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Airborne Human Odorants: Detection, Dispersion and 
Characterization 

 
Kai Zhao, Ph.D. and George Preti, Ph.D. 

Monell Chemical Senses Center 
3500 Market Street, Philadelphia, PA 19104 

 
Progress report for September 1, 2011 to December 31, 2011 

 

The volatilization and dispersion of human VOCs depends on several factors: 1) 
the molecular properties such as saturated vapor pressure, Henry law constant, 
air/octane partition coefficient, etc. The human odorants we have chosen for study are 
emitted from the body in axillary sweat which is a complex mixture of water, protein, 
lipids and other small, VOCs. All of these properties and interactions are unknown, 
however, we will assume initially, that these odorants, because of their highly oxidized 
structures (e.g. they are acids) will remain stable in the vapor phase.  With this 
assumption we have  focused on how these compounds disperse through air movement 
caused either by active ventilations or by natural convections (diffusion).  We have 
employed diverse experimental approaches to begin this research. 
 

 To allow the quantification of various human odorants we first calibrated the gas 
chromatography-mass spectrometry system that will be employed to quantify odorants 
collected from various headspaces. 
 
Experiment 1: a.) Calibration of GC-MS system was performed by injecting small 
quantities of known concentrations of each compound under study (in chloroform or 
other appropriate solvent).  To date, the instrument has been calibrated for the following 
compounds:  dimethylsulfone, E-3-methyl-2-hexenoic acid (3M2H), 6-heptenoic acid, 
and 7-octenoic acid.  Completion of calibration curves for these compounds has allowed 
us to quantify the amount of these VOCs found in headspaces of sealed systems of 
known volumes. 
 
A typical calibration curve is shown in Figure 1 for, dimethylsulfone.   
 
Figure 2 shows how the concentration changes in the vapor phase, over time, in a fixed 
(0.50 L) volume. 
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Figure 1. Dimethylsulfone (DMS)  Calibration curve for dimethylsulfone, a mammalian 

metabolite reflective of metabolism of sulfur-containing amino acids. 

 
 
 
 

 

Figure 2. Vapor phase concentration of dimethylsulfone with time, in a small fixed volume. 
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Experiment 2) Quantifying human signature odorant propagation in an environmental 
chamber (250 sq foot). 
We have setup computational models of the Monell Center’s environmental chamber 
where our indoor experiments will be conducted, to hopefully assist future experimental 
design, e.g. placement of odor monitor sites, expected standoff time, etc. 
 
Method: The dimension of the chamber and the locations of the fresh air inlets and 
exhaust (three inlet on the ceiling and one exhaust at the lower side wall) were precisely 
replicated in silico (Figure 2.1). A widely acceptable mathematical method, the finite 
volume method, was used to simulate room air movement and odor propagation.  This 
method works by dividing the air space into many small and simple volumes, e.g. 
tetrahedral, polyhedron, prism, etc.  The final model for our room contains about 3 
million volumes (elements).  Within each volume, the nonlinear and higher order fluid 
dynamic equations can then be approximated with linear equations, thus greatly simplify 
the computational task.  Obviously, it is likely that with more and finer elements, the 
linear approximation would be closer to the real solution.  Thus, we have compared 
simulation results in models with 400k, 1million and 3 million elements, and concluded 
the results reached convergency at 3 million elements, that is further more elements 
does not improve the numerical accuracy significantly.  There are also different 
mathematical schemes to linearize the fluid dynamic equations based on various flow 
conditions, e.g. laminar, turbulent, etc.  The renormalization group K-eps turbulence 
model, which has been previously reported to perform best for indoor airflow than other 
two-equation turbulence models (Chen, 1995 and Posner et al 2003), is applied here to 
capture airflow. 
 

 

Figure 2.1. Diagram of the computational replication of the chamber.  Each air inlet 

contains two parrelel slits of ½” wide and ¾ “apart. 
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The initial simulation is conducted under an air exchange rate of 6 ACH (air exchange 
per hour), which is about mid range for ASHER (American Society of Heating, 
Refrigerating and Air-Conditioning Engineers) Guideline-2001 (4-12 ACH). Room is 
assumed to be in constant temperature of 25 C. 
 
Results: The following graphs (Figure 2.2 and Figure 2.3) show the air velocity (m/s) in 
three parallel planes cut across the three axes (x, y, z).  
 
 

 
a)       b) 

 

 
 

c)       d) 

Figure 2.2. (a) Planes across z axis. Negative Y velocity means the flow towards floor, which 

is apparent on the two of planes that cut right along inlet slits. (b) air flow vector plots of 

the right most plane of (a), where the two air inlet slit were shown. Vectors show 

recirculation of air along the walls and between two air inlets. (c) flow vector in the middle 
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plane of (a) which cut across outlet, shows how air flow peel out from the circulation and 

form the exhaust air stream. (d) streamlines of a few particles released from the two inlets 

on the right side. Only a few of the tracked particles exit the room from the exhaust within 

the time frame. 

 
 

 
a)       b) 

Figure 2.3. (a) planes across x axis and cut across three inlets. (b) air flow vector plots of 

the middle plane in (b), which shows intense recirculation of air between the inlet and wall.  

 
 
We further simulated in Figure 2.4 the situation where a pseudo odor vapor source of 
100ppm is released with constant rate of 100ml/s in the middle of the room, 
approximately 1.5m from the floor, roughly at the height of the chest or arm pit. In the 
future, an odor evaporation profile obtained from experimental 1, will be used to capture 
realistic human signature body odor releases. 
 

  

Figure 2.4. Simulated release of 100 ppm odor vapor source  
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the room should rise to 0.263 ppm in theory, which was never reached. Thus, a 
significant portion of the fresh air was not well mixed with the room air before they exit 
the room.  
 
9 virtual sites were setup to monitor the room odor concentration spreading in the 
middle z plane that cut across the outlet (see figure 2.5a). Compared to the average 
room concentration, various room regions contain high odor concentrations that are not 
well mixed with fresh air or with rest of the room air (Figure 2.5 b). The highest 
concentration level is at PC2, which is right above the source; the 2nd highest is PA1 
near outlet; the 3rd highest PC1; and the 4th PA3. From the above air flow patterns and 
attached video, we can see that the source point is located in or near an air pocket of a 
vortex (by accident), thus for the first 250 seconds or so, the odor propagation is very 
much contained within that pocket, after which it then spreads/jumps into a second 
bigger pocket of air/vortex that is located near the outlet. That is why we see PC2, 
which is located in the first pocket, rises sharply and quickly, whereas, PA1, PC1, PA3, 
which are located in the second pocket, rise with a bump after 250 seconds. The 
attached video shows odor propagation at 3 planes across at source point. PC3, which 
is right below the source point, is only the 5th highest, much lower than PC2, probably 
because it is outside the first pocket and endured more washout from the inlet. 
 
 

 
 
 

Figure 2.5 a) 9 virtual sites monitoring room b)Room regions containing high odor 

concentrations 

 
 
Summary 
The above simulation indicate that even within a well ventilated room, the propagation 
of odor can be very non-uniform and depend heavily on the location of source, monitor 
sites and their relationship to the ventilation inlet and outlet. The standoff distance and 
time may vary significantly depending on these locations. In our trial case, for a location 
moderately away from the source (~half room size), a considerable delay (~ 250 s) may 
be expected before encountering the bulk odor. For some locations (the half room away 
from the source and outlet, PB 1,2,3 in our setup), the concentration of odor may never 
reach ~40% of expected -under well mixing assumption- level. 
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Future Work: 
We plan release a target odor in the chamber as we’ve simulated to validate the 
computational results. 
 
Chen, Q. 1995. Comparison of different k-eps models forindoor air flow computations. 
Numerical heat transfer Part B, Fundamentals, 28(3), 353-369. 
 
Posner, J.D., Buchanan, C.R., and Dunn-Rankin, D. 2003. Measurement and prediction 
of indoor air flow in a model room. Energy and buildings 35 (5): 515-526. 


