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Abstract

High strain rate deformation of WE43 magnesium alloy was 
carried out by high velocity impacts, and the characteristics and 
mechanisms of microstructural damage were examined. Six 
samples were subjected to a variety of high velocity impact 
loadings that resulted in both partial and full damage. Optical, 
scanning and transmission electron microscopy analyses were 
performed in order to identify regions of shear localization. These 
regions were used to map, both quantitatively and qualitatively, 
the effects of deformation on the microstructure. Shear 
localization was observed in every sample, and its depth was 
measured. Evidence of shear localization was observed to a 
greater extent in samples with partial damage while fracturing was 
observed more frequently in samples with full damage.

Introduction

Over the past two decades, there has been an increasing interest in 
the commercial use of magnesium alloys in various applications
where a high strength-to-weight ratio is important, such as in 
aerospace, automotive, and defense industries [1]. Not only is 
magnesium an extremely lightweight metal, weighing 30% less 
than aluminum, and 70% less than steel, it also has the highest 
strength-to-weight ratio among any of the commonly used non-
ferrous and ferrous metallic materials [2].

As magnesium is used more often in structural components, there 
is an increasing demand for a better understanding of the 
microstructural evolution during deformation. Due to the limited 
number of independent slip systems in a hexagonal close packed
(HCP) crystal structure, basal slip and twinning are the prevalent 
mechanism of deformation at lower temperatures, such as 200°C
and below, with low strain rates ranging between 1.8 x 10-5 to 1.8 
x 10-3 s-1 [3]. Wei et al., showed that at elevated temperatures 
ranging from 350 to 425°C, and strain rates ranging from 10-3 to 
1-1 s-1, magnesium alloys exhibited excellent superplasticity, due 
to activation of non-basal slip systems, and grain boundary sliding 
(GBS) deformation mechanism under these conditions [4].  It has 
been noted that as the temperature is increased above 200°C the 
critical resolved shear stress for the non-basal slip systems is 
reduced, and the activation of these additional mechanisms results 
in an increase in ductility and a decrease of yield and flow stress 
[5]. However, at high strain rates, such as greater than 103 s-1, the 
primary mechanism of deformation in metals has been shown to 
be shear localization [6] [7].

The shear localization seen in high strain rate deformation is 
characterized by adiabatic shear bands (ASB). These regions of 
shear deformation are the result of adiabatic shear, shear 
instabilities, and shear localization. The main mechanisms of 
deformation within the ASBs are dynamic recrystallization 

(DRX), and GBS.  It is through these mechanisms that the 
microstructure accommodates the high kinetic energy seen in 
severe plastic deformation occurring at high strain rates, such as 
~103-106 s-1 [8].

The post-mortem characterization of a deformed microstructure is 
important to the understanding of the microstructure during 
deformation, and until a technique is developed that allows real-
time diagnostic of the microstructure as it evolves, it will remain 
as the primary means of investigation of the phenomenon that 
occur inside shear localization. The purpose of this study was to 
analyze, through a variety of microscopy techniques, the 
microstructure of WE43 magnesium alloy samples post-
deformation.

Experimental Methods

A post-mortem analysis was performed on six 80mm thick WE43 
samples (3.7-4.3% Yttrium, 2.4-4.4% Rare Earths, 0.4% 
Zirconium, balance Magnesium), that were produced in the T5 
condition, thermally quenched after high-temperature rolling, and 
then artificially aged.  The samples were then subjected to high 
velocity impacts that resulted in varying levels of severe plastic 
deformation (SPD). The samples were assigned the nomenclature 
of A, B, and C based on increasing level of damage. The samples 
were also labeled as Full, or Partial damaged samples based on the 
extent of SPD.  Examples of the cross sectioned regions are
shown in Figures 1 and 2.

Figure 1. C-Partial sample, after cross sectioning, arrow indicates 
direction of impact.

In order to preserve the microstructure, preparation methods were 
chosen that would induce the least amount of damage. Therefore, 
waterjet cutting was used to cross-section the deformed samples, 
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and a diamond wafer saw was used to perform further sectioning 
at low-speed. A map is shown in Figure 3 of the sectioning 
performed on the sample A-Partial, and this is representative of 
the method used to section all of the samples. The samples were 
then mounted in epoxy discs, and mechanically polished to 0.05-
µm using alumina. Then the samples were etched by submersion 
in a acetic-picral etchant (100mL ethanol, 6g picric, 10ml water, 
5ml acetic).

Figure 2. C-Full sample after cross sectioning, arrow indicates 
direction of impact.

Figure 3. Map of sectioning performed on sample A-Partial, the 
arrow indicates direction of impact.

In order to characterize different aspects of the deformation a 
variety of approaches were utilized. Optical microscopy (OM), 
scanning electron microscopy (SEM), and transmission electron 
microscopy (TEM) were performed on both deformed and 
undeformed samples in order to identify and characterize regions 
of interest.

OM was used for both quantitative and qualitative investigation of
shear bands, regions of dynamic recrystallization (DRX), grain 
size, shear localization, fractures, and damage on the microscale.
An Olympus LEXT OLS3000 confocal optical microscope in 
conjunction with Olympus LEXT software was used for OM
imaging. IQ Materials software was used on composite OM 
images in order to quantify the extent of shear localization.
Measurements were made for the depth of the shear localization 

that extended from the edge of deformation. The regions of 
deformed and undeformed material were qualitatively 
distinguished by the features observed with OM.  The regions of 
shear deformation exhibited elongated grains, with shear bands 
and DRX. The undeformed regions were composed of equiaxed 
grains and were similar in microstructure to the bulk material.
Measurements were taken normal to the edge, across the 
deformed microstructure, and stopped once an undeformed region 
was reached, examples of these types of measurements can be 
seen in Figure 4. The measurements for each sample were 
averaged, and then the averages for all of the samples were plotted 
to show the progression of shear localization through the cross-
sectioned sample.

Figure 4. Composite OM image, arrows are example of 
measurements made of region of shear localization.

SEM was used to further investigate regions of interest at the 
microscale. A Zeiss Ultra-55 field emission SEM equipped with 
x-ray energy dispersive spectroscopy (XEDS) was used.  TEM 
was used to investigate the grain size, and formation of 
precipitates at the nanoscale in regions of DRX found in shear 
bands, as well as suspected twinning seen throughout the samples.  
A FEI/Tecnai F30 300keV TEM was utilized for this.

Results and Discussion

Microstructural Characteristics

A section of bulk material was removed and analyzed for
comparison to damaged regions. The bulk microstructure (i.e.
undamaged) is shown in Figure 5. It was assumed that any 
twinning, or other characteristics of deformation seen in the bulk 
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microstructure, was a result of the processing methods used in 
manufacturing the samples. Although a significant amount of 
twinning was observed near the surface of the penetration 
channel, this paper focuses on the shear localization and the 
formation of shear bands.  The presence of profuse twinning was 
examined by TEM, and will be reported in future publications.

Figure 5. OM of bulk microstructure.

The deformed regions of the samples exhibited a large amount of 
shear localization, characterized by shear bands and DRX.  Shear 
localization was observed in regions of SPD, and was seen to vary 
throughout the samples. However, the level of shear localization 
was highly concentrated in certain areas, and in particular was 
seen to a greater extent in the Partial-group of samples. These 
regions were examined further using TEM, and quantified using 
IQ Materials software.

Figure 6. Macroscopic image of the cross-section of sample
B-Full, showing microstructural deformation regions I, II, and III

In general, throughout all of the samples, there were three separate 
regions of distinctive deformation characteristics.  Figure 6 shows 
these regions on the B-Full sample. Region I, the initial area of 
impact, was characterized by a rough fracture surface along the 
edge, and a microstructure that was similar to that of the bulk 
microstructure. An OM of region I is shown in Figure 7. The 
microstructure of region II showed extensive shear localization, 
with ASB, DRX, and a smooth edge along the channel as
presented in Figure 8. Similar to Region I, region III was 
composed of a microstructure very similar to that of the bulk 
microstructure, however, there is a large amount of shear 
fracturing along the edge. Figure 9 shows the microstructure of
region III. The Partial-damage samples did not have a region III, 
but instead were composed of regions I and II, except in the case 
of C-Partial which exhibited a large amount of bulging petal 
fractures.

Figure 7. OM image showing typical microstructure of region I.

Figure 8. OM image showing shear localization that characterized 
region II.

Figure 9. OM image of region III, similar fracture edge and 
microstructure to that of Region I.

The major variation in these regions, as seen when comparing 
between each of the sample sets, was the overall size of the 
regions. Of all of the sample sets, those in sample set A showed 
the smallest regions I and III, while sample set C showed the 
largest. As regions I and III were composed of large quantities of 
shear fracture surfaces, it is likely the higher level of energy 
transferred during the impacts for sample set C were the largest, 
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thus resulting in a greater amount of shear fracturing instead of 
localized shear deformation.

Shear Localization Depth

Shear localization was present in every deformed cross-sectioned 
sample. In order to appreciate the extent of shear localization, 
composite OM images were formed, and the region of shear 
deformation was measured using IQ Materials software.  Each 
sectioned sample (as shown in Figure 3 for sample A-Partial), of 
both the Partial and Full samples of each sample set was analyzed.
The measurements for each sample were averaged, and the plots
are presented in Figures 10, 11, and 12.

Figure 10. Shear localization depth of sample set A.

Figure 11. Shear localization depth of sample set B.

Figure 12. Shear localization depth of sample set C.

Sample set A exhibited a similar quantity of shear localization in 
both the Full and Partial samples. Furthermore, the overall 
magnitude of shear depth was to a much lesser degree than either 
the B or C samples which were both subjected to a much greater
level of plastic deformation. The lower level of shear present in 
sample set A was a result of the lower level of kinetic energy 
transferred from the high velocity impact.

In sample set B, there was a marked difference in the level of 
shear localization present in the Partial sample, when compared to 
the Full sample. Overall, the Partial sample exhibited a greater 
amount of shear localization, as can be seen in locations 5-8 of 
Figure 12. In the Full sample, in the regions of lower shear 
localization, there was a high level of shear fracturing observed.

The greatest magnitude of shear localization was measured in 
sample set C, as was expected due to the gross amount of severe
plastic deformation observed. Of note, the sample locations 5, 6,
and 7 of the Partial sample were positioned in such a way, in 
relation to the damaged edge, to make it impractical to measure 
shear depth. However, qualitatively these samples had a low 
amount of shear localization, and there was an extensive amount 
of fracturing observed, as can readily be seen on a macroscopic 
level on the right side of the sample in Figure 13.

Figure 13. Map of sectioned samples of C-Partial

Overall, shear localization was seen to the greatest extent in the 
Partial sample group. The shear localization is a result of the 
microstructure of the material accommodating the kinetic energy
from the high velocity impact. When the kinetic energy exceeded 
a certain amount, full penetration of the sample would occur, and 
this was characterized by a much higher level of fracturing in the 
microstructure. Below that level, the material would 
accommodate the kinetic energy not by fracturing, but instead by 
shear localization.

A limitation of this study is that any region of the sample that was 
completely fractured away was no longer attached to the sample, 
and as a result, not available for post-mortem analysis. It is 
possible that shear localization was present in these portions of the 
sample, but no analysis was able to be performed.

Adiabatic Shear Bands

Adiabatic shear bands were a ubiquitous characteristic of regions 
of shear localization. The shear bands were composed of areas of 
DRX, which is a result of adiabatic temperature rise [8]. Both
regions of DRX, and the transition zone between the DRX and 
neighboring microstructure, were examined by TEM. The shear 
band that was analyzed is shown in Figure 14.
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Figure 14. SEM-SE image, with dotted outline of the region of 
DRX within shear band, that was analyzed by TEM. 

DRX I Mg matrix 

Figure 15. Diagram of shear band, and neighboring 
microstructure. 

The shear band was composed of two distinct regions as 
schematically illustrated in Figure 15. The first region of DRX 
was composed of small equiaxed recrystallized grains (<500nm) 
that contained a very limited amount of precipitates, while the 
second region was a transition zone (TZ) that contained both the 
larger grains of the bulk matrix, and the smaller grains similar in 
size to the DRX region. The TEM of the DRX region is shown in 
Figure 16, while that of the TZ region is shown in Figure 17. 

Figure 17. TEM image of transition zone interfacing the DRX 
region and neighboring microstructure. 

The neighboring matrix was similar to that of the bulk material 
shown in Figure 18, containing large grains with smaller 
precipitates, and smaller grain regions with large secondary phase 
precipitates. Indexing performed on the diffraction pattern from a 
large secondary phase precipitate showed that it was J3 phase: 
Mg1~d2Y (fcc, a= 2.223nm). Figure 19 shows the diffraction 
pattern. 

Figure 18. TEM image of bulk microstructure, the large 
precipitate that was indexed is marked. 
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Figure 19. Diffraction pattern of large precipitate found in small 
grain region of bulk material, indexing to be 13 phase. 

The smaller precipitates located in the coarse grains were 
analyzed by XEDS as shown in Figure 20, and the composition 
was quantified as Mg74.sYn.zNds.o (at%). This suggests that these 
percipitates are most likely 13" phase: Mg3(Y o.ssNdo.ts). 
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Figure 20. XEDS results of smaller precipitates contained in 
coarse grains of bulk microstructure. 

Conclusions 

After a set of six WE43 magnesium alloy samples were subjected 
to different high-velocity impacts, which resulted in high-strain 
rate severe plastic deformation, the microstructures of the 
deformed samples were analyzed and compared to the bulk 
material. Shear localization, characterized by bands of dynamic 
recrystallization, was seen throughout the damaged regions. 
However, samples that were subjected to impacts that resulted in 
only partial damage were seen to have a larger quantity of shear 
localization, compared to those samples that experienced impacts 
that resulted in full damage. Furthermore, the samples with full 
damage had a lower occurrence of shear localization in the 

regions of high shear fracture. This indicates that the material 
would accommodate the lower level of kinetic energy, which was 
insufficient to result in shear fracture, by shear localization in the 
microstructure. 

The regions of shear localization, when analyzed by TEM showed 
distinct variation from the bulk material microstructure. The bulk 
material was composed of regions with coarse grains containing 
small elongated precipitates of the 13" phase, and smaller grain 
regions with large 13 phase precipitates. Microstructure within the 
ASB was distinctively different. The shear bands were composed 
of small (<500nm) grains, with a very limited amount of 
precipitates. In addition, there was a transition zone between the 
two regions that showed a mixture of both the larger grains seen 
in the bulk material, and the smaller grains seen in the region of 
DRX. 
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