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Abstract – Joint data management (JDM) includes the 
hardware (e.g. sensors/targets), software (e.g. 
processing/algorithms), and operations (environments) of 
data exchange that enable persistent surveillance in the 
context of a data-to-decision (D2D) information fusion 
enterprise. Key attributes of an information system require 
pragmatic assessment of data and information 
management, distributed communications, knowledge 
representation, human-systems interaction, as well as a 
balanced sensor mix, algorithm choice, and life-cycle data 
management. Throughout the paper, we seek to describe 
the current technology, research approaches, and metrics 
that influence a realizable JDM product. We develop JDM 
methods for structured and unstructured data to determine 
an accurate target track and identification as a moving 
intelligence (MOVINT) capability. We examine 
classification methods of unstructured data using seismic, 
acoustic, and combined fusion methods for data analysis 
and information management. 

Keywords: Information Fusion, MOVINT, data 
management, unstructured data, target tracking  
  

1 Introduction 
The goal of Joint Data Management (JDM) for MOVINT 
(intelligence about a moving object) is to design a tool that 
supports sensor placement, optimal data collection, and 
active sensor management for decision support, in an 
environment where data exchange is seamless, efficient, 
and appropriate across potentially diverse stakeholders.  
With limited sensor resources, there is a need to optimize 
sensor use that maximizes the sensor utility for users to 
observe moving targets [1]. The utility is based on the 
measures of effectiveness, which can vary over the targets 
of interest, sensor types, environmental conditions, 
situational context, and users [2].  

MOVINT is an intelligence gathering method by which 
images (IMINT), non-imaging products (MASINT), and 
signals (SIGINT) produce a movement history of objects 
of interest. MOVINT provides both tactical and 
operational intelligence (situational awareness) of the 
dynamic environment. One example of MOVINT is 
detecting objects moving in an urban area [3]. Detecting 
objects can be completed by fixed ground cameras or on 
dynamic unmanned aerial vehicles (UAVS).  If the sensors 
are on UAVS, path planning is needed to route the UAVs 

to observe the cars [4, 5] and cooperation among UAVs is 
necessary [6]. The Defense Advanced Research Projects 
Agency (DARPA) Grand Challenge featured sensors on 
mobile unattended ground vehicles (UGVs) observing the 
environment [7]. Mobile sensing can be used to orient [8] 
or conduct simultaneous location and mapping (SLAM) 
[9] to observe the environment or targets [10].  

A significant challenge in detecting and tracking 
moving vehicles in an urban area over a long period of 
time is to acquire data in a persistent, pervasive, and an 
occlusion compensating manner [11]. There has been a 
recent surge in the design and deployment of wide field-
of-view systems known as WAMI (wide area motion 
imagery) sensors, including the DARPA Autonomous 
Real-Time Ground Ubiquitous Surveillance Imaging 
System (ARGUS-IS). At any given instance, they produce 
images with dramatically varying point spread functions 
across a very large field of view; and, any given location 
undergoes persistent observation of varying spatial fidelity 
from different viewing directions as the sensor moves 
steadily in a fixed pattern above the city [11, 12]. A 
substantial amount of preprocessing, coupled with frame-
to-frame, or frame-to-DTED (digital terrain elevation 
data) registration is applied before an image sequence can 
be analyzed in the context of multi-target tracking, or 
historical baseline similar to UAV video analysis or object 
deformation measurement tasks [13, 14]. Detection, 
feature extraction, post-processing, object detection, 
tracking, and track-stitching of moving vehicles in these 
videos is still a complex problem in terms of, fusion, 
computation and throughput [13, 15]. Motion detection-
based track initialization for vehicle and people tracking 
using the flux tensor, aligned motion history images, and 
related approaches have been shown to be versatile 
approaches [12, 16, 17, 18]. Scaling these algorithms to 
very large WAMI sequences will require improved 
computer vision algorithms and multicore parallelization 
[15, 19]. Joint data management, summarization, and 
retrieval using content-based querying and searching of 
visual information with user feedback remain a 
significantly challenging area [20, 21] 

Deployed ground sensors can observe the targets; 
however they are subject to the quality of the sensor 
measurements as a well as obscurations.  One interesting 
question is how to deploy the fixed sensors that optimize 
the performance of a system. Efforts in distributed 
wireless networks (WSNs) [22] have resulted in many 
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issues in distributed processing, communications, and data 
fusion [23]. To facilitate both WSNs decision support, 
requires efforts in understanding the user’s needs [24], the 
theoretical and knowledge models [25], and situational 
awareness processing techniques [26]. In a dynamic 
scenario, resource coordination [27] is needed for both 
context assessment, but also the ability to be aware of 
impending situational threats [28].  

For distributed sensing systems, to combine sensors, 
data, and user analysis requires pragmatic approaches to 
metrics [26, 29, 30, 31].  For example, Blasch developed 
fusion Quality of Service (QoS) metrics [26], Zahedi and 
Bisdikian [32] develop a Quality of Information (QoI) 
architecture for comparison of centralized versus 
distributed sensor network deployment planning, and 
Bisdikian, et. al. [33] propose Value of Information (VoI) 
metrics that can be useful in D2D evaluation. 

Information fusion has been interested in database 
problems for target trafficability (i.e. terrain information) 
[34], sensor management [35], and processing algorithms 
[36] from which to assess objects in the environment. 
Various techniques have incorporated grouping object 
movements [37], road information [38, 39], and updating 
the object states based on environmental constraints [40]. 
Detecting, classifying, identifying and tracking objects 
[41] has been important for a variety of sensors, including 
2D visual, radar [42], and hyperspectral [43] data; 
however newer methods are of interest to ground sensors 
with 1D signals. 

The DARPA Sensor Information Technology (SensIT) 
program investigated deploying a distributed set of 
wireless sensors along a road to classify vehicles as shown 
in Figure 1. Given the deployed set of sensors, feature 
vectors were used to classify signals based on the data 
from the seismic and acoustic signals. [44] Various 
approaches include combining the data with decision 
fusion [45], value fusion [46], and simultaneous track and 
identification (ID) methods [47]. Information theoretical 
approaches including the Kullback–Leibler method were 
applied to the data for sensor management [48]. 

 

 
Figure 1.  SensIT Data from [M. F. Duarte and Y. H. Hu, 
“Vehicle Classification in Distributed Sensor Networks,” 2004. [44] 

 
Much work has been completed using imaging sensors 

and radar sensors for observing and tracking targets. 
Video sensors are limited in power and subject to 
day/night conditions. Likewise, radar line-of site precludes 

them from observing in the same plane.  Together, both 
imaging and radar sensors do not have the advantage of 
unattended ground sensors (UGS) which can power on 
and off, can work for a long time on battery power, and 
can be deployed to remote areas. 

Track management situational awareness tools receive 
input from sensor feeds (examples include electro-optical, 
radar, electronic support measures (ESMs), and sonar) and 
display this information to a user. User inputs include: 
creation of new objects, such as tracks, contacts and 
targets. Methods to reduce data-to-decisions (D2D) 
include: fusing multiple tracks into a single track, 
incorporating alerting mechanisms, or visualizing track 
data common operational picture (COP). Sensor and track 
data can grow rapidly as the user desires to keep historical 
data. Wikipedia states that the use of relational database 
management systems (RDBMS) [49] provide support for 
track management; however, RDBMS requires a high 
level of maintenance, provides limited support for ad-hoc 
querying, involves rigid storage paradigms, and has 
scalability issues. 
 Our goal is to determine the possible JDM for D2D 
from the unstructured data to the classification decision 
over varying environmental conditions. JDM includes (1) 
sensor management and placement of these UGSs, (2) 
intelligent use of the data based on value for classification, 
(3) coordination of sensor data for detection, 
classification, or both, and (4) metrics to support the 
sensor and data management as supporting a user control. 
Together, these factors have to be addressed in decision 
support tools that aid an operational team that deploys, 
maintains, repairs, and then utilizes the data over a 
distributed network. Section 2 discusses classification, 
Section 3 details unstructured data, and Section 4 and 5 
present an example with conclusions. 
 
2 Target Location / Classification 
We desire to produce a JDM system for D2D with a 
MOVINT capability, which introduces the question - what 
characteristics are relevant for such a system? MOVINT is 
an intelligence gathering method by which images 
(IMINT), non-imaging products (MASINT), and signals 
(SIGINT) produce a movement history of objects.   

The goal is to utilize the UGSs sensors which may be 
acoustic, magnetic, seismic, and PIRoelectric (passive 
infrared) for motion detection.  With a variety of sensors, 
information fusion of JDM for D2D can (a) utilize the 
most appropriate sensor at the correct time, (b) combine 
information from both sensors on a single platform, (c) 
combine results from multiple platforms, and (d) cue other 
sensors in a hand-off fashion to effectively monitor the 
area.  Sensor exploitation requires an analysis of feature 
generation, extraction, and selection or (construction, 
transformation, selection, and evaluation). To provide 
track and ID results, we develop a MOVINT capability of 
the target location and identification. 
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Sensor exploitation includes detection, recognition, 
classification, identification, and characterization of 
objects.  Individual classifiers can be deployed at each 
level to robustly determine the object information.  
Popular methods include voting, neural networks, fuzzy 
logic, neuro-dynamic programming, support vector 
machines, Bayesian and Dempster-Shafer methods. One 
way to ensure the accurate assessment is to look at a 
combination of classifiers. [50] Issues in classifier 
combination methods need to be compared as related to 
decisions, feature sets, and user involvement.  Selecting 
the optimal feature set is based on the situation and 
environmental context of which the sensors are deployed. 
Typically, a mobile sensor needs to optimize its route and 
can be subject to interactive effects of pursuers and 
evaders with other targets [51] as well as active jamming 
of the signal [52].   

Detecting targets from seismic and acoustic data in a 
distributed net centric fashion requires pragmatic 
approaches to sensor and data management. [53] To 
robustly track and ID a target requires both the structured 
data from the kinematic movements as well as the 
unstructured data for the feature analysis. [54] 
 
3 Unstructured Data 
Because effective MOVINT must incorporate diverse data 
structures, it is important that a JDM system address 
concerns of unstructured data.  Unstructured data (versus) 
structured data refers to computerized information that 
does not have a data structure (i.e. exist within a 
database). Examples of “unstructured data” may include 
(1) textual: documents, presentations, spreadsheets, 
scanned images, etc., (2) imagery: multimedia files, 
streaming video, etc., (3) HUMINT: reports, audio files, 
and gestures, (4) sensors: seismic, acoustic, magnetic, 
sonar, etc., and (5) environmental: weather, GIS, etc. All 
of the data has to be collected, acquired, exploited, stored, 
recalled, and tagged, not to mention a host of other 
activities. Most of data that is collected has some 
structure; however, for information fusion the inherent 
structure is not common among entities. 
 

 
Figure 2. Description of Unstructured Data. 

 
Research has shown that over 95% of the digital universe 
is unstructured data. According to these studies, 80% of 
all stored organizational data is unstructured [55, 56].  
This presents a critical challenge for large data 

technologies specifically in the area of data exchange 
because unstructured data must be structured before 
knowledge can be extracted and must therefore undergo 
some sort of transformation. The impact of this 
transformation affects the manner in which the data is 
stored, accessed, and utilized. The effects of the 
transformation are visible in the metadata, where the 
information contained in the data itself is described; 
illustrating the implications of data exchange on data 
integration.  The relationship between data exchange and 
data integration is not trivial and from a decision-making 
perspective must be tightly linked together because the 
data is exchanged for a purpose, likely with other data.  
When characterized in this manner, the performance of 
data exchange has an implicit dependency on integration 
and therefore schema synthesis. 
 Managing data requires dealing with the structured and 
unstructured data with methods to allow the user and the 
algorithm to understand the credibility and complexity of 
the data. 

3.1 Unstructured Information Challenge 
Exclusive of the unstructured or structured nature of data, 
the premise of data exchange suggests a need for a 
unifying, ideally universal, data schema.  The likelihood 
of achieving such a unified schema in the near term, 
particularly in a dynamic and diverse environment is 
unlikely.  However that does not preclude the research 
merit in attempting to achieve such an objective; rather it 
underscores the importance of doing so. 
 The unified data integration model for situation 
management developed by Yoakum-Stover and Malyuta 
[57] presents a database-centric theoretical solution for 
unified storage of structured data that is viable in ultra-
large scale systems environments.  This solution is based 
on their Data Definition Framework (DDF).  The DDF 
consists of six primitives (signs, mentions, terms concepts, 
statements and predicates) that describe the fundamental 
elements of data generically.  The research proposes that 
these primitives can be utilized as a lossless foundational 
structure with which to decouple vocabularies/data models 
from the source data artifacts. 
 While the objective of a lossless unifying data model 
that allows integration of disparate data sources and model 
semantics is laudable as well as desirable, many practical 
considerations that have historically characterized data 
integration and fusion, present challenges to any solution’s 
viability. Exclusive any sociological, behavioral, or 
organizational obstacles to unified information spaces, 
which are not the focus of the research; the authors’ 
solution takes a step in the direction of addressing the 
practical technical issues.  Despite the innovations present 
in the DDF, it suffers from some limitations that are 
particularly critical to a unified model.  Most significantly, 
the linkages between the data and the model prevent the 
DDF from capturing concepts for which no data exists, 
which is essential for any unifying schema.  To this extent 
the DDF would be effectively useless in cases where 
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sparsity was high or in cold start situations such as those 
that would existing in ranking or recommendation 
decision support systems [58]. Further, the DDF also lacks 
the notion of element ordering or implementation to 
capture constraints, participation, and cardinality.  To 
effectively utilize such an approach it is essential to extend 
the work of Yoakum et al. to address these issues. 
 The DDF is only one notion of a unifying schema 
approach and there are others, including the Extended 
Entity Relationship data model (EER) [59], the 
Amsterdam Hypermedia Model [60], the object-oriented 
predicate calculus [61], the UCLA M Model [62], and the 
iMeMex Data Model. While having individual benefits 
over one another these models generally tend to focus on 
logical schema definition. The Amsterdam Hypermedia 
Model and the UCLA M Model target multimedia, 
timeline, and simulation data and as such lack broad 
generalizability to other data types.   EER has grown in 
popularity and has become the basis for contemporary 
relational database modeling due to its visual 
effectiveness, but lacks the rich semantics of object 
oriented or other modeling constructs and is bound by the 
limitations in scaling of entity-relational structures. 

3.2 InfoGrid NoSQL and Probe Framework: Data 
Exchange in a Non-Relational Schema 

Given a generalized information model, there must exist 
and architecture that can support joint information 
management.  InfoGrid [63] is an open-source software 
modular architecture that is comprised of a graph database 
that abstracts data stores’ interface to web applications.  
Figure 3 illustrates the high level architecture of InfoGrid. 
The design objectives of InfoGrid were to support a broad 
set of information types, connect information from 
different sources with an integrated application 
programmers’ interface that is schema-driven and support 
a broad range of applications.  Within the InfoGrid 
structure, information is modeled as a semantic network.  
The design of InfoGrid resolves the join-scalability of 
relational databases and separates the tight integration 
between the data and the application.    

InfoGrid specifically targets web applications.   The 
Probe Framework, which is built on the InfoGrid platform, 
makes the content of external data stores and sources 
appear as InfoGrid objects that self-update.  The Probe 
Framework does this by shadowing the content of external 
sources as they change through the implementation of 
probes that monitor and control updating effectively 
creating decentralized data sources with federated 
governance within the scope of the InfoGrid 
infrastructure.  From this perspective probes operate like 
services that extend the external data source into the 
InfoGrid platform on which applications are layered.    
 The InfoGrid architecture has many benefits for data 
exchange in a large data context.  It subsumes the 
challenges of unified schemas by providing both a 
middleware pass through (using the Probe Framework) as 
well as a centralized graph database (the MeshBase 

referred to in Figure 3]) on which applications are built.  
The broad range of data stores addresses the diverse 
nature of data structure and incorporates utilities within 
the framework for specialized processing tasks. By 
adopting this architecture InfoGrid allows scalable 
applications to be created and maintained more quickly, 
more reliably and at lower cost by addressing the concerns 
of data exchange.  Moreover, the generalized architecture 
can increase the availability of decision-related resources 
and therefore increase the probability of successful 
decision outcomes [64]. 
 

 
Figure 3. InfoGrid Application Architecture [63]. 

 

3.3 Data Management Processing 
Data exchange can result from delivering the raw data 
versus publishing data summaries. Delivering the raw data 
requires an architecture that can support large volumes of 
data. Another method is to design the architecture such 
that the processing is embedded in the sensor to enable:  
faster data delivery, increased speed from data to decisions 
(D2D), and quicker ability to cue other sensors. Sensor 
distance and data amount are tradeoffs that must be 
accommodated for processing speeds of D2D. Processing 
the data at the sensor would require communication 
challenges between distributed sensors. For both cases, the 
architecture must address large amounts of data exchange 
and the speed of the communication for data exchange. 
 There are many techniques for processing unstructured 
data using known or a priori hypothetical situations.  
Since the data is unstructured it is essential to provide 
some context around which exploitation can be built. 
Approaches include: data transformation, analysis, and 
sampling, feature generation, association, selection and 
extraction; and decision classification such as Bayesian, 
Dempster-Shafer, and Support Vector Machines (SVM) 
methods for clustering and association rule extractions. 
Using the above methods, either known models or 
machine learned unknown models can help assess the 
data.   
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 Data mining supports the processing of data, however, 
ontologies (or semantic models) can improve the 
categorization, storage, and indexing of the data. An 
ontology improves communication between humans and 
machines because an ontology contains machine-
processable structures to disambiguate given data values 
as well as data structures.  

3.4 Published/Filtered Data 
Processing of large volumes of data requires metrics, 
architectural models, and operational realistic scenarios to 
test data search, access, and dissemination. Properly 
measuring significant parameters is critical to quantifying 
compliance and outcomes; yet doing so presents a 
challenge for eliciting quantifiable data, particularly in the 
case of architectural or system-related measures.  
Assessment of large data architectures requires a set of 
metrics that will objectively quantify performance of the 
architecture, its related technologies, and process/decision 
impacting outcomes.  Relative to the JDM emphasis on 
large data, it is important to revisit a working definition of 
large data.  Large data is when data has sufficient volume 
such that it cannot be completely processed for real-time 
decision making.  Extending the definition to architectural 
metrics, additional focus should be given to scope 
measurements that determine the tradeoffs between cost, 
timeliness, throughput, accuracy, and confidence.  The 
performance of a large data architecture (LDA), like any 
complex system is affected by its objectivity, context, and 
resolution of measurement.  As a system increases in size, 
it becomes increasingly difficult to identify the 
complexity/flexibility/scalability and number of human 
participants of all relevant system elements or even 
quantify what should be measured.  
 There are two general perspectives on architectural 
metrics: measurement of the descriptive architecture itself 
and the measurement of the architectural artifacts.  There 
is ample work detailing the measurement of artifacts, but 
the work measuring architectural quality is somewhat 
sparse. Yet there are advantages to descriptive architecture 
evaluations. These benefits include financial benefits, 
increased understanding and documentation of the artifact,  
detection of problems with the existing architecture, and 
clarification and prioritization of requirements [65] 
Evaluating a descriptive architecture has an additional 
benefit in that it can provide the foundation for system 
performance assessment before the system is developed.   

3.5 Data Management Metrics 
Data exchange is an important area of information 
management that aims at understanding and developing 
foundations, methods, and algorithms for transferring data 
between differently structured information spaces to be 
used for diverse purposes.  The exchange of data is but 
one critical step in information management.  However the 
exchange of data is a linchpin for the success of any data 
management strategy or infrastructure.  Efficient and 
effective exchange of data must address many issues 

beyond just getting the data to where it is needed 
(transport).  Issues of dissemination (access, availability, 
control), quality (truth, relevance, accuracy), and 
timeliness (speed-to-need and information lifecycle) are 
exemplar list of challenges in data exchange.  Similarly 
many of these metrics translate directly to decision 
outcomes (timeliness, user confidence, and accuracy). 
From a large data perspective, the process of data 
exchange is complicated by limitations in interoperability, 
diversity in applications and contexts, and even by the 
structure of the data itself.  
 A summary [66] of ten key requirements include: 
 

• Visibility: Illustration such as folders and plots 
• Control: Test, push, and pull of information 
• Auditing: Complete and searchable 
• Security: Data permissions and access 
• Performance: communication and traffic flow 
• Scale: amount of data 
• Ease of Installation: timeliness of submission  
• Ease of Use: distributed and timely access 
• Ease of Integration: interoperability 
• Cost of Ownership: money and effort 

 
These methods are similar to the QoS/QoI fusion standard 
metrics such as timeliness, accuracy, confidence, 
throughput, and cost; [26] with most of the efforts in JDM 
focusing on throughput and timeliness.  
 
Data maintenance is akin to equipment maintenance.  In 
the case that equipment maintenance includes reliability, 
survivability, reparability, supportability, and other 
“ilities”; the same case can be made for data.  
(1) Reliability is that the data is available and timely 

which requires data storage, access, and retrieving 
methods. Data and information requires accurate 
updating. For example, acoustic data can be exploited 
for a target ID and saved in a target folder. However, if 
later, it was determined from HUMINT reports that it 
was a benign target or incorrectly labeled, the data 
(acoustic) and information (target ID) should be 
updated for the new confidence (target ID) and 
timeliness (where the target is at a certain time).  
Finally, the incorrect information needs to be removed 
from the target folder. 

(2) Survivability.  The data needs to be correlated with 
the pedigree of the data collection and decision making 
processing. To ensure data availability, it needs to 
“survive” in the data base from which it is correctly 
called when needed. Note, as more data is stored, older 
data can get lost as things scale. 

(3) Supportability: One question is: Does the current data 
need various updates for hardware changes? If we are 
conducting data management, that also prioritizes 
archival management over various hardware changes.  
Likewise, software changes affect access to/from the 
data.  Many times, data is stored with protocols and 
header files to be access by application and 
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presentation architecture layers.  When there is tight 
coupling between these layers and the data layer, 
access to the data may be affected. Maintaining 
compatibility software grand-fathering and other 
methods of ensuring backward compatibility are 
needed.  Furthermore, one can think of future or 
emergent compatibility needs.  Supportability could be 
maintained with standards and governance that are 
common (such as that for all the services) to support 
JDM and D2D. 

 
4 Example/Simulation 
Our example is based on three criteria: (1) real-world 
MOVINT scenario, (2) unstructured data (e.g. time series 
data without a prescribed model) and (3) context which 
aids in decision-making. Seismic and acoustic data is 
being collected from many sensors for three targets 
moving on a road. The road provides context to develop a 
model from the unstructured data to provide MOVINT. 
The real-world SensIT collection provides guidance for 
future collections to highlight JCM D2D technologies 
such as joint reporting for hard (physics-based) and soft 
(human text-based) fusion. To perform the data 
management we use data mining [67] techniques such as a 
support vector machine (SVM) [68, 69] to process the 
unstructured data. Through analysis, we can determine the 
optimum use of the data to detect a moving target. 

4.1 Data Processing 
To determine methods of Joint Data Management, we 
compare two cases of (1) processing the data separately 
and (2) jointly processing the acoustic and seismic results 
Figure 4(a) shows the case of the acoustic results for a 
receiver operator curve (ROC) [70]. 
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Figure 4. (a) Acoustic and (b) Seismic ROCs for 3 targets. 
 
Figure 4(b) demonstrates the results for the seismic 
results. Note that for the data set, the seismic results have 
a lower probability of false alarms for target 3 and target 
2; however, target 2 exhibits more confusion.  

4.2 Joint Data Management 
Next we explore the case of the joint seismic and acoustic 
data management and utilize SVM for classification, 
shown in Figure 5. The key is the false alarm reduction 
which is desired by users. In general, the joint analysis 
supports better decision making as detection was 
improved for a constant false alarm rate, accuracy was 
improved as to the target location from joint spatial 

measurements, and timeliness in decision making as fewer 
measurements were needed to confirm the target ID (i.e. 
decision made with two modalities required fewer 
measurements than that of a single modality).  
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Figure 5. Combined Seismic and Acoustic Results. 

4.3 Visual Analytics MOVINT Display 
Visual analytics provide methods to visualize and jointly 
manage data to decisions for MOVINT capabilities. For 
the operational analysis, we can provide an object track 
presentation. Here we present the salient features of the 
MOVINT classification information. Figure 6 presents a 
short history of the acoustic information and Figure 7 
shows the case of the robust features for analysis.  
 

 
 

Figure 6. Acoustic Feature Analysis. 
 

 
 

Figure 7. Feature Discrimination Plot. 
 

We see that features 2-5 discriminate target 3 (blue), 
while features 6-7 discriminate target 2 (red), and feature 
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8-12 are for target 1 (cyan). From these plots, a user can 
determine not only the object location, but the key 
MOVINT target features enabling positive target ID. 

To utilize the QoS/QoI metrics [26] for Value of 
Information (VoI) [33], we determine whether the sensor 
is “useful” in decision-making at each time step. Figure 8 
is a truncated plot of the VoI metrics, with the summary 
over all time steps plotted with the VoIs: combined 
(seismic/acoustic) sensor = 0.782, acoustic = 0.684, and 
seismic = 0.664 over all three targets. 

 

 
Figure 8. Value of Information Plot. 

  
We present second example of JDM for D2D in our 
companion paper at the Fusion11 conference using wide 
area motion imagery (WAMI) [71]. 
 
5 Conclusions 
We have explored methods for Joint Data Management 
(JDM) for MOVINT data-to-decision making.  We utilize 
a support vector machine to process the unstructured 
classification data as well as the structured data of the 
target location. We showed that the JDM approach 
reduces the false alarms for enhanced and timely decision 
making.  Next steps would be to investigate different 
classifiers and optimum feature vectors to improve JDM 
performance. JDM Information Quality, Quality of 
Service, and Value of Information needs can be linked to 
other sources of soft data (human reports) and hard 
(physics-based sensing) [72] to update situation reporting. 
JDM will require new methods in database management, 
information management, and measures of effectiveness 
for mission support that support the Data Information 
Fusion Group (DFIG) Level 5 Fusion [26, 73].  
 
6 References 
[1] E. P. Blasch “Assembling an Information-fused Human-Computer 

Cognitive Decision Making Tool,” IEEE Aerospace and Electronic 
Systems Magazine, June 2000. 

[2] E. Blasch, P. Valin, and E. Bosse, “Measures of Effectiveness for 
High-Level Fusion”, Intl. Conf on Info. Fusion - Fusion10, 2010. 

[3] H. Ling, L. Bai, E. Blasch, and X. Mei, “Robust Infrared Vehicle 
Tracking across Target Pose Change using L1 Regularization,” Intl. 
Conf on Info. Fusion - Fusion10, 2010. 

[4] E. Blasch, S. Kondor, M. Gordon, and R. Hsu, “Georgia Tech 
Aerial Robotics team competition entry,” J. Aerial Unmanned 
Vehicle Systems, May 1994 

[5] E. P. Blasch, “Flexible Vision-Based Navigation System for 
Unmanned Aerial Vehicles,” Proc. SPIE 2352. 1995. 

[6] G Seetharaman, A. Lakhotia, E. Blasch,” Unmanned Vehicles 
Come of Age: The DARPA Grand Challenge,” IEEE Computer 
Society Magazine, Dec 2006.   

[7] D. Shen, G. Chen, J. Cruz, and E. Blasch, “A game Theoretic Data 
Fusion Aided Path Planning Approach for Cooperative UAV 
Control,”  IEEE Aerospace Conf., Big Sky, MT, 1 March, 2008. 

[8] H. Durrant-Whyte & T. Bailey, "Simultaneous Localization and 
Mapping (SLAM): Part I The Essential Algorithms". Robotics and 
Automation Magazine 13: 99–110, 2006. 

[9] K. M. Lee, K.M., Z. Zhi, R. Blenis, and E. P. Blasch, “Real-time 
vision-based tracking control of an unmanned vehicle,” IEEE J. of 
Mechatronics - Intelligent Motion Control, 1995. 

[10] T. Balch, G. Boone, T. Collins, H. Forbes, D. MacKenzie,, and J.C. 
Santamaria, “Io, Ganymede, and Callisto – a Multiagent Robot 
Trash-Collecting Team,” AI Magazine, 1995. 

[11] K. Palaniappan, R. Rao, G. Seetharaman, "Wide-area persistent 
airborne video: Architecture and challenges", Part V, Distributed 
Video Sensor Networks: Research Challenges and Future 
Directions, Ed. Bir Banhu, et. al, Springer, 2011. 

[12] V. Reilly, H. Idrees, M. Shah, “Detection and tracking of large 
number of targets in wide area surveillance”, Lecture Notes in 
Computer Science, Vol. 6313, European Conference on Computer 
Vision, 2010, p186-199. 

[13] A. Hafiane, K. Palaniappan, G. Seetharaman, “UAV-Video 
registration using block-based features”, IEEE Int. Geoscience and 
Remote Sensing Sym., Boston, MA, 2008. 

[14] G. Seetharaman, G. Gasperas, and K. Palaniappan, “A piecewise 
affine model for image registration in 3-D motion analysis”, IEEE 
Int. Conf. Image Processing, Vancouver, BC, Canada, Sep. 10-13, 
2000, pp. 561-564. 

[15] K. Palaniappan, F. Bunyak, P. Kumar, I. Ersoy, S. Jaeger, K. 
Ganguli, A. Haridas, J. Fraser, R. Rao, G. Seetharaman, “Efficient 
feature extraction and likelihood fusion for vehicle tracking in low 
frame rate airborne video”, Int. Conf. on Information Fusion, 2010. 

[16] F. Bunyak, K. Palaniappan, S. K. Nath, G. Seetharaman, “Flux 
tensor constrained geodesic active contours with sensor fusion for 
persistent object tracking”, Journal of Multimedia, Vol. 2, No. 4, 
Aug, 2007, pp. 20-33. 

[17] F. Bunyak, K. Palaniappan, S. K. Nath, G. Seetharaman, “Geodesic 
active contour-based fusion of visible and infrared video for 
persistent object tracking”, IEEE Workshop on Applications of 
Computer Vision, 2007. 

[18] N. Cuntoor, A. Basharat, A. G. Amitha Perera, A. Hoogs, “Track 
initialization in low frame rate and low resolution video”, Int. Conf. 
on Pattern Recognition, 2010. 

[19] P. Kumar, K. Palaniappan, A. Mittal, G. Seetharaman, “Parallel 
blob extraction using the multi-core Cell processor”, Lecture Notes 
in Computer Science (Adv. Concepts for Intel. Vis. Sys)., 2009. 

[20] M. H. Kolekar, K. Palaniappan, S. Sengupta, G. Seetharaman, 
“Event detection and semantic identification using Bayesian belief 
networks”, IEEE Workshop on Video-Oriented Object and Event 
Classification (ICCV), 2009.  

[21] C.R. Shyu, M. Klaric, G. Scott, A. Barb, C. Davis, K. Palaniappan, 
“GeoIRIS: Geospatial information retrieval and indexing system – 
Content mining, semantics, modeling, and complex queries”, IEEE 
Trans. Geoscience and Remote Sensing, Vol. 45, No. 4, Apr 2007.  

[22] Y. Lin, B. Chen, and P. Varshney, “Decision Fusion for Multi-Hop 
Wireless Sensor Networks,” Intl. Conf on Info. Fusion, 2004. 

[23] P. K. Varshney, Distributed Detection and Data Fusion, Springer-
Verlag, NY, 1997. 

[24] D. A. Lambert, “Tradeoffs in the Design of Higher-level Fusion 
Systems,” Fusion07, 2007. 

[25] S. Das, High-Level Data Fusion, Artech House, 2008. 
[26] E. Blasch, I. Kadar, J. Salerno, M. M. Kokar, S. Das, G. M. Powell, 

D. D. Corkill, and E. H. Ruspini, “Issues and challenges of 
knowledge representation and reasoning methods in situation 

182



assessment (Level 2 Fusion)”, J. of Adv. in Information Fusion, 
Dec. 2006. 

[27] E. Blasch, I. Kadar, K. Hintz, J. Biermann, C. Chong, and S. Das, 
“Resource Management Coordination with Level 2/3 Fusion”, 
IEEE AES Magazine, Mar. 2008. 

[28] G. Chen, D. Shen, C. Kwan, J. Cruz, M. Kruger, E. Blasch, “Game 
Theoretic Approach to Threat Prediction and Situation Awareness,” 
J. of Adv. in Information Fusion, Vol. 2, No. 1, 1-14, June 2007. 

[29] E. Blasch, M. Pribilski, B. Roscoe, et. al., “Fusion Metrics for 
Dynamic Situation Analysis,” Proc SPIE 5429, 2004. 

[30] L. Bai and E. Blasch, “Two-Way Handshaking Circular Sequential 
k-out-of-n Congestion System,” IEEE Trans. on Reliability, Vol. 
57, No. 1, pp. 59-70, Mar. 2008. 

[31] E. Blasch, “Derivation of a Reliability Metric for Fused Data 
Decision Making,” IEEE NAECON Conf., July 2008. 

[32] S. Zahedi and C. Bisdikian, “A Framework for QOI-inspired 
analysis for sensor network deployment planning,” Proc Wireless 
Internet CON, 2007. 

[33] C. Bisdikian, L. M. Kaplan, M. B. Srivastava, D. J. Thornley, D. 
Verma, and R. I. Young, “Building principles for a quality of 
information specification for sensor information,” Int. Conf of 
Information Fusion – Fusion09. 2009. 

[34] R. Anthony, Principles of Data Fusion Automation, Artech House, 
1995. 

[35] S. Blackman and R. Popoli, Design and Analysis of Modern 
Tracking Systems, Artech House, 1999. 

[36] D. L. Hall and S. A. McMullen, Mathematical Techniques in 
Multisensor Data Fusion, Artech House, 2004. 

[37] E. Blasch and T. Connare, “Improving Track maintenance Through 
Group Tracking,” Proc on Estimation, Tracking, and Fusion; 
Tribute to Y. Bar Shalom, 2001. 

[38] C. Yang , E. Blasch, & M Bakich, “Nonlinear Constrained Tracking 
of Targets on Roads”, Int. Conf of Information Fusion, 2005. 

[39] C. Yang and E. Blasch, “Fusion of Tracks with Road Constraints,” 
Adv. in J. for Information Fusion, Sept. 2008. 

[40] C. Yang and E. Blasch, “Kalman Filtering with Nonlinear State 
Constraints”, IEEE Trans. AES, Vol. 45, No. 1, 2009. 

[41] E. P. Blasch, Derivation of a Belief Filter for Simultaneous HRR 
Tracking and ID, Ph.D. Thesis, Wright State University, 1999. 

[42] C. Yang, W. Garber, R. Mitchell, and E. Blasch, “A Simple 
Maneuver Indicator from Target’s Range-Doppler Image,” Int. 
Conf. on Info Fusion - Fusion07, 2007. 

[43] T. Wang, Z. Zhu, and E. Blasch, “Bio-Inspired Adaptive 
Hyperspectral Imaging for real-Time Target Tracking,” IEEE 
Sensors Journal, Vol. 10, No. 3, pp. 647-654, 2010. 

[44] M. F. Duarte and Y. H. Hu, “Vehicle Classification in distributed 
sensor networks,” J. Parallel Distributed Computation, 64. No. 7, 
2004. 

[45] M. Duarte and Y-H Hu, “Distance Based decision Fusion in a 
Distributed Wireless Sensor Network” Telecommunication Systems, 
Vol. 26 No. 2-4, 2004. 

[46] T. Clouqueur. P. Ramanathan, K. K. Saluja, H-C Wang, “Value-
Fusion versus Decision-Fusion for Fault tolerance in Collaborative 
Target Detection in Sensor Networks,” Intl. Conf on Info. Fusion, 
2001. 

[47] R. R. Brooks, P. Ramanathan, and A. M. Sayeed, “Distributed 
Target Classification and Tracking in Sensor Networks,” Proc of 
IEEE, Vol. 91, Issue 8, 1163-1171, 2003. 

[48] S. Kadambe and C. Daniell, “Theoretic Based Performance of 
Distributed Sensor Networks”, AFRL-IF-RS-TR-2003, 231, October 
2003. 

[49] http://..wiki/Relational_database_management_system  
[50] L. Kuncheva, Combing Pattern Classifiers: Methods and 

Algorithms, John Wiley and Sons, 2004. 
[51] M. Wei, G. Chen, .J B. Cruz, L. S., Haynes, K. Pham, and E. 

Blasch, “Multi-Pursuer Multi-Evader Pursuit-Evasion Games with 
Jamming Confrontation,” AIAA J. of Aerospace Computing, 
Information, and Communication, Vol. 4, No. 3, 693 – 706, 2007. 

[52] M. Wei, G. Chen, J Cruz, L. Haynes, M. Chang, E. Blasch, 
“Confrontation of Jamming and Estimation in Pursuit-Evasion 

Games with Multiple Superior Evaders,” AIAA Journal of 
Aerospace Computing, Aug 2006. 

[53] I. Kadar, E. Blasch, and C. Yang, “Network and Service 
Management Effects on Distributed Net-Centric Fusion Data 
Quality,” Intl. Conf on Info. Fusion – Fusion08, 2008. 

[54] H. Chen, G. Chen, E. Blasch, and T. Schuck, "Robust Track 
Association and Fusion with Extended Feature Matching", invited 
Chapter in Optimization & Cooperative Ctrl. Strategies, M.J. 
Hirsch et al. (Eds.):, LNCIS 381, pp. 319–354, Springer-Verlag 
Berlin Heidelberg 2009. 

[55]  J. Gantzandetal, “The Expanding Digital Universe - A Forecast of 
World Wide Information Growth Through 2010,” March 2007. IDC 
Whitepaper. 

[56] C. White, “Consolidating, Accessing, and Analyzing Unstructured 
Data,” December 2005. Business Intelligence Network article. 
Powell Media, LLC. 

[57] S. Yoakum-Stover and T. Malyuta, "Unified data integration for 
Situation Management," IEEE MILCOM 2008. Nov. 2008 doi: 
10.1109/MILCOM.2008.4753515. 

[58] S. Russell, and V. Yoon, “Applications of Wavelet Data Reduction 
in a Recommender System,” Expert Systems with Applications, 
34(4) pp. 2316-2325, 2008. 

[59] V.M. Markowitz and A. Shoshani, “Representing Extended Entity-
Relationship Structures in Relational Databases: A Modular 
Approach,” ACM Trans. Database Systems, vol. 17, no. 3, pp. 423-
464, 1992. 

[60] L. Hardman, D.C.A. Bulterman, and G. van Rossum, “The 
Amsterdam Hypermedia Model: Adding Time and Context to the 
Dexter Model,” Comm. ACM, vol. 37, no. 2, 1994. 

[61] E. Bertino, M. Negri, G. Pelagatti, and L. Sbattella,  ”Object-
Oriented Query Languages: The Notion and the Issues, IEEE Trans. 
Knowledge and Data Eng., vol. 4, no. 3, pp. 223-237, 1992. 

[62] J. D. N. Dionisio and A. F. Cardenas, “A unified data model for 
representing multimedia, timeline, and simulation data,” IEEE T. on 
Knowledge and Data Eng.vol.10, no.5, 1998. 

[63] INFOGrid - http://infogrid.org/  
[64] S. Russell, V. Yoon, and G. Forgionne, G., “Cloud-based Decision 

Support Systems and Availability Context:  The Probability of 
Successful Decision Outcomes,” Information Systems and e-
Business Management, 8(3), 2010. 

[65] G. Abowd, L. Bass, et al. Recommended Best Industrial Practice for 
Software Architecture Evaluation. Pittsburgh, PA, USA, Carnegie 
Mellon Univ., 1997. 

[66] Varonis Systems, Inc. “Managing Unstructured Data: 10 Key 
requirements.” www.varonis.com/pages/resources/ 

[67] I. Witten and E. Frank, Data Mining: Practical machine learning 
tools and techniques, Morgan Kaufmann, 2005.  

[68] C-C. Chang and C-J Lin, LIBSVM : a library for support vector 
machines, 2001. Software available at 
http://www.csie.ntu.edu.tw/~cjlin/libsvm  

[69] R.-E. Fan, P.-H. Chen, and C.-J. Lin. “Working set selection using 
second order information for training SVM”, J. of Machine 
Learning Res. 6, 1889-1918, 2005. 

[70] S. Alsing, E. P. Blasch, and R. Bauer, “3D ROC Surface concepts 
for Evaluation of Target Recognition algorithms faced with the 
Unknown target detection problem,” Proc. SPIE 3718, 1999.  

[71] H. Ling, Y. Wu, E. Blasch, G. Chen, H. Lang, and L. Bai, 
“Evaluation of Visual Tracking in Extremely Low Frame Rate 
Wide Area Motion Imagery,” Intl. Conf on Info. Fusion, 2011. 

[72] E. P. Blasch, É. Dorion, P. Valin, E. Bossé, and J. Roy, “Ontology 
Alignment in Geographical Hard-Soft Information Fusion 
Systems,” Fusion10, 2010. 

[73] E. Blasch and S. Plano, “DFIG Level 5 (User Refinement) issues 
supporting Situational Assessment Reasoning,” Intl. Conf on Info. 
Fusion - Fusion 05, 2005. 

183


