
AFRL-AFOSR-UK-TR-2012-0011

Self-Stabilizing and Efficient Robust Uncertainty
Management

Michael B. Segal

Ben Gurion University
Department of Communication Systems Engineering

Ben-Gurion Boulevard
Beer-Sheva, Israel 84751

October 2011

Final Report for 15 October 2008 to 15 October 2011

Air Force Research Laboratory
Air Force Office of Scientific Research

European Office of Aerospace Research and Development
Unit 4515 Box 14, APO AE 09421

Distribution Statement A: Approved for public release distribution is unlimited.

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply
with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

12 June 2012
2. REPORT TYPE

Final Report
3. DATES COVERED (From – To)

15 October 2008 – 15 October 2011
4. TITLE AND SUBTITLE

Self-Stabilizing and Efficient Robust Uncertainty Management

5a. CONTRACT NUMBER

FA8655-09-1-3016
5b. GRANT NUMBER

Grant 09-3016
5c. PROGRAM ELEMENT NUMBER

61102F

6. AUTHOR(S)

Dr. Michael B. Segal

5d. PROJECT NUMBER

5d. TASK NUMBER

5e. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Ben Gurion University
Department of Communication Systems Engineering
Ben-Gurion Boulevard
Beer-Sheva, Israel 84751

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

EOARD
Unit 4515 BOX 14
APO AE 09421

10. SPONSOR/MONITOR’S ACRONYM(S)

AFRL/AFOSR/RSW (EOARD)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

AFRL-AFOSR-UK-TR-2012-0011

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited. (approval given by local Public Affairs Office)

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report results from a contract tasking Ben Gurion University as follows: During the course of this research project we have examined
various models of communication and UAVs coordination including simulating birds flocking behavior. We considered the situation when the
members of the swarm may discover each other by exchanging messages; periodically collecting information concerning the position, speed
and direction of other members. Next, we considered the situation where the means of communication are lost between the participants of the
swarm. We have also presented information-theoretically secure schemes for sharing and modifying a secret among a dynamic swarm of
computing devices. We studied the problem of topology control through power assignments so that the induced communication graph of UAVs
is strongly connected under optimization objectives of energy efficiency, interference and stretch factor. We considered different models of
aggregating information in mobile networks. We present the first set of swarm flocking algorithms that maintain connectivity while electing
direction for flocking. We proposed a collaborative application monitoring infrastructure, that is capable of dramatically decreasing the
susceptibility of mobile devices to malicious applications. We explored a polar representation of optical flow in which each element of the
brightness motion field is represented by its magnitude and orientation instead of its Cartesian projections. Finally, we have proposed a fully
automatic solver to reconstruct the complete image from a set of non-overlapping, unordered, square puzzle parts.

15. SUBJECT TERMS

EOARD, Control, Automated Reasoning

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18, NUMBER
OF PAGES

50

19a. NAME OF RESPONSIBLE PERSON
JAMES LAWTON Ph. D.
 a. REPORT

UNCLAS
b. ABSTRACT

UNCLAS
c. THIS PAGE

UNCLAS
19b. TELEPHONE NUMBER (Include area code)

+44 (0)1895 616187

 Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39-18

PIs: Ohad Ben-Shahar, Shlomi Dolev, Michael Segal, FA8655-09-1-3016

Final report, October, 2011

During 3 year project on “Self-Stabilizing and Efficient Robust Uncertainty Management” our team

produced more than a dozen of papers on this topic and also provided C++ code located at

http://www.cs.bgu.ac.il/~segal/flocks.html and attached to this document. We have examined

various models of communication and UAVs coordination including simulating birds flocking behavior. We

considered the situation when the members of the swarm may discover each other by exchanging messages;

periodically collecting information concerning the position, speed and direction of other members. Next,

we considered the situation where the means of communication are lost between the participants of

the swarm. We also presented information-theoretically secure schemes for sharing and modifying a

secret among a dynamic swarm of computing devices. We studied the problem of topology control

through power assignments so that the induced communication graph of UAVs is strongly connected under

optimization objectives of energy efficiency, interference and stretch factor. We considered different models

of aggregating information in mobile networks. We present the first set of swarm flocking algorithms

that maintain connectivity while electing direction for flocking. We proposed a collaborative application

monitoring infrastructure, that is capable of dramatically decreasing the susceptibility of mobile devices

to malicious applications. We explored a polar representation of optical flow in which each element of the

brightness motion field is represented by its magnitude and orientation instead of its Cartesian projections.

We proposed a fully automatic solver to reconstruct the complete image from a set of non-overlapping,

unordered, square puzzle parts.

Below we present our detailed finding regarding issues mentioned above and additional aspects of our

research.

1. Swarm formation and swarm flocking may conflict each other. Without explicit communication,

such conflicts may lead to undesired topological changes since there is no global signal that facili-

tates coordinated and safe switching from one behavior to the other. Moreover, without coordination

signals multiple swarm members might simultaneously assume leadership, and their conflicting lead-

ing directions are likely to prevent successful flocking. To the best of our knowledge, we present

the first set of swarm flocking algorithms that maintain connectivity while electing direction for

flocking, under conditions of no communication in our joint paper “Direction Election in Flocking

Swarms”. The algorithms allow spontaneous direction requests and support direction changes. We

develop simple and efficient algorithms for silent direction election, taking into account (bounded)

environmental and parametric uncertainties, while providing a mechanism for connectivity preser-

vation and collision avoidance. These latter capacities are obtained by introducing the notion of a

spring, which resembles a potential function with restrictions and provides flexibility in the presence

of uncertainties. The same mechanism also withstands temporary coexistence of multiple leaders.

We do note that although direction election techniques do exist in the context of mobile robotics,

these methods assume explicit communication between entities, which is outside the scope of our

study.

1
Distribution A: Approved for public release; distribution is unlimited.

PIs: Ohad Ben-Shahar, Shlomi Dolev, Michael Segal, FA8655-09-1-3016

2. In the paper “SPANDERS: Distributed Spanning Expanders”, we consider self-stabilizing and self-

organizing distributed construction of a spanner that forms an expander, which we term spander.

We use folklore results to randomly define an expander graph. Given the randomized nature of our

algorithms, a monitoring technique is presented for ensuring the desired results. The monitoring

is based on the fact that expanders have a rapid mixing time and the possibility of examining

the rapid mixing time by O(n log n) short (O(log4 n) length) random walks even for non regular

expanders. We then employ our results to construct a hierarchical sequence of spanders, each of

them an expander spanning the previous one. Such a sequence of spanders may be used to achieve

different quality of service assurances in different applications. Several snap-stabilizing algorithms

that are used to utilize the monitoring are presented, including reset and token tracing algorithms

for message passing systems.

Distributed computing and communication networks research tries to define spanning sub-graphs,

such as spanning (BFS, DFS) tree algorithms, or a spanner graph that preserves a stretch factor

between the shortest path in the original graph and the spanning graph. Dynamic and fault-

tolerant algorithms, such as self-stabilizing spanning trees, were extensively investigated. However,

distributed fault-tolerant algorithms for defining and maintaining a prominent class of graphs, ex-

pander graphs, were not thoroughly explored. In this paper we consider edge expanders. A graph

G = (V,E) is an edge expander if there exists a constant c, such that for each set S of vertices

(where |S| < |V |/2) it follows that |E(S, S̄)|/|S| > c. Expander graphs are perfect as a basis for

communication networks; they are highly connected and symmetric in nature while being sparse

and have a diameter in O(log n). Moreover, expander graphs are robust for dynamic changes; for ex-

ample, removal of a constant number, k, of nodes from the network may disconnect only additional

O(k) nodes.

Self-stabilizing and self-organizing distributed algorithms for distributed construction of spanders

are presented. All of the algorithms assume a message passing system. We start by reviewing

folklore results in randomized construction of expander graphs; first we consider the case in which

the communication graph is a complete graph. In this simple case, a distributed random choice of

a constant number of edges from each node results, with high probability, in an expander. Then

we turn to consider the case of a communication graph that contains an expander, namely, has a

certain expansion parameter. We show that when the spander edges are chosen using a binomial

distribution, the obtained expansion is proportional to the expansion of the original graph, reducing

the number of edges by the same factor.

3. The temporary physical topology of the network is determined by the distribution of the wireless

stations as well as the transmission power of each station. The most fundamental problem in wireless

ad-hoc networks is topology control via power assignments. In particular, there was an increasing

interest in low cost spanner construction in wireless ad-hoc networks through topology control.

In this paper we study asymmetric power assignments so that the induced communication graph

2
Distribution A: Approved for public release; distribution is unlimited.

PIs: Ohad Ben-Shahar, Shlomi Dolev, Michael Segal, FA8655-09-1-3016

has a good distance and energy stretch simultaneously, with additional optimization objectives:

both minimizing the total energy consumption, interference level, hop-diameter, and maximizing

the network lifetime. In the paper “Improved Multi-criteria Spanners for Ad-Hoc Networks under

energy and distance metrics”, we consider two possible scenarios of node deployments random and

deterministic. For n random nodes distributed uniformly and independently in a unit square we

present several power assignments with varying construction time complexity. The probability of

our results converges to one as the number of network nodes, n, increases. For the deterministic

(arbitrary) layout of nodes we study the trade off between total energy consumption and distance

stretch factor in the worst case, and then present two power assignments with non-trivial bounds.

To the best of our knowledge, these are the first results for spanner construction in wireless ad-hoc

networks which provide provable bounds simultaneously for both the energy and distance metrics.

In addition, we explore the distance stretch factor of the minimum weight spanning tree, which is

of independent interest in the spanner construction research.

One might think that applying traditional algorithms for the construction of spanners with low total

edge weight in our model is possible. This is, however, not always possible for distance spanners,

since the result of applying such an algorithm might result in a very large cost, due to our weight

function. For energy spanners, it is possible to use the algorithms developed for general graphs,

but it seems that better results can be achieved due to the fact that nodes are positioned in the

plane and the weight function holds the weak triangle inequality. The generic algorithm consists of

three steps as follows: (a) Select a subset of nodes S ⊂ V, |S| = k, which are relatively close to the

remaining ones; (b) Compute k shortest path trees, rooted at the nodes from S. Assign powers to

all nodes, so that these trees are subgraphs of the induced communication graph; (c) Increase the

power of each node, if needed, to ensure that obtained construction is a subgraph of the induced

communication graph.

4. In the paper “Deaf, Dumb, and Chatting Asynchronous Robots” we investigate avenues for the

exchange of information (explicit communication) among deaf and dumb mobile robots scattered

in the plane. We introduce the use of movement-signals (analogously to flight signals and bees

waggle) as a mean to transfer messages, enabling the use of distributed algorithms among robots.

We propose one-to-one deterministic movement protocols that implement explicit communication

among asynchronous robots. We first show how the movements of robots can provide implicit

acknowledgment in asynchronous systems. We use this result to design one-to-one communication

among a pair of robots. Then, we propose two one-to-one communication protocols for any system

of n ≥ 2 robots. The former works for robots equipped with observable IDs that agree on a common

direction (sense of direction). The latter enables one-to-one communication assuming robots devoid

of any observable IDs or sense of direction. All three protocols (for either two or any number of

robots) assume that no robot remains inactive forever. However, they cannot avoid that the robots

move either away or closer of each others, by the way requiring robots with an infinite visibility.

3
Distribution A: Approved for public release; distribution is unlimited.

PIs: Ohad Ben-Shahar, Shlomi Dolev, Michael Segal, FA8655-09-1-3016

In this paper, we also present how to overcome these two disadvantages. These protocols enable

the use of distributing algorithms based on message exchanges among swarms of Stigmergic robots.

They also allow robots to be equipped with the means of communication to tolerate faults in their

communication devices.

All three protocols, either for two or n robots, are presented in the semi-synchronous model, imposing

a certain amount of synchrony among the active robots, i.e., at each time instant, the robots which

are activated, observe, compute, and move in one atomic step. However, no other assumption is

made on the relative frequency of robot activations with respect to each other, except that each

robot is activated infinitely often (uniform fair activation). This lack of synchronization among the

robots prevents the robots either to move away of or to get closer to each other infinitely often.

As a consequence, the robots are required to have an infinite visibility. Visibility capability of the

robots is an important issue. In this paper, we also show how to overcome these two drawbacks by

assuming that no robot can be activated more than k ≥ 1 times between two consecutive activations

of any other robot. Note that our protocols can be easily adapted to efficiently implement one-to-

many or one-to-all explicit communication. Also, in the context of robots (explicitly) interacting by

means of communication (e.g., wireless), since our protocols allow robots to explicitly communicate

even if their communication devices are faulty, in a very real sense, our solution can serve as

a communication backup, i.e., it provides fault-tolerance by allowing the robots to communicate

without means of communication (wireless devices).

5. In the paper “Bounded-Hop Energy-Efficient Liveness of Flocking Swarms” we consider a set of n

mobile wireless nodes, which have no information about each other. The only information a single

node holds is its current location and future mobility plan. We develop a two-phase distributed

self-stabilizing scheme for producing a bounded hop-diameter communication graph.

The first phase is dedicated to the construction of an underlying topology for the dissemination

of data needed for the second phase. In the second phase the required topology is constructed

by means of an asymmetric power assignment under two modes — static and dynamic. The for-

mer aims to provide a steady topology for some time interval, while the latter uses the constant

node locations changes to produce a constantly changing topology, which succeeds to preserve the

required property of the bounded hop-diameter. More precisely, the static mode, preserves all

the relevant communication links (those that are used for inducing the required topology) for the

whole time interval [ts, tf]. Note that some other links might appear and disappear during the time

interval, however the important links, which define the required topology remain unchanged. In

other words, the communication graph, which is variant in time, always includes a subgraph which

is unchanged for the whole time interval. The dynamic mode is different in that there is no

constant subgraph which holds the topology property. However, as communication links are added

and removed, depending on the movement of the nodes, the topology property requirement (e.g.

connected dominating set) is satisfied during the entire period [ts, tf].

4
Distribution A: Approved for public release; distribution is unlimited.

PIs: Ohad Ben-Shahar, Shlomi Dolev, Michael Segal, FA8655-09-1-3016

We provide an O(λ, λ2)-bicriteria approximation (in terms of total energy consumption and network

lifetime, respectively) algorithm in the static mode: for an input parameter λ we construct a static

h-bounded hop communication graph, where h = n/λ + log λ. In the dynamic mode, given a

parameter h we construct an optimal (in terms of network lifetime) h-bounded hop communication

graph when every node moves with constant speed in a single direction along a straight line during

each time interval. Our results were validated through extensive simulations.

6. New operating systems for mobile devices allow their users to download millions of applications

created by various individual programmers, some of which may be malicious or flawed. In order

to detect that an application is malicious, monitoring its operation in a real environment for a

significant period of time is often required.

Mobile devices have limited computation and power resources and thus are limited in their mon-

itoring capabilities. In this paper we propose an efficient collaborative monitoring scheme that

harnesses the collective resources of many mobile devices, “vaccinating” them against potentially

unsafe applications.

In the paper “Efficient Collaborative Application Monitoring Scheme for Mobile Networks”, we

suggest a new local information flooding algorithm called “TTL Probabilistic Propagation” (TPP).

The algorithm periodically monitors one or more application and reports its conclusions to a small

number of other mobile devices, who then propagate this information onwards. The algorithm is

analyzed, and is shown to outperform existing state of the art information propagation algorithms,

in terms of convergence time as well as network overhead. The maximal “load” of the algorithm (the

fastest arrival rate of new suspicious applications, that can still guarantee complete monitoring),

is analytically calculated and shown to be significantly superior compared to any non-collaborative

approach.

Finally, we show both analytically and experimentally using real world network data that imple-

menting the proposed algorithm significantly reduces the number of infected mobile devices. In

addition, we analytically prove that the algorithm is tolerant to several types of Byzantine attacks

where some adversarial agents may generate false information, or abuse the algorithm in other ways.

7. A core abstraction for many distributed algorithms simulates shared memory; this abstraction

allows to take algorithms designed for shared memory, and port them to asynchronous message-

passing systems, even in the presence of failures. There has been significant work on creating such

simulations, under various types of permanent failures, as well as on exploiting this abstraction in

order to derive algorithms for message-passing systems.

All these works, however, only consider permanent failures, neglecting to incorporate mechanisms

for handling transient failures. Such failures may result from incorrect initialization of the system,

or from temporary violations of the assumptions made by the system designer, for example the

assumption that a corrupted message is always identified by an error detection code. The ability to

5
Distribution A: Approved for public release; distribution is unlimited.

PIs: Ohad Ben-Shahar, Shlomi Dolev, Michael Segal, FA8655-09-1-3016

automatically resume normal operation following transient failures, namely to be self-stabilizing, is

an essential property that should be integrated into the design and implementation of systems.

Our paper “Sharing Memory in a Self-Stabilizing Manner”presents the first practically self-stabilizing

simulation of shared memory that tolerates crashes. Specifically, we simulate a single-writer multi-

reader (SWMR) atomic register in asynchronous message-passing systems where less than a majority

of processors may crash. The simulation is based on reads and writes to a (majority) quorum in a

system with a fully connected graph topology. A key component of the simulation is a new bounded

labeling scheme that needs no initialization, as well as a method for using it when communication

links and processes are started at an arbitrary state.

Our solution is to partition the execution of the simulation into epochs, namely periods during

which the sequence numbers are supposed not to wrap around. Whenever a “corrupted” sequence

number is discovered, a new epoch is started, overriding all previous epochs; this repeats until no

more corrupted sequence numbers are hidden in the system, and the system stabilizes. Ideally, in

this steady state, after the system stabilizes, it will remain in the same epoch (at least until all

sequence numbers wrap around, which is unlikely to happen).

8. The paper “Energy Efficient Data Gathering in Multi-Hop Hierarchical Wireless Ad Hoc Networks”

studies the problem of data gathering in hierarchical wireless ad hoc networks. In this scenario, a

set of wireless devices generates messages which are addressed to the base station. As not all nodes

can reach the base station through a direct transmission, messages are relayed by other devices in a

multi-hop fashion. Data gathering without aggregation can cause a very high energy consumption

in some of the nodes, namely nodes which are the direct descendants of the base station in the data

gathering tree, since these nodes are responsible for relaying all the messages which are generated

in the network and thus consume most of the energy. This phenomenon is especially severe in

hierarchical networks where the nodes in the second layer have the highest number of transmissions,

which results in a rapid depletion of the battery charges and network lifetime decrease. As wireless

devices are usually deployed in hard-to-reach areas, battery replenishment is impractical or even

impossible, which makes the issue of energy efficiency critical for successful network operation.

We consider data gathering without aggregation, i.e. all the generated messages are required to reach

the base station this is in contrast to the well studied problem of data gathering with aggregation,

which appears to be significantly simpler. The above scheme may have poor performance in wireless

networks with hierarchical architecture. The devices in the layer closest to the base station form

a bottleneck in terms of energy consumption as they experience a very high volume of forward

requests. Eventually, these nodes will be the first to run out of their battery charges which will

cause connectivity losses. In this paper we focus on prolonging the network lifetime of hierarchical

networks through efficient balancing of forward requests, which is NP-hard. We develop an linear

programming based approximation scheme which produces a data gathering tree with network

lifetime which is at most k times less than the optimal one, where k is the number of hierarchical

6
Distribution A: Approved for public release; distribution is unlimited.

PIs: Ohad Ben-Shahar, Shlomi Dolev, Michael Segal, FA8655-09-1-3016

layers. Our results are analytically proved and validated through simulations.

9. In the paper “Optimizing Performance of Ad-hoc Networks Under Energy and Scheduling Con-

straints” we study the problem of data gathering in multi-hop wireless ad hoc networks. In this

scenario, a set of wireless devices constantly sample their surroundings and initiate report messages

addressed to the base station. The messages are forwarded in a multi-hop fashion, where the wireless

devices act both as senders and relays. We consider data gathering without aggregation, i.e. the

nodes are required to forward all the messages initiated by other nodes (in addition to their own) to

the base station. This is in contrast to the well studied problem of data gathering with aggregation,

which is significantly simpler.

As some nodes experience a larger load of forward requests, these nodes will have their battery

charges depleted much faster than the other nodes – which can rapidly break the connectivity of the

network. We focus on maximizing the network lifetime through efficient balancing of the consumed

transmission energy. We show that the problem is NP-hard for two network types and develop

various approximation schemes. Our results are validated through extensive simulations.

We show a reduction from the restricted assignment case of Scheduling on Unrelated Parallel

Machines (SoUPM) to the data gathering problem on 3-layered graphs with varying message size

per node. In the restricted assignment case of SoUPM, we assign n jobs on m machines, where each

job j has has a fixed assignment cost per machine, which can be either pj or ∞ (i.e., it cannot be

assigned). The goal is to minimize the total cost of the most congested machine (also known as the

makespan). Given an instance of SoUPM, we map the jobs to bottom nodes with weight pj and

the machines to intermediate nodes with weight 0. Since both problems have the same optimization

criteria, the reduction shows that the data gathering problem is NP-hard. To transform an instance

of the data gathering problem to SoUPM, we create a job per bottom node (with weight equal to

the number of messages that node needs to transmit), and a machine per intermediate node. For

intermediate nodes, we also add a dedicated job with weight equal to the node’s messages. To

approximate the data gathering problem, we transform the input graph to SoUPM, and use Lenstra

et al. 2-approximation algorithm for SoUPM.

10. We consider the problem of n agents wishing to perform a prescribed computation on common

inputs in a secure manner. Security is defined by requiring that even if the entire memory contents

of some of the agents is exposed, no information is revealed about the state of the computation.

We place no a priori bound on the number of inputs. This problem has received ample attention

recently in the context of swarm computing and Unmanned Aerial Vehicles (UAV) that collaborate

in a common mission, as well as in the outsourcing of computation and storage to the cloud. Existing

schemes achieve this notion of privacy for arbitrary computations, at the expense of one round of

communication per input among the n agents. In the paper “Distributed Private Computation on

Unbounded Global Inputs” we show how to avoid communication altogether during the course of

7
Distribution A: Approved for public release; distribution is unlimited.

PIs: Ohad Ben-Shahar, Shlomi Dolev, Michael Segal, FA8655-09-1-3016

the computation on inputs of unbounded length, with the trade-off of computing a smaller class

of functions, namely, those carried out by finite state automata. Our scheme, which is based on a

novel combination of secret-sharing techniques and the Krohn-Rhodes decomposition of finite state

automata, achieves the above goal in an information-theoretically secure manner, and, furthermore,

does not require randomness during its execution.

We present a scheme that achieves the goal in an information-theoretically secure manner (i.e., there

are no bounds imposed on the adverary’s computational power), and does not require randomness

during the execution. Our scheme is based on a novel combination of secret-sharing techniques and

the Krohn-Rhodes decomposition of finite automata. Informally, Krohn-Rhodes theory states that

any finite state automaton can be emulated by a combination (cascade productsee) of permutation

automata and flip-flop automata. (A permutation automaton is an automaton such that each of

its possible input symbols induces a permutation of the automatons states.) The computation

complexity per each received input symbol, and the storage complexity required by our scheme

are a function only of (the decomposition of) the automaton, and not of the number of symbols

processed. A trade-off for this is that, depending on the automaton, the number of components of

its Krohn-Rhodes decomposition might be exponential in its number of states. We note, however,

that for many interesting and relevant automata, there is a small Krohn-Rhodes decomposition. We

present an example of such an automata family with a small Krohn-Rhodes representation.

11. Energy efficiency is not the only challenge faced by the network designer. As nodes communicate

through radio signals, wireless interference becomes inevitable. Simultaneous transmissions are

sensed at every node, which may lead to incorrect signal receptions. We consider omnidirectional

antennas, where the transmission of a single node is propagated in all directions. The level of

interference depends on the transmitting nodes proximity and the transmission ranges. High levels

of interference decrease the number of transmissions that can happen simultaneously, which has a

direct affect on the schedule length of the network, which is the required number of time slots for

the message to propagate from the source to all the other nodes in the network. It should be noted

that traditional works which aim to minimize the hop-diameter in order to minimize the schedule

length fail to do so as they neglect the presence of interference. We consider a fundamental topology

control problem which is to induce an energy efficient broadcast communication backbone with a

low schedule length. That is, given a special source node s (also referred to as the root node), we

wish to induce a communication graph by adjusting transmission powers, so that there is a directed

path from s to every other node in the network; the total energy consumption, network lifetime and

feasible schedule length are used to measure the efficiency of the scheme.

In the paper “Interference-Free Energy Efficient Scheduling in Wireless Ad Hoc Networks” we are

interested in asymmetric power assignments so that the induced broadcast communication graph is

both, energy efficient and has a short collision-free broadcast schedule. We consider both random and

deterministic node layouts and develop four different broadcast schemes with provable performance

8
Distribution A: Approved for public release; distribution is unlimited.

PIs: Ohad Ben-Shahar, Shlomi Dolev, Michael Segal, FA8655-09-1-3016

guarantees on three optimization objectives simultaneously: total energy consumption, network

lifetime and collision-free schedule length. We also show some numerical results which support our

findings.

Interference is a direct consequence of any power assignment p. A signal transmitted over one

communication link may interfere with the correct reception of a transmission over some other link.

We adopt the protocol interference model which defines for each node u a set of nodes, Ip(u, T),

referred to as the conflict set of u, which consists of nodes which cannot be scheduled to transmit

simultaneously with u because of interference to either the recipients of u or v, in a broadcast subtree

T of Hp which is used for the broadcast task. That is, node u cannot be scheduled simultaneously

with v iff there exists a child of u in T which is interfered by v or vice versa (a child of v interfered by

u). Our algorithms are based on the following claim: If a power assignment p induces a broadcast

arborescence Hp rooted at node s ∈ V then there exists a feasible broadcast schedule S so that

Len(S) ≤ hs(Hp) · (|I∗p | + 1), where Len(S) is the length of schedule and hs(Hp) is the length of

longest path from s in Hp.

12. The paper “RoboCast: Asynchronous Communication in Robot Networks” introduces the RoboCast

communication abstraction. The RoboCast allows a swarm of non oblivious, anonymous robots

that are only endowed with visibility sensors and do not share a common coordinate system, to

asynchronously exchange information. We propose a generic framework that covers a large class of

asynchronous communication algorithms and show how our framework can be used to implement

fundamental building blocks in robot networks such as gathering or stigmergy. In more details, we

propose a RoboCast algorithm that allows robots to broadcast their local coordinate systems to

each others. Our algorithm is further refined with a local collision avoidance scheme. Then, using

the RoboCast primitive, we propose algorithms for deterministic asynchronous gathering and binary

information exchange.

In more details, we formally specify a robot network communication primitive, called RoboCast,

and propose implementation variants for this primitive, that permit anonymous robots not agreeing

on a common coordinate system, to exchange various information (e.g. their local coordinate axes,

unity of measure, rendezvous points, or binary information) using only motion in a two dimensional

space. Contrary to previous solutions, our protocols all perform in the fully asynchronous CORDA

model, use constant memory and a bounded number of movements. Then, we use the RoboCast

primitive to efficiently solve some fundamental open problems in robot networks. We present a fully

asynchronous deterministic gathering and a fully asynchronous stimergic communication scheme.

Our algorithms differ from previous works by several key features: they are totally asynchronous (in

particular they do not rely on the atomicity of cycles executed by robots), they make no assumption

on a common chirality or knowledge of the initial positions of robots, and finally, each algorithm

uses only a bounded number of movements. Also, for the first time in these settings, our protocols

use CORDA-compliant collision avoidance schemes.

9
Distribution A: Approved for public release; distribution is unlimited.

PIs: Ohad Ben-Shahar, Shlomi Dolev, Michael Segal, FA8655-09-1-3016

13. Most autonomous agents, UAVs in particular, observe the environment under relative motion (i.e.,

either the agent and/or parts of its environment move). This fact creates a critical need for robust

motion estimation for various tasks, from egomotion estimation to target detection and tracking.

One elementary construct in this field is the so called “optic flow”, the dense vector field which

describes the motion of luminance patterns in the agent’s field of view. While the literature on

optic flow estimation is vast, the solutions proposed in the last three decades have much in common,

and in particular, they are all based on a similar representation of the optic flow in a Cartesian

frame of reference. As was argued recently, at least in some important cases (such as when the

scene contains specular objects or fluid flows), these solutions are not satisfactory. To explore an

important alternative, here we explore a polar representation of optical flow in which each element

of the brightness motion field is represented by its magnitude and orientation. This seemingly

small change in representation provides more direct access to the intrinsic structure of a flow field,

and when used with existing variational inference procedures it provides a framework in which

regularizers can be intuitively tailored for very different classes of motion. Indeed, in the paper

“A Polar Representation of Motion and Implications for Optical Flow” we develop and derive the

necessary mathematics for expressing the common optical flow constraints (including the brightness

constancy and piecewise continuity) in polar coordinates and examine the implications. Expressing

the problem this way also creates several complications, such as the need to cope with the periodicity

of the flow orientation or the fact that its magnitude cannot be negative. We suggest practical

solutions and approximations and we examine the performance of the derived algorithms on several

classes of motions.

The evaluations of the polar representation for optical flow first reveals that using this representation

makes certain statistical properties of optical flow more explicit and accessible. For example, it

reveals greater independence between the flow components (orientation and magnitude) than in

Cartesian representation, and it shows qualitatively different behaviors depending on the type of

optic flow at hand. In particular, one can show that fluid flows (e.g., due to turbulence in the

air) are qualitatively different than specular flows or rigid body flows when examined in the polar

representation. This itself is a prior knowledge that can be leveraged in the estimation of optical flow

from images, and it is not acceptable in Cartesian representation. When it comes to quantitative

performance of optic flows, we show that algorithms based on the polar representation can perform as

well or better than the state-of-the-art when applied to traditional optical flow problems concerning

camera or rigid scene motion, and at the same time, it facilitates both qualitative and quantitative

improvements for non-traditional cases such as fluid flows and specular flows, whose structure is

very different. This suggests that all agents, UAVs in particular, should employ novel optic flow

algorithms based on this representation,when the accuracy of estimation is a critical factor.

14. One problem of distributed sensing that is highly relevant for swarms of UAVs can be described as

follows: given a set of local sensory snapshots (say, small images) of the “world”, each acquired by

10
Distribution A: Approved for public release; distribution is unlimited.

PIs: Ohad Ben-Shahar, Shlomi Dolev, Michael Segal, FA8655-09-1-3016

one agent while being ignorant of its geo-spatial configuration (e.g., due to lack of proper sensors

or wartime GPS blackout), is it possible to create a global description of the world by properly

assembling all local evidences into one coherent image. In the abstract, this problem is like a puzzle

solving challenge - given many pictorial pieces, is it possible to assemble them into the picture from

which they were cut. Unfortunately, one cannot check all possible combinations and evaluate each

for correctness. This is simply non tractable and the problem is indeed known to be NP-Complete.

Even worse, unlike in the famous jigsaw game, here we can assume no knowledge of the target image,

and thus the evaluation stage is ill defined also. The only piece of evidence one can leverage is that

the assembled puzzle should be visually coherent, a constraint that must be formalized in order to

become constructive. In this work we have studies this problem with one additional difficulty, where

the pieces all have the same (Square) shape and thus selecting the order of pieces and the evaluation

of correctness must rely on appearance only and not on the shape of adjacent pieces. We should

mention that the state of the art up to this work were algorithms that could process puzzles of up to

432 pieces. Depending on how one measures performance, these past solutions provided assembled

puzzles accurate on average no more than 50%, and hardly ever could solve a puzzle completely.

Furthermore, these solutions needed some “hint”, for example by providing the exact location of

several pieces (a.k.a. anchors) or a low resolution version of the assembled puzzle.

To handle the puzzle problem more effectively (and in effect to raise the state-of-the-art many folds),

we, in our paper “A fully automated greedy square jigsaw puzzle solver”, made several contribu-

tions. We introduce an iterative greedy solver which combines both informed piece placement and

rearrangement of puzzle segments to find the final solution. Among our other contributions are

new compatibility metrics which better predict the chances of two given parts to be neighbors, and

a novel estimation measure which evaluates the quality of puzzle solutions without the need for

ground-truth information.

Results:

Incorporating the contributions above, our new approach for puzzle solving facilitates solutions

that surpass state-of-the-art solvers on puzzles of size larger than ever attempted before. On

puzzles of 432 pieces (thus far the state-of-the-art in size) our accuracy performance stepped

up to approximately 95% on average (improvement from 10%-55%, depending on how one mea-

sures), with 65% cases solved 100% accurately. Our solver is able to cope equally well with

problems consisting close to 1000 pieces, and success has been demonstrated on puzzles with

thousands of pieces also (although no statistics has been obtained for those). The figure below

shows one such example for demonstration. Please refer to the paper and the project web site

(https://sites.google.com/site/greedyjigsawsolver/) for additional examples.

We certify that there were no subject inventions to declare during the performance of

this grant.

11
Distribution A: Approved for public release; distribution is unlimited.

PIs: Ohad Ben-Shahar, Shlomi Dolev, Michael Segal, FA8655-09-1-3016

Figure 1: A sampled solution of our proposed algorithms for the creation of a coherent global image from
the collection of distributed local snapshots. On the top is the collection of local image pieces. On the
bottom in the assembled global image.

12
Distribution A: Approved for public release; distribution is unlimited.

48

Final Project Code

/**

 * Self-Stabilizing and Efficient Robust Uncertainty Management

 *

**********/

/**

 * Class name: uav

 * Description: This class define an object which represent the UAV

with all

 * the information that the UAV has about itself and

it's other

 * UAVs. This class is where all calculations are

taken place and

 * all information arrays and variables are saved.

**********/

#include <queue.h>

#include <omnetpp.h>

#include <cstdlib>

#include <iostream>

#include <stdio.h>

#include <string.h>

#include <sstream>

#include <string>

#include <stdio.h>

#include <stdlib.h>

#include <coutvector.h>

#include <chistogram.h>

#include "uavm_m.h"

#include "uavInformation.h"

#include "uavDist.h"

namespace uav {

class uav : public cSimpleModule

{

/**

 * Here we define all functions in which we will use during the

simulation

*********/

 public:

Distribution A: Approved for public release; distribution is unlimited.

49

 uav();

 virtual ~uav();

 void randomTime();//this function generates a random time and

wait it before calculations

 void findNeigbors();//this function check for every other uav if

it is within the R distance from this

 double* alignmentCalc(); //this function finds the average

flight direction of all visible uavs

 double* cohisionCalc();//this function finds the center of mass

position wise

 void avoidColision();// if there is a uav in C distance of the

uav - avoids collision

 void newPosition();// this function finds the new position for

the uav

 void initialPosition();//this function insert the initial

position from the display string

 void isNeighborCalc(uavm *msg);//this function check if the uav

is within a certine uav's R

 void updateUavInfo(uavm * msg);//this function updates the uav

information array

 void separation(int Id);//this function separate the uav from a

near uav obstacle

 void createSpanner();//calculate the spanner

 void sendData();//send out a large size message and calculate

the battry level

 void ignoringRandomNei(int isParticipate[]);//ignoring a random

number of neighbors

 void addingDev(double* DevSum);//adding delta to each neighbor's

direction.

 void addingDevForMe(double* DevSum);//adding delta to my

direction.

 void startLead();//starting leading interval

 void saveConnectivity();//calculating the leader fly direction

 void finish();//this function is called when the simulation ends

and collect information

 protected:

 virtual void initialize();//this function is called at the very

begining of the simulation and

 // it's responsible of initializing all

needed variables and arrays.

 virtual void handleMessage(cMessage *msg);//This function is

called when ever the uav receive a message.

 virtual uavm *generateMessage(char *name);//This function create

a message of type uavm message which contain the UAV's

 //id,position and

direction and return this message.

 virtual uavm *generateMessage(char *name,int dest);//This

function create a message of type uavm message which contain the

UAV's

 //id,position

and direction and return this message.

/**

 * Here we define all variables in which we will use during the

simulation

Distribution A: Approved for public release; distribution is unlimited.

51

*********/

 public:

 int R;//the detection and communication radius

 int C;//the separation radius

 int velocity;//the uav's speed

 int cohVelFactor;// the uav side-ways speed =

velocity/CohVelFactor

 int Rneighbors;// the neighbor search radius

 int maxUavs;//the total number of uavs that left the base

 int position[3];//the current position of the uav [x],[y],[z] =

a point in space

 int finalGoal[3];//the uav's target

 int ID;//The uav's id

 int dataSent;//the number of packets of data sent

 int neighborNum;//the number of current neighbors

 int RSpanner;//this is the optimum radius for data trans found

by algorithm

 int turn;//indicates the current leader.

 double battery;//This simulate the battery power

 double diraction[3];//the current direction of the uav

[x],[y],[z] = a point in space

 double P_D_ratio;//the power to distance unit ratio

 bool batterySaveMode;//indicate if the spanner option is on or

off

 bool dataFirst;//indicate if this is the first time data is

being sent

 bool firstTime;//indicate if this is the first time a spanner is

built

 bool err;//indicate an error of send

 bool tooBig;//indicate a radius outside the boundries of R

 bool imLead;//while it's the UAV turn = true

 bool firstLead;//the first time that a leader is selected

 cDisplayString dispStr;//the display string of the uav

 uavInformation *uavInfo;//the array of objects that hold the

UAVs information

 cOutVector cVect;//this vector record the battery level change

in time

 cOutVector cVect2;//this vector record the data packets send

 cOutVector cVect3;//this vector record the simulation ending

time

 cOutVector cVect_all_x;

 cOutVector cVect_all_y;

 cOutVector cVect_all_z;

 cOutVector cVect_lead_x;

 cOutVector cVect_lead_y;

 cOutVector cVect_lead_z;

 cLongHistogram cHist;

 cLongHistogram cHist_all_x;

 cLongHistogram cHist_all_y;

 cLongHistogram cHist_all_z;

 cLongHistogram cHist_lead_x;

 cLongHistogram cHist_lead_y;

 cLongHistogram cHist_lead_z;

Distribution A: Approved for public release; distribution is unlimited.

51

/**

 * Here we define all messages types in which we will use during the

simulation

*********/

 cMessage *interval;//This message is sent in every calculation

interval

 cMessage *initial;//This message is sent after the initialize

function is

 //called and start the first sequence

 cMessage *rt;//This message is a random time message

 cMessage *neighborCheck;//This message is sent in order to find

neighbors, this

 //message contain information about the

uav's position

 //direction ect

 cMessage *neighborReply;//This message is a replay message to

the neighborCheck

 //message which acknowledge that the uav

that sent this

 //message is indeed a neighbor. this

message contain

 //information about the neighbor's

direction and position

 cMessage *startCalc;//This message indicate the start of the

calculation of the

 //new position for the uav

 cMessage *spannerInterval;//This message indicate the start of

the spanner build

 //interval

 cMessage *data;//This message is the heavy duty data which is

being exchanged

 cMessage *leaderInterval;//This message starts the leading

section

 cMessage *leaderMove;//This message starts the leading direction

calc

 cMessage *myTurn;//This message changes the turn of whos leading

 cMessage *stopLeading;//This message stops the current leading

period

};

Define_Module(uav);

/**

 * Function name: uav

 * Input: none

 * Output: void

 *

Distribution A: Approved for public release; distribution is unlimited.

52

 * Description: This function is the object constructor and we keep

it on default

**************/

uav::uav()

{

}

/**

 * Function name: ~uav

 * Input: none

 * Output: void

 *

 * Description: This function is the object destructor and on which

we delete arrays

 * and free their memory

**************/

uav::~uav()

{

 delete [] diraction;

 delete [] position;

 delete [] finalGoal;

 delete uavInfo;

}

/**

 * Function name: initialize

 * Input: none

 * Output: void

 *

 * Description: this function is called at the very begining of the

simulation and

 * it's responsible of initializing all needed variables

and arrays.

 * In this function we also initialize all parameters

needed from the

 * omnetpp.ini file.

**************/

void uav::initialize()

{

// initializing variables from the omnetpp.ini file

 R = par("R");

 C = par("C");

 batterySaveMode=par("batterySaveMode");

 maxUavs = par("maxUavs");

 velocity = par("velocity");

 battery = par("battery");

 dataSent=0;

 cVect.setName("battery");

 cVect_all_x.setName("Swarm Position[x]");

 cVect_all_y.setName("Swarm Position[y]");

 cVect_all_z.setName("Swarm Position[z]");

 cVect_lead_x.setName("Leader Position[x]");

Distribution A: Approved for public release; distribution is unlimited.

53

 cVect_lead_y.setName("Leader Position[y]");

 cVect_lead_z.setName("Leader Position[z]");

 P_D_ratio=0.001;

 dataFirst=true;

 firstTime=true;

 ID = this->getId()-2; // assign an ID to each uav

 uavInfo=new uavInformation[maxUavs];

 turn = 0;

 imLead = false;

 firstLead = false;

// The uav start from a random position in the battlefield

// generates parameters from 0 to 6000

 diraction[0]= rand()%6000;

 diraction[1]= rand()%6000;

 diraction[2]= rand()%6000;

 position[0]=0;

 position[1]=0;

 position[2]=0;

 cohVelFactor = 8;

 WATCH(maxUavs);

 WATCH(position[0]);

 WATCH(position[1]);

 WATCH(position[2]);

 WATCH(ID);

 WATCH(R);

 WATCH(C);

 WATCH(batterySaveMode);

 WATCH(diraction[0]);

 WATCH(diraction[1]);

 WATCH(diraction[2]);

// In order to get the simulation going we schedule a self message

called initial

 initial = new cMessage("initial");

 scheduleAt(simTime(), initial);

}

/**

 * Function name: handleMessage

 * Input: cMessage *msg

 * Output: void

 *

 * Description: This function is a build in function of the omnet

simulation.

 * This function is called when ever the uav receive a

message.

 * The messages can be either a self messages that was

scheduled by the

 * uav program to arrive to self in a specific time or a

message

 * received by another uav.

 * According to each message type (it's name) the

function process the

 * message and define appropriate action that needs to

be executed on

Distribution A: Approved for public release; distribution is unlimited.

54

 * receiving the message.

**************/

void uav::handleMessage(cMessage *msg)

{

//This if distinguish between a self pre scheduled message and

outside received messages

 if (msg->isSelfMessage())//The self messages types are:

 {

 //This message is sent in every calculation interval

 if(msg->isName("interval"))

 {

 //Positioning the uav in the battlefield according

to the new position calculated

 //in the last interval.

 dispStr = getDisplayString();

 dispStr.setTagArg("p",0,position[0]);

 dispStr.setTagArg("p",1,position[1]);

 if(batterySaveMode && !dataFirst)

 {

 if(RSpanner>R)

 {

 dispStr.setTagArg("r",0,R);

 }

 else

 {

 dispStr.setTagArg("r",0,RSpanner+200);

 }

 }

 setDisplayString(dispStr);

 neighborNum=0;//every interval we find the current

neighbors so we give 0

 randomTime();//According to the symmetry breaking

rules each interval we

 //produce a random time that we wait

before calculating

 //so here in the beginning of the

interval we call the function

 //that randomize this time and

schedule the rt message

 }

 //This message is a random time message produced and

schedule by randomTime function

 if(msg->isName("randomTime"))

 {

 //the first thing we do after waiting a random time

is to find the neighbors

 findNeigbors();

 }

 //This message is sent after the initialize function is

called and start

 //the first sequence.

 if(msg->isName("initial"))

 {

 //we call the initialPosition function which place

the uav in his random

Distribution A: Approved for public release; distribution is unlimited.

55

 //initial position.

 initialPosition();

 }

 //This message indicate the start of the calculation of

the

 //new position for the uav

 if(msg->isName("startCalc"))

 {

 EV<<"I'm Lead is: "<<imLead<<" MY ID is

:"<<ID<<endl;

 //we call the newPosition function which calculate

the new position of the

 //uav in this interval.

 if(!imLead)

 newPosition();

 }

 //This message indicate the start of the spanner build

 //interval

 if(msg->isName("spannerInterval"))

 {

 //we call the createSpanner function which

calculate the new spanner

 //in this spanner interval and assign the

transmission range.

 createSpanner();

 }

 //This message is the heavy duty data which is being

exchanged

 if(msg->isName("data"))

 {

 //we call the sendData function which sends the

heavy duty data.

 sendData();

 }

 if(msg->isName("leaderInterval"))

 {

 myTurn = new cMessage("myTurn");

 imLead = false;

 //turn+=1;

 stopLeading = new cMessage("stopLeading");

 scheduleAt(simTime()+500, stopLeading);

 startLead();

 if(ID+1<maxUavs)

 send(myTurn, "g$o", ID+1);

 }

 if(msg->isName("stopLeading")){

 imLead=false;

 if(ID==maxUavs-1)

 endSimulation();

 }

 if(msg->isName("leaderMove"))

 {

 if(imLead)

 {

Distribution A: Approved for public release; distribution is unlimited.

56

 saveConnectivity();

 }

 else

 {

 startCalc = new cMessage("startCalc");

 scheduleAt(simTime(), startCalc);

 }

 }

 }

 else //The outside received messages types are:

 {

 //This message is sent in order to find neighbors, this

 //message contain information about the uav's position

 //direction ect

 if(msg->isName("neighborCheck"))

 {

 //we cast the message received in order to get all

the information from the message

 uavm *neighborCheck = check_and_cast<uavm *>(msg);

 //we call updateUavInfo function which keeps the

required information on the uav

 updateUavInfo(neighborCheck);

 //we call isNeighborCalc function which determine

whether the uav is my neighbor

 isNeighborCalc(neighborCheck);

 //we check if the new neighbor is too close

(distance lower than c)

 if(C>=uavInfo[neighborCheck-

>getSource()].currentDist)

 {

 //if the new neighbor is indeed too close we

deploy the separation

 //function which avoid colliding with the

uav.

 EV<<"AVOID COLLISTION"<<endl;

 separation(neighborCheck->getSource());

 if(position[0]==uavInfo[neighborCheck-

>getSource()].pos[0])

 {

 if(position[1]==uavInfo[neighborCheck-

>getSource()].pos[1])

 {

 if(position[2]==uavInfo[neighborCheck->getSource()].pos[2])

 {

 EV<<"me : "<<ID<<" COLLIDE

with : "<<neighborCheck->getSource()<<endl;

 }

 }

 }

 }

 }

 //This message is a replay message to the neighborCheck

 //message which acknowledge that the uav that sent this

 //message is indeed a neighbor. this message contain

 //information about the neighbor's direction and

position.

Distribution A: Approved for public release; distribution is unlimited.

57

 if(msg->isName("neighborReply"))

 {

 //we cast the message received in order to get all

the information from the message

 uavm *neighborReply = check_and_cast<uavm *>(msg);

 //we call updateUavInfo function which keeps the

required information on the uav

 updateUavInfo(neighborReply);

 //we check if the new neighbor is too close

(distance lower than c)

 if(C>=uavInfo[neighborReply-

>getSource()].currentDist)

 {

 //if the new neighbor is indeed too close we

deploy the separation

 //function which avoid colliding with the

uav.

 EV<<"AVOID COLLISTION"<<endl;

 separation(neighborReply->getSource());

 if(position[0]==uavInfo[neighborReply-

>getSource()].pos[0])

 {

 if(position[1]==uavInfo[neighborReply-

>getSource()].pos[1])

 {

 if(position[2]==uavInfo[neighborReply->getSource()].pos[2])

 {

 EV<<"me : "<<ID<<" COLLIDE

with : "<<neighborReply->getSource()<<endl;

 }

 }

 }

 }

 }

 if(msg->isName("myTurn")){

 leaderInterval = new cMessage("leaderInterval");

 scheduleAt(simTime()+500,

leaderInterval);

 }

 }

 //after dealing with the message we delete it

 delete msg;

}

/**

 * Function name: updateUavInfo

 * Input: uavm *msg

 * Output: void

 *

 * Description: This function is called when ever a message from a

near by uav is

 * received. The message from the near by uav (*msg) is

a special message

 * that was constructed by us and in this message there

is information

 * about the uav's id' current position, direction ect.

Distribution A: Approved for public release; distribution is unlimited.

58

 * In this function we receive the message with this

information

 * and insert it into an array that contain a structure

designed to hold

 * this information.

**************/

void uav::updateUavInfo(uavm *msg)

{

 int Id;

 //extracting the uav's id from the message

 Id = msg->getSource();

 uavInfo[Id].participate = true;

 //extracting the uav's position and direction from the message

and entering it

 //in the right place in the array.

 uavInfo[Id].pos[0]= msg->getPosX();

 uavInfo[Id].pos[1]= msg->getPosY();

 uavInfo[Id].pos[2]= msg->getPosZ();

 uavInfo[Id].dir[0]= msg->getDirX();

 uavInfo[Id].dir[1]= msg->getDirY();

 uavInfo[Id].dir[2]= msg->getDirZ();

 //Calculating the distance between the nearby uav and us

 double distance;

 distance = sqrt(pow(position[0]-msg-

>getPosX(),2)+pow(position[1]-msg->getPosY(),2)+pow(position[2]-msg-

>getPosZ(),2));

 //entering the distance in the right place in the array

 uavInfo[msg->getSource()].currentDist=distance;

 //Calculating the distance between the nearby uav and us in all

dimensions

 uavInfo[Id].fromHimtoMe[0] = (double)position[0] - msg-

>getPosX();

 uavInfo[Id].fromHimtoMe[1] = (double)position[1] - msg-

>getPosY();

 uavInfo[Id].fromHimtoMe[2] = (double)position[2] - msg-

>getPosZ();

 if(position[0]==uavInfo[msg->getSource()].pos[0])

 {

 if(position[1]==uavInfo[msg->getSource()].pos[1])

 {

 if(position[2]==uavInfo[msg->getSource()].pos[2])

 {

 EV<<"me : "<<ID<<" COLLIDE with : "<<msg-

>getSource()<<endl;

 }

 }

 }

}

/**

 * Function name: isNeighborCalc

 * Input: uavm *msg

 * Output: void

 *

Distribution A: Approved for public release; distribution is unlimited.

59

 * Description: This function is called when ever we receive a

neighborCheck message

 * and we like to check whether this uav from which we

received this

 * message is indeed a neighbor (or in other words: is

the distance

 * between me and this uav is smaller than the detection

range R)

**************/

void uav::isNeighborCalc(uavm *msg)

{

 double distance;

 //Calculating the distance between the nearby uav and us

 distance = sqrt(pow(position[0]-msg-

>getPosX(),2)+pow(position[1]-msg->getPosY(),2)+pow(position[2]-msg-

>getPosZ(),2));

 //if this distance is under R (the detection range) than we add

this uav as

 //our neighbor and we create and send a neighborReply message

to that uav.

 if (R >= distance)

 {

 neighborNum++;

 //generating a special message containing confirmation

that now the

 //uav is my neighbor and my required information.

 neighborReply =

generateMessage((char*)("neighborReply"),msg->getSource());

 EV<<"Sending to: "<<msg->getSource()<<endl;

 send(neighborReply, "g$o", msg->getSource());

 }

}

/**

 * Function name: createSpanner

 * Input: none

 * Output: void

 *

 * Description: This function create an h bounded spanner tree

according to

 * Prof. Micheal Segal's article.

 * Once all of the uavs are in a group mode (all of the

uavs are within

 * detection range from me) this function is called and

using the

 * information from the neighbors uavs a spanner is

created.

 * The way the spanner is created is explained in

detail manner in

 * the final project report.

 * In the end of this function a transmission range is

assigned

 * to the uav and the time for reconstructing the

spanner is set.

Distribution A: Approved for public release; distribution is unlimited.

61

**************/

void uav::createSpanner()

{

 queue<uavDist> buffDist;//This is a queue that hold objects of

type uavDist

 //this queue will be used in order to

keep the order of

 //which nodes will be examined and

assigned in the

 //process of creating the spanner.

 double nodeAssigment[maxUavs];//This array will eventually hold

all of the

 //transmission ranges assignments

 uavDist allDist[maxUavs][maxUavs];//A matrix that holds all of

the distances from

 //all uavs to everyone.

 uavDist *p,*minDist,*temp,*temp2;

 bool stop,first;

 int i,j,k,minIndex,maxMinDist,brk;

 double dis;

 stop=true;

 first=true;

 err=false;

 tooBig=false;

 //initializing all nodes transmission ranges assignments

 for(i=0;i<maxUavs;i++)

 {

 nodeAssigment[i]=0;

 }

 //Calculating all possible distances from all uavs to all uavs

 for(i=0;i<maxUavs;i++)

 {

 for(j=0;j<maxUavs;j++)

 {

 if(i==j)

 {

 p=new uavDist(0,i,i);

 allDist[i][j]=*p;

 }

 else

 {

 if(i==ID)

 {

 dis=sqrt(pow(position[0]-

uavInfo[j].pos[0],2)

 +pow(position[1]-

uavInfo[j].pos[1],2)

 +pow(position[2]-

uavInfo[j].pos[2],2));

 p=new uavDist(dis,j,i);

 allDist[i][j]= *p;

 }

Distribution A: Approved for public release; distribution is unlimited.

61

 else

 {

 if(j==ID)

 {

 dis=sqrt(pow(uavInfo[i].pos[0]-

position[0],2)

 +pow(uavInfo[i].pos[1]-position[1],2)

 +pow(uavInfo[i].pos[2]-position[2],2));

 p=new uavDist(dis,j,i);

 allDist[i][j]= *p;

 }

 else

 {

 dis=sqrt(pow(uavInfo[i].pos[0]-

uavInfo[j].pos[0],2)

 +pow(uavInfo[i].pos[1]-uavInfo[j].pos[1],2)

 +pow(uavInfo[i].pos[2]-uavInfo[j].pos[2],2));

 p=new uavDist(dis,j,i);

 allDist[i][j]= *p;

 }

 }

 }

 }

 }

 //here we sort the matrix of all possible distances from low to

high

 for(i=0;i<maxUavs;i++)

 {

 for(j=0;j<maxUavs;j++)

 {

 minDist = new uavDist(allDist[i][j].dist,

allDist[i][j].to,allDist[i][j].from);

 minIndex=j;

 for(k=j;k<maxUavs;k++)

 {

 if(allDist[i][k].dist < minDist->dist)

 {

 minDist=new

uavDist(allDist[i][k].dist, allDist[i][k].to, allDist[i][j].from);

 minIndex=k;

 }

 }

 temp=new

uavDist(allDist[i][j].dist,allDist[i][j].to,allDist[i][j].from);

 allDist[i][j]=*minDist;

 allDist[i][minIndex]=*temp;

 }

 }

 // find the maximum minimum distance that has not been assigned

yet

 maxMinDist=0;

 minIndex=0;

Distribution A: Approved for public release; distribution is unlimited.

62

 for (i=0;i<maxUavs;i++)

 {

 if(nodeAssigment[i]==0 && allDist[i][1].dist>maxMinDist)

 {

 maxMinDist=allDist[i][1].dist;

 minIndex=i;

 }

 }

 //after finding the desired distance and the two nodes

respectively we create

 //new objects with their information and add them to the queue.

 temp=new

uavDist(allDist[minIndex][1].dist,allDist[minIndex][1].to,allDist[min

Index][1].from);

 temp2=new

uavDist(allDist[minIndex][1].dist,allDist[minIndex][1].from,allDist[m

inIndex][1].to);

 buffDist.push(*temp);

 buffDist.push(*temp2);

 //We assign those two nodes which are needed for connectivity

their assignments

 nodeAssigment[temp->from]=temp->dist;

 nodeAssigment[temp2->from]=temp->dist;

 brk=0;

 //Now after establishing the first nodes that from them we

shell start to build

 //the spanning tree. This do-while loop will keep adding new

nodes to be added

 //to the tree and assigning transmission ranges. This loop is

ended once all nodes

 //are assigned and the queue is empty.

 do

 {

 //Loaded with the first two nodes we keep popping nodes

from the queue and

 //checking whether those node's neighbors are found

within the current assignment

 //and if so they are pushed into the queue. When the

queue is empty we check

 //all nodes that were not added in this round to the

spanner and again add

 //the node with the minimum distance to the elements of

the spanning tree.

 while(!buffDist.empty())

 {

 //poping and saving the first node from the queue

 *temp=(uavDist)buffDist.front();

 buffDist.pop();

 i=1;

 //Checking what nodes fall inside of the

broadcasting range of the

 //already assigned node and placing them in queue

in order to assign

 //them later.

 while(i<maxUavs && allDist[temp-

>from][i].dist<temp->dist && temp->from!=i)

 {

 buffDist.push(allDist[temp->from][i]);

 i++;

Distribution A: Approved for public release; distribution is unlimited.

63

 }

 //assigning the participant nodes with the

correspondent ranges according

 //to our calculations.

 if(nodeAssigment[temp->to]==0)

 {

 nodeAssigment[temp->to]=temp->dist;

 if(!first)

 {

 nodeAssigment[temp->from]=temp->dist;

 }

 }

 }

 //Checking whether all nodes were assigned

 stop=true;

 for(i=0;i<maxUavs;i++)

 {

 if (nodeAssigment[i]==0)

 {

 stop=false;

 }

 }

 // find the max minimum distance that has not been assigned

yet and connect

 //it to the graph by pushing the two nodes into the

queue.

 bool z;

 z=false;

 maxMinDist=9999;

 minIndex=0;

 for (i=0; i<maxUavs && !stop ;i++)

 {

 if(nodeAssigment[i]==0)

 {

 for(j=1; j<maxUavs; j++)

 {

 if(nodeAssigment[j]!=0 &&

allDist[i][j].dist<maxMinDist)

 {

 z=true;

 maxMinDist =

allDist[i][j].dist;

 temp = new

uavDist(allDist[i][j].dist,allDist[i][j].to,allDist[i][j].from);

 temp2 = new

uavDist(allDist[i][j].dist,allDist[i][j].from,allDist[i][j].to);

 }

 }

 }

 }

 if(z)

 {

 buffDist.push(*temp);

 buffDist.push(*temp2);

 }

Distribution A: Approved for public release; distribution is unlimited.

64

 brk++;

 if(brk==1000 && !stop)

 {

 stop=true;

 for(i=0;i<maxUavs;i++)

 {

 if (nodeAssigment[i]==0)

 {

 nodeAssigment[i]=9999;

 }

 }

 }

 //it is needed to know whether this is the first time we

assigned or not

 if(first)

 {

 first=false;

 }

 }while(!stop);//end of the do-while loop. this loop stops when

all nodes are

 //assigned with transmission ranges.

 //We check that no mistake was made during the assignment

process.

 for(i=0;i<maxUavs;i++)

 {

 if (nodeAssigment[i]==9999)

 {

 err=true;

 }

 if (nodeAssigment[i]!=9999 && nodeAssigment[i]>R)

 {

 tooBig=true;

 }

 }

 //Assigning the uav with his own transmission range

 RSpanner=nodeAssigment[ID];

 //Scheduling the next spanner building interval

 spannerInterval = new cMessage("spannerInterval");

 scheduleAt(simTime()+150, spannerInterval);

 //The first time that the spanner is being build it is needed

to start sending data

 //after the first time it will be sent on itself.

 if(dataFirst)

 {

 sendData();

 dataFirst=false;

 }

 dispStr = getDisplayString();

 if(RSpanner>R)

 {

 dispStr.setTagArg("r",0,R);

 }

 else

 {

 dispStr.setTagArg("r",0,RSpanner+200);

 }

 if(ID==0 && !firstLead)

 {

Distribution A: Approved for public release; distribution is unlimited.

65

 EV<<ID<<" is here"<<endl;

 firstLead = true;

 leaderInterval = new cMessage("leaderInterval");

 scheduleAt(simTime(), leaderInterval);

 }

 cVect_all_x.recordWithTimestamp(simTime(), position[0]);

 cVect_all_y.recordWithTimestamp(simTime(), position[1]);

 cVect_all_z.recordWithTimestamp(simTime(), position[2]);

 cHist_all_x.collect(position[0]);

 cHist_all_y.collect(position[1]);

 cHist_all_z.collect(position[2]);

 setDisplayString(dispStr);

}

/**

 * Function name: sendData

 * Input: none

 * Output: void

 *

 * Description:This function send the heavy duty data messages that

are sent after

 * all uavs are flying in group.

 * This function distinguish between working in battery

saving mode

 * using the spanner assigned transmission radius and the

regular mode

 * that means to send in maximum range R.

**************/

void uav::sendData()

{

 //if there is no pre detected error that the data is sent.

 if(!err && !tooBig)

 {

 //Counting the number of times those kind off messages

where delivered.

 dataSent++;

 //Distinguishing between the two modes

 if(batterySaveMode)

 {

 //Using the battery saving mode will lead to using

RSpanner which is the

 //spanner defined transmission range that were

assigned to the uav.

 battery = battery - (RSpanner*RSpanner*P_D_ratio);

 cVect.recordWithTimestamp(simTime(),battery);

 cHist.collect(battery);

 //When the first uav's battery is extinguished then

the simulation is

 //terminated and the exact time of termination is

recorded.

 if(battery<=0)

 {

 cVect2.record(simTime());

 endSimulation();

 }

 //Scheduling the next data to be sent.

 data = new cMessage("data");

Distribution A: Approved for public release; distribution is unlimited.

66

 scheduleAt(simTime()+25, data);

 }

 else

 {

 //Not using the battery saving mode will lead to

using R which is the

 //maximum transmission range that were defined.

 battery = battery - (R*R*P_D_ratio);

 cVect.recordWithTimestamp(simTime(),battery);

 //When the first uav's battery is extinguished then

the simulation is

 //terminated and the exact time of termination is

recorded.

 cHist.collect(battery);

 if(battery<=0)

 {

 cVect2.record(simTime());

 endSimulation();

 }

 //Scheduling the next data to be sent.

 data = new cMessage("data");

 scheduleAt(simTime()+25, data);

 }

 }

 else

 {

 //if the uav has broke from the rest of the group (due to

separation) than no

 //data is being sent.

 data = new cMessage("data");

 scheduleAt(simTime()+25, data);

 }

}

/**

 * Function name: newPosition

 * Input: none

 * Output: void

 *

 * Description:This function will calculate and determine were

exactly the uav's

 * position and direction at the end of the current

interval.

 * The function uses the basic rules of "boids" such as

alignment and

 * cohision in order to determine those parameters.

 * More detailed explanations of the way those rules are

being executed

 * can be found in the final report and also in the

alignmentCalc and

 * cohisionCalc functions descriptions.

**************/

void uav::newPosition()

{

 double *meanDv,*CohPos,*CohDv,CohDvSize,meanDvSize;

 double* Dv;

 double DvSize;

Distribution A: Approved for public release; distribution is unlimited.

67

 //This part is not a part of the new position calculation. Here

we check

 //if for the first time all the uavs are in a group and than we

will start

 //to send data for the first time whether by a spanning tree or

maximum

 //transmission range.

 if(neighborNum==maxUavs && firstTime)

 {

 firstTime=false;

 if(batterySaveMode)

 {

 EV<<"I'm here!!!!!!!!!"<<endl;

 bubble("Create Spanner");

 createSpanner();

 }

 else

 {

 sendData();

 }

 }

 // Alignment calculation

 //Receiving the alignment vector by calling the alignmentCalc

function

 Dv = alignmentCalc();

 //Copying the vector into another array on which we will

perform calculations

 meanDv = new double[3];

 meanDv[0] = Dv[0];

 meanDv[1] = Dv[1];

 meanDv[2] = Dv[2];

 //Calculating the vector size in order to normalize the values

 DvSize=sqrt(pow(meanDv[0],2)+pow(meanDv[1],2)+pow(meanDv[2],2))

;

 //Normalizing

 meanDv[0]=meanDv[0]/DvSize;

 meanDv[1]=meanDv[1]/DvSize;

 meanDv[2]=meanDv[2]/DvSize;

 //Calculating the normalized vector size

 meanDvSize=sqrt(pow(meanDv[0],2)+pow(meanDv[1],2)+pow(meanDv[2]

,2));

 //If we reached our goal than a new goul is being randomized in

order to keep moving.

 if (DvSize <= velocity)

 {

 diraction[0]= rand()%6000; // generates a new random

destination

 diraction[1]= rand()%6000;

 diraction[2]= rand()%6000;

 }

 //If we haven't got to our goal than the new position is being

calculated

 else

 {

 position[0]=position[0]+(meanDv[0]*velocity);

 position[1]=position[1]+(meanDv[1]*velocity);

 position[2]=position[2]+(meanDv[2]*velocity);

 }

Distribution A: Approved for public release; distribution is unlimited.

68

 // Cohision calculation

 //Receiving the cohision vector by calling the cohisionCalc

function

 CohPos=cohisionCalc();

 if (CohPos[0] == -1)

 {

 //Copying the vector into another array on which we will

perform calculations

 CohDv = new double [3];

 CohDv[0]=CohPos[0];

 CohDv[1]=CohPos[1];

 CohDv[2]=CohPos[2];

 //Calculating the vector size in order to normalize the

values

 CohDvSize=sqrt(pow(CohDv[0],2)+pow(CohDv[1],2)+pow(CohDv[2],2))

;

 //Normalizing

 CohDv[0]=CohPos[0]/CohDvSize;

 CohDv[1]=CohPos[1]/CohDvSize;

 CohDv[2]=CohPos[2]/CohDvSize;

 //The new position is being calculated

 position[0]=position[0]+(CohDv[0]*velocity/cohVelFactor);

 position[1]=position[1]+(CohDv[1]*velocity/cohVelFactor);

 position[2]=position[2]+(CohDv[2]*velocity/cohVelFactor);

 }

 //After this interval is over a new interval is scheduled.

 interval = new cMessage("interval");

 scheduleAt(simTime(), interval);

}

/**

 * Function name: newPosition

 * Input: none

 * Output: An array of three double values

 *

 * Description:This function calculate the cohision values of the

group.

 * UAVs within a flock are attracted to each other

as long as they are

 * within the detection range, but outside the separation

range.

 * This goal is to have the UAVs flock together, but not

to be so close

 * that they are on top of each other.If there are too

many UAVs in the

 * flock, the separation range will need to be increased.

**************/

double* uav::cohisionCalc()

{

 //Initializing the array in order to start summing up the

values

 double* PosSum =new double[3];

 PosSum[0]=0;

 PosSum[1]=0;

 PosSum[2]=0;

Distribution A: Approved for public release; distribution is unlimited.

69

 //n is the number of current neighbors being counted and put

into calculation.

 int n=0;

 //Summing up the positions of all neighbors

 for (int i=0; i<maxUavs; i++)

 {

 if(uavInfo[i].participate)

 {

 n=n+1;

 PosSum[0]= PosSum[0] + uavInfo[i].pos[0];

 PosSum[1]= PosSum[1] + uavInfo[i].pos[1];

 PosSum[2]= PosSum[2] + uavInfo[i].pos[2];

 }

 }

 if(n!=0)

 {

 //Dividing the sum in each dimension in the number of

neighbors

 PosSum[0]= PosSum[0]/n;

 PosSum[1]= PosSum[1]/n;

 PosSum[2]= PosSum[2]/n;

 }

 else

 {

 PosSum[0]=-1;

 }

 //Returning the vector.

 return PosSum;

}

/**

 * Function name: alignmentCalc

 * Input: none

 * Output: An array of three double values

 *

 * Description:This function calculate the alignment values of the

group.

 * In a flock of UAVs, each UAV will try to match

the direction of the

 * UAVs around it that it can detect. If some of

the UAVs in a flock

 * detect an obstacle (another UAV), they will turn.

 * This causes the rest of the flock that can't even

detect the

 * obstacle to also turn away from it.

**************/

double* uav::alignmentCalc()

{

 //Initializing the array in order to start summing up the

values

 double* DvSum =new double[3];

 DvSum[0]=0;

 DvSum[1]=0;

 DvSum[2]=0;

 //n is the number of current neighbors being counted and put

into calculation.

 int n=0;

Distribution A: Approved for public release; distribution is unlimited.

71

 int isParticipate[maxUavs];//array indicates the ignored

neighbors when computing alignment

 for(int i=0;i<maxUavs;i++)

 isParticipate[i]=1;

 //ignoringRandomNei(isParticipate);

 //Summing up the directions of all neighbors

 for (int i=0; i<maxUavs; i++)

 {

 if(uavInfo[i].participate && isParticipate[i])

 {

 n=n+1;

 DvSum[0]= DvSum[0] + uavInfo[i].dir[0];

 //EV<<"Is participate: "<<i<<endl;

 //EV<<"Before:"<<DvSum[0]<<endl;

 DvSum[1]= DvSum[1] + uavInfo[i].dir[1];

 DvSum[2]= DvSum[2] + uavInfo[i].dir[2];

 addingDev(DvSum);

 //EV<<"After:"<<DvSum[0]<<endl;

 }

 }

 if(n!=0)

 {

 //Dividing the sum in each dimension in the number of

neighbors

 DvSum[0]= DvSum[0]/n;

 DvSum[1]= DvSum[1]/n;

 DvSum[2]= DvSum[2]/n;

 diraction[0]=DvSum[0];

 diraction[1]=DvSum[1];

 diraction[2]=DvSum[2];

 DvSum[0]=diraction[0]-position[0];

 DvSum[1]=diraction[1]-position[1];

 DvSum[2]=diraction[2]-position[2];

 }

 else

 {

 //In case no neighbors were found I shell countinue in my

current direction

 DvSum[0]=diraction[0]-position[0];

 DvSum[1]=diraction[1]-position[1];

 DvSum[2]=diraction[2]-position[2];

 }

 //Returning the vector.

 addingDevForMe(DvSum);

 return DvSum;

}

/**

 * Function name: randomTime

 * Input: none

 * Output: void

 *

 * Description:This function randomize a small number which represent

the time

Distribution A: Approved for public release; distribution is unlimited.

71

 * that the UAV will wait in the begining of the current

interval

 * in order to avoid some symmetry cases of which we

discussed in

 * the final report.

**************/

void uav::randomTime()

{

 //Randomizing a small number

 int random_integer = rand()%10;

 //Creating rt message and scheduling it in the wanted time in

order to start

 //this interval calcultions.

 rt = new cMessage("randomTime");

 scheduleAt(simTime()+random_integer, rt);

}

/**

 * Function name: findNeigbors

 * Input: none

 * Output: void

 *

 * Description:This function is called right after the random time at

the beginning

 * of the current interval and it creates neighborCheck

messages

 * and broadcast them. At the end of this function we

schedule the

 * message startCalc which start the calculations of

position in the current

 * interval after waiting a specific amount of time to

receive replays

 * from neighbors.

**************/

void uav:: findNeigbors()

{

 //Creating the message by calling the generateMessage function.

 neighborCheck = generateMessage((char*)("neighborCheck"));

 //Sending the message out of all outgoing gates

 for (int i=0; i<maxUavs; i++)

 {

 if (i != ID)

 {

 cMessage *copy = neighborCheck->dup();

 uavm *copy1 = check_and_cast<uavm *>(copy);

 copy1->setDestination(i);

 send(copy1, "g$o", i);

 }

 }

 //Deleting the message after sending

 delete neighborCheck;

 //we schedule the message startCalc which start the calculations

of

 //position in the current interval.

Distribution A: Approved for public release; distribution is unlimited.

72

 // generates a message that will tell me when to start the calc

in order

 //to let the replay messages time to arrive

 startCalc = new cMessage("startCalc");

 scheduleAt(simTime()+20, startCalc);

}

/**

 * Function name: initialPosition

 * Input: none

 * Output: void

 *

 * Description:This function sets the initial position for the UAV

and it is called

 * from the initial message. Insert the initial position

from the

 * display string

**************/

void uav::initialPosition()

{

 dispStr = getDisplayString();

 int random1 = rand()%6000;

 int random2 = rand()%6000;

 EV<<"MY ID is: "<<this->ID<<endl;

 position[0]=random1;

 position[1]=random2;

 EV<<"MY position: "<<this->position[0]<<endl;

 EV<<"MY position: "<<this->position[1]<<endl;

 dispStr.setTagArg("p",0,random1);

 dispStr.setTagArg("p",1,random2);

 dispStr.setTagArg("r",0,R);

 setDisplayString(dispStr);

 //After placing the UAV on the battlefield we call the first

interval by

 //producing an interval message and scheduling it to be

deployed next.

 interval = new cMessage("interval");

 scheduleAt(simTime(), interval);

}

/**

 * Function name: initialPosition

 * Input: char *name

 * Output: uavm *uav

 *

 * Description:This function receives a char pointer which represent

the message name

 * and create a message of type uavm message which

contain the UAV's

 * id,position and direction and return this message.

**************/

uavm *uav::generateMessage(char *name)

{

Distribution A: Approved for public release; distribution is unlimited.

73

 int src = getIndex(); // our module index

 uavm *msg = new uavm(name,0);

 msg->setSource(src);

 msg->setPosX(position[0]);

 msg->setPosY(position[1]);

 msg->setPosZ(position[2]);

 msg->setDirX(diraction[0]);

 msg->setDirY(diraction[1]);

 msg->setDirZ(diraction[2]);

 return msg;

}

/**

 * Function name: initialPosition

 * Input: char *name

 * int dest

 * Output: uavm *uav

 *

 * Description:This function receives a char pointer which represent

the message name

 * and an int which represent the destination of the

message

 * and create a message of type uavm message which

contain the UAV's

 * id,position and direction and return this message.

**************/

uavm *uav::generateMessage(char *name,int dest)

{

 int src = getIndex(); // our module index

 int dst = dest;

 uavm *msg = new uavm(name,0);

 msg->setSource(src);

 msg->setDestination(dst);

 msg->setPosX(position[0]);

 msg->setPosY(position[1]);

 msg->setPosZ(position[2]);

 msg->setDirX(diraction[0]);

 msg->setDirY(diraction[1]);

 msg->setDirZ(diraction[2]);

 return msg;

}

/**

 * Function name: separation

 * Input: int Id

 * Output: void

 *

 * Description:This function is called when the UAV get too close

(distance under

 * the critical range C)to another UAV. The id of the

close UAV is

 * given into the function (int Id).

 * UAV's are repealed by other UAV's and by obstacles.

 * This causes UAV to turn away from other UAVs.

Distribution A: Approved for public release; distribution is unlimited.

74

**************/

void uav::separation(int Id)

{

 double Dv[3];//The current direction vector in the moment of

separation

 double aviodColVec[3];//The vector of avoidance - the direction

in which the

 //UAV would turn in order to avoid

 double colVec[3];//The vector of collide

 double aviodColVecSize;//The avoidance vector size

 double DvSize;//The size of the direction vector

 double colVecSize;//The collision vector size

 //Calculating the directional vector

 Dv[0] = diraction[0]-(double)position[0];

 Dv[1] = diraction[1]-(double)position[1];

 Dv[2] = diraction[2]-(double)position[2];

 //In case of same direction a default value is inserted

 if(Dv[0]==0)

 {

 Dv[0]=15;

 }

 if(Dv[1]==0)

 {

 Dv[1]=15;

 }

 if(Dv[2]==0)

 {

 Dv[2]=15;

 }

 //Calculating the collision vector

 colVec[0] = uavInfo[Id].fromHimtoMe[0];

 colVec[1] = uavInfo[Id].fromHimtoMe[1];

 colVec[2] = uavInfo[Id].fromHimtoMe[2];

 //In case of same direction a default value is inserted

 if(colVec[0]<0.1)

 {

 colVec[0]=0.1;

 }

 if(colVec[1]<0.1)

 {

 colVec[1]=0.1;

 }

 if(colVec[2]<0.1)

 {

 colVec[2]=0.1;

 }

 //Calculating the direction vector size

 DvSize = sqrt(pow(Dv[0],2)+pow(Dv[0],2)+pow(Dv[0],2));

 //Calculating the collision vector size

 colVecSize =

sqrt(pow(colVec[0],2)+pow(colVec[1],2)+pow(colVec[2],2));

 //Normalizing the directional vector

 Dv[0] = Dv[0] / DvSize;

Distribution A: Approved for public release; distribution is unlimited.

75

 Dv[1] = Dv[1] / DvSize;

 Dv[2] = Dv[2] / DvSize;

 //Normalizing the collision vector

 colVec[0] = colVec[0] / colVecSize;

 colVec[1] = colVec[1] / colVecSize;

 colVec[2] = colVec[2] / colVecSize;

 //In case of same direction a default value is inserted

 if(Dv[0]<0.1)

 {

 Dv[0]=0.1;

 }

 if(Dv[1]<0.1)

 {

 Dv[1]=0.1;

 }

 if(Dv[2]<0.1)

 {

 Dv[2]=0.1;

 }

 if(colVec[0]<0.1)

 {

 colVec[0]=0.1;

 }

 if(colVec[1]<0.1)

 {

 colVec[1]=0.1;

 }

 if(colVec[2]<0.1)

 {

 colVec[2]=0.1;

 }

 //Calculating the matrix product vector

 aviodColVec[0]= Dv[1]*colVec[2]-Dv[2]*colVec[1]; // operator X

= vector multiplication

 aviodColVec[1]= Dv[2]*colVec[0]-Dv[0]*colVec[2];

 aviodColVec[2]= Dv[0]*colVec[1]-Dv[1]*colVec[0];

 //In case of same direction a default value is inserted

 if(aviodColVec[0]<0.1)

 {

 aviodColVec[0]=0.1;

 }

 if(aviodColVec[1]<0.1)

 {

 aviodColVec[1]=0.1;

 }

 if(aviodColVec[2]<0.1)

 {

 aviodColVec[2]=0.1;

 }

 //Calculating the avoidance vector size

 aviodColVecSize =

sqrt(pow(aviodColVec[0],2)+pow(aviodColVec[0],2)+pow(aviodColVec[0],2

));

 //Normalizing the avoidance vector

 aviodColVec[0]= aviodColVec[0] / aviodColVecSize;

 aviodColVec[1]= aviodColVec[1] / aviodColVecSize;

Distribution A: Approved for public release; distribution is unlimited.

76

 aviodColVec[2]= aviodColVec[2] / aviodColVecSize;

 //In case of same direction a default value is inserted

 if(aviodColVec[0]<0.1)

 {

 aviodColVec[0]=0.1;

 }

 if(aviodColVec[1]<0.1)

 {

 aviodColVec[1]=0.1;

 }

 if(aviodColVec[2]<0.1)

 {

 aviodColVec[2]=0.1;

 }

 //Calculating the new position after avoiding the UAV

 position[0]=position[0]+(aviodColVec[0]*velocity/cohVelFactor);

 position[1]=position[1]+(aviodColVec[1]*velocity/cohVelFactor);

 position[2]=position[2]+(aviodColVec[2]*velocity/cohVelFactor);

 if(position[0]>=6000)

 {

 position[0] = uavInfo[Id].pos[0]-2;

 }

 if(position[1]>=6000)

 {

 position[1] = uavInfo[Id].pos[1]-2;

 }

 if(position[2]>=6000)

 {

 position[2] = uavInfo[Id].pos[2]-2;

 }

 if(position[0]<=0)

 {

 position[0] = uavInfo[Id].pos[0]+2;

 }

 if(position[1]<=0)

 {

 position[1] = uavInfo[Id].pos[1]+2;

 }

 if(position[2]<=0)

 {

 position[2] = uavInfo[Id].pos[2]+2;

 }

 }

/**

 * Function name: ignoringRandomNei

 *

 * Description: This function is called to randomly ignore

information from UAV's neighbors

 *

Distribution A: Approved for public release; distribution is unlimited.

77

**************/

void uav::ignoringRandomNei(int isParticipate[])

{

 int numOfNei=0;

 int random=0;

 int smallRand=0;

 for (int i=0; i<maxUavs; i++)

 {

 if(uavInfo[i].participate)

 {

 numOfNei++;

 isParticipate[i]=1;//we insert 1 if is a

neighbor

 }

 else

 isParticipate[i]=0;

 }

 random=(int)rand()%numOfNei;

 while(random!=0)//we ignore information from "random"

random neighbors by putting 0 in the isParticipate array

 {

 smallRand=(int)rand()%maxUavs;

 if(isParticipate[smallRand])

 {

 isParticipate[smallRand]=0;

 bubble("Deleting someone...");

 EV<<"Deleting"<<

smallRand<<"!!"

<<endl;

 random--;

 }

 }

}

void uav::addingDev(double* DevSum)

{

 if((int)rand())

 DevSum[0]+=(int)rand()%100;

 else

 DevSum[0]-=(int)rand()%100;

 if((int)rand())

 DevSum[1]+=(int)rand()%100;

 else

 DevSum[1]-=(int)rand()%100;

 if((int)rand())

 DevSum[2]+=(int)rand()%100;

 else

 DevSum[2]-=(int)rand()%100;

}

void uav::addingDevForMe(double* DevSum)

{

 /*DevSum[0]+=(int)rand()%600;

 DevSum[1]+=(int)rand()%600;

 DevSum[2]+=(int)rand()%600;*/

 if((int)rand())

 DevSum[0]+=(int)rand()%600;

 else

 DevSum[0]-=(int)rand()%600;

Distribution A: Approved for public release; distribution is unlimited.

78

 if((int)rand())

 DevSum[1]+=(int)rand()%600;

 else

 DevSum[1]-=(int)rand()%600;

 if((int)rand())

 DevSum[2]+=(int)rand()%600;

 else

 DevSum[2]-=(int)rand()%600;

}

void uav::startLead()

{

 //leaderInterval = new cMessage("leaderInterval");

 //scheduleAt(simTime()+1000, leaderInterval);

 imLead=true;

 EV<<"direction before: "<<diraction[0]<<endl;

 diraction[0]=rand()%6000;

 diraction[1]=rand()%6000;

 diraction[2]=rand()%6000;

 EV<<"direction after: "<<diraction[0]<<endl;

 saveConnectivity();

}

void uav::saveConnectivity()

{

 int sign_x;

 int sign_y;

 int sign_z;

 int dist;

 int move_x=0;

 int move_y=0;

 int move_z=0;

 int max_d=0;

 int d=0;

 bool fly=false;

 sign_x = diraction[0]-position[0];

 sign_y = diraction[1]-position[1];

 sign_z = diraction[2]-position[2];

 leaderMove = new cMessage("leaderMove");

 scheduleAt(simTime()+20, leaderMove);

 if(sign_x<0)

 move_x=-velocity/sqrt(3.0);

 else if(sign_x>0)

 move_x=velocity/sqrt(3.0);

 if(sign_y<0)

 move_y=-velocity/sqrt(3.0);

 else if(sign_y>0)

 move_y=velocity/sqrt(3.0);

 if(sign_z<0)

 move_z=-velocity/sqrt(3.0);

 else if(sign_z>0)

 move_z=velocity/sqrt(3.0);

 for(int j=0; j<maxUavs; j++)

 {

 EV<<"UAV "<<j<<" direction: "<<uavInfo[j].dir[0]<<endl;

 EV<<"UAV "<<j<<" position: "<<uavInfo[j].pos[0]<<endl;

 }

 for (int i=0; i<maxUavs; i++)

Distribution A: Approved for public release; distribution is unlimited.

79

 {

 dist = sqrt(pow((position[0]+move_x) -

uavInfo[i].pos[0],2)+pow((position[1]+move_y)-

uavInfo[i].pos[1],2)+pow((position[2]+move_z)-uavInfo[i].pos[2],2));

 if(dist<=R)

 {

 fly=true;

 break;

 }

 }

 if(fly)

 {

 if(abs(diraction[0]-position[0])<=velocity)

 position[0]+=diraction[0]-position[0];

 else

 position[0]+=move_x;

 if(abs(diraction[1]-position[1])<=velocity)

 position[1]+=diraction[1]-position[1];

 else

 position[1]+=move_y;

 if(abs(diraction[2]-position[2])<=velocity)

 position[2]+=diraction[2]-position[2];

 else

 position[2]+=move_z;

 }

 else

 {

 /*if(abs(diraction[0]-position[0])<=velocity)

 position[0]+=diraction[0]-position[0];

 else

 position[0]+=move_x/4;

 if(abs(diraction[1]-position[1])<=velocity)

 position[1]+=diraction[1]-position[1];

 else

 position[1]+=move_y/4;

 if(abs(diraction[2]-position[2])<=velocity)

 position[2]+=diraction[2]-position[2];

 else

 position[2]+=move_z/4;*/

 for(int i=0; i<maxUavs; i++)

 {

 d=sqrt(pow(R,2)-pow(uavInfo[i].pos[1]-

position[1],2)-pow(uavInfo[i].pos[2]-position[2],2))-

(abs(position[0]-uavInfo[i].pos[0]));

 if(abs(d)>max_d)

 max_d=abs(d);

 }

 if(sign_x<0)

 if(max_d>velocity)

 position[0]=position[0]-velocity;

 else

 position[0]=position[0]-max_d;

 else if(sign_x>0)

 if(max_d>velocity)

 position[0]=position[0]+velocity;

 else

 position[0]=position[0]+max_d;

Distribution A: Approved for public release; distribution is unlimited.

81

 }

 EV<<"my direction: "<<diraction[0]<<endl;

 EV<<"my position is: "<<position[0]<<endl;

 dispStr = getDisplayString();

 dispStr.setTagArg("p",0,position[0]);

 dispStr.setTagArg("p",1,position[1]);

 dispStr.setTagArg("r",0,R);

 setDisplayString(dispStr);

 cVect_lead_x.recordWithTimestamp(simTime(),position[0]);

 cHist_lead_x.collect(position[0]);

 cVect_lead_y.recordWithTimestamp(simTime(),position[1]);

 cHist_lead_y.collect(position[1]);

 cVect_lead_z.recordWithTimestamp(simTime(),position[2]);

 cHist_lead_z.collect(position[2]);

 if(position[0]==diraction[0]&&position[1]==diraction[1]&&positi

on[2]==diraction[2])//||abs(diraction[1]-position[1])<=velocity)

 {

 diraction[0]=rand()%6000;

 diraction[1]=rand()%6000;

 diraction[2]=rand()%6000;

 }

 /*

 if(position[1]==diraction[1])//||abs(diraction[1]-

position[1])<=velocity)

 diraction[1]=rand()%6000;

 if(position[2]==diraction[2])//||abs(diraction[1]-

position[1])<=velocity)

 diraction[2]=rand()%6000;

 */

}

 void uav::finish()

 {

 cVect2.record(dataSent);

 }

}; //namespace

Distribution A: Approved for public release; distribution is unlimited.

81

Bibliography

D. Gillen and D. Jaques, "Cooperative behavior schemes for improving the

Effectiveness of Autonomous Wide Area Search Munitions" , Proceedings of

the Cooperative Control Workshop, 2000.

1

P. Chandler and M.pachter, "Heirarchical Control for Autonomous Teams",

AIAA Guidance, Navigation, and Control Conference and Exhibit, 2001.

2

J. Hebert, "Cooperative Control of UAV's'', AIAA Guidance, Navigation, and

Control Conference and Exhibit, 2001.

3

M. Polycarpou, "A Cooperative Search Framework for Distributed Agents'',

Proceedings of the 2001 IEEE International Symposium on Intelligent Control ,

2001.

4

L. Parker, "Current State of the Art in Distributed Autonomous Mobile

Robotics", Autonomous Robotic Systems4, edited by L. E. Parker, pp. 3-12.

Springer-Verlag, 2000.

5

S. Dolev, S. Gilbert, N. A. Lynch, E. Schiller, A. Shvartsman, J. Welch,

``Virtual Mobile Nodes for Mobile Ad Hoc Networks''

International Conference on Principles of DIStributed Computing

(DISC 2004), 2004. Also Brief announcement in Proc. of the 23th Annual ACM

Symp.

on Principles of Distributed Computing, (PODC 2004), 2004

6

S. Dolev, S. Gilbert, N. A. Lynch, A. Shvartsman, J. Welch,

``GeoQuorum: Implementing Atomic Memory in Ad Hoc Networks''

17th International Conference on Principles of DIStributed Computing,

Springer-Verlag LNCS:2848, (DISC 2003), pp. 306-320, 2003.

7

O. Ben-Shahar and S.W. Zucker , The Perceptual Organization of Texture Flows:

A Contextual Inference Approach, In the IEEE Transaction on Pattern Analysis

and Machine Intelligence 25(4), 401-417, 2003.

http://www.cs.bgu.ac.il/~ben-shahar/Publications/PAMI2003-POCV.pdf

8

Distribution A: Approved for public release; distribution is unlimited.

82

E.W.Dijekstra, "Self stabilizing systems in spite of distributed control",

Communication of the ACM, vol.17, 1974, pp. 643-644.

9

S.Dolev, Self-Stabilization, MIT Press, 2000. 10

S.Dolev, J.L.Welch, "Random Walk for Self-Stabilizing Clock Synchronization in

the presence of Byzantine Faults," journal of the ACM,Vol.51, No.5, pp. 780-

799, September 2004.

11

A.Daliot, D.Dolev, and H.Parnas, "Linear Time Byzantine Self-Stabilizing Clock

Synchronization", Proc. Of the 7th international conference on principles of

Distributed Systems(OPODIS 2003),2003.

12

"NOVA Online". NOVA. 1999.

http://www.pbs.org/wgbh/nova/bees/dancesroun.html. Retrieved 2008-12-21.

13

G.Beni, J.Wang, "Swarm Intelligence in Cellular Robotic Systems", Proc. NATO

Advanced Workshop on Robots and Biological Systems, Tuscany, Italy,

 June 26–30 (1989).

14

X. Y.Li, G.Calinescu, P.J. Wan, "Distrebuted Construction of Planner and Routing

for Ad Hoc Networks", IEEE INFOCOM, 2002.

http://www.cs.bgu.ac.il/~segal/148.pdf

15

Riley, J. R. et al. (12 May 2005) The flight paths of honeybees recruited by the

waggle dance. Nature 435, pp. 205-207. doi:10.1038/nature03526

16

Seeley, T.D., P.K. Visscher, and K.M. Passino. (2006) Group decision making in

honey bee swarms. American Scientist. 94:220-229.

71

Frisch, Karl von. (1967) The Dance Language and Orientation of Bees.

Cambridge, Mass.: The Belknap Press of Harvard University Press.

18

Thom et al. (21 August 2007) The Scent of the Waggle Dance. PLoS Biology. Vol.

5, No. 9, e228 doi:10.1371/journal.pbio.0050228[1]

71

Bozic J., C. Abramson, M. Bedencic. (April 2006) Reduced ability of ethanol

drinkers for social communication in honeybees (Apis mellifera carnica Poll.).

Alcohol. Volume 38 , Issue 3. pp. 179-183.

02

Distribution A: Approved for public release; distribution is unlimited.

83

http://news.bbc.co.uk/earth/hi/earth_news/newsid_8176000/8176878.stm

BBC News 31 July 2009 Honeybees warn of risky flowers Matt Walker

07

Abbott, Kevin; Reuven Dukasa (23 July 2009). "Honeybees consider flower

danger in their waggle dance". Animal Behaviour.

http://dx.doi.org/10.1016/j.anbehav.2009.05.029. Retrieved 01-08-2009.

00

Frisch, Karl von. (1967) The Dance Language and Orientation of Bees.

Cambridge, Mass.: The Belknap Press of Harvard University Press.

02

Frisch, Karl von. (1967) The Dance Language and Orientation of Bees.

Cambridge, Mass.: The Belknap Press of Harvard University Press.

24

Aristotle, Historia animalium, IX, 40, Becker 624b; modified from the

translation by D.W. Thompson in The Works of Aristotle, Clarendon, Oxford,

1910.

02

Distribution A: Approved for public release; distribution is unlimited.

