

Lead Free Environmentally conscious design is AoHS Compliant™/Lead Free'*
SERVICE & SUPPORT

Base 3-Year Limitad Warranty™ with 3 years standard Mext Business Day NBD] onsite™ parts replacement and 3 years NBD onsita™ labor {US Only)
Recommended 3-Year Same Business Day 4 hour On-site Service™ - § days a week, M-F 10 hours a day 3-6PM|

3-Year Same Business Day 4 hour On-site Service™ - 7 days a week, 24 hours a day
3 & &-yaar Gold Technical Support, expert support via phane, e-mail and anline chat - 7 days a week, 24 hours a day

Figure 16. Fixed Camera System’s Dell Precision™ 490 Desktop Hardware

Figure 17.

Specifications (From: Dell, 2005b)

Fixed Camera System’s Dell Precision™ 490 Desktop (From:
ImageShack, n.d.)

52

The six desktops use the WiLife Command Center software to
control the cameras assigned to the individual computers. Video and images
from the cameras are transmitted to the desktops and managed by the vendor
software. The Command Center software controls the functions of the cameras
and provides motion detection criteria. Additionally, the software auto-generates
and organizes video files in the Windows Media Video format or .wmv. The
raw .wmv files are then analyzed by MATLAB Simulink software as part of the
system Detect function. The Detect function searches the raw video for human
forms based on established criteria written into the MATLAB software. Videos
containing positively identified human forms are sent to the Watchman Server for
further analysis. Finally, MATLAB writes data regarding an observed instance to
the Watchman Server in SQL format using ODBC to the Watchman database.

C. Middleware System

The Middleware System enabling interoperability standards are the
Geospatial Hub (GHub) system and the database system created for the DGIAS.
The GHub is a geospatially conscious content management system that
classifies and distributes information developed by users, analysts, or sensor
platforms (Sample & loup, 2010). The middleware is made up of two instances of
GHub (one to emulate an Unclassified instance and one to emulate a Classified
instance). The outside systems’ interfaces are a subsystem within GHub that
allows for the middleware to connect to other services outside of the Naval
Postgraduate School. Figure 27 represents the physical architecture of the
Middleware System.

53

Switch

Ethernet Cable -f -l r;;_

GHub Server 1

=
Ethernet Cable -I -{ﬁ

GHub Server 2

Figure 18. Middleware System (Geospatial Hub) Server Physical
Architecture

d. Watchman Viewer System

The Watchman Viewer acts as the Command and Control center
for the DGIAS system. It is the central component system of the DGIAS where
high-level analysis is performed. The Watchman System is hosted on an Apple
Mac Pro computer with the Mac OS X hosting a VMWare VM of Windows Server
2004. The system requires a VM to permit the applications of SQL Server,
Microsoft Access, and WiLife Command Center to run in their native Windows
environment. To run the Windows Server 2004, a minimum number of two CPU
cores must exist. The Mac Pro more than meets this need with its two 3.2 GHz,
Quad Core Intel Xeon processors (or eight cores), and 32 GBs of double data
rate (DDR) RAM. Through two monitors the system offers a user the choice
between viewing the Mac OS X display or the Windows Server 2004 display. As
in the Kiosk and Fixed Camera systems, the MATLAB software writes facial
recognition data to the Watchman Server in SQL format to the Watchman
database. Once data is recorded in the Watchman database, it can be retrieved
through the Microsoft Access GUI (graphical user interface) available through the

54

Windows Server display. Figures 28 and 29 depict the physical and virtualization
architectures of the Watchman Viewer System respectively.

Switch

B
Ethernet Cable -l -lﬁ

Watchman Server

Figure 19. Watchman Viewer System Physical Architecture

MATLAB, MS Access, WiLife Command Center
Application

VM Watchman
Windows Server 2004
Virtualization

Mac 0S X
Operating System

MacPro 3.2 GHz Quad Core Processor
Physical Hardware

Figure 20. Watchman Viewer System Virtualization Architecture

Figures 30 and 31 identify the hardware specifications of the Mac
Pro and its appearance.

55

Figure 21.

Product Details

Processor 3.2CHz Quad-Core Intel Xeon "Nehalem” processor
Cache BME fully shared L3 cache per processor
Memory 3IGE (three 1GE DIMMs) of DDR3 ECC SDRAM at 1066MHzZ; supports up

PCI Express 2.0 graphics

to 32GB
ATl Radeon HD 3770 with 1GB of GDDR5 memaory

Hard disk drive 1TB!Serial ATA (3Gb/s); 7200 rpm

Optical drive 18x SuperDrive with double-layer support(DVD<R DL/DVD£RW/CD-
RW)

Wireless Built-in AirPort Extreme 802.11n Wi-Fi? and Bluetooth 2.1 + EDR
(Enhanced Data Rate) wireless technology

PCl Express Three open full-length PC| Express 2.0 expansion slots with mechanical

Connections and audio

Size and weight

support for 16-lane cards; 300W combined maximum for all PCI
Express slots (PCl Express slots are not compatible with PCl or PCI-X
expansion cards)

Four FireWire 800 ports (two on front panel, two on back panel)
Five USB 2.0 ports (two on front panel, three on back panel)
Two USE 2.0 ports on included keyboard

Front-panel headphone minijack and internal speaker

Optical digital audio input and output TOSLINK ports

Analog stereo line-level input and output minijacks

Height: 20.1 inches (51.1 cm)

Width: 8.1 inches (20.6 cm)

Depth: 18.7 inches {(47.5 cm)

Weight (standard configuration): 39.9 pounds (18.1 kg)?

Watchman System’s Mac Pro Hardware Specifications (From:

Apple, 2012)

Figure 22. Watchman System’s Mac Pro Server (From: Apple, 2012)

D. PROPOSED DGIAS VIRTUALIZATION
1. Description

The purpose of the proposed DGIAS is to model how the system would be

architected if it were migrated to a virtualization environment. Not all systems can

56

function with a virtualization layer of software. For example, the camera system’s
PoE injectors do not have the possibility of being virtualized given their distinctive
function. However, a significant number of the components, specifically the
laptops and desktops, can all be consolidated to two blade servers. Figure 32
depicts the new physical architecture. In this diagram the two Kiosk System
laptops are replaced by two thin-clients, and the six FCS desktops are eliminated
from the system. The server systems of Watchman and GHub now share the
same hardware as the Kiosk System (vAlpha), and the FCS is self-contained on

a single server (vBeta).

vAlpha
- Ethernet Cable - -‘iif
(=) y
Ethernet Cable =t Kiosk — Watchman -
1 3 Ghub - Config Mgmt
2X Camera v
Kiosk Thin Client
Ethernet Cable
iy
[S]
=
v
S
@ Ethernet Cable VBeta
—
0 : 5
P —_
of Cable w Ethernet Cable O
o] X
6X Camera o ;
w P
Ethernet Cable - -‘ i:‘f
Fixed Camera

Figure 23. Proposed Physical Architecture of DGIAS

The architecture also accounts for the addition of the Configuration
Management software required to manage the environment. The Configuration
Management software, as discussed in Chapter I, provides an administrator the
management tools necessary to create, replicate, and control all VMs in an
environment. Figure 33 represents the Virtualization Architecture of the proposed

DGIAS system consolidated to vAlpha and vBeta.

57

vAlpha

Configuration
daci GHub GHub Sql Server Manager
Ry LEULEY Software Software M5 Access Software
VM Kiosk VM Kiosk VM GHub VM GHub VM VM Config
Wind Xp Wind XP Server 1 Server 2 Watchman Manager
indows indows VM Windows || VM Windows Windows Windows
Server 2004 Server 2004 Server 2004 Server 2004
VMM
Server Hardware
vBeta
Wilife WilLife Wilife WilLife Wilife Wilife
MATLAB MATLAB MATLAB MATLAB MATLAB MATLAB
VM FCS VM FCS VM FCS VM FCS VM FC5 VM FCS
Windows XP Windows XP Windows XP Windows XP Windows XP Windows XP
VMM
Server Hardware

Figure 24. Virtualization Architecture of vAlpha & vBeta

A consolidation rate of six VMs to one server is conceivable given that
most of the systems require only a single core processor to run the Windows XP
OS, as is the case with all of the FCS VMs. For the systems which require
multicore processors to run the Windows Server 2004, their workloads are more
infrequent given that only higher level analysis is performed and therefore will not
overload the system hardware. However, if the systems hosted on vAlpha do
require more resources, then vBeta, as part of a system preference, could
automatically accept the Kiosk systems’ VMs to balance the processor and
memory requirements across both sets of the hardware. The movement of VMs
across hardware is a process available for most virtualization vendor platforms. If
all the DGIAS systems were to be virtualized, two more blade servers, at a
minimum, would be required to accommodate the 12 other systems. This would
provide the minimum resources necessary while maintaining a 20% reserve

capacity.

58

E. DGIAS TEST AND EVALUATION PROCESS MODEL

To identify some of the efficiencies gained by using virtualization, a
process model was created to simulate a generic test and evaluation process. To
model the T&E process for an SoS, | again reference the work of Goshorn (2010)
to provide the necessary framework. Recall from Chapter Il the Core model, as
seen in Figure 34; it provides the empirical data of a system’s development cycle,
but also the development cycle of a new ECO as it is integrated across the
component systems of an SoS or FoS. To provide the necessary context, |
assumed that a probable ECO would be a modification to the face detection
algorithm of the DGIAS. An ECO of this type would require the change to be
enacted across multiple computers. For simplicity, the period of a 40-hour week
was selected as a realistic and manageable time frame across which to distribute

the Core model for the purposes of modeling.

) Area under curve = total cost
Cost per unit C
(X) *Needs

Customer
5-10%

«Systems integration
& test

65%

Implementation of Sub-systems
(units) and unit tests

. Other=>
+Ci rmc:f{)t s ks
Definition ‘<*Clean up design
*Preliminary fiine rDocumentation

System Design

Figure 25. Core Model (From: Goshorn, 2010)

Table 1 lists the distribution of the 40 hours across the phases of the Core
model. Additionally, the calculations in the model account for the different types
of testing to be completed throughout the ECO integration. The different types of
testing that were selected are titled Functional, Low-level thread, Medium-level
thread, and High-level thread. The thread based testing categories and related
time requirements are all assumptions necessary to account for the varying types

of tests that occur, while meeting the precise percentages suggested by the Core

59

model. An example of a Low-Level thread might be requiring the system to
observe, detect, and react to a single individual. An example of a Medium-level
thread would be requiring the system to respond to a group of three to five
people. A High-level thread would require the system to respond to 10 to 20

people.

Table 1. DGIAS ECO Integration With Core Model Hours Breakdown for 40-

Hour Period
Core
Model Process Time % Functional Low Med High Report Cumulative
A Concept 10% 1.75 0 0 0 0 1.75
B Detail 10% 1.75 15 15 15 0 6.25
C Build 65% 13 6.5 325 3.25 0 26
D Test 7.50% 1 1 05 05 0 3
E Document 7.50% 3 3

Total 40
Note. All units are in hours.

The DGIAS ECO T&E process model begins with the issuing of an ECO
requirement by the lead systems engineer. The ECO is simultaneously passed to
the three component system teams of Kiosk, Fixed Camera, and the combined
GHub and Watchman System Team. Once the teams have completed the
conceptual and detailed design for the Functional test, the designs are passed to
the T&E Environment Team to allocate the appropriate hardware and software
and then configure the environment correctly. Following a complete system build,
the SoS Integration Test Team conducts a functional test. The results are
recorded and sent to the component system teams again for a subsequent
period of detailed design. The designs are again sent to the T&E Environment
Team, which modifies the hardware and software and configures the SoS. Once
complete, the SoS Integration Test Team conducts a Low-level thread test. The
processes completed for the Low-level thread test are repeated for the Medium
and High-level thread tests. After the completion of the High-level thread test, the
SoS Integration Team prepares the documentation and submits the report to end
the process model. Table 2 outlines the participants of the model and their full-
time equivalent wage per hour. Figure 35 depicts the implementation of the

60

model; each swim lane represents a participant. Appendix A contains the data

output from the model with 100% of the Phase C activities occurring with physical

machines. As a parameter for the model, 10 ECOs were simulated arriving every

40 hours for a total of 400 hours’ worth of work completed. The costs accrued
totaled $17,773.60 for the work completed.

Table 2. DGIAS ECO Integration Participants
Participant Process Wage per hour
Lead Systems Engineer | Issue ECO NA
Kiosk System Team Conceptual Design and Detailed Design $39.48
Fixed Camera System Conceptual Design and Detailed Design $39.48
Team
GHub and Watchman Conceptual Design and Detailed Design $39.48
System Team
T&E Environment Team | Implement designs through a mix of hardware, $24.14
software, and virtualization.
$33.70

SoS Integration Test

Team

Conduct Functional and Low, Med, and High-
level thread based tests. Produce

documentation for final report.

61

Laao Systems Engine er

T&E Environment Team

]
1
:
i
;
u‘l..n
- =
=]
a
~“'”"‘“1l =
(=] =)
Lw “““““

Figure 26.

DGIAS ECO Implementation Model

To achieve virtualization, efficiencies in the process Phase C, the Build

and Implementation processes, must be addressed. The first detalil that | had to

determine in my research was the ratio of building physical machines compared

to virtual machines. Table 3 establishes the baseline times for the activities

normally performed in a T&E computer environment. In the first column of the

table are the activities connected with building a physical machine. Next, in the

center are the actions related to building a VM. Finally, on the right are the

62

activities required for copying a VM from a known good copy. While all the times
in this table are not universal, they demonstrate the time efficiency that is gained

by using virtualization.

Table 3. Activity Times

Physical Machine Build Virtual Machine Build Virtual Machine Copy
Activity Time Activity Time Activity Time
Build Physical Computer 29 Build Virtual Machine 1 Copy Virtual Machine 1
Install OS 20 Install OS 20 Install Applications 9
Install Applications 9 Install Applications 9 Configure for network 2
Configure for network 2 Configure for network 2

Total 60 32 12

Note. All units are in minutes.

It should be clear from Table 3 that there are significant time savings when
building a VM compared to a physical machine. There are still fixed periods in the
process, such as installing an OS, installing applications, and configuring the
client for the network. The difference between building a complete physical
machine compared to building a complete VM is approximately 28 minutes or a
savings of 47%. Once a VM is built, it can be copied and pasted in the
environment, thereby eliminating the need to install an OS. The difference
between copying a VM and building a physical machine is approximately 48
minutes or a savings of 80%. To help an engineer determine some of the
efficiencies gained by using virtualization, the following calculation was
developed: 32 minutes multiplied by x, where x equals the number of unique
systems in the SoS, plus 12 minutes times y, where y equals the number of

clients or instantiations of the different types of systems (see Equation 1).

32x+12y =VirtualizationEnvBuildTime 1)

For example, the DGIAS has four different types of systems: Kiosk, FCS,
Watchman, and GHub and seven copies. Following the calculation (32*4) +
(12*7), it takes 212 minutes to create a suitable virtualization environment. The
ratio of the time it would take to create the environment with VMs compared to
physical machines is approximately 1:3. This efficiency is created simply by

63

building the SoS with VMs. By consolidating the system to two blade servers and
a SAN storage array, the system can rapidly be updated or altered should a new
ECO be required. For example, if a change needed to be completed to the
MATLAB Simulink Detect algorithm in the FCS, six separate actions would be
required by the T&E Environment Team responsible for the modification.
Likewise if the algorithm change created an error or changed the system stability,
it would have to be removed six separate times. In the proposed system, a
change to a single FCS VM could be replicated across the system in a single
process, thereby reducing the amount of work significantly. Additionally, the
Environment Team could record the entire system state to the SAN array prior to
the integration of the ECO. The captures or snapshots of the system state before
the integration would allow a quick rollback to the previous system configuration.
Figure 36 shows the delineation between build times of physical machines and
virtual machines. The Virt (Worst) line, which is still considerably faster than
building a physical machine, is calculated by only using unique system types with
no additional copies. The Virt (Worst) calculation would be (32*11) + (12*0) = 352
minutes. The Virt (Best) was calculated using (32*1) + (12*10) = 152 minutes.
This would be a system in which all the clients are copies of the original system.

The DGIAS is plotted between the best and the worst given its mix of systems

and copies.
System Build Times
5 700
g 600
£ 500
E 400 wm==Physical
& 300 Virt (Best)
§ 200 i ss—=\/irt (Worst)
£ 100 DGIAS
=

0
1 2 3 4 5 6 7 8 9 10 11

Number of Clients or System Nodes

Figure 27. System Build Times

64

The more common the systems are and the more VMs that are created, the
greater the time savings. The configuration time between two VMs and two
physical machines is not as significant as the configuration time between 11 VMs
and 11 physical machines.

Finally, Table 4 lists the different tasks of Phase C in the Core model. The
following information was used in part to generate Appendix B data, which is a
full virtualization environment. Although it may be unlikely to convert 100% of the
system to virtualization, it is important to understand the limitations of the
technology as it applies to the process. An 11% reduction could be achieved
from the overall Core model process as it applies to the DGIAS. Not all systems
will be as suited as the DGIAS; therefore, the savings will be some number less
than 11%. Table 4 highlights the shift from 65% to 54% when comparing Ci:3t0
Ca+3. Appendix B also shows the reduction in overall cost from $17,773.60 in the
original model to $16,705.00.

Table 4. DGIAS ECO Integration Phase C—Process Tasks

Core Time % Functional Low Med High Report Cumulative

Model Task

Ci Obtain HW SW 16% 3.25 1.63 .81 .81 0 6.5

C, Virtualization 5% 1.04 .52 .26 .26 0 2.08

Cs Configure Env 49% 9.75 488 2.44 2.44 0 19.50

Ciss Obtain HW SW 65% 13 6.5 3.25 3.25 0 26
Configure Env

Coiz Virtualization 54% 10.79 5.40 2.7 2.7 0 21.58
Configure

Note. All units are in hours.

F. CONCLUSION

The DGIAS is an SoS that suits the virtualization platform given its
Windows-based OSs and standard desktop, laptop, and server hardware. The
migration to virtualization will improve the engineering team’s abilities to integrate

and test new ECOs. The system combined with the Core model is an ideal case

65

study for the strengths of virtualization. By centralizing the computing to two
capable servers, the configuration management of the system will be significantly

improved.

66

V. CONCLUSION

A. SUMMARY

Virtualization, when matched with a compatible technology, offers
immense benefits to the test and evaluation phase of an IT project. Virtualization
can improve efficiencies in time including reduced labor hours, elimination of
redundant tasks, easy rollback to previous system states, and reduced labor
expenses. Within the case study of the DGIAS system of systems testing,
virtualization resulted in an 11% reduction in time spent for each integrated
engineering change order. Although virtualization is not ideal in all
circumstances, it has shown great promise as a way to improve the T&E process
within SoS.

For virtualization to be a viable option, several conditions must be met.
First, the system nodes must be comprised of Windows or Linux x86 operating
systems. Second, the existing servers or prospective servers must be capable of
managing the system’s workloads or user demands. Lastly, the storage
requirement of the system clients must be less than the available SAN storage
array of the test environment. If a system meets all of these requirements, then

migration to virtualization is a possible option for the IT environment.

DGIAS is a candidate for virtualization because several of its component
systems meet the three key requirements described in this summary. The DGIAS
uses the Windows XP and Windows Server OSs, can be consolidated to two
servers, and requires less than 17 TBs of storage. Also, because it is such a
complex system of systems, there are likely to be many software-based ECOs
within the test and evaluation process. By implementing virtualization, time

savings can be gained with each ECO.

By involving virtualization in the ECO process, system developers can
save an average of 11% time savings over the life cycle of the testing process.
As shown in Chapter IV, the average time saved is four hours per ECO.

Assuming the number of ECOs per system is 10 with virtualization of the DGIAS,

67

the system could save over $1,000 and several hours. These data were
substantiated with a simple formula (see Equation 2) developed to account for
the time savings achieved when incorporating virtualization into the system

architecture.

32x+12y =VirtulizationEnvironment1ime 2)

This formula helps to account for the variety of systems and the number of clients
or copies the system hosts. It is not meant to replace a detailed modeling and
simulation process, but rather to be used for high-level analysis when deciding
between virtualization and physical machines. Virtualization is not for every
system and it requires specific types of system traits to provide efficiencies. But
when it is paired with the right type of system architecture, it quickly can provide

dividends to the system engineers and designers who leverage it.

B. FURTHER RESEARCH AND RECOMMENDATIONS
1. Limits of Virtualization

While virtualization is a useful tool, it does have its limitations.
Virtualization is susceptible to a time drift problem, which is more likely during
times of high workloads. This causes VMs to lose time which may impact the
performance of a given application or system. Engineers should consider the
importance of time to the overall system performance before implementing a
virtualization environment. If time is critical to the system performance, then
virtualization should be avoided. Methods do exist to minimize the impact of time
drift on VMs, but they must be built into the system design. Further research and
adaptation is needed to solve this problem of time drift. A solution would allow
projects susceptible to time to be able to utilize virtualization when currently they

cannot.

2. Improved Capabilities

Currently virtualization can only operate with Windows and Linux

operating systems. If it could be expanded to include Apple OS, it would open

68

even more projects and systems to virtualization. Another improvement would be

to allow for mobile devices to be easily integrated into the virtual environment .

3. Further Case Studies

Extensive research into the field of virtualization has shown very little
empirical data qualifying or quantifying the validity of the process. It is difficult to
determine through statistical means the actual efficiencies gained from
virtualizing the test and evaluation process because there are no specific
reference case studies to turn to. As more companies adopt virtualization as a
valid tool, there needs to be more literature on the process outcomes to guide
future decision-makers. There needs to be more cooperation within the growing
IT business market to share the virtues of virtualization. If there is a wide
spectrum of outcomes after virtualization, then upgrades can be made to the
software to try and ensure that it leads to future efficiency gains. However, until
the benefits and limitations of virtualization are studied on a grander scale, then a
system developer must make utilization decisions based solely on assumptions

and trial and error.

4. Specific Measuring Tool

Another recommendation for advancing and improving virtualization is to
create a specific, universal formula for determining time-efficiencies using
virtualization. This mathematically based formula would work for all projects
universally and would aid process managers in deciding whether virtualizing all
or some of their test and evaluation will result in improved efficiencies and thus
cost savings. This would require further study of the specific components of
virtualization as well as the study of other cases where it was implemented to

determine if a standard of measure can be created.

Virtualization, when compatible within a given technology, offers immense
benefits to the test and evaluation phase of an IT project. It can improve
efficiencies in time including labor hours, reduce redundancy in effort, eliminate

potential loss of test results, and save money on hardware expenses. Within the

69

case study of DGIAS system of systems testing, virtualization has shown a 20%
reduction in time spend for each ECO ordered. Although virtualization is not ideal
in all circumstances, it has shown great promise as a way to improve the T&E

process within system of systems.

70

APPENDIX A

The data in this appendix is the result of modeling 10 ECOs introduced at

an interval of one every 40 hours through the Core model within the DGIAS. This

report represents the current system T&E environment.

Simulation Results

Process Time And Cost

400:00:00 = Time

400:00:
DGIAS_Virtualization (default) 17773.6 00
DGIAS_Virtualization
Instances 10
Any member of T&E Environment 97:30:0
Configure Environment Team 10 0:00:00 | 97:30:00 0
Any member of Fixed Camera 17:30:0
FCS Conceptual Design System Team 10 | 0:00:00 | 17:30:00 0
Any member of Fixed Camera 17:30:0
FCS Detailed Design System Team 10 0:00:00 | 17:30:00 0
Any member of Fixed Camera 15:00:0
FCS Detailed Design High System Team 10 0:00:00 | 15:00:00 0
Any member of Fixed Camera 15:00:0
FCS Detailed Design Low System Team 10 | 0:00:00 | 15:00:00 0
Any member of Fixed Camera 15:00:0
FCS Detailed Design Med System Team 10 | 0:00:00 | 15:00:00 0
Any member of GHub System 17:30:0
GHub Conceptual Design Team 10 0:00:00 | 17:30:00 0
Any member of GHub System 17:30:0
GHub Detailed Design Team 10 0:00:00 | 17:30:00 0
Any member of GHub System 15:00:0
GHub Detailed Design High Team 10 0:00:00 | 15:00:00 0
Any member of GHub System 15:00:0
GHub Detailed Design Low Team 10 0:00:00 | 15:00:00 0
Any member of GHub System 15:00:0
GHub Detailed Design Med Team 10 0:00:00 | 15:00:00 0
Any member of T&E Environment 24:22:3
High Configure Environment Team 10 0:00:00 | 24:22:30 0
Any member of T&E Environment
High Obtain HW and SW Team 10 0:00:00 8:07:30 | 8:07:30
Any member of Kiosk System 17:30:0
Kiosk Conceptual Design Team 10 | 0:00:00 | 17:30:00 0
Any member of Kiosk System 17:30:0
Kiosk Detailed Design Team 10 0:00:00 | 17:30:00 0
Any member of Kiosk System 15:00:0
Kiosk Detailed Design High Team 10 0:00:00 | 15:00:00 0
Any member of Kiosk System 15:00:0
Kiosk Detailed Design Low Team 10 0:00:00 | 15:00:00 0
Any member of Kiosk System 15:00:0
Kiosk Detailed Designh Med Team 10 0:00:00 | 15:00:00 0
Any member of T&E Environment 48:45:0
Low Configure Environment Team 10 0:00:00 | 48:45:00 0

71

Simulation Results

Performers Queue Length and Utilization

Any member of T&E Environment 16:15:0
Low Obtain HW and SW Team 10 0:00:00 | 16:15:00 0
Any member of T&E Environment 24:22:3
Med Configure Environment Team 10 0:00:00 | 24:22:30 0
Any member of T&E Environment
Med Obtain HW and SW Team 10 0:00:00 8:07:30 | 8:07:30
Any member of T&E Environment 32:30:0
Obtain HW and SW Team 10 0:00:00 | 32:30:00 0
Any member of SoS Integration 10:00:0
Perform Functional Test Test Team 10 0:00:00 | 10:00:00 0
Any member of SoS Integration
Perform High Thread Test Test Team 10 0:00:00 5:00:00 | 5:00:00
Any member of SoS Integration 10:00:0
Perform Low Thread Test Test Team 10 0:00:00 | 10:00:00 0
Any member of SoS Integration
Perform Med Thread Test Test Team 10 0:00:00 5:00:00 | 5:00:00
Any member of SoS Integration 30:00:0
Produce Test Assessment Report Test Team 10 0:00:00 | 30:00:00 0
Any member of T&E Environment $6,276.
Team Hour 24.14 0 260 40
Any member of SoS Integration $2,022.
Test Team Hour 33.7 0 60 00
Any member of Kiosk System $3,158.
Team Hour 39.48 0 80 40
Any member of GHub System $3,158.
Team Hour 39.48 0 80 40
Any member of Fixed Camera $3,158.
System Team Hour 39.48 0 80 40

Any member of T&E Environment

Team 0 0 65 35
Any member of SoS Integration

Test Team 0 0 15 85
Lead Systems Engineer 0 0 0 100
Any member of Kiosk System

Team 0 0 20 80
Any member of GHub System

Team 0 0 20 80
Value of 'Creator’ 0 0 0 100
Generic 0 0 0 100
Any member of Fixed Camera

System Team 0 0 20 80

72

APPENDIX B

The data in this appendix is the result of modeling 10 ECOs introduced at
an interval of one every 40 hours through the Core model within the DGIAS. This
report represents the proposed virtualization system T&E environment.

Simulation
Results

Duration 395:34:24 Time

Process Time And Cost

355:44:
DGIAS Virtualization (default) 10 16705 0:00:00 00
DGIAS_Virtualization
Instances 10
Any member of T&E Environment 97:30:0
Configure Environment Team 10 0:00:00 | 97:30:00 0
Any member of Fixed Camera 17:30:0
FCS Conceptual Design System Team 10 0:00:00 | 17:30:00 0
Any member of Fixed Camera 17:30:0
FCS Detailed Design System Team 10 | 0:00:00 | 17:30:00 0
Any member of Fixed Camera 15:00:0
FCS Detailed Design High System Team 10 0:00:00 | 15:00:00 0
Any member of Fixed Camera 15:00:0
FCS Detailed Design Low System Team 10 0:00:00 | 15:00:00 0
Any member of Fixed Camera 15:00:0
FCS Detailed Desigh Med System Team 10 0:00:00 | 15:00:00 0
Any member of GHub System 17:30:0
GHub Conceptual Design Team 10 | 0:00:00 | 17:30:00 0
Any member of GHub System 17:30:0
GHub Detailed Design Team 10 0:00:00 | 17:30:00 0
Any member of GHub System 15:00:0
GHub Detailed Design High Team 10 0:00:00 | 15:00:00 0
Any member of GHub System 15:00:0
GHub Detailed Design Low Team 10 0:00:00 | 15:00:00 0
Any member of GHub System 15:00:0
Ghub Detailed Design Med Team 10 0:00:00 | 15:00:00 0
Any member of T&E Environment 24:22:3
High Configure Environment Team 10 0:00:00 | 24:22:30 0
Any member of T&E Environment
High Virtualization Team 10 0:00:00 2:36:00 | 2:36:00
Any member of Kiosk System 17:30:0
Kiosk Conceptual Design Team 10 0:00:00 | 17:30:00 0
Any member of Kiosk System 17:30:0
Kiosk Detailed Design Team 10 0:00:00 | 17:30:00 0
Any member of Kiosk System 15:00:0
Kiosk Detailed Design High Team 10 0:00:00 | 15:00:00 0
Any member of Kiosk System 15:00:0
Kiosk Detailed Design Low Team 10 0:00:00 | 15:00:00 0
Any member of Kiosk System 15:00:0
Kiosk Detailed Design Med Team 10 0:00:00 | 15:00:00 0
Any member of T&E Environment 48:45:0
Low Configure Environment Team 10 0:00:00 | 48:45:00 0

73

Simulation
Results

Any member of T&E Environment

Performers Queue Length and Utilization

Low Virtualization Team 10 0:00:00 5:12:00 | 5:12:00
Any member of T&E Environment 24:22:3
Med Configure Environment Team 10 0:00:00 | 24:22:30 0
Any member of T&E Environment
Med Virtualization Team 10 0:00:00 2:36:00 | 2:36:00
Any member of SoS Integration 10:00:0
Perform Functional Test Test Team 10 0:00:00 | 10:00:00 0
Any member of SoS Integration
Perform High Thread Test Test Team 10 0:00:00 5:00:00 | 5:00:00
Any member of SoS Integration 10:00:0
Perform Low Thread Test Test Team 10 0:00:00 | 10:00:00 0
Any member of SoS Integration
Perform Med Thread Test Test Team 10 0:00:00 5:00:00 | 5:00:00
Any member of SoS Integration 30:00:0
Produce Test Assessment Report Test Team 10 0:00:00 | 30:00:00 0
Any member of T&E Environment 10:20:0
Virtualization Team 10 0:00:00 | 10:20:00 0
Any member of GHub System $3,158.
Team Hour 39.48 0 80 40
Any member of Fixed Camera $3,158.
System Team Hour 39.48 0 80 40
Any member of T&E Environment $5,190.
Team Hour 24.14 0 215 10
Any member of SoS Integration $2,022.
Test Team Hour 33.7 0 60 00
Any member of Kiosk System $3,158.
Team Hour 39.48 0 80 40

Any member of GHub System

Team 0 0 0 20.22 79.78
Any member of Fixed Camera

System Team 0 0 0 20.22 79.78
Any member of T&E Environment

Team 0 0 0 54.54 45.46
Any member of SoS Integration

Test Team 0 0 0 15.17 84.83
Value of 'Creator’ 0 0 0 0 100
Generic 0 0 0 0 100
Lead Systems Engineer 0 0 0 0 100
Any member of Kiosk System

Team 0 0 0 20.22 79.78

74

LIST OF REFERENCES

Abu-Taieh, M. O., & El Sheikh, A. A. R. (2007). Discrete event simulation
process validation, verification, and testing. In A. Dasso & A. Funes (Eds.),
Verification, validation, and testing in software engineering (pp. 155-184).
Hershey, PA: Idea Group.

Adair, R. J., Bayles, R. U., Comeau, L. W., & Creasy, R. J. (1966). A virtual
machine for the 360/40 (Report No. 320-2007). Cambridge, MA: IBM
Cambridge Scientific Center.

Advanced Micro Design (AMD). (n.d.). AMD virtualization. Retrieved from
http://sites.amd.com/us/business/it-
solutions/virtualization/Pages/virtualization.aspx#2

Apple. (2012). Refurbished Mac Pro 3.2 GHz Quad-Core Intel Xeon. Retrieved
from http://store.apple.com/us/product/GOLFOLL/A

Balci, O. (1994). Validation, verification, and testing techniques throughout the
life cycle of a simulation study. Annals of Operations Research, 53, 215—
220.

Balci, O. (1995). Principles and techniques of simulation validation, verification,
and testing. In C. Alexopoulos, K. Kang, W. R. Lilegdon, & D. Goldsman
(Eds.), Proceedings of the 1995 Winter Simulation Conference (pp. 147—
154). New York, NY: ACM Press.

Balci, O., Glasow, P. A., Muessig, P., Page, E. H., Sikora, J., Solick, S., &
Youngblood, S. (1996). Department of Defense verification, validation and
accreditation (VV&A) recommended practices guide. Retrieved from
http://vva.msco.mil/Mini_Elabs/VVtech-dynamic.htm#dyn1l

Boehm, B. W. (1981). Software engineering economics. Englewood Cliffs, NJ:
Prentice Hall.

Blanchard, B. S., Fabrycky, W. J. (2011). Systems engineering and analysis.
Upper Saddle River, NJ: Prentice Hall.

Brodhun, C. P, Ill. (2008). Virtualization: Case study of the USMC. Breakout
session PO2769 at the meeting of VMWorld 2008, Las Vegas, NV.

Chairman of the Joint Chiefs of Staff (CJCS). (2007). Joint Capabilities
Integration and Development System (CJCS Instruction 3170.01F).
Washington, DC: Pentagon.

75

Citrix. (n.d.). Citrix HDX technology brings high-definition user experience to
virtual desktops and application. Retrieved from
http://www.citrix.com/English/ne/news/news.asp?newsID=1686302

Dell. (2005a). Dell Latitude D820. Retrieved from
http://www.dell.com/downloads/qglobal/products/latit/en/spec latit d820 en

odf

Dell. (2005b). Dell Precision 490. Retrieved from
http://www.dell.com/downloads/global/products/precn/en/spec precn 490

en.pdf

Dell. (2010). Dell PowerEdge R610. Retrieved from
http://www.dell.com/downloads/qglobal/products/pedge/en/server-
poweredge-r610-specs en.pdf

Department of Defense (DoD). Defense acquisition guidebook (DAG). (2012).
Retrieved from http://akss.dau.mil/dag

Fehse, C. (2011). Infrastructure suitability assessment modeling for cloud
computing solutions (Master’s thesis). Monterey, CA: Naval Postgraduate
School.

Goshorn, D. (2010). The systems engineering of a network-centric distributed
intelligent system of systems for robust human behavior classifications
(Unpublished doctoral dissertation). University of California, San Diego.

Goshorn, L. (2007). Project management/engineering concepts and definitions
(Technical report). Location: JLG Technologies.

Goshorn, R. (2012). Distributed-GIG intelligence automation systems lab for
military and homeland security. Monterey, CA: Naval Postgraduate School.

Hewlett-Packard (HP). (2012). HP P4300 G2 7.2TB SAS Starter SAN Solution
(BK716A)—Specifications and warranty. Retrieved from
http://h10010.www1.hp.com/wwpc/us/en/sm/WF06b/12169-304616-
3930449-3930449-3930449-4118659-4118705-4118707.html?dnr=1

ImageShack. (n.d.). Dell Precision 490 [Image]. Retrieved from
http://imgl.imageshack.us/img1/1266/sp490chassislwn.jpg

InRelief. (n.d.). About InRelief.org. Retrieved from http://www.inrelief.org

Marine Corps Tactical System Support Activity (MCTSSA). (2010). MAGTF C4l
capability certification test MC3T 09-01 event report version 1.0 (MCTSSA
CM MC3T-0029). Camp Pendleton, CA: Marine Corps Tactical Systems
Support Activity Systems Engineering & Integration Support Division.

76

Miller, G. (2008). Alternative designs for a joint command, control,
communications, computers and intelligence (C4l) capability certification
management. Paper presented at the meeting of the 13th International
Command and Control Research and Technology Symposia (ICCRTS),
Seattle, WA.

Naegle, B. (2011). Test planning and temp [Coursework, Class MN4602, Lesson
6]. Graduate School of Business and Public Policy, Naval Postgraduate
School, Monterey, CA.

National Institute of Standards and Technology (NIST). (2011). The NIST
definition of cloud computing (NIST Special Publication 800-145).
Retrieved from http://csrc.nist.gov/publications/nistpubs/800-145/SP800-

145.pdf

Neiger, G., Santoni, A., Leung, F., Rodgers, D., & Uhlig, R. (2006). Intel
virtualization technology: Hardware support for efficient processor
virtualization. Intel Technology Journal, 10(3), 167-177.
doi:101535/itj.1003

Parmalee, R. P., Peterson, T. |, Tillman, C. C., & Hatfield, D. J. (1972). Virtual
storage and virtual machine concepts. IBM Systems Journal, 11(2), 99—
130.

Pham, H. (2006). Springer handbook of engineering statistics. doi:10.1007/978-
1-84628-288-1_24.

Sample, J. T., & loup, E. Z. (2010). Forging geospatial tools. Geospatial
Intelligence Forum. Retrieved from http://www.kmimediagroup.com/maqt-
home/248-qif-2010-volume-8-issue-4-may/2889-forging-geospatial-
tools.html

Smith, J. E., & Nair, R. (2005). Virtual machines: Versatile platforms for systems
and processes (1st ed.). San Francisco, CA: Morgan Kaufmann.

Swaminathan, S., & Murthy, K. (2006). Test optimization using software
virtualization. IEEE Software, 23(5), 66—69. Retrieved from
http://search.proquest.com.libproxy.nps.edu/docview/ 215841627

Teradici. (n.d.). PColP technology. Retrieved from
http://www.teradici.com/pcoip/pcoip-technology.php#PColP_is_a
host_rendering_protocol

TopCoder. (n.d.). About us. Retrieved from http://www.topcoder.com/aboutus/

Under Secretary of Defense for Acquisition, Technology, and Logistics
(USDJAT&L]). (2008). Operation of the defense acquisition system (DoD
Instruction 5000.02). Washington, DC: Author.

77

U.S. Army. (2011). Army Data Center Consolidation Plan (ADCCP). Retrieved
from http://ciog6.army.mil/LinkClick.aspx~?fileticket=_knFGXDuaOl%3d&
tabid=122

U.S. Navy. (2011). Navy information management information technology
efficiencies (NAVADMIN 008/11). Retrieved from
http://www.public.navy.mil/bupers-
npc/reference/messages/Documents/NAVADMINS/NAV2011/NAV11008.t

xt

Varian, M. (1991). VM and the VM community: Past, present, and future.
Retrieved from
http://web.me.com/melinda.varian/Site/Melinda Varians Home Page file

s/neuvm.pdf

Yang, K. (2008). Voice of the customer—Capture and analysis. Retrieved from
http://www.knovel.com/web/portal/browse/display? EXT KNOVEL DISPL
AY bookid=2618&VerticallD=0

78

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Ft. Belvoir, Virginia

Dudley Knox Library
Naval Postgraduate School
Monterey, California

Marine Corps Representative
Naval Postgraduate School
Monterey, California

Director, Training and Education
MCCDC Code C46
Quantico, Virginia

Director, Marine Corps Research Center
MCCDC Code C40RC
Quantico, Virginia

Marine Corps Tactical Systems Support Activity
Attn: Operations Officer
Camp Pendleton, California

Chairman, Department of Information Sciences

Naval Postgraduate School
Monterey, California

79

	I. INTRODUCTION
	A. BACKGROUND AND HYPOTHESES
	B. BENEFITS OF STUDY
	C. RESEARCH QUESTIONS
	D. THESIS ORGANIZATION

	II. VIRTUALIZATION AND CLOUD COMPUTING
	A. BACKGROUND
	1. Early Virtualization
	2. Virtualization System Elements
	3. Virtualization Architecture

	B. COMPONENTS OF VIRTUALIZATION
	1. Hardware
	a. Server
	b. Client
	c. Storage Area Network (SAN)

	2. Software Architecture
	a. x86 Platforms
	b. Virtual Machine Monitor (VMM) or Hypervisor
	c. Virtual Machine Operating System
	d. Virtual Machine Configuration Management

	3. Network
	a. Components
	b. Latency
	c. Protocols

	4. Server Virtualization
	5. Virtual Desktop Infrastructure

	C. VIRTUALIZATION: THE BUILDING BLOCK OF THE CLOUD
	1. Cloud Service Models
	2. Cloud Deployment Models
	a. Private Cloud
	b. Community Cloud
	c. Public Cloud
	d. Hybrid Cloud

	D. DEPARTMENT OF DEFENSE VIRTUALIZATION INITIATIVES
	1. United States Marine Corps
	2. United States Navy
	3. United States Army

	E. LIMITATIONS
	1. Hardware
	2. Software
	3. Network
	4. Real-Time Systems

	F. CONCLUSION

	III. TEST AND EVALUATION IN SYSTEM OF SYSTEMS ARCHITECTURES
	A. TEST AND EVALUATION
	1. Overview
	2. Purpose
	3. Test and Evaluation Strategy (TES)
	4. Test and Evaluation Master Plan (TEMP)

	B. SYSTEMS BACKGROUND
	1. Systems Science
	2. Systems Engineering
	3. Systems Framework
	4. System of Systems
	5. System of Systems in the Department of Defense

	C. SYSTEM TEST METHODOLOGIES
	1. Bottom-Up Testing
	2. Top-Down Testing
	3. Black-Box Testing (Functional)
	4. White-Box Testing (Structural)
	5. Regression Testing
	6. Mission Thread Based Testing

	D. CONCLUSION

	IV. CASE STUDY OF THE DISTRIBUTED GLOBAL INFORMATION GRID (GIG) INTELLIGENCE AUTOMATION SYSTEM
	A. INTRODUCTION
	B. DGIAS SUITABILITY ANALYSIS
	C. DGIAS SYSTEM COMPOSITION
	1. Description
	2. Component Systems of DGIAS
	a. Kiosk System
	b. Fixed Camera System
	c. Middleware System
	d. Watchman Viewer System

	D. PROPOSED DGIAS VIRTUALIZATION
	1. Description

	E. DGIAS TEST AND EVALUATION PROCESS MODEL
	F. CONCLUSION

	V. CONCLUSION
	A. SUMMARY
	B. FURTHER RESEARCH AND RECOMMENDATIONS
	1. Limits of Virtualization
	2. Improved Capabilities
	3. Further Case Studies
	4. Specific Measuring Tool

	APPENDIX A
	APPENDIX B
	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

