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Abstract

The primary focus of this research is to develop consistent nonlinear decentralized

particle filtering approaches to the problem of multiple agent localization. A key aspect

in our development is the use of Riemannian geometry to exploit the inherently non-

Euclidean characteristics that are typical when considering multiple agent localization

scenarios. A decentralized formulation is considered due to the practical advantages it

provides over centralized fusion architectures.

Inspiration is taken from the relatively new field of information geometry and the

more established research field of computer vision. Differential geometric tools such as

manifolds, geodesics, tangent spaces, exponential, and logarithmic mappings are used ex-

tensively to describe probabilistic quantities. Numerous probabilistic parameterizations

were identified, settling on the efficient square-root probability density function parame-

terization. The square-root parameterization has the benefit of allowing filter calculations

to be carried out on the well-studied Riemannian unit hypersphere. A key advantage for

selecting the unit hypersphere is that it permits closed-form calculations, a characteristic

that is not shared by current solution approaches.

Through the use of the Riemannian geometry of the unit hypersphere, we are able

to demonstrate the ability to produce estimates that are not overly optimistic. Results are

presented that clearly show the ability of the proposed approaches to outperform current

state-of-the-art decentralized particle filtering methods. In particular, results are presented

that emphasize the achievable improvement in estimation error, estimator consistency, and

required computational burden.
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DECENTRALIZED RIEMANNIAN PARTICLE FILTERING

WITH APPLICATIONS TO MULTI-AGENT LOCALIZATION

I. Introduction

1.1 Chapter Overview

Technologically speaking, we are in the midst of some truly exciting times. The

ability to harvest, process, store, and disseminate data is unparalleled from any other time

in history. The magnitude of the most recent technology growth-spurt has resulted in the

streamlining of multiple enabling technologies. The continual technological advances in

both hardware and software has made the realization of multi-agent systems in complex

environments more realistic than in previous years. From a Department of Defense (DoD)

perspective, multi-agent systems offer a potential launching point for the various Network

Enabling Capabilities (NEC), that have been deemed necessary for realizing the Global

Information Grid (GIG).

Net-centric warfare (NCW) doctrine levies considerable technological challenges on

the way data is shared, processed, and stored. The sheer volume of data sources available

requires that data processing functions be implemented on lower tier components. The

reallocation of data processing tasks to various individual components while still keeping

decision-makers informed, has proven to be challenging. Numerous technical challenges

can be exemplified through applications involving multiple agent systems. The manner

in which multi-agent systems interact, communicate, and their levels of autonomy are all

questions receiving active research attention. Two common threads among all of these

research topics is system architectures and data fusion methodologies.

Multisensor data fusion (MSDF) is concerned with assimilating data from multiple

sensors/sources in order to obtain a consistent and coherent environmental representation.

1



Prevalent throughout many military systems, MSDF methods are utilized in a series of

tasks to include battlefield surveillance missions [39], multi-target tracking (MTT) [271],

automatic target recognition (ATR) [116], and navigation of manned and unmanned sys-

tems [172], just to name a few. Clearly the list of applications requiring some form of

data fusion process is rather extensive. The use for data fusion processes has proven valu-

able in many traditionally disjoint scientific and engineering disciplines. Nevertheless,

the wide spread use of data fusion processes has contributed to the numerous algorithm

alternatives, as well as to the current inability to produce standardizations of vocabulary,

solution approaches, and Bayesian filtering models.

A challenging problem in its own right, now add to the complexity of MSDF the ar-

duous task of distributing available data sources across multiple mobile sensing platforms.

In the context of military applications, multi-agent systems present formidable challenges.

For example, agents intended for battlefield operations will almost surely be required to

be cheap and disposable, virtually guaranteeing that resources like computational power,

data storage facilities, and power resources will be limited. Scarcity of resources means

methods to manage them efficiently will need to be developed. Cheap agents can be used

in large numbers, hence a system architecture that can scale to large agent populations

will need to be available. Environments in which multi-agent systems will operate can be

expected to be complex and hostile, and coupled with the mobility of agents will require

a dynamic communications topology to effectively operate.

The focus of this dissertation is on a subset of the larger multiple agent data fusion

paradigm. To be more precise, how to implement consistent decentralized particle filtering

algorithms when an arbitrary number of agents are allowed to stochastically communicate

data with one another is the principal focus of this research. Furthermore, the individual

agents will need to fuse the data resulting from other agents with the data obtained from

their own sensor suite.
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1.2 Decentralized Fusion

Available data fusion architectures take on several different manifestations in the

literature. Perhaps the simplest system architecture is one where all of the necessary

blending of available data occurs at a common processing station, from which results

are disseminated to external customers [217]. This type of processing scheme is known as

centralized, since there exists a common processing facility privileged to the most com-

plete view of the environment [203]. Access to all data sources gives the central pro-

cessing core control over the entire system decision-making process [197]. A centralized

architecture may be adequate for some applications. However, with increasing process-

ing intricacies and reduction in hardware costs, the argument can be made that alternative

architectures may be more appropriate [172]. Another argument for considering alterna-

tive architectures is that a centralized architecture contains a single point of failure which,

from a military perspective, is both tactically and strategically risky [293]. As a result,

centralized architectures are becoming less of a preferred option in modern multi-agent

networks [203].

Decentralized data fusion (DDF) networks are more reliable than centralized net-

works and can operate successfully under conditions that would render centralized net-

works useless [89]. The primary source of robustness stems from the removal of any

single point of failure [112]. Removing the need for a single processing agent responsi-

ble for the entire network permits the loss of an arbitrary subset of data sources, without

incapacitating the entire network [91]. Second, DDF networks distribute the burden of

operating functions across the network [288]. The immediate benefit is to the lessening

of bandwidth constraints in arbitrary subsets of agents [205]. Third, the pure nature of

DDF networks implies modularity [186]. Since knowledge of a local subset of the entire

network is all that is required of any one data source, the network can become globally

dynamic without having an impact locally (i.e., modular) [182]. The added benefit of mod-

ularity is that it inherently permits the network to be made up of radically different data
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sources without having to consider their differences explicitly [90]. Once an architecture

has been identified, one will need to determine an appropriate fusion mechanism.

Decentralized filtering has recently incorporated sample based-techniques such as

particle filters [276], [115], [254], [107], with varying degrees of success [297], [115].

Particle filters are a nonlinear filtering method based on a Bayesian probability formula-

tion. Particle filters pose additional research questions over more common “parametric

methods". The questions of how to represent and relay the information content in a col-

lection of particles has provoked sporadic research attention and certainly is deserving of

more.

The central idea behind particle filtering is to approximate probability densities with

a set of independent and identically distributed (i.i.d.) random samples known as particles.

Under the Bayesian formulation, the particles are used to propagate and update filtering

densities. Their ability to represent arbitrary probability densities to any desired degree of

accuracy and ease of implementation have contributed to their increased use in multi-agent

decentralized data fusion scenarios [43], [120], [168].

The most notable disadvantage of using particle filters is the computational burden

they impose by requiring large numbers of samples to represent probability densities of

even modest dimensions. However, the availability and affordability of powerful comput-

ing resources is making questions concerning their computational burden less important,

and making them ideal candidates for use in multi-agent DDF formulations. Particle filters

will be discussed in greater detail in Section 2.5.

Many practical situations will often not be governed by linear models nor will sys-

tem disturbances be accurately represented with Gaussian statistics. Furthermore, the

types of probability density function that are surely to be encountered will likely be char-

acterized as exotic multi-modal densities requiring novel solution methods. The surplus

of nontraditional representations still requires innovative solution approaches in order to

allow practical decentralized particle filtering implementations.
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1.3 Proposed Approach

Motivating this dissertation is the lack of available practical decentralized particle

filtering techniques for use in multi-agent systems. The number of available algorithms

is limited when compared to the availability of their parametric counterparts. The filter-

ing benefits that particle filters offer along with the ability to realize them in multi-agent

scenarios are why they are chosen as the fusion method of choice in this dissertation.

There is an inherent geometrical structure associated with general nonlinear filtering

techniques, and with particle filtering algorithms specifically. This geometry is exploited

to increase levels of efficiency and robustness, through the use of differential geometry.

In particular, the wealth of analysis tools made available through the use of Riemannian

geometry are utilized.

The use of the synergy that exists between differential geometry and particle filtering

techniques is accomplished through projection operations. In the proposed approach, data

fusion doesn’t occur in traditional state space; instead, it occurs by projecting filtering

densities onto alternative fusion surfaces. The primary surface used is the n-dimensional

unit hypersphere. Once on the surface of the sphere, differential geometric tools and

information theoretics are used to describe relationships between probability densities,

and are ultimately used to select filtering densities for the fusion process.

1.4 Research Contributions

The following is a list of proposed novel research contributions of the research pre-

sented in this dissertation. To this author’s knowledge, none of the methods motivating the

proposed contributions have been realized and/or published within the available technical

literature.

1. We are able to demonstrate a never before used general framework for performing

particle filtering in decentralized architectures that is based on a non-Euclidean ge-

ometric interpretation of decentralized data fusion. Current decentralized filtering
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methods represent a dichotomy of techniques. The first class of methods requires

the ability to linearize models so that Kalman based methods can be used for de-

centralized data fusion. The second class of methods makes use of particle filtering

technology by requiring that complex filtering densities be represented with mix-

ture models for decentralized data fusion. Our framework relies on no such require-

ments.

2. Through our choice of Riemannian interpretation of the decentralized particle fil-

tering paradigm, we present a new method for conducting particle filtering in de-

centralized architectures that provides closed form calculations that are currently

unavailable in the general case.

3. We were able to adapt an algorithm capable of providing existence and uniqueness

guarantees for solutions to the decentralized particle filtering problem under mild

assumptions. Existence and uniqueness guarantees are not associated with existing

approaches unless under restrictive assumptions to the network topology or available

probabilistic representations.

4. We established a technology bridge between multiple research communities with

the differential geometric framework that permits access to previously unavailable

analysis tools.

5. We demonstrate, through empirical evidence, that an order of magnitude improve-

ment in computational performance over existing approaches is possible with the

proposed approach.

1.5 Dissertation Outline

Chapter 2 provides a thorough review of the relevant literature, covering topics such

as differential geometry, data fusion, and information theory. Also part of Chapter 2 is a

comprehensive literature survey of existing work that is most related to our own.
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Chapter 3 provides a systematic development of the proposed novel geometric par-

ticle filtering framework and algorithms to be used as a general solution approach to de-

centralized particle filtering.

Chapter 4 consists of a detailed description of the simulation environment used to

validate our approach. Additionally, simulation results and subsequent analysis are also

provided. A realistic scenario involving 2D localization of two mobile agents is used to

exercise the utility of the geometric particle filtering algorithm. Various operating condi-

tions were chosen, and a discussion of results obtained is given.

In Chapter 5, conclusions are stated, avenues worthy of further research are men-

tioned with justification, and the contributions of the research are restated. Following

the final chapter is an appendix where useful mathematical definitions from topology and

analysis are given to assist the reader who is unfamiliar with these topics.

7



II. Background

2.1 Chapter Overview

In the first chapter, we discussed the technology trend towards networked systems in

the framework of multiple data agents. The data fusion problem in a multi-agent system

was discussed along with system architectures. Statements regarding the benefits and

challenges associated with a decentralized data fusion architecture were made.

This chapter presents the necessary background for understanding differential ge-

ometry, and the unit hypersphere. The tools from differential geometry for performing

nonlinear filtering are described. The mathematical foundations of nonlinear estimation

using Bayesian techniques are developed. A special emphasis is given to particle filter-

ing techniques. Alternative approaches are also mentioned. Methods for sub-optimal

decentralized data fusion are further developed with details outlining their utility within

multi-agent networks. Furthermore, relevant concepts from information theory are pre-

sented in the context of their utility in future filtering presentations. The chapter ends with

a chronological presentation of the literature that is most closely related to the proposed

work.

2.2 General Differential Geometry

The purpose of this Section is to introduce basic concepts from differential geome-

try. Topics including manifolds, tangent spaces, geodesics, geodesic distance, exponential

maps, logarithmic maps, and others are presented. For more details the curious reader is

referred to the introductory works provided by Pressley [230]. More advanced presenta-

tions can be found in the texts of William Boothby [42], Manfredo do Carmo [57], and

John Lee [166].

2.2.1 Manifolds. A large portion of differential geometry is dedicated to the

study of curved surfaces known as manifolds. A manifold has several different definitions
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depending on what reference one is invoking. However, the differences are often times

insignificant and amount to merely vocabulary.

From an intuitive perspective, a manifold is a collection of elements that when ex-

amined in a local nature will resemble Euclidean space Rn. The collection of local sets

or patches are what are known as charts. The collection of all the charts covering the set

of local neighborhoods is known as an atlas. It is the collection of local neighborhoods

and the atlas that constitutes a manifold. To make these abstract notions more concrete,

the following definitions from Do Carmo [82] and Boothby [42] are presented. The def-

initions are also represented in Figure 2.1, which contains representations for a manifold

S, charts U1 and U2, and mappings φ1 and φ2.

Definition 2.2.1 (Chart). Let S be a set. A chart of S is a pair (U , φ) where U ⊂ S and
φ is a bijection between U and an open set of Rn. U is the chart’s domain and n is the
chart’s dimension. Given p ∈ U , the elements of φ(p) = (x1,x2, ....,xn) are called the
coordinates of p in the chart (U , φ).

Definition 2.2.2 (Compatible Charts). Two charts (U1, φ1) and (U2, φ2) of S, of dimen-
sions n andm, respectively, are smoothly compatible (C∞-Compatible) if either U1∩U2 =
∅ or U1 ∩ U2 6= ∅ and:

1. φ1(U1 ∩ U2) is an open set of Rn,

2. φ2(U1 ∩ U2) is an open set of Rn,

3. φ2 ◦ φ−11 : φ1(U1 ∩ U2) → φ2(U1 ∩ U2) is a smooth diffeomorphism (i.e., a C∞

invertible function with a smooth inverse).

Definition 2.2.3 (Atlas). A setA of pairwise smoothly compatible charts {(Ui, φi), i ∈ I}
such that ⋃

i∈I

Ui = S (2.1)

is a smooth atlas of S.

Given the above definitions, a more formal definition of a manifold can be stated

and can subsequently be found in Boothby [42].

Definition 2.2.4 (Manifold). A manifold denoted as S of dimension n, or n-manifold,
is a collection of objects known as points. Furthermore, every point resides in an open
neighborhood on S and has a continuous one-to-one mapping to an open set of the reals
of dimension n, Rn.
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A general manifold endowed with a well-defined topology is known as a topological

manifold, and is defined according to Boothby [42] as

Figure 2.1: The n-dimensional manifold Sn, neighborhood charts U1 and U2, and
homeomorphic mappings φ1 and φ2 (inspired by [12], [155])

Definition 2.2.5 (Topological Manifold). A manifold Sn of dimension n, or n-manifold,
is said to be a topological manifold if it possesses the following properties:

1. Sn is a Hausdorff space.

2. Sn is locally Euclidean of dimension n.

3. Sn has a countable basis of open sets.

To help clarify Definition 2.2.5, the following explanations are offered. For a man-

ifold to be a Hausdorff space implies that for any two distinct points there exists two

neighborhoods around those points, such that the intersection of the two neighborhoods is

the empty set. For the purposes of this dissertation if a manifold has a countable basis of

open sets simply, this means that there exists a countable number of coordinate neighbor-

hoods. Referring to Figure 2.1, there are two coordinate neighborhoods shown, and they

are defined by the following two pairs (U1, φ1) and (U2, φ2). According to the countable

basis axiom [82] given in Definition 2.2.5, there can only be a finite number of these coor-

dinate neighborhoods associated with the manifold Sn shown in Figure 2.1. For the sake

of completeness, the axiom also doesn’t preclude the possibility of there being a countably
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infinite number of coordinate neighborhoods. The interested reader can go to references

William Boothby [42], Manfredo do Carmo [57], and John Lee [166] if there is a desire to

explore the countably infinite aspect further. Before proceeding, the reader is advised that

from this point on it is assumed that all manifolds will, at a minimum, adhere to Definition

2.2.5.

A manifold that sufficiently mimics Rn, so that a differential operator can be defined,

is known as a differential manifold. More formally, a differential manifold is defined by

Morita [255] to be

Definition 2.2.6 (Differentiable Manifold). Let Sn be a topological manifold. Further-
more, let Sn possess an atlas comprised of a collection of charts A = {φi, i ∈ I} with I
denoting the integers and it is called a C∞ atlas if all of its coordinate changes φ2 ◦ φ−11

are also C∞ maps or smooth maps. Smooth, in this context, implies the ability to differen-
tiate as many times as desired. It is also stated that the atlas determines a C∞ structure
on S. Hence, a manifold with a C∞ structure is called a C∞ differentiable manifold or
simply a C∞ manifold or differential manifold.

For purposes of this discussion, one can adapt the following hierarchial structure for

manifolds. The largest class of manifolds are topological manifolds. Topological mani-

folds are equipped with just enough structure so that the notion of Euclidean space can

be defined, mainly the properties listed previously in Definition 2.2.5. A subset of topo-

logical manifolds are differentiable manifolds. Differential manifolds possess additional

structure over topological manifolds, as their name suggests. The purpose for imposing

the additional structure is usually so that a stronger resemblance to Euclidean space will

exists.

Having defined a differentiable manifold Sn, the final class of manifolds to be dis-

cussed are Riemannian manifolds. According to Do Carmo [82], Riemannian manifolds

are defined according to the following:

Definition 2.2.7 (Riemannian Manifold). A Riemannian manifold is a differentiable man-
ifoldMn that has associated to every point p ∈ Mn an inner product 〈·|·〉 that is sym-
metric, bilinear, and of positive-definite form (Riemannian metric) on the tangent space
Tp(M). Furthermore, the Riemannian metric for any pair of vector fields VF1 and VF2

that are differentiable in a neighborhood U of point p ∈ Mn, the function 〈VF1|VF2〉
will also be differentiable in the neighborhood U .
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It is common to see the Riemannian metric written as 〈τ 1|τ 2〉 = gS(τ 1, τ 2) for

tangent vectors τ 1 and τ 2 in the tangent space associated with point p (i.e., (τ 1, τ 2) ∈

Tp(S)) [166]. A differentiable manifold, along with a Riemannian metric (if it exists), are

together what defines a Riemannian manifold.

In the process of defining a Riemannian manifold, there was a need to utilize tangent

spaces and tangent vectors. The concepts for both tangent spaces and tangent vectors are

expanded upon in the next section.

2.2.2 Tangent Spaces. The tangent space, loosely speaking, is a vector space

generated through locally linearizing around point p on manifold S. The tangent space

is comprised of all tangent vectors to all curves passing through the point p at point p.

Additionally, the natural basis for the tangent space is formed by the partial derivatives

taken with respect to point p, a relationship that is represented by Figure 2.2.

Figure 2.2: Tangent space Tp(S) for point p on S with tangent vectors τ 1, τ 2, and τ 3
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The tangent space is comprised of vectors known as tangent vectors to S at p and

denoted as τ . A tangent space is formally defined as

Definition 2.2.8 (Tangent Space). Suppose the following set exists {Xp : X ∈ VF},
where Xp denotes the vector field associated with p ∈ S , X denotes a generic vector
field, and VF denotes the collection of all vector fields on S, and is known as the tangent
space to manifold S at point p denoted by:

VF =
⋃
p∈S

Tp(S). (2.2)

In order to fully take advantage of tangent spaces, there needs to be a means of re-

lating elements of two separate tangent spaces to one another. The necessary relationships

can be made by use of the operator known as a connection.

2.2.3 Connections. A connection is what allows the discussion of the relation-

ship between two points on S, more specifically a connection provides a mechanism for

defining movement from point p to point p′ on S. Movement is defined with respect to

each point’s tangent space. The relationship is defined more formally as [12], [149]:

Definition 2.2.9 (Connection). On a Riemannian Manifold S, a connection (also known
as covariant derivative), given a point p ∈ S, tangent vector τ ∈ Tp(S), and a smooth
vector field VF, is a map (τ ,VF) 7→ ∇τVF ∈ Tp(S), such that:

1. ∇τ (VF1 + VF2) = ∇τVF1 +∇τVF2

2. ∇(τ1+τ2)VF = ∇τ1VF +∇τ2VF

3. ∇τ (fVF)(p) = (τf)VF(p) + f(p)∇τVF

In other words, given a vector field VF, the connection takes a vector τ based at

point p to another vector (∇τVF) based at point p that depends linearly on the tangent

vector τ , linearly on the vector field VF, and follows the Leibnitz rule. Intuitively, a

connection is nothing more than a mechanism for transferring the tangent space across S.

The connection is what permits discussion of elements of one tangent space with respect

to elements of another tangent space, and can be thought of as taking on the same role

of the directional derivative of vector field VF in the direction of τ . In fact, the simplest

example of a connection is the traditional directional derivative in Euclidean space Rn.
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Figure 2.3: The connection between tangent spaces Tp(S) and Tp′(S).

Having just presented the concept of motion or movement along the surface of a

manifold S, it is natural to now present the differential geometric tool known as geodesics.

Geodesics are well suited for tasks involving motion along the surface of S.

2.2.4 Geodesics. Considering the surface of a smooth manifold S , if there exists

a curve that passes through points p and q on S with the property that the tangent vectors

along the curve are all parallel to one another, then curve γ is referred to as a geodesic.

Generally speaking, the geodesic can be thought of as being analogous to straight lines in

Euclidean space. Formally, geodesics on manifoldM are defined as follows [42], [82].

Definition 2.2.10 (Geodesic). For any two points p and p′ on the surface of the differen-
tiable manifold S there will exist an infinite number of curves connecting the two points
over a unit time interval defined as t ∈ [0, 1] and γ(0) = p and γ(1) = p′. The curve that
is characterized by the following equivalent properties:

1. γ̇(t) is constant for t ∈ [0, 1]

2. γ̈(t) = 0 for all t ∈ [0, 1]

3. All γ̇(t) with t ∈ [0, 1] are parallel.

will be a length minimizing curve, or geodesic, between the two points p and p′.
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Figure 2.4 depicts the geodesic that passes through both points along the surface of

S as a dashed line.

Figure 2.4: A geodesic curve γ along the surface of S

2.2.5 Manifold Mapping Operators. A tangent vector can be interpreted as

providing a sense of direction on the manifold S. Now, it is not a big leap to suggest

that since geodesics are a means of determining shortest length paths between two distinct

points p and q, and geodesics are defined uniquely by tangent vectors, that a natural

means for examining propagation along the manifold S can be established. In fact, the

above properties of geodesics lead directly to the definition of the manifold exponential

operator or exponential mapping. The exponential mapping is defined as [42]:

Definition 2.2.11 (Exponential Map). Let ExpMapp(τ ) = p(1), that is, the image of τ
under the exponential mapping is defined to be the point on the unique geodesic defined
by τ such that the parameter takes on the value of (+1), and stated more compactly by:

ExpMapp = {ExpMapp(τ ) : Tp(S)→ S | τ 7→ γ(1;p, τ )}, (2.3)

and is a one-to-one mapping between a neighborhood of point p and the tangent space
Tp(S).
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The exponential mapping is a useful tool in establishing a relationship between

Bayesian estimation and differential geometry given in Chapter III.

The inverse of the exponential map is the logarithmic map and is defined as

LogMapp(q) = ExpMap−1p (τ ) = τ . (2.4)

Note that the exponential and logarithmic mappings vary as the point p moves, and the

specific forms of the exponential and logarithmic operators depends on the manifold that

they are defined on. Figure 2.5 depicts the concepts of exponential and logarithmic map-

pings.

Figure 2.5: Exponential and logarithmic mappings

2.2.6 Completeness Assumption. According to Pennec [226], the following is

the definition of geodesic completeness:

Definition 2.2.12 (Geodesically Complete). A manifold is said to be geodesically com-
plete if the domain, of definition D of all geodesics can be extended to the set of reals
R.

From a practical perspective, the implication of Definition 2.2.12 is that there exists

a geodesic that is length minimizing between any two points residing on the manifold, if a
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manifold is geodesically complete. Furthermore, the exponential map will be defined for

all p ∈ S and τ ∈ Tp(S). Geodesic completeness is a natural segway to the Hopf-Rinow-

De Rham Theorem [166], which is both practically useful and historically significant. The

following theorem can be found in the text of Lee [166].

Theorem 2.2.1 (Hopf-Rinow-De Rham). A connected Riemannian manifold is geodesi-
cally complete if and only if it is complete as a metric space. Furthermore, on such a
manifold there always exists at least one length minimizing geodesic that passes between
any two points on the surface of the manifold.

Throughout the remainder of this dissertation any discussion concerning manifolds

will be under the assumption that the manifold is geodesically complete.

2.2.7 Comparison of Geometries. In general, standard mathematical operations

that exist in Euclidean vector spaces like simple addition and subtraction do not exist on

Riemannian manifolds. The role of such operations can be interpreted as being provided

by operations such as exponential maps and logarithmic maps. To solidify this fact, Ta-

ble 2.3.2, courtesy of [299], shows a comparison of the operations in a vector space and

the corresponding operations on a general Riemannian manifold. The correspondences

Table 2.1: Relationship between arithmetic operations of addition and subtraction that are
available in Euclidean vector spaces and the corresponding operations that are available on
Riemannian manifolds. (After [299])

Operation Euclidean Space Riemannian Manifold

Subtraction x = p− q x = LogMapp(q)

Addition p = q + x q = ExpMapp(x)

Distance D(p‖q) = ‖q− p‖ D(p‖q) = ‖x‖p

Mean Value
n∑
i=1

(pi − p) = 0
n∑
i=1

xpi = 0

Gradient Descent pt+ε = pt − ε∇Cut (pt) pt+ε = ExpMappt
(−ε∇Cut (pt))

Geodesic Interpolation p(t) = p0 + tp0p1 p(t) = ExpMapp0
(tp0p1)

17



shown in Table 2.3.2 are particularly useful in that they allow generalizing algorithms that

are valid in vector spaces to Riemannian manifolds. A Riemannian manifold of particu-

lar interest in this dissertation is the unit sphere. The unit sphere has a well understood

geometry, and this, along with a natural relationship with traditional Bayesian estimation

theory, make it a valuable curved surface in the context of this dissertation. As a direct

consequence, the unit sphere is given a thorough geometric description in the next Section.

2.3 The Unit Sphere: Sn

The constructs that will be the most useful in this endeavor can be defined specif-

ically for the manifold known as the unit hypersphere. A sphere is a well studied ge-

ometrical entity and serves as an illustrative manifold for several differential geometry

presentations. It should be noted that throughout this section, the unit sphere associated

with R3 will be used as a means of solidifying the concepts, but all topics mentioned are

naturally extendable to higher dimensions.

2.3.1 Definitions & Relationships. An assumption that is made in this disserta-

tion is that any two probability density functions that will be compared will reside on the

same manifold and are close enough to make the analysis methods relevant and valid. The

phrase close enough is somewhat vague and lacks any mathematical rigor. In an attempt

to make more formal the definition we introduce the concept of injectivity radius. The

injectivity radius denoted as inj (p), is defined as [228]

Definition 2.3.1 (Injectivity Radius). The injectivity radius at a point p ∈ Sn is the largest
radius r such that the ball B (0, r) ⊆ Tp(Sn) is an open ball, implying that the exponential
mapping

ExpMapp : B (0, r)→ B (p, r) , (2.5)

is a diffeomorphism.

Under the assumption that a manifold Sn is a geodesically complete Riemannian

manifold, of interest here is the subset of tangent vectors such that the geodesic is defined

as

γ(t) 7→ ExpMapp(t · τ ), (2.6)
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where t is used to denote the parameterization on the tangent vector. The geodesic defined

in Equation (2.6) is the length minimizing geodesic up to γ(t) = 1 + ε for ε > 0. If we

denote the subset of tangent vectors to be ST, an interesting result is the concept of cut

locus. Formally, the cut locus is defined as [57]

Definition 2.3.2 (Cut Locus). If an exponential mapping is a diffeomorphism from ST
onto its image defined as ExpMapp(ST) ∈ S , then the portion of the geodesic that re-
mains, (ie S − ExpMapp(ST)), is equal to ExpMapp(∂ST) and is defined as the cut
locus of p, provided that the remaining set is not the empty set, S − ExpMapp(ST) 6= ∅.

Stated in a slightly different way, the maximum definition domain D where the

exponential map is a diffeomorphism can be determined by setting t ∈ [0,∞) and cal-

culating the geodesic such that it is a minimizing geodesic along it’s entire path or up to

some point tm <∞ and not for any point past tm on the geodesic. The point tm is known

as a cut point. Given the Definition 2.3.2, a direct consequence is that the injectivity radius

defined in 2.3.1 is now equal to the distance from a point p to the cut locus of point p and

is defined to be

inj (p) = D(p‖Cut (p))

= inf
p′∈Cut(p)

D(p‖p′).
(2.7)

Furthermore, the manifold S can be defined as

S = ExpMapp(ST) ∪Cut (p) . (2.8)

Consider the following example using the unit Sphere Sn. When regarding the unit sphere,

the cut point is synonymous with the antipodal point and is defined on the unit hypersphere

as

Cut (p) = {−p} on Sn (2.9)

The collection of all cut points of p along all geodesics is the cut locus Cut (p). It should

be noted that caution in representation is required. According to Pennec [226], the cut

locus on the sphere can take on multiple representations due to the fact that there are an
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infinite number of geodesics that can originate at point p and end at −p. This is due to

the fact that each of the geodesics are determined through the exponential map of different

tangent vectors.

2.3.2 Analytical Tools. Recall that geodesics were defined generically to be the

path along the surface that connects two points and can be considered as a generalization

of the concepts of lines and planes in R2 and R3 respectively. Consider the unit sphere in

Figure 2.6 defined as

Figure 2.6: The unit sphere embedded in R3

S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1}. (2.10)

The sphere defined in Equation (2.10) is actually a submanifold that is embedded in Eu-

clidean R3 space. The following are the definitions for an immersion, an embedding, and

a submanifold respectively, according to Do Carmo [82] and Warner [295]
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Definition 2.3.3 (Immersion, Embedding, Submanifold). Let φ : Sn → Rn+1 be a C∞

mapping. Then:

1. φ : S → R is known as an immersion if ∂φp : Tp(S) → Tφ(p)R is injective for all
elements p ∈ S.

2. If in addition φ is a homeomorphism onto φ(Sn) ⊂ Rn+1, where φ(Sn) has the
subspace topology induced from Rn+1, then φ is known as an embedding.

3. If Sn ⊂ Rn+1 and the inclusion i : S ⊂ R is an embedding, then Sn is known as a
submanifold of Rn+1.

The embedding of a unit hypersphere Sn into the larger Rn+1 space leads to an

intuitive interpretation of the tangent space Tp(Sn) located at any point p on Sn, and is

depicted in Figure 2.7. The tangent space is simply defined as

Tp(Sn) = {τ ∈ Rn+1 | 〈τ |p〉 = 0} (2.11)

where 〈τ |p〉 is the usual inner product. The implication here is that the sphere possesses

Figure 2.7: The tangent space Tp(Sn) at point p on the unit sphere, p ∈ Sn
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a Riemannian metric by virtue of the embedding. The metric is a bilinear mapping

gSn : Tp(Sn)× Tp(Sn)→ Rn+1, (2.12)

and is defined for all points p residing on the sphere and is denoted by

gSn(τ 1, τ 2) = 〈τ 1|τ 2〉, τ 1, τ 2 ∈ Sn, (2.13)

with

〈τ 1|τ 2〉 = τ T1 τ 2. (2.14)

Additionally, given any two points p and p′ on the surface of the sphere, the length of the

geodesic connecting the two points can be determined according to

D(p‖p′) = arccos(〈p|p′〉). (2.15)

Geodesics on the unit sphere Sn embedded in Rn+1 are defined precisely by great circles

[166], a segment of which is shown in Figure 2.8 connecting points p and p′. Equation

(2.15) can be used to describe elements that reside on the surface of the unit sphere in

addition to the tangent vectors; a property that is not generally true if considering alternate

parameterizations or surfaces. The reason is due to the fact that the unit sphere is actually

embedded in Rn, hence it inherits the typical notion of distance as defined in Euclidean

space.

There are multiple expressions for the actual geodesic which depend on the choice

of parameterization. A particularly useful parameterization is with respect to the direction

of tangent vectors. Under this particular parameterization, the curve that connects two

points on the surface of the sphere is the geodesic defined according to Equation (2.16) as

γ(t) = cos(t)p + sin(t)
τ

‖τ‖
, (2.16)
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Figure 2.8: Geodesic γ(t) connecting p and p′ is a segment of a great circle on Sn

where tangent vector τ ∈ Tp(Sn).

Recalling Equation (2.3), which defines the exponential map, and substituting Equa-

tion (2.16) yields a simple analytic expression for the exponential map, which is defined

as

ExpMapp(τ ) = cos(‖τ‖)p + sin(‖τ‖) τ
‖τ‖

. (2.17)

Finally, the logarithmic map defined in Equation (2.4) takes the geodesic with endpoint p′

with respect to starting point p and maps to the unique tangent vector τ that at t = 0 is

tangent to point p in the direction of endpoint p′ and has constant velocity over an unit

interval. The logarithmic map is expressed as

LogMapp(p′) = τ . (2.18)
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Equation (2.18) is calculated by the following two steps

τ 1 = p′ − 〈p′|p〉p (2.19)

τ =
τ 1 arccos(〈p′|p〉)√

〈τ 1|τ 1〉
(2.20)

Both the exponential map and the logarithmic map are shown in Figure 2.9. Equation

Figure 2.9: The exponential and logarithmic maps for the unit sphere Sn

(2.17) provides a means of calculating movement on the manifold Sn and Equations (2.19)

and (2.20) provide a means of expressing the movement on the manifold in terms of tan-

gent vectors in the tangent space. Table 2.3.2 summarizes the tools available for the unit

n-Sphere [145].
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Table 2.2: Key tools that are available for working on the unit n-Sphere. This
table is a partial replication of a table found in [145].

Name Operations for Unit n-Sphere: Sn

Elements Sn = {τ ∈ Rn+1 | τ T1 τ 1 = 1}

Tangent Space Tp(M) = {τ ∈ Rn+1 | τ T1 τ 2 > 0}

Projection Operator Pp : Rn+1 → Tp(Sn) : τ 7→ Pp(τ ) =
(
I − ppT

)
τ

Tangent Vector τ � 〈τ |p〉 = 0

Inner Product 〈p|p′〉 = pTp′ ∈ Rn+1

Vector Norm ‖τ‖ =
√
〈τ |τ 〉

Distance D(p‖p′) = arccos(pTp′)

Exponential Map ExpMapp(τ ) = cos(‖τ‖)p + sin(‖τ‖) τ
‖τ‖

Logarithmic Map LogMapp(p′) = (p′−〈p′|p〉p) arccos(〈p′|p〉)√
1−〈p′|p〉2

Curvature C = 1
r2
, (Unit Hypersphere: Sn C = 1)

Injectivity Radius π

Convexity Radius π
2

Cut Locus Cut (p) = {−p} on Sn
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This concludes the presentation of differential geometry concepts. The next section

is concerned with topics from data fusion models, architectures, and methods with an

emphasis on particle filtering theory.

2.4 Data Fusion

Data fusion seems like a rather simple term to interpret and define. Data fusion

methods play crucial roles within countless scientific disciplines. However, the wide

spread use of data fusion methods has also led to more than a few challenges. For ex-

ample, wide spread usage has been cited by various authors [172], [117] as the likely

cause for the multiple definitions that can be found throughout the literature.

In general, as mentioned in Section 1.1, data fusion can be defined generically as the

process of assimilating data from multiple sensors/sources in order to obtain a coherent

and improved representation of what is being fused. Sources of data could originate from

two or more sources collocated or spatially separated. The confusion resides in the vast

range of environments that can be considered, and the equally as daunting volume of data

sources available.

Measurement data obtained from real sensors will always be riddled with imperfec-

tions. Presumably data is collected for a purpose. Given a purpose and the presence of

uncertainty in the data, a need often arises for delineating between the usable data and

the corrupt data. The removal of uncertainty from data is often a task allocated to a data

fusion process.

2.4.1 Common Models for Data Fusion . Models, in the context of Bayesian

data fusion, are used to describe the physics that govern a particular process or measure-

ment, and potentially their relationship. In a more general context, models are used as a

means of defining, guiding, and potentially halting a particular procedure. The individual

pieces of the overall data fusion model may consist of sensing tasks, processing tasks, de-

cision making tasks, communication tasks, etc. Buried inside each one of these processes
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are numerous others that are required to be performed. Clearly, the level of complexity

of a data fusion process can quickly become overwhelming if considered in its entirety.

Nevertheless, there is need for such models and a few of the existing models are briefly

described next.

In the mid 1980’s, the U.S. Department of Defense (DoD) assembled a group of

individuals and presented them with the task of developing a model for data fusion. The

name of the group was the U.S. Joint Directors of Laboratories (JDL) data fusion group.

In 1985 they published the original edition of the JDL data fusion model [294], and it

is depicted in Figure 2.10. The primary need for the JDL model resided, at the time,

within the DoD, due to a lack of standardized terminology and competing requirements

that rendered agency to agency collaborations practically impossible [131].

Figure 2.10: Data fusion model published by the Joint Directors of Laboratories (JDL)
[294].

After the initial success of the first JDL model, several suggestions from multiple

research communities were offered for improvement. In 1998 a 2nd edition was released,

and by all accounts is still the most widely used data fusion model for functional de-

scriptions and classification tasks [172], [267]. The revised model can be seen in Figure

2.11, [266].
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Figure 2.11: Revised data fusion model published by the JDL in 1998, and can be found
in [266].

As can be seen in Figure 2.11 there exists a total of 5 levels at which fusion can take

place within a process. These are: [116]

1. Level 0: Sub-Object Assessment - Fusion at the raw measurement level prior to

any signal processing. Fusion occurs typically at the pixel or signal level. Level 0

offers an opportunity to separate and prioritize data from multiple sources.

2. Level 1: Object Refinement - Measurement-to-track association and state estima-

tion. Level 1 is the level at which kinematic data gets fused and data association

takes place.

3. Level 2: Situation Refinement - Object clustering or grouping in order to deter-

mine relationships. A higher level of data assessment than level 1 and usually in-

volves heuristic analysis techniques.

4. Level 3: Impact Assessment - Threat assessment, estimation of intent, and predic-

tion of consequences. The projection of the current assessment into the future to

classify process options.
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5. Level 4: Process Refinement - Resource management and adaptive processing. A

decision maker resides at this level and monitors long term process health, identifies

need information, and allocates resources based on information deficiencies.

Other models that can be found in the data fusion literature and are worthy of men-

tion here include a model produced by Dasarathy [78], the waterfall model of Bedworth

et al., [190], Boyd’s model [45], and the Omnibus model [30]. The interested reader is

steered towards the associated references for further detail.

2.4.2 Non-Bayesian Data Fusion Methods. Traditionally, the tool that is most

likely to be used for performing data fusion functions is Bayesian probability theory, as

seen by the numerous Kalman filters, Kalman-like filter variants, and more recently par-

ticle filters found throughout the data fusion literature. However, additional tools have

become available, including interval calculus [238], fuzzy logic [73], Dempster-Shafer

(DST) or Evidence Theory [253], Neural Networks (NN) [290], fuzzy logic with the the-

ory of possibility [303], Linear and Logarithmic Opinion Pools [2], category theory [270],

and Dezert-Smarandache Theory (DSmT) [101]. There exist still more methods and tech-

niques and new ones are regularly being published. Bayesian methods are chosen as a

starting point in our endeavor and will be presented next.

2.4.3 Parametric Bayesian Data Fusion Methods. In the time since the original

publication by Kalman [148] regarding his now famous filter, there have been numerous

attempts to extend the original filter to address situations described by nonlinear mod-

els and/or non-Gaussian noises, to include [16, 27, 46, 58, 109, 128, 147, 192, 193, 271].

These references represent a small sampling of the more popular ones, and represent a

good starting point for anyone interested in Bayesian estimation and nonlinear filtering

techniques.

2.4.3.1 Extended Kalman Filter (EKF) Fusion. The extended Kalman fil-

ter, perhaps the most widely known technique, is based on approximations of the nonlinear
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functions used to describe the process model and/or measurement model. The extended

Kalman filter has been implemented with varying degrees of success and is known to

suffer from two significant drawbacks. First, the extended filter relies on a linear approx-

imation by using a first order Taylor series expansion of the models. If the nonlinearities

present in the system become severe enough and higher order disturbances begin impact-

ing the filter’s performance, filter divergence will be the likely result. The second issue

is that there is a Gaussian assumption in the EKF framework that will likely become vio-

lated in some problems. The reason for the non-Gaussian disturbances is that when passed

through a nonlinear model, there is no guarantee that a Gaussian noise disturbance will

remain Gaussian.

Unlike the linear Kalman filter, there is no guarantee of bounded error or optimality

accompanying the extended Kalman filter. The extended Kalman filter has the requirement

that the Kalman gain and system covariance must be computed online. This is because

they are functions that are dependent on the actual estimates and measurements. The ex-

tended Kalman filter may fail in situations where the system under consideration exhibits

significant degrees of nonlinearity. Under low to moderate nonlinearities, the filter has

been shown to yield reasonable results [237], [152], [208]. Finally, the extended Kalman

filter requires that the nonlinearities under consideration be continuous. If they are not

continuous, then this class of filter cannot be used [46]. In situations where this is the case

the designer must consider alternatives. One such alternative gaining popularity is known

as the unscented Kalman filter.

2.4.3.2 Unscented Kalman Filter (UKF) Fusion. The extended Kalman

filter was premised on the fact that a suitable linear approximation for the system nonlin-

earities could be obtained. There is another possibility. Instead of trying to approximate

the nonlinear functions through linearization techniques, what if the actual probability

density function could be approximated [249]? This is the basis for the Unscented Kalman

filter (UKF). Conceptually, the UKF approximates the probability density function with

a set of deterministically chosen sample points which are transformed through the sys-
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tem nonlinearities [140]. The approximation technique is refereed to as the unscented

transform (UT) [141].

The UT is a method of calculating the first two moments of a probability density

function. The UT is based on the idea that “it is easier to approximate a probability density

function than to approximate an arbitrary nonlinear function [137]." The suggestion here

is that the state can be approximated by a set of deterministically chosen points in such a

way that their sample mean and covariance faithfully represent the actual corresponding

model state and covariance.

The following explanation is an intuitive description of the top level workings of the

UKF. A system of nonlinear functions are used to propagate each sample point to yield a

set of transformed points. Then the mean and covariance of the set of transformed samples

are assumed to represent the mean and covariance of the filter states.

The basic UT may produce erroneous results in the situation that the number of state

dimension exceeds 3. However, there are multiple examples within the data fusion liter-

ature of successful applications of the unscented Kalman filter with state dimensions that

exceed 3. Some notable examples include [163], [165], and [194]. The most noticeable

issue according to Šimandl [196], is due to the predicted measurement covariance and its

ability to no longer be classified as positive definite. Many researchers have explored this

problem and designed fixes including the scaled unscented transform [143], and the re-

duced UT [142]. Another alternative is based on Gauss-Hermite quadrature rule and was

presented in [125].

However, the unscented Kalman filter is still tied to the Gaussian assumption. To

fully relieve the constraints imposed by requiring Gaussian noise statistics and linearity

requirements, yet still more alternatives need to be considered. In the context of decen-

tralized data fusion, the following section highlights several popular methods currently in

use, chief among them is a technique that has become known in the literature as particle

filtering or sequential Monte Carlo (SMC) filtering.
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2.5 Particle Filters

The Bayesian filtering framework is used to estimate some quantity of interest typ-

ically referred to as states. The Bayesian framework requires two probabilistic models.

The first model represents how the state of a system will evolve over time and is typically

called a process model [109] or propagation model [17]. The second model relates avail-

able noisy measurements to the states of interest and is often referred to as either a mea-

surement model [192] or an observation model [52]. Additionally, the Bayesian approach

imposes the added burden of requiring a prior probability be available upon initialization.

The aforementioned burden rarely is a source of concern. Generally, the prior probability

is formulated through either experience with the models being used, intuition regarding

the scenario being considered, or some combination of these and/or additional factors.

Once all of the required components are obtained, the goal of the Bayesian recursion is to

calculate an estimate of the posterior density p(xk | Zk). The Bayesian filtering process is

comprised of two steps, corresponding to the two required models mentioned previously.

In a general manner of speaking, Equation (2.22) can be seen as an incorporation of the

information about the prior state xk−1 available from the collection of measurements up

to time k − 1, denoted as Zk−1 in an attempt to predict the current state xk prior to the

incorporation of a measurement. Hence, a prediction or propagation step is performed

using the process model and is realized with

p(xk | Zk−1)︸ ︷︷ ︸
prior density

=

∫
p(xk | xk−1;Zk−1)p(xk−1 | Zk−1) dxk−1 (2.21)

=

∫
p(xk | xk−1)︸ ︷︷ ︸
transitional density

p(xk−1 | Zk−1)︸ ︷︷ ︸
posterior density

dxk−1. (2.22)
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The second step corresponds to the measurement model that relates noisy measurements

to states and is performed according to the following

p(xk | Zk)︸ ︷︷ ︸
posterior density

=
p(zk | xk,Zk−1)p(xk | Zk−1)

p(zk | Zk−1)
(2.23)

=

likelihood︷ ︸︸ ︷
p(zk | xk)p(xk | Zk−1)

p(zk | Zk−1)︸ ︷︷ ︸
evidence

, (2.24)

where

p(zk|Zk−1) =

∫
p(zk|xk)p(xk|Zk−1) dxk. (2.25)

Intuitively one can think of the update procedure as incorporating the evidence produced

by the measurement. The evidence is used to “adjust" the posterior by the newly acquired

data. Equations (2.22) and (2.24) form the basis for the Bayesian recursion.

Now, the ugly truth of the matter is that the recursive propagation of the posterior

density, in most situations of practical interest, is simply not feasible. The primary reason

is the need to solve multidimensional integrals that are usually only tractable in linear

Gaussian systems [46], [27]. In fact, analytical solutions exist in only a handful of special

cases, most notably when the models are linear and the noises are Gaussian, in which case

the classical Kalman filter [148] provides the optimal solution. Hence, there arises a need

to investigate filtering methods that can account for the nonlinearities and non-Gaussian

noise disturbances, both of which often are needed to adequately describe realistic filtering

scenarios. A viable method gaining more and more popularity in the data fusion literature

is know as Sequential Monte Carlo (SMC) filtering or simply particle filtering.

Particle filtering techniques have seen a significant amount of research attention

in the past decade. However, the beginnings of particle filtering can be traced back as

far as the late 1940s. It was during this time that Nicolas Metropolis proposed studying

dynamic systems by investigating the time evolution behaviors of a set of samples rather

than focusing on individual samples [195, 257]. In the 1950s, sequential Monte Carlo
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techniques can again be found in the scientific literature [198], [133]. The 1970s saw the

controls community make mention of Monte Carlo methods [118], [129], [7]. However,

the use of monte carlo methods did not solicit much enthusiasm, mainly because of the

lack of affordable computing power available at the time [79].

It wasn’t until the seminal work presented in 1993 by Gordan et al., [108] that par-

ticle filtering found mainstream use in engineering and science applications. The increase

in particle filter related work over the past decade can be seen in the following survey

articles [175], [20], [229], [55].

2.5.1 Monte Carlo Integration. A need often arises in nearly all fields of math-

ematics, engineering, and science to perform laborious and time consuming integrations.

In fact, integration can be considered a foundational tool for any researcher in a techni-

cal field. Estimation is no exception when it comes to the need to be able to integrate.

As is often the case, consider the task of evaluating a multidimensional integral, given

generically in Equation (2.26)

I =

∫
g(x)dx, x ∈ Rn. (2.26)

More often than not, integrals in the form given in Equation (2.26) will require a numerical

method in order to evaluate the integral. In the context of estimation, a popular numerical

method is the Monte Carlo approach to solving integrals. Essentially, the Monte Carlo

approach to solving Equation (2.26) would be to factor the integrand such that

g(x) = f(x)p(x), (2.27)

with the conditions that

p(x) > 0 and
∫

p(x)dx = 1. (2.28)
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The new expression, p(x), in Equation (2.27) can be interpreted as a probability density

function. Of value to the integration need is the fact that p(x) can be interpreted as a

probability density function that can be sampled. The ability to sample from a probability

density function is at the core of the Monte Carlo integration approach.

Monte Carlo integration capabilities provides distinct advantages over other numer-

ical methods. First, to sample from a probability density function allows one to disregard

multidimensional integration, and only consider their discrete counterparts in the form of

algebraic sums [296]. Second, by virtue of incorporating a probability density function

in the factorization of an integral, one can be assured that samples will be drawn from ar-

eas of high probability. Sampling from only high probability regions helps guard against

wasted computation by ignoring regions of low probability, a luxury not afforded to con-

tinuous time integration. So, if a sufficiently large number of samples (i.e., N � 1) can

be drawn in accordance with the probability density p(x), then the Monte Carlo estimate

of the integral takes the following form

I =

∫
f(x)p(x)dx, (2.29)

which is merely the arithmetic mean of the samples. That is

IN =
1

N

N∑
i=1

f(x)δ(x− xi), (2.30)

where xi is the ith sample drawn in accordance with p(x). Figure 2.12 represents the

Monte Carlo sample representation of a Gaussian probability density along with a contin-

uous representation and the associated contours of the density for comparison.

An argument based on the strong law of large numbers can be made which, states

that the average of the many i.e., N → ∞ independent random variables with a common
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Figure 2.12: Gaussian probability density function, 1000 monte carlo samples, and
associated contour plot.

mean and finite variance will converge to their common mean almost surely

IN =
1

N

N∑
i=1

f(x)δ(x− xi) (2.31)

=
1

N

N∑
i=1

f(xi) (2.32)

a.s.−−−→
N→∞

∫
f(x)p(x) dx (2.33)

where a.s. means almost surely. Additionally, if the variance of f(x) is finite

σ2 =

∫
(f(x)− I)2p(x)dx <∞ (2.34)

then the central limit theorem holds, and the error in estimation converges in distribution

to a zero-mean Gaussian as [16], [46]

lim
N→∞

√
N(IN − I)→ N (0, σ2) (2.35)

The error convergence can be attributed to the fact that the samples that are taken auto-

matically come from regions in state space with high probability.
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From the Bayesian estimation perspective the probability density p(x) can be in-

terpreted as the posterior probability density [46]. The Bayesian approach to estimation

often requires integration of high dimensional densities in order to render estimates. Un-

less the integral is tractable, which is rarely the case, numerical techniques are required for

evaluating the integrands in the Bayesian recursion. Unfortunately, the number of samples

to evaluate both f(x) and p(x) increases dramatically with the dimensionality of the state

space [46]. In response to the growth in required samples, it was stated previously that one

of the benefits of choosing Monte Carlo integration techniques is that there is no longer a

requirement to integrate over the entire space – just regions of high probability.

The above analysis is premised on the ability to sample from the density p(x) di-

rectly. In practice this is virtually impossible due to the nature of the density typically

being multidimensional, non-Gaussian, and only known up to a constant of proportional-

ity [46]. To overcome this fact, the technique of importance sampling can be employed.

2.5.2 Importance Sampling. Importance sampling is a numerical technique that

can be used to mitigate the impact of not being able to sample from a true underlying

probability density. Generally speaking, importance sampling is a method of drawing

samples from one density (often referred to as a proposal density or an importance density)

in order to evaluate the expectation of another probability density by applying appropriate

weighting. Importance sampling can be viewed as a generalization of the Monte Carlo

integration previously presented [46], and is represented as a rewrite of Equation (2.26)

such that

I =

∫
g(x)dx (2.36)

=

∫
f(x)p(x)dx (2.37)

=

∫
f(x)

p(x)

q(x)
q(x)dx (2.38)
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such that ∫
q(x)dx = 1, and

p(x)

q(x)
is bounded above (2.39)

The probability density represented by q(x) is the so-called proposal density. Notice

that q(x) is used to generate samples from f(x) in a nonuniform manner. Sampling

in this fashion facilitates the selection of samples from f(x) with higher probabilistic

implications. The authors in [46] say that the similarity between f(x) and q(x) can be

captured through the enforcement of the following constraint

f(x) > 0⇒ q(x) > 0, ∀x ∈ Rn. (2.40)

Essentially, the condition in Equation (2.40) stipulates that samples taken from the pro-

posal density q(x) will, at a minimum, be defined within the same portion of space, but

can be defined over a larger region that encompasses the valid support domain of the func-

tion f(x). This is also known as sharing a common sample support [304].

Within the Bayesian estimation framework, Monte Carlo samples generated from

Equation (2.38), should consist of a large number of independent samples generated ac-

cording to the proposal density. This will result in the weighted sum given by

IN =
1

N

N∑
i=1

f(x(i))w̃(x(i)), (2.41)

where the weights (w̃) are defined according to the quotient of density functions p(x(i))

and q(x(i)) i.e.,

w̃(x(i)) =
p(x(i))

q(x(i))
, (2.42)

and the tilde is used to denote the fact that the weights are not normalized. In order to

actually calculate Equation (2.41), one will require access to the entire true or desired

density p(x). Having access to p(x) in any practical situation of interest will likely not

be the case. For this reason, the equality in Equation (2.42) should be replaced with
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proportionality, i.e., [16]

w̃(x(i)) ∝ p(x(i))

q(x(i))
. (2.43)

Although subtle, this fact needs to be addressed, otherwise the whole concept of impor-

tance sampling becomes invalid. After all, sampling from a probability density that isn’t

the true probability density will produce invalid importance weights [46]. One must now

consider if there exists a meaningful way, in which the importance weights should be

normalized? The short answer is yes.

First, consider the fact that Equation (2.36) can be rewritten into the following form

I =

∫
g(x)w̃(x)q(x)dx∫
w̃(x)q(x)dx

, (2.44)

since ∫
w̃(x)q(x)dx =

∫
p(x)dx = 1. (2.45)

Now, take the samples generated from using the proposal density, the corresponding im-

portance weights, and substitute them into Equation (2.44) to obtain

IN =

N∑
i=1

w̃(x(i))g(x(i))

N∑
j=1

w̃(x(j))

(2.46)

=
N∑
i=1

w(x(i))g(x(i)). (2.47)

The weights represented in Equation (2.47) can now be normalized. The normalization

procedure is accomplished according to

w(x(i)) =
w̃(x(i))
n∑
i=1

w̃(x(i))

(2.48)
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Figures 2.13, 2.14, and 2.15 provide an illustration of the importance sampling process

and the increase in approximation accuracy associated with the increase in the number of

samples taken. With regards to Figures 2.13, 2.14, and 2.15, the goal is to try and approxi-

mate a Gaussian probability density function through the use of importance sampling. The

green probability density is a uniform density defined on the interval ±4, and is used as

the proposal or importance density.
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Figure 2.13: Importance sampling with 100 samples.

2.5.3 Sequential Importance Sampling (SIS). Importance sampling was just

shown to address the issue of not being able to sample directly from a so-called true den-

sity. The practical issue with the presentation to this point is that importance sampling

has been cast as a sort of batch estimation method, in the Bayesian sense. The batch in-

terpretation stems from the fact the collection importance weights must be recalculated

whenever a new measurement is to be used. In an attempt to extend the method of impor-

tance sampling to cases where it is desired to be able to formulate a recursive estimation

scheme, Sequential Importance Sampling (SIS) has been developed to this end.
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Figure 2.14: Importance sampling with 1000 samples.
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Figure 2.15: Importance sampling with 10000 samples.
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In SIS, the purpose is to derive an estimate of the posterior density p(xk | zk) using

the prior density p(xk−1 | zk−1) and the new measurement zk. In particle filtering terms,

the goal is to produce new samples and their associated weights using the old samples and

old weights [46].

Recall that one of the benefits to particle filtering approaches is the lack of restric-

tions placed upon the process and measurement models. Restrictions in the form of the

necessity for linear filtering models and/or stochastic disturbances having to be described

solely by Gaussian statistics. So the only way to represent the posterior density in a

Bayesian framework is through the following iteration

p(Xk | Zk) =
p(zk | Xk,Zk−1)p(Xk | Xk−1)

p(zk | Zk−1)
(2.49)

=
p(zk | Xk,Zk−1)p(xk | Xk−1,Zk−1)p(Xk−1|Zk−1)

p(zk | Zk−1)
(2.50)

=
p(zk | xk)p(xk | xk−1)

p(zk | Zk−1)
p(Xk−1 | Zk−1), (2.51)

where the use of the capital letters X and Z denotes the entire time history up to and

including the indicated time iteration of states or measurements respectively. The denom-

inator p(zk | Zk−1) can be viewed as just a normalizing constant such that the expression

in Equation (2.51) can be written according to

p(Xk | Zk) ∝ p(zk | xk)p(xk | xk−1)p(Xk−1 | Zk−1). (2.52)

The key assumption to make this algorithm legitimate is that the proposal density adheres

to the following form [16], [46]

q(Xk | Zk) = q(xk | Xk−1,Zk)q(Xk−1 | Zk−1). (2.53)

This assumption is not particularly unrealistic, nor is it unreasonably restrictive. The fol-

lowing interpretation of the assumption expressed in Equation (2.53) is provided. Equation
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(2.53) simply suggests that the state at time k and older are independent of the measure-

ment at time (k − 1).

The SIS version of a particle filter attempts to provide estimates of the posterior

density through a large number of samples N � 1. If the samples can be taken from the

posterior, then an expression for the posterior estimate can be given as

p(xk | Zk) ≈
N∑
i=1

w(x
(i)
k )δ(xk − x

(i)
k ). (2.54)

In the unlikely situation that all of the samples are generated from the true probability

density, each of the weights given in Equation (2.54) should all be set to one, which implies

that all of the samples are equally likely. Finally, according to the law of total probability,

which states that the sum of the weights must equal 1, the estimate in Equation (2.54)

should be multiplied by 1
N

, where N is the total number of samples.

If the samples x(i)
k in Equation (2.54) were drawn from the proposal density instead

of the posterior density, which is likely the case, then according to Equation (2.42) the

weights can be expressed in the form

w
(i)
k ∝

p(x
(i)
k | zk)

q(x
(i)
k | zk)

. (2.55)

With the availability of Equations (2.52) and (2.53), the development of the weight update

given in Equation (2.55) can be derived according to the following method

w
(i)
k ∝ p(x

(i)
k | zk)

q(x
(i)
k | zk)

(2.56)

∝
p(zk | x(i)

k )p(x
(i)
k | x

(i)
k−1)p(X

(i)
k−1 | Zk−1)

q(x
(i)
k | X

(i)
k−1,Zk)q(X

(i)
k−1 | Zk−1)

(2.57)

= w
(i)
k−1

p(zk | x(i)
k )p(x

(i)
k | x

(i)
k−1)

q(x
(i)
k | X

(i)
k−1,Zk)

. (2.58)
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The ability to recursively update the importance weights can be can now be realized,

Furthermore, the ability to recursively update the importance weights permits the rewriting

of Equation (2.54) in the following manner

p(xk | zk) ≈
N∑
i=1

w
(i)
k δ(xk − x

(i)
k ), (2.59)

where the weights are normalized according to Equation (2.47).

2.5.4 Resampling. The sequential importance sampling algorithm just presented

forms the basis for a generic particle filter. However, the algorithm suffers from some real

drawbacks that make it unpractical in its present form. For example, since the particles

are allowed to evolve over a time horizon, they will tend to spread out. The result of the

temporal propagation of particles is an ever increasing particle variance. This means that

all but a few samples will have a weight of zero, and will not contribute to the estima-

tion of the desired density. The ramifications of an ever growing particle variance can be

seen in both the computational burden and estimation accuracy of the particle filter. First,

the basic algorithm is forced to propagate zero-weighted samples and the few significant

samples can, at best, provide a very crude estimate of the posterior density. This phe-

nomenon is known as particle degeneracy and is illustrated in Figure 2.16. Figure 2.16

is used to demonstrate just how particle degeneracy occurs. Figure 2.16 was generated

as the result of implementing a sequential importance sampling algorithm, with an initial

collection of particle numbering 1000. The original particle collection was uniformly dis-

tributed throughout a 2D space defined with domain [0, 1] and range [0, 1]. The algorithm,

as shown, underwent 400 particle propagations. At every iteration, the current collection

of particles was randomly sampled according to a uniform distribution. The phenomenon

of particle degeneracy is clearly evident in this figure. Notice, that the total number of

particles went from an original collection size of 1000 to a final collection size of 5. To

counter this problem a resampling step was proposed by [1].
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Figure 2.16: Illustration of the phenomenon known as particle degeneracy.

Resampling is an attempt to counter the degeneracy issue that plagues the SIS algo-

rithm. One method to resampling was proposed by [7] and later in [1] involves monitoring

the effective sample size. The effective sample size involves comparing covariances be-

tween samples from importance sampling and samples drawn from the posterior. This

will provide a measure of how efficient the sampling is. The covariance comparison leads

to an approximation of the effective sample size and an expression can be found in [175]

and [33] and is given as

N̂eff ≈
1

N∑
i=1

(
w

(i)
k

)2 (2.60)

where w(i)
k are the normalized weights that were calculated in Equation (2.58). The effec-

tive sample size will be bounded from below and above such that if all of the weights are

equal, then the effective number of samples will be

Neff = N (2.61)
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and if there is some natural number j such that w(j)
k = 1 and w

(i)
k = 0 for all i 6= j

then [46]

Neff = 1 (2.62)

leading to

1 6 Neff 6 N (2.63)

Now a decision rule needs to be implemented to determine when resampling is necessary

based on Equation (2.60). It is unclear where the following resampling rule was first

presented, but it has been suggested that resampling should be conducted if a threshold of

Nth =
2N

3
(2.64)

is exceeded [19], [33]. When the threshold in Equation (2.64) is reached, the authors in

[19] and [46] suggest drawing N new samples x(i)
k from the approximated posterior given

in Equation (2.59) such that the probability of choosing x
(i)
k is w

(i)
k . Since the weights

came from the estimated posterior, all of the new weights associated with the new samples

should be set to 1
N

. This will effectively eliminate samples with low importance and

multiply samples that have a greater contribution to the estimate so that the new “cloud" of

particles are concentrated in the regions of state space with the most interest. Notionally,

the selection of new particles is illustrated in Figure 2.17. In Figure 2.17, there were

originally 15 samples with initial weights. The initial weights of the 15 samples, along

with the resulting samples as a result of resampling are given explicitly in Table 2.5.4 and

shown in Figure 2.17.

Table 2.3: Initial weights for a collection of particles and the particles that are
generated as a result of resampling

Initial Weight 2 1 1 6 3 9 3 1 2 1 2 3 7 2 1

Resampled Particles 0 0 0 2 0 5 1 0 2 1 0 0 1 2 1
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Figure 2.17: Demonstration of the resampling process. (figure adapted from [278])

Resampling, however, is not a panacea – there is a price to be paid. Statistically, the

samples that are multiplied are no longer independent, since some of the samples are mere

images of the originals, and resampling will always increase the variance on any estimate

of the posterior density. Resampling, although necessary, needs to be implemented with

some thought. The first attempt to resampling involved resampling at a fixed interval. If

resampling was conducted at every iteration the filter formulation was coined the bootstrap

method [108]. The method of fixed interval resampling has two distinct shortcomings.

First, the covariance of the estimate is sometimes unnecessarily inflated due to resampling

when it may not be required. Second, the determination of the actual resampling interval

can only be determined by tedious trial and error.

There have been several suggested alternative resampling algorithms in the particle

filtering literature. In fact the authors in [235] present a comparison of a few selected

resampling schemes. Additionally, references [175], [16], and [153] also provide presen-

tations on resampling techniques.

2.5.5 Sample Importance Resampling (SIR). The sample importance resam-

pling algorithm for particle filtering is actually a special case of the sequential importance
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sampling algorithm. The sample importance resampling algorithm was first proposed

in [108] as an attempt to address the known problem of particle degeneracy. The algo-

rithm is easily implemented, as is the SIS algorithm. The crucial step in the design of

the SIR algorithm is the choice of proposal density. It has been suggested by the authors

of [175] and [16] that the optimal choice for a proposal density is one that minimizes the

variance of the importance weights and was shown in [46], [175], and [84] to be

q(xk|x(i)
k−1, zk)opt = p(xk|x(i)

k−1, zk) =
p(zk|xk,x(i)

k−1)p(xk|x(i)
k−1)

p(zk|x(i)
k−1)

. (2.65)

However, sampling from this proposal density is impractical for any arbitrary density.

Instead, the authors of [16] suggest sampling from the transitional prior density, i.e.,

q(xk|x(i)
k−1, zk) = p(xk|xk−1). (2.66)

This proposal density actually has samples drawn in the form of

x
(i)
k ≈ p(xk|x(i)

k−1). (2.67)

In order to generate a sample x
(i)
k one must first generate a sample from the process noise

ω
(i)
k−1 ≈ pω(ωk−1) where pω is the probability density function of the process noise. Then,

the samples and process noise are propagated through the system nonlinear dynamics to

update the samples, i.e.,

x
(i)
k = f

(
x
(i)
k−1,w

(i)
k−1

)
. (2.68)

Given the choice of proposal density, up to a constant of proportionality, in Equation

(2.66), the update equation for the importance weights can be expressed according to the

following equation

w
(i)
k ∝ w

(i)
k−1p(zk|x(i)

k ). (2.69)
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It should be noted that in the original sample importance resample algorithm the resam-

pling step was set to occur with every iteration of the algorithm. This means that all of the

prior weights will be forced to be

w
(i)
k−1 =

1

N
. (2.70)

Hence, in this scenario the weight update equation becomes simply

w
(i)
k ∝ p(zk|x(i)

k ). (2.71)

The utility associated with even generic particle filtering algorithms should be evi-

dent. Often times, a need arises where the particle representation of a probability density

function is inadequate for the task at hand. In situations where particle collections sim-

ply will not do, one can consider alternative probability representations. A few of the

more popular methods for representing probability density functions from a collection of

samples are presented next.

2.5.6 Converting Particles to Probabilities. Given that a particle filter represents

a given probability density function with a collection of weights and particles, there is

often a need to obtain a more compact representation, as is the case with most multi-

agent data fusion processes. At the core of alternate representations for probability density

functions is the ability to generate samples from an arbitrary density [88]. More often

than not, the structure of probability density functions that are typically dealt with in the

fields of guidance, navigation, control, tracking, etc. are not “nice" densities, in that they

are typically propagated with nonlinear dynamics models, posses multiple modes, and

almost certainly not reasonably described with Gaussian statistics. A compact and efficient

representation for these types of densities would be a valuable tool, particularly in the

multiple agent localization scenario consider later in Chapter IV. There exists numerous

techniques for obtaining compact representations for particle collections in the relevant

literature. A few of the more popular techniques are briefly discussed next.
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2.5.6.1 Histograms. The histogram is possibly the easiest nonparametric

density estimator to realize. The only descriptions required in the construction of a his-

togram are the location for the center bin x0, and the width of each of the bins h (assuming

variable bin widths are not allowed). With the bin centers and the bin width one can define

the actual bins in the histogram via

In = [x0 + nh, x0 + (n+ 1)h] , (2.72)

where n = [...,−1, 0, 1, ...]. Once the bins have been defined, the histogram simply be-

comes the number of samples falling within a bin divided by the total number of samples

times the bin width which can be expressed mathematically according to

Ĥ =
Ii × xm
k∆h

, (2.73)

where Ii denotes a particular bin, xm denotes the number of samples within bin Ii, k is the

total number of samples, and h is the bin width. Caution is needed when considering using

a histogram for the representation of a probability density. The main concern is that there

is a possibility that the density representation will become discontinuous. Discontinuities

will occur in the event that the number of samples in a particular bin is 0. In an attempt

to overcome this issues, alternative techniques have been developed. For example, an

alternative representation method of particular interest in this research is known as the

Gaussian Mixture Model (GMM).

2.5.6.2 Gaussian Mixture Models. The goal of GMM is to take a collec-

tion of samples that have been drawn from an arbitrary density and to select the “best"

mixture components (Gaussian densities) that represents the data. The Gaussian mixture

is calculated in the following fashion

p(x | θ) =
K∑
k=1

ωkN (x | µk, Pk), (2.74)
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where the parameter vector is θ = {ωk, µk, Pk}, and carries the values that define each

component of the mixture. The ωk are weighting terms, and adhere to the following nor-

malization constraint
K∑
k=1

ωk = 1, 0 6 ωk 6 1. (2.75)

Now, in order to determine what components should be selected, generally requires solv-

ing a constrained optimization problem. The constraints are given in Equation (2.75).

There is an additional constraint that imposes symmetry and positive semi-definiteness

on each component’s covariance matrix. Gradient-descent type algorithms can be used

to try and solve for the GMM parameters [151]. However, a closed form solution to the

optimization problem generally does not exist [38].

An alternative technique to gradient-based optimization algorithms is the Expectation-

Maximization (EM) algorithm. The EM algorithm starts with an initial guess of the pa-

rameters for the GMM and iterates back and forth between the two steps outlined next.

The following algorithm presentation can be found in the influential book of Bishop [38].

2.5.6.3 Expectation Maximization Algorithm. The EM algorithm for

Gaussian mixtures is defined according to the following steps: [151]

• Expectation Step: Let the current parameter vector θ contain the current parameters
for each component of a GMM. The first step is to compute the mixture weights
according to

ωkpk(x
i | θk)

K∑
m=1

ωmpm(xi | θm)

, where 1 6 k 6 K and 1 6 i 6 N, (2.76)

for all data points xi and mixture components k. Notice that for each data point,
the weights are defined such that they sum to one. This results in a matrix of size
N ×K of weights with each row summing to one.
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• Maximization Step: The newly calculated weights and available data are used to
calculate new parameters for the GMM. This is done via

µk =

N∑
i=1

ωkx
i

N∑
i=1

ωk

. (2.77)

The new mean is calculated in much the same way that a standard empirical average
is computed, with the exception that the ith data point has a fractional weight. The
updated covariance is found according to

Pk =

N∑
i=1

ωi,k(x
i − µk)(xi − µk)T

N∑
i=1

ωi,k

. (2.78)

A representation of the components of a Gaussian mixture can be seen in Figure 2.18.
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Figure 2.18: A Gaussian mixture model implementation with the Expectation Maxi-
mization algorithm. The scenario considered utilized 5000 samples.
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2.5.6.4 Kernel Density Estimation. It is a widely known fact that a GMM

can represent any density to a level of precision commensurate with the number of com-

ponents in the mixture. What if, as suggested by [88], instead of trying to find a minimum

number of appropriate Gaussian components in a mixture, a Gaussian kernel is simply

assigned to every data point. The process just described is known as kernel density esti-

mation (KDE) or Parzen window estimation. A KDE is a nonparametric density estima-

tion technique, much like the histogram representation. Nonparametric here refers to the

fact that the number of parameters increases linearly with respect to the number of data

samples, and not that the density doesn’t have parameters [38], [151]. Generally speaking,

a KDE model is represented by

p(x | h) =
1

N

N∑
n=1

1

hd
K
(
x− xn
h

)
. (2.79)

The kernel function K is associated with a parameter h which is called the bandwidth,

similar to the case for the histogram estimator. If, for example, the kernel was given by

K(u) = exp

{
−‖u‖2

2

}
, (2.80)

then each data sample can be considered a component of a GMM with a mean of µn = xn

and variance Pn = h2Id [38]. So

‖Pn‖
−1
2 =

1

hd
, (2.81)

and

ωn =
1

N
. (2.82)

In general, any kernel function can be used provided that it is positive semi-definite

K(u) > 0, (2.83)
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and ∫
K(u)du = 1. (2.84)

Finally, the parameter h is also called a smoothing parameter, and it does just that. It

determines how smooth the resulting density estimate is. The ability of kernel density im-

plementations to produce accurate estimates is intimately tied to the smoothing parameter

h, as was the case in the histogram estimator. The result of a kernel density estimation

algorithm using Gaussian densities with unit variance can be seen in figure 2.19.
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Figure 2.19: Kernel density estimation with Gaussian kernels. The scenario con-
sidered utilized 10 kernels with all having unit variance and mean values given by
[−4.5,−3.1,−2.3,−0.4, 0.5, 1.9, 3.4, 5.1, 6.2, 8.6].

2.5.7 Discussion. The generic particle filtering algorithm is quite a powerful

filtering tool, because it imposes no restrictions on the severity of the model nonlinearities

nor on the family of noise distributions that are acceptable. Unlike the EKF algorithm,

the models do not need to be analytic i.e., they can be discontinuous. Furthermore, the

particle filter is ideally suited for dealing with densities that are faithfully described as

being multi-modal in nature, a scenario that the EKF and UKF simply can not address.
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The generic algorithm for a particle filter is a rather simple algorithm. Moreover, it

is capable of obtaining superior estimation results for several nonlinear and non-Gaussian

estimation problems. In cases where parametric filters such as the EKF and UKF are

inadequate, the generic particle filter can be used for an estimation procedure with minimal

effort from a user. However, as stated by Daum [98], this is actually a mixed blessing.

The fear expressed by Daum is that challenging scenarios will not be treated with the

appropriate level of respect that they deserve, and that nuances of a particular problem

definition will not be appreciated as they should.

2.6 Decentralized Particle Filtering

Decentralized filtering can be found in the literature as early as 1979, with the influ-

ential work by Speyer [263]. Recent decentralized nonlinear filtering formulations have

benefited from the original work of Speyer. For example, modern methods based on con-

sensus filtering approaches [209], [232], and diffusion process strategies [176] have roots

that can be traced back to the work of Speyer. Some recent surveys identify portions of the

vast range of available algorithms from as equally vast research disciplines are available

in [239], [44], [4], [200], and [292].

In systems described as having ad-hoc communication networks, a need for address-

ing the fusion of dependent data arises. Dependency can occur in a few ways. One way

is through the use of common process models used to describe the temporal evolution of

states [250]. Another reason for the existence of dependent data is the common measure-

ment history that is manufactured when agents exchange data repeatedly [250]. For the

previously mentioned reasons, to assume that state estimates generated among multiple

agents are independent is generally a bad assumption in practice [250]. In fact, the only

ways to ensure that a fused estimate is the result of truly independent pieces of data is to

maintain a database of all of the communicated data among all of the agents for the entire

mission horizon, or to place overly restrictive constraints on the communications topology

used among agents [136], [110].
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Motivation for considering the use of particle filters was just presented in the pre-

vious section. Particle filters were shown to enjoy key attributes not afforded to the more

parametric approaches to Bayesian estimation like extended and unscented Kalman filters.

Some of the more notable advantages include the ability to represent arbitrary probabil-

ity density functions, the removal of model noise statistical requirements, and no longer

needing to linearize estimation models. However, particle filters do present challenging

dilemmas when considered for use in decentralized data fusion scenarios.

Two fundamental issues arise with the fusion of particle collections. The first issue

is that for any two collection of particles, there is no guarantee that the support for one

collection will mirror the other. Likewise, there is no guarantee that any particle in either

collection will be collocated [169], that is

supp
({

xiA
})
6= supp

({
xjB
})
, where i = j. (2.85)

Hence, naive fusion of particles is an ill-defined problem as pointed out by Ong et al.,

[170]. To demonstrate the problem with the naive fusion of particles, refer to Figure 2.20.

In Figure 2.20 there are two sets of particles, labeled (A) and (B), that are not collocated.

If the two sets of particles were naively multiplied together, then the result would be the

empty set shown in the sub-figure labeled (Result).

Another challenge with decentralized particle filtering is how to address the ex-

ponential growth in the number of particles associated with the linear increase in state

dimensions. The explosion of required particles is a result of the so-called curse-of-

dimensionality [275], [223]. In order to fully appreciate the value added and challenges

presented by employing a decentralized particle filtering strategy, the standard Bayesian

data fusion model is required.

2.6.1 Key Components of Fusion Equation. The following example can be

found in the recent handbook authored by Liggins et al., [172]. In the following discussion

it is assumed that two agents, A and B, are able to communicate with one another. The
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Figure 2.20: Multiplication of two particle collections not collocated (inspired by
[167]).

information available to each agent at any given time is comprised of data obtained locally

denoted by {za} and {zb} for agentsA andB, respectively. Also available to each agent is

the common information resulting from repeated communications between agents A and

B denoted as {zc}. The combined sets are defined according to

ZA = {za, zc} (2.86)

ZB = {zb, zc}, (2.87)

where

zc = ZA ∩ ZB. (2.88)

Furthermore, it is assumed that the individual measurements obtained by each agent are

conditionally independent of the true state xt such that

p(ZA,ZB | xt) =
N∏
i

p(Zi | xt). (2.89)
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The conditional independence assumption is valid provided that the measurement errors

are independent between the sensors used by agent A and B, respectively, in addition to

being independent over time [173]. The conditional independence assumption stated in

Equation (2.89) leads to the following representation for the shared Bayesian likelihood

[173]:

p(ZA ∪ ZB | x) =
p(ZA | x)p(ZB | x)

p(ZA ∩ ZB | x)
. (2.90)

The diagram shown in Figure 2.21 depicts the types of probability densities shared among

agents, and can be found in chapter 17 of [172]. Note, the author’s notation for the dif-

ferent probability densities is adopted here. For example ZA/B denotes the information

unique to agent A and not shared by agent B. Under the Bayesian estimation framework

Figure 2.21: Types of data associated with the fusion of dependent data [172].

used in this dissertation, one needs to determine the probability of the disjoint set ZA∪ZB
conditioned on the state value x given by p(ZA ∪ ZB | x). Utilizing Figure 2.21 and

dropping the time index k for clarity, the disjoint probability can be obtained according to

p(ZA ∪ ZB | x) = p(ZA/B ∪ ZB/A ∪ ZA∩B | x) (2.91)

= p(ZA/B | ZB/A ∪ ZA∩B,x)p(ZB/A ∪ ZA∩B | x) (2.92)

= p(ZA/B | ZB,x)p(ZB | x) (2.93)

=
p(ZA/B ∪ ZA∩B | x)p(ZB | x)

p(ZA∩B | x)
(2.94)

=
p(ZA | x)p(ZB | x)

p(ZA∩B | x)
(2.95)

=
p(ZA | x)p(ZB | x)

p(ZA ∩ ZB | x)
. (2.96)
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Equation (2.96) can now be used to obtain the global posterior density p(x | ZA∪ZB) via

p(x | ZA ∪ ZB) =
p(XA ∪ ZB | x)p(x)

p(ZA ∩ ZB)
(2.97)

=
p(ZA | x)p(ZB | x)p(x)

p(ZA ∩ ZB | x)p(ZA ∪ ZB)
(2.98)

=
p(x | ZA)p(x | ZB)

p(x | ZA ∩ ZB)
(2.99)

Under the conditionally independent assumption just mentioned, one can also obtain the

following representation

p(x | ZA ∪ ZB) ∝ p(ZA/B | x)p(ZB/A | x)p(ZA ∩ ZB | x)p(x), (2.100)

where ∝ means proportional to and is needed in the absence of normalization, A and B

still denote two agents, the probability density functions p(ZA/B | x) and p(ZB/A | x)

represent new information, p(ZA ∩ ZB | x) represents the common information shared

between the agents, and p(x) represents the prior probability density. Clearly from Fig-

ure 2.21, the common information term resides with both agent A and agent B, and if

accounted for yields the following representation of the fusion equation

p(x | ZA ∪ ZB) ∝ p(ZA/B | x)p(ZB/A | x)p(ZA | x)p(ZB | x)p(x)

∝ p(ZA/B | x)p(ZB/A | x)p(ZA ∩ ZB | x)2p(x)
(2.101)

where the incorporation of redundant information is the result of squaring the shared com-

mon information among the agents, namely p(ZA ∩ ZB | x)2. The squaring of common

information is the reason that the division operation in Equation (2.99) is required.

2.6.2 Interpretation of Fusion Equation. With respect to decentralized filtering,

Equation (2.99) has the following interpretation. Observe that the numerator involves the

multiplication of local estimates while the denominator is considered to be the common

information. The multiplication operation plays the role of incorporating new information
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from received local estimates, while the division operation takes the role of removing

common information between received estimates and locally produced estimates [212],

[169], [211], [170], [168]. Clearly, the difficulty in performing decentralized data fusion

resides in determining and removing the common information [167] (i.e., the denominator

in Equation (2.99)).

There have been several methods suggested in the decentralized data fusion liter-

ature. One of the more popular methods is based on the use of information measures.

Information interpretations of decentralized data fusion have led to the development of

multiple solution approaches, which is why they are the topic of the next section.

2.7 Information Measures

The real question that needs to be asked in reference to divergence measures is, how

does one choose from among the seemingly countless published divergence measures?

For example, the paper by Sung-Hyuk Cha [60] is a survey of no less than 45 different

measures. Additionally, the book by Deza [80] is devoted entirely to definitions of dis-

tances, divergences, and similarity measures with various applications for each. There are

all types of divergence measures with various degrees of appropriateness for any given

problem. Some of the more mainstream measures are presented next.

A rather large number of divergences that appear in the literature belong to a class

that was defined independently by Ali and Silvey in 1966 [8] and Imre Csiszar in 1967.

This class, in the literature, takes on several different names to include Ali-Silvey-Csiszar

Class and f-divergences. Popular examples in this class are the J-divergence, Kullback-

Leibler divergence, χ2-divergence, and Hellinger distance. Another popular distance

measure is Bhattacharyya’s distance; however, it does not formally belong to this class

but does share some similar properties [70], [219]. The sheer volume of material (eg.,

[34,36,60,80,174]) is not only difficult to understand at times, it is also difficult to discern

the applicability of some of the measures.
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2.7.1 Kullback-Leibler Divergence. One of the most utilized information mea-

sure is know as relative entropy, or more commonly known as the Kullback-Leibler diver-

gence. When concerned with probability density functions, the Kullback-Leibler diver-

gence is often used to represents how similar or how close two probability densities p and

q are to one another. Although available in several different forms, the Kullback-Leibler

divergence is often defined according to [40]

DKL(p‖q) = Ep

[
ln

(
p

q

)]
(2.102)

=
∑
i

pi ln

(
pi
qi

)
. (2.103)

The Kullback-Leibler divergence is often times introduced as a distance metric. Al-

beit is true that the Kullback-Leibler divergence plays the role of a squared distance on the

space probability density functions, it is not a distance in the rigorous mathematical sense.

For example, it is not symmetric, that is to say

DKL(p‖q) 6= DKL(q‖p), (2.104)

nor does it abide by the triangle inequality.

2.7.2 Hellinger Distance. As Equation (2.104) states that the Kullback-Leibler

divergence is not symmetric, there are times when the metric property of symmetry is

desirable. When the property of symmetry is needed, one can make use of the related

metric known as the Hellinger distance, defined as

DH(p‖q) =

√
1

2

∑
i

(√
pi −

√
qi

)2
. (2.105)

Frequently, the Hellinger distance is expressed without the leading coefficient of 1
2
. There

is no impact to any metric properties due to the omission. The only noticeable difference

is in the defining of the support domain. The difference can be seen by the expanding
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of the valid support domain to the interval [0,
√

2], in contrast to the interval [0, 1] when

included in the definition.

Unlike the Kullback-Leibler divergence, the Hellinger distance is symmetric, and is

a true metric. An often valuable relationship that exists between the Hellinger distance

and the Kullback-Leibler divergence is the fact that the Hellinger distance lower bounds

the non-metric Kullback-Leibler divergence [68]. The implication is that if the Kullback-

Leibler divergence converges, then so does the Hellinger distance.

2.7.3 Bhattacharyya Divergence. The Bhattacharyya divergence is another pop-

ular measure of similarity between probability density functions. The Bhattacharyya co-

efficient [35] between two probability densities is defined according to

DBC(p‖q) =
N∑
i=1

√
piqi. (2.106)

Geometrically, Equation (2.106) can be interpreted as the cosine of the angle between two

n-dimensional vectors

[
√
p1, .....,

√
pN ] and [

√
q1, .....,

√
qN ]. (2.107)

If the two probability densities are equal to each other, then the resulting Bhattacharyya

coefficient will be

cos(θ) =
N∑
i=1

√
piqi (2.108)

=
N∑
i=1

√
pipi (2.109)

=
N∑
i=1

pi (2.110)

= 1, (2.111)
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implying that θ = 0 as expected. Much like the Kullback-Leibler divergence, the Bhat-

tacharyya coefficient is not a true metric either. The authors of [66] proposed the following

modification to the Bhattacharyya coefficient such that it does represent a true metric

DBH(p‖q) =
√

1−DBC(p‖q). (2.112)

2.7.4 Chernoff Divergence. The Bhattacharyya divergence is a special case of

the Chernoff distance, which is defined as

DCH(p‖q) = max
06ω61

[
− log

(∫
p(x)ωq(x)1−ωdx

)]
, ω ∈ [0, 1]. (2.113)

If one was to arbitrarily define the parameter ω such that ω = 1
2
, then the result would be

the Bhattacharyya distance.

This section presented topics that can be found in the information theory literature.

The focus was on measures of information, and the relationships that exist between them.

This section effectively ends the presentation of the different topics that will comprise our

toolbox in Chapter III. The remainder of this chapter is focused on presenting the most

relevant research literature to our effort. The emphasis is on elements of the conserva-

tive data fusion literature, differential geometry uses in nonlinear filtering literature, and

particle filter realizations in decentralized data fusion literature.

2.8 Detailed Literature Survey of Closely Related Efforts

This section provides a detailed presentation of the literature that is most related to

our work. Literature discussing the connections between conservative data fusion meth-

ods, differential geometry, and nonlinear estimation with and without particle filters are

highlighted. However, before beginning the literature presentation, the precise meaning

of a consistent estimate in the present context is required.
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2.8.1 What is a Consistent Estimate? Consistent, in the current context, refers

to the fact that the fused estimate isn’t over confident. Mathematically, consistency can be

defined as follows. Consider an estimate of a mean x̂ and the actual or true mean xt. If

the two quantities are differenced, the result is known as the estimation error. Estimation

error is denoted by x̃. Furthermore, associated with the estimation error will be an error

covariance denoted by Pxx. The process is defined here by

x̃ = x̂− xt, (2.114)

and the covariance of the estimation error is

Px̃x̃ = E[x̃x̃T ]. (2.115)

A consistent estimate will be taken to mean the difference between the calculated estima-

tion error covariance in Equation (2.115) and the expectation of the true error covariance

resulting in a positive semi-definite matrix i.e.,

Px̃x̃ −Pt � 0, (2.116)

where the symbol � is used to express the fact that the left hand side of Equation (2.116)

represents a positive semi-definite matrix.

2.8.2 Conservative Data Fusion Methods. The concept of decentralized data

fusion was introduced back in Chapter I. This section is used to highlight prominent

solution techniques currently available. Particular attention is given to the methods that

specifically address the need to ensure estimates remain conservative. Conservative in this

context refers to not allowing the uncertainty of a fused estimate to be less than the true

system uncertainty. Recently, a survey and performance comparison of a few of the more

popular methods for conservative data fusion has been published by Chang et al., [150],

and is an excellent source of information on the subject matter. Finally, for the purpose of
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clarity, the reader is advised that throughout this section the terms node, agent, and data

source are used interchangeably, and if distinction is necessary it will be explicitly stated.

2.8.2.1 Graphical Approach. An information graph, as defined by Chong

et al., [273], is a method of representing the dynamic relationships that develop when the

possibility of alterations to available information content is permitted. One can easily

imagine situations that could result in changes to available information content. The fol-

lowing so-called information events were highlighted in [273], and later in the works of

Liggins et al., [173]

1. When a agent takes a measurement with its own sensors.

2. An observation is received and is used to update an agent’s own estimate.

3. A agent communicates its information to other agent in the network.

4. A agent receives information from another agent and uses it to update its own esti-

mate of the environment.

Both Chong and Liggins make use of the common assumption that the measurements are

conditionally independent of the state estimate x. The measurements in this context are

comprised of all received data at the current time epoch, as well as the measurements

generated by sensors housed on a local sensing agent. The information graph then is

used to determine the maximum amount of information available to a sensing agent. For

another version of a graphical model used for removal of common information see [64].

2.8.2.2 Tree Connection Approach. The concept of fusion trees as pre-

sented by Martin et al., [191]. Martin along with his coauthors suggest an approach that

is premised on each agent in a network constructing and maintaining it’s own information

tree. The information tree will be a record composed of the minimal amount of informa-

tion required to perform fusion calculations. When a tree from one agent is communicated

to another agent, the common elements or branches in the tree are identified through a tree

65



search algorithm. The common branches will then be pruned such that only dissimilar

branches remain for the combination process.

2.8.2.3 Channel Filter Approach. The authors of [111] and [113] state

that the channel filter is used to identify and maintain estimates of common information

passed between any two network agents. Equation (2.99) shows that a division operation

is required for the removal of common information between agents. The removal of com-

mon information should be performed prior to the fusing process. The division require-

ment, as shown in Equation (2.99), is the primary source of difficulty when considering

decentralized data fusion architectures.

Under the Gaussian assumption, the division can be carried out in closed form, ef-

fectively removing the common information between two estimates [241]. However, as

pointed out by Nettelton [206], the primary reason the channel filter produces consistent

estimates is due to the propagation forward to a designated time step of the received infor-

mation by the channel manager. This operation induces errors into the estimate, effectively

inflating the covariance matrix of the received data. The artificially inflated covariance will

typically produce a consistent estimate, however a consistent estimate is not guaranteed.

2.8.2.4 Covariance Intersection. If one assumes that two available esti-

mates are independent, then their optimal fusion is performed with the Kalman filter. The

optimality guarantee is legitimate only in the case that the filtering models are linear, and

when both process and measurement noise statistics are Gaussian. In the case where the

estimates become correlated, the update process in the Kalman filter will falsely incor-

porate the available information content in the estimates multiple times. The immediate

result will be an inconsistent estimate where the filter will indicate that an estimate is more

certain than the reality of the filtering situation dictates.

An algorithm first presented in [285] known as the Covariance Intersection (CI)

algorithm was developed to address the problem of inconsistent estimation. The CI algo-

rithm is an extension of the Kalman update that treats the update as a convex combination
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of the two initial estimates, given here as

P−1c = ωP−1a + (1− ω)P−1b (2.117)

x = Pc(ωP
−1
a xa + (1− ω)P−1b xb) (2.118)

where
N∑
i=1

ωi = 1 (2.119)

is chosen based on some heuristic. In [172], the authors suggest selecting ω such that

either the determinant of the fused covariance matrix is minimized, or the trace of the

fused covariance matrix is minimized.

As pointed out by Hurley [121], to minimize the determinant of the fused covariance

matrices has an information theoretic interpretation. Note, if {xa,Pa} and {xb,Pb} are

consistent, then Equations (2.117) and (2.118) will also be consistent for any choice of

ω ∈ [0, 1], and for any arbitrary level of correlation [136].

The CI algorithm, as given here, represents a simple linear optimization problem

which makes it an attractive option when considering timeliness requirements of estimate

availability. The shortcomings of the algorithm are that it still hangs its hat on the Gaussian

assumption. Also, it can handle only two estimates at a time, which makes it impractical

for larger networks. The CI algorithm can be implemented in an iterative process, however

the algorithm becomes less stable than a simple batch update according to Farrell [99].

In fact, Franken et al., [103] showed that if the eigenvalues of the two matrices under

consideration differ significantly, the nature of the optimization problem becomes quite

difficult.

Attempting to address some of the concerns with the Covariance Intersection al-

gorithm, two notable extensions have been developed. The first is known as the Split

Covariance Intersection (SCI) algorithm. The SCI was designed to take advantage of the

fact that the error in the estimates can be separated into two mutually independent compo-
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nents [172]. The other variant is known as the Bounded Covariance Inflation (BCInf)

algorithm [136]. The BCInf algorithm was designed in an attempt to address the in-

creased computational complexity imposed by the SCI algorithm [242] by assuming an

upper bound on the absolute value of the cross correlations can be established [136].

2.8.2.5 Covariance Union. The Covariance Union (CU) algorithm [106],

[41], [214] can also be used to address the need for ensuring consistent estimation in de-

centralized networks. However, according to Gardner et al., [106], the original intended

usage for the CU algorithm was for database deconfliction. The phrase database decon-

fliction is used to describe the event when spurious or corrupted estimates are introduced

to the sensing network. The Covariance Union algorithm has been applied to situations in-

volving ground vehicles [92]. In particular, scenarios involving the need for sensor fusion

in automobiles [268] have benefited from the use of the Covariance Union algorithm.

2.8.2.6 Generalized Chernoff Information Fusion. Using the concept of

Chernoff information in order to fuse two sets of information demonstrates a natural pro-

gression within the framework of decentralized networks; especially given the numerous

accounts of the relationship between Chernoff information and data fusion.

To begin discussing the use of Chernoff information for data fusion, one should

be made aware that the definition of Chernoff information has two widely used forms.

According to Hurley [122], they are

DCh(p‖q) = − min
06ω61

(
ln

(
n∑
i=1

pωq(1−ω)

))
(2.120)

and

D∗ = DKL(pω∗(x)‖p(x)) = DKL(pω∗(x)‖q(x)) (2.121)
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where pω∗(x) is defined by

pω∗(x) =
pω(x)q(1−ω)(x)

n∑
i=1

pω(xi)q
(1−ω)(xi)

(2.122)

and ω∗ is the value of ω such that Equation (2.121) is true. Also, it should be mentioned

that DKL is the popular Kullback-Leibler divergence given by

DKL(p(x)‖q(x)) =
n∑
i=1

p(xi) ln

(
p(xi)

q(xi)

)
. (2.123)

Now from Equation (2.121), the minimization of the Chernoff information can be viewed

as selecting the probability density that is equally close, in terms of the Kullback-Leibler

divergence, to the two original probability densities [68]. In a similar fashion, one can

view the minimization of the Shannon entropy as selecting the probability that is the most

informative or produces the largest surprise [121].

The use of the Chernoff information for decentralized data fusion was not without its

own shortcomings. For example, the algorithm still required the use of Gaussian densities,

but could be extended to accommodate more elaborate densities. The problem was that

the extension to other densities is not very intuitive. For this reason, Upcroft et al. [287]

looked to extend the work of Hurley to situations where Gaussian mixture models (GMM)

would be used for describing atypical probability densities.

In Upcroft’s work, the ability to calculate the Chernoff information for a GMM

through a crude approximation was developed. Recognizing the need for further improve-

ment, Julier [138] looked to develop a refined approximation. The refinement focused on

the use of Chernoff information in conjunction with the CI algorithm so that GMM density

estimates could be used for purposes of decentralized data fusion. Although still crude,

Julier’s algorithm was able to consistently produce superior estimates to those of the al-

gorithm defined by Upcroft and his team. Superior estimates, as used here, implies that a
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smaller mean squared error was produced. Finally, Julier’s algorithm was also shown to

yield estimates that were consistent in covariance.

More recently, Farrell et al. [99] looked to further refine previous efforts to use

Chernoff information for data fusion. Farrell first noted that the extension of the Chernoff

Fusion principle to multiple probability densities could be expressed by

pgcf =

n∏
i=1

pωii (x)

∑ n∏
i=1

pωii (x)

, where
n∑
i=1

ωi = 1. (2.124)

Farrell’s algorithm performed on par with existing decentralized data fusion algo-

rithms, validating his approach to decentralized data fusion.

2.8.2.7 Largest Ellipsoid Algorithm. In an attempt to alleviate the need

for assumptions on probability density parameterizations for data fusion, the Largest El-

lipsoid algorithm (LEA) was proposed by Benaskeur [15]. Concerned about the repeated

over inflation of estimated covariance matrices by the Covariance Intersection algorithm,

Benaskeur offered the following alternative approach. Not wanting to stray too far from

the geometric interpretation of the CI algorithm, mainly that resulting covariance ma-

trix should be premised on the intersection between covariance ellipsoids, Benaskeur at-

tempted to estimate the largest ellipsoid contained within the intersection of covariance

ellipsoids. The LEA approach is in contrast to the CI algorithm, in that it doesn’t attempt

to overestimate the intersection of covariance ellipsoids.

By searching for the largest shared ellipsoid between covariances, Benaskeur was

able to repeatedly produce a smaller covariance than the CI approach. Furthermore, the

Largest Ellipsoid algorithm provides the added benefit that it can be implemented in net-

works where access to computational resources are limited.
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Recently, Bochardt and Uhlmann have demonstrated that the Largest Ellipsoid al-

gorithm (sometimes referred to as the Minimum Enclosing Ellipsoid (MEE) algorithm),

and the Covariance Union Algorithm presented in Section 2.8.2.5 are actually equiva-

lent [214]. The principle concern regarding the Largest Ellipsoid algorithm is limitations

that can be imposed through the orientations of perspective covariance ellipsoids which

could seriously diminish the ability to determine encapsulated ellipsoids, and in some

cases even make it impossible [302].

2.8.2.8 Other Notable Methods. In 2010 the works published by Rendas

and Leitao [188] addressed the redundant information problem, which they called the ru-

mor problem, in a novel way. The authors proposed an approach that was based on the

concept of Schur dominance. The Schur dominance was used to select the probability den-

sity that was the least informative, but was more informative than the probability density

functions being considered in the particular fusion step. Also in 2010, Tian et al., [300]

proposed a sampling-based Covariance Intersection algorithm, and Blank et al., [252] out-

lined several alternative methods to the standard Covariance Intersection algorithm.

In the past year, the literature has seen works published that address the redundant

information problem in yet still innovative ways outside the traditional methods. For ex-

ample, Montijano et al., [93] proposed a method based on dynamic voting, Noack et al.,

proposed an approach based on pseudo-Gaussian probability densities [32], and Reinhardt

et al., [187] used set-theoretic methods to address the redundant information problem.

2.8.3 Nonlinear Filtering and Differential Geometry. The proposition of nonlin-

ear estimation algorithms in a differential geometric framework is not a new idea. How-

ever, even with published articles that demonstrate the ability to fuse two densities, it

appears to be a seldomly considered technique in nonlinear estimation literature. As early

as 1990 in a series of publications by Rudolph Kulhavy [155–159], the theoretical work

of Rao [236], Efron [95], and Amari [12] began influencing portions of the nonlinear

estimation and filtering literature.
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The work of Rudolph Kulhavy was primarily concerned with parameter estimation

scenarios. In 2003, Zhe Chen authored a technical report [63] where he described the

works of Kulhavy. Chen went on to further suggest that the primary contribution of Kul-

havy’s work was to show that a parameter could easily be approximated by projecting onto

a local tangent space. Additionally, Kulhavy proposed the use of conditional inaccuracy

as a estimation performance metric. Iltis et al., [124] and later Kulhavy himself extended

the tangent space concept to problems where state estimation was the primary focus.

In the work of Beard et al., [234] the nonlinear estimation problem is approached

via a slightly different projection technique. The authors utilize a technique known as

a Galerkin projection. Essentially, the Galerkin projection is used to approximate the

posterior conditional density with a collection of basis functions. Coefficients for the

basis functions are what’s propagated in time, and ultimately used to estimate the desired

probability density.

During the same time period that Kulhavy was publishing his findings, another

group was also approaching the nonlinear filtering problem with a differential geometry

framework. Francois LeGland and Damiano Brigo [49, 50, 50, 51, 74, 75] were concerned

with how the projection of arbitrary probability density functions onto the manifold of Ex-

ponential family representations affected the ability to perform nonlinear filtering. In 1996

Brigo et al., [50] first published his work on the projection filter with the completion of his

doctoral dissertation. The projection filter was described as a finite dimensional nonlinear

filtering technique. Furthermore, the utility of the projection filter in nonlinear estima-

tion problems was made apparent through demonstrations. Demonstration results further

solidified the already established synergy between the fields of differential geometry and

nonlinear estimation. Brigo, in later efforts [71], showed how to adapt the projection filter

to the manifold comprised of stochastic differential equations. Special attention was given

to densities belonging to the exponential family of densities.

The projection filter is premised on the orthogonal projection of the Kushner-Stratonovich

stochastic differential equation onto the local tangent space. The Kushner-Stratonovich
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equation governs the evolution of a probability density characterized by a continuous pro-

cess and continuous measurement update [193], [128], and [50]. Later, the projection was

considered by LeGland and Brigo as an attempt to solve the infinite dimensional Fokker-

Planck equation (FPE) [77]. This projection was considered with the Fisher information

metric associated with the finite dimensional manifold whose elements are exponential

probability densities. They conjectured that by projecting the FPE onto a finite dimen-

sional submanifold, that a solution could be obtained without having to try and solve

infinite-dimensional integrals.

Several useful properties of the family of exponential densities have facilitated their

use in nonlinear filtering applications, but by no means is the exponential family the final

answer. For example, if the true density to be estimated is in fact a member of the expo-

nential family then a solution to the estimation problem in this framework is guaranteed

to exist and it will be globally unique. However, if the true density is not a member of

the exponential family, as is the case in many practical scenarios, the assumption of expo-

nential family membership can lead to undesirable consequences [76]. Additionally, only

scenarios that maintain unimodal densities can be considered via the exponential fam-

ily [171]. The exponential family assumption relieves the common Gaussian assumption

often made in nonlinear filtering applications, but it is still fairly restrictive. The restric-

tions are directly related to the requirement that densities remain unimodal throughout the

entire nonlinear filter.

The authors of [71] were able to show two key results. Chief among the results

was if simplified exponential families are specified, then the measurement update step in

the nonlinear filtering algorithm with discrete time observations is performed exactly (i.e.,

without error). In later publications, the authors go on to show rigorous proofs of their

results [48]. The ability to select the correct exponential family member in a repeatable

fashion is no easy task according to Babak Azimi-Sadjadi [21]. Because of the difficulty

associated with repeatedly selecting the correct exponential density, Azimi-Sadjadi began

considering alternative finite statistical manifolds for estimation.
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Azimi-Sadjadi et al., [22–25], were the first to attempt to exploit the nonrestrictive

nature of particle filters, in conjunction with the analytical tools of differential geometry.

Motivated by the lack of convergence results within the influential works of Francois LeG-

land and Damiano Brigo, Azimi-Sadjadi and team focused their efforts on obtaining the

desired convergence results. Additionally, Azimi-Sadjadi extended previous work based

on exponential family assumptions to the manifold comprised of the more general mixture

family. The extension to the manifold of mixture family densities was the first attempt to

address the approximation of arbitrary multi-modal probability density functions within

the geometric formulation of nonlinear filtering.

In the body of work by Azimi-Sadjadi, the emphasis was certainly geared towards

theoretical advances. However, the applications that were chosen to demonstrate the the-

ory are of considerable interest to this dissertation. The primary applications considered

by Azimi-Sadjadi were navigation-based scenarios. Principle scenarios included the inte-

gration of an INS with a GPS receiver, integer ambiguity resolution, and change detection.

In recent years, fusion within the framework comprised of nonlinear estimation

and differential geometry has enjoyed utility in a host of additional research communi-

ties. For example, one research field that has benefited considerably is computer vision.

Tenenbaum et al., [274] uses these techniques to conduct analysis on non-rigid shapes

for matching. Kwon et al., [160], [144], [161] conduct particle filtering operations based

on the observation that covariance matrices are a member of the Lie Group of symmetric

positive definite matrices. The primary applications were based on scenarios involving

the need to track environmental features, where propagating and estimating covariance

matrices plays a crucial role.

Similar covariance tracking techniques can also be found in the works of Park

[220, 221], Lee [164], and Wu [298]. Tyagi et al., [282] actually formulate a linear

Gaussian Kalman filter in a purely geometric framework for feature tracking applications.

Additionally, several authors [162, 224, 240, 264, 279, 305] extend the nonlinear estima-

tion problem to other manifolds to include Steifel and Grassmann manifolds. Steifel and
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Grassmann manifolds are useful surfaces when rotations and angles are under considera-

tion.

Recently a series of publications by Mahendra Mallick have focused on the uses

differential geometry to determine the severity of nonlinearities in radar and vision track-

ing problems [26, 183–185]. Finally, other notable uses of the nonlinear filtering and

differential geometric framework include investigations into the utility of calculating the

geometric mean of a collection of covariance matrices [199], target tracking on nonlinear

manifolds [260], [62], [298], [261], the use of manifolds in conjunction with unscented

Kalman filtering applications [306], the use of least squares and manifolds to try and

provide a solution to the Simultaneous Localization and Mapping problem [284], image

and shape-space analysis [5], signal processing algorithms with applications in classifica-

tion [189], and general nonlinear estimation [291].

2.8.4 Particle Filtering and Decentralized Data Fusion. The advantages of

DDF were given in Section 1.2. Clearly, the ability to maintain robustness to unannounced

architecture changes and increased network survivability in the event of a catastrophic

failure are of considerable value to several application areas. Additionally, the benefits of

particle filtering algorithms over other moment-based algorithms (i.e., the EKF and UKF,

discussed in Sections 2.4.3.1 and 2.4.3.2), provide considerable advantages in their own

right. The flexibility of not having to make assumptions on the parametric form of the

probabilistic model, and the seamless ability to accommodate multi-modal density func-

tions are both key ingredients that contribute to the overall value of estimation schemes

in a DDF network. This section is dedicated to presenting the relevant literature with re-

spect to the design and implementation of particle filtering algorithms in distributed and/or

decentralized frameworks.

The first instantiations of distributed and/or decentralized particle filter algorithms

began showing up in the technical literature in 2003. It is this author’s contention that

it took until 2003 for the hardware processing capabilities and algorithm development
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to mature to a point that particle filters could begin to be realistically discussed in this

forum. For example, Rosencrantz et al., [244] presented a distributed particle filtering

algorithm. Their algorithm addressed communication constraints by selecting a subset

of particles that were deemed most informative. Also, they proposed a strictly query-

response communication protocol in which only neighboring nodes could communicate a

subset of particles with one another. There is no doubt that the work of Rosencrantz et

al., has been influential in nearly all publications related to decentralized particle filtering

since their inaugural publication.

However, the algorithm presented by Rosencrantz et al., [244] does suffer from

some very serious drawbacks. Most notably, the choice to only transmit a subset of parti-

cles, albeit bandwidth friendly, completely ignores the fact that common information may

be present in the particle subsets. The primary influence the algorithm conveyed was the

evidence that consistent estimates could be obtained provided that a time history of states

was maintained. Maintaining a time history clearly violates the properties of a DDF sys-

tem. Nevertheless, research efforts relating to the use of particle filters in a distributed or

decentralized system architecture was initiated by Rosencrantz.

Also in 2003, Bashi et al., [28] presented work concerning distributed particle fil-

tering. They proposed 3 strategies for distributing the generic particle filtering algorithm

in an attempt to achieve “real-time" performance. The first, Global Distributed Particle

Filter (GDPF) would drawn samples and calculate importance weights locally, and the nor-

malization of importance weights and resampling took place externally at a fusion center.

The second, Local Distributed Particle Filter (LDPF) algorithm performed all the above

operations locally at each node, and a subset of particles were communicated to the fu-

sion center for integration and updating. The third, Compressed Distributed Particle Filter

(CDPF) is a combination of the previous two algorithms. The CDPF algorithm adopted

the GDPF procedure, but only communicated a representative probability density function

to the fusion center. The theme of the work led by Bashi was hardware implementations
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of particle filters. Since all of the data fusion occurred within a centralized fusion center,

the need to account for common information was considered intrinsically.

In 2004, Ihler et al., [123] presented work geared towards calibrating sensors that

comprise a network. The main contribution of the research presented by Ihler was a com-

munication protocol algorithm rooted in machine learning theory. Ihler, along with his

partners, showed that their communication algorithm was capable of converging to the

true density under a multitude of scenarios. Nevertheless, the proposed algorithm did not

protect against over confident estimates. In fact, the problem of incestuous incorporation

of information was not considered at all.

The year 2004 saw a series of publications from the Australian Research Council

(ARC) Centre of Excellence in Autonomous Systems (CAS) at the University of Sydney,

Australia. The first in the series, authored by Ridley et al., [241], employed the use of

Parzen density estimates [222] to represent a continuous version of an empirical particle

filtering density. The authors provide an approximate solution to the decentralized parti-

cle filtering problem by noting two key facts. First, the use of a Gaussian kernel in the

Parzen density estimate has favorable characteristics over other kernel functions. Second,

that the division of a Gaussian density by another can be carried out under certain nonre-

strictive regularization conditions [218]. Even though the authors provide a closed form

approximation for the fusion of Parzen density estimates, they were faced with the con-

stant growing number of density estimates after an update. The authors simply maintained

the N highest weighted samples after an update. The key ramification of the aforemen-

tioned pruning strategy is that increased emphasis is given to the peaks of a probability

density at the cost of essentially ignoring the tails of the probability density.

Finally, it is worth mentioning the work of Coates [65]. He presented two algorithms

for distributing a particle filter. The first was predicated on parametric representations

of the density and the factoring of the likelihood. The second introduced the idea of a

predictive scalar quantization that was used in conjunction with the Lloyd-Max algorithm
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[251] to permit adaptive encoding of measurements. The process of adaptive measurement

encoding was considered in an attempt to relieve communication bandwidth constraints.

A flurry of research activity, originating from the University of Australia, can be

seen in the literature in 2005 [212], [287], and [169]. Essentially, they compared the utility

of using Gaussian Mixture Models (GMM), Parzen density estimation, and pure particle

representations for DDF. The conclusion was that the GMM representation was the pre-

ferred method for representing particle densities when bandwidth efficiency was a high

priority (i.e., it required the fewest components). Beyond that, GMM provided a superior

representation of particle densities over representations obtained with Parzen density es-

timate with the same number of components. The number of required components was

determined by evaluating the Bhattacharyya coefficient. If the calculated Bhattacharyya

coefficient was 0.95 or greater, then it was determined that the correct number of com-

ponents has been used. However, if a higher priority was given to the accuracy of fusion

results, then the use of Parzen density estimates was preferred. When considering the

common information problem, the authors developed an extension to the standard CI al-

gorithm such that GMM components were fused. Even though consistent estimates were

obtained, a supporting mathematical proof was not supplied. Moreover, component prun-

ing was conducted off-line using the iterative Expectation-Maximization (EM) algorithm.

Also in 2005, Sheng et al., [254] presented a distributed particle filtering algorithm

where they too suggested the conversion of the particles to a GMM representation to re-

duce communication constraints, but they assumed up front that all of the node’s informa-

tion was uncorrelated. Consequently, the uncorrelated information assumption did away

with the need to address the data incest problem.

In 2006, the University of Sydney group produced the following publications by

Ong [211] and Upcroft [31]. A discernable difference from their previous efforts was the

shifted emphasis towards incorporating visual information into the local particle filter. Vi-

sual information, in these articles, consisted primarily of image context and feature iden-

tities. The research presented by Ong et al., [211] further distinguished itself by choosing
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to use the generalized Chernoff Information as a means of producing consistent estima-

tion results. Additional noteworthy research contributions included [120], where the focus

was on the synergy between the particle filter and control architecture to facilitate search

algorithms. The authors of [301] presented a distributed particle filtering algorithm that

emphasized agent clustering and each cluster having its own fusion center, leading to a

collection of centralized clusters that would only reconfigure if the target being tracked

was outside the maximum range of the cluster fusion center. The authors of [47] were

the first, to the knowledge of this author, to explicitly incorporate range and bearing infor-

mation between nodes in the fusion process. Finally, the authors of [127] implemented a

semi-distributed particle filtering algorithm that essentially assumed away the redundant

information problem by imposing a fixed communication topology.

In the following year, the work of Hoffman et al., was implemented on a quadrotor

aerial vehicle. Consideration of realistic timing models by Vemula et al., [289], was one

of the first studies of its kind in the field of decentralized particle filtering. Until the work

of Vemula and his collaborators was published, it was commonplace to assume a global

clock was available in DDF situations. That being the case, all network activities were

effectively synchronized. Conversely, Vemula et al., used the particle filter to estimate

states, in addition to estimating each agent’s local clock bias. Interestingly enough, the

authors surmise that the posterior density representing the states and the nth clock bias

could be represented effectively using a Beta distribution parametric model.

The year 2008, Ong et al., [168], added to the growing body of decentralized data

fusion literature. The principle focus of the authors was on addressing the challenges re-

sulting from the use of channel filters to remove common information. The key source of

difficulty with using channel filters resides with the required division operation to remove

common information. The authors approached the problem with an innovative algorithm

based on importance sampling. Equally as impressive was their solution framework that

extended traditional notions of local fusion by including both locally realized and commu-

nicated measurements in the local fusion process. Next, by restricting agent kinematics, Li
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et al., [180] presented a distributed particle filtering implementation that forced agents to

take on either a mover or beacon role. The beacons had GPS measurements available, and

the movers used received signal strength indications (RSSI) from the stationary beacons

as measurements.

Over the past 18 months, multiple algorithms that incorporate an assortment of so-

lution techniques have been published. For example, algorithms using various solution

techniques to include multidimensional scaling [94], Markov-chain Monte Carlo sampling

with GMM [56], support vector machines [115], both spatial measurements and tempo-

ral attributes [13] have been presented. Beyond that, practical applications such as three

dimensional map reconstruction [18], and the design of optimal search algorithms [246]

have also been published.

2.9 Summary

The principle focus of this chapter was on the presentation of background material

vital to understanding subsequent algorithm development. The first topic introduced was

differential geometry. Several definitions were provided along with illustrations. The unit

hypersphere was spotlighted because of its well understood geometry, and the key role it

plays in future algorithm development in Chapter III.

Several traditional and nontraditional methods of data fusion were discussed, where

the use of Bayesian probabilistic methods was singled out as being the method of choice

in this dissertation. Particle filter solution techniques were given considerable attention.

Highlighting the particle filter presentation was a discussion of key advantages provided

by particle filters when considering nonlinear models and/or non-Gaussian noise distur-

bances. Technical challenges associated with decentralized data fusion architectures were

presented in detail. Equally important was the comprehensive presentation of current state

of the art solution methods for addressing the challenges associated with the realization of

decentralized data fusion algorithms. Immediately following the data fusion presentation
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was a brief introduction of information measures, with an emphasis on more mainstream

measures.

The current chapter concludes with a comprehensive chronological survey of the

research literature that is most closely related to the research described in this dissertation.

In the next chapter, decentralized Riemannian particle filtering algorithms are developed.

The algorithms take full advantage of the well defined Riemannian geometry of the unit

hypersphere to the degree that it becomes the primary surface for performing filtering

operations.
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III. Novel Approaches to Decentralized Particle Filtering

3.1 Chapter Overview

In the previous chapter, fundamental concepts from differential geometry, Bayesian

estimation, and information theory were presented. This chapter will utilize the mate-

rial presented in Chapter II to address the decentralized particle filtering problem. In

particular, we leverage the pioneering works of Rao [236], C̆encov [283], Amari [10],

among others to develop two novel algorithms for performing decentralized particle fil-

tering. Throughout this chapter, the synergy between the differential geometry used in

the defining of statistical manifolds and the usual Bayesian estimation framework will be

exploited, resulting in the presentation of the two aforementioned novel algorithms.

In an attempt to demonstrate connections between existing approaches with the pro-

posed methods, geometric interpretations of existing methods are given. The geometric

interpretation of current state-of-the-art approaches provides a natural segway into the

defining of the filtering manifold used for algorithm development, along with the filter-

ing tools made available by our choice of manifold. Finally, two geometric decentralized

particle filtering algorithms are derived. The first algorithm takes an approach based on

the intrinsic geometry of the filtering manifold, while the second uses filtering tools made

available through reformulating the decentralized data fusion problem in an alternative

information geometric framework.

3.2 The Geometry of Existing Methods

Considering a purely geometric approach to decentralized fusion can possess advan-

tages over more conventional methods. In fact, the most common Bayesian decentralized

data fusion approaches can also be considered as geometric approaches. The material

comprising the remainder of this section is intended to provide a geometric presentation

of currently employed data fusion methods.
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Julier et al., [138], [139], [277] makes the observation that the popular Covariance

Intersection algorithm can be interpreted as a special case of a more general fusion rule

known as Normalized Weighted Geometric Mean (NWGM) defined as

NWGM =
N∏
i=1

pi(x)ωi , (3.1)

under the following constraints

ωi > 0 and
N∑
i=1

ωi = 1. (3.2)

In Equation (3.1), all pi are considered to be probability density functions. Without loss of

generality, the remaining presentation of the NWGM fusion rule will consider two prob-

ability density components for simplicity. After enforcing the normalization constraint,

Equation (3.1) takes the following form

NWGM = p1(x)ωp2(x)(1−ω). (3.3)

In order to ensure the NWGM in Equation (3.3) is a proper probability density it will need

to be normalized as
p1(x)ωp2(x)(1−ω)∫
X
p1(x)ωp2(x)(1−ω)

, (3.4)

where X is the set of all valid x values. Equation (3.4) has an alternative geometric inter-

pretation. Equation (3.4) is also the definition for the geodesic that connects probability

density functions p1 and p2 on a manifold [135], [134]. Another relationship immediately

apparent from Equation (3.4) can be seen in the denominator by identifying it as the ar-

gument to be maximized in the definition of the Chernoff divergence in Equation (2.120).

The definition for the Chernoff divergence is stated again for clarity in Equation (3.5),
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albeit with a discrete representation

DCH(p1(x)‖p2(x)) = min
06ω61

(
− ln

(
n∑
i=1

p1(xi)
ωp2(xi)

(1−ω)

))
. (3.5)

Equation (3.5) possesses some desirable properties. Notice that the argument to be opti-

mized is the logarithm of the convex combination of two probability densities, which is

concave with respect to the parameter ω [269]. The negative switches it to a convex func-

tion. Concave functions, like convex functions, when optimized guarantee that a global

extremal exists and may be unique. In general, existence and uniqueness guarantees are

not available in most practical optimization problems.

The relationships between differential geometry, information divergences, and Bayesian

estimation theory are extensive. The relationships highlighted in this section are just a few

among the several that are currently available in the research literature (eg., see [213],

[189], [100], [11], [256], [247]). The intent of this section was not to be exhaustive in the

identification of kinships between differential geometry and nonlinear Bayesian estima-

tion. Instead, the goal was to demonstrate that there exists strong theoretical and practical

justifications for pursuing a differential geometric solution approach for the problem of

decentralized particle filtering.

3.3 Riemannian Structure of Probability Spaces

How one chooses to represent a probability density function will have a signifi-

cant impact on the available mathematical machinery for determining solutions. The first

step in determining a representation for the probability density function is knowing what

options are available. Recently, Srivastava et al., [265] has published a paper that demon-

strates at least four different representations for probability density functions. The rep-

resentations presented included a traditional probability density function, a probability

distribution function or cumulative distribution function, a log-density function or log-

likelihood function, and a square-root density function.
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Following the lead of Srivastava et al., the choice is made to adopt the square-root

probability density representation. The collection or family of square-root representations

of probability density functions is defined as

Ψ =

{
ψ : [0, T ]→ R | ∀t, ψ(t) > 0,

∫ T

0

ψ2(t)dt = 1

}
, (3.6)

where the limits of integration are chosen, without loss of generality, based on the fact that

the family of functions Ψ are required to be non-negative continuous functions. If discrete

functions are being considered, the definition for Ψ is adapted such that the integral is

replaced with a finite sum. The non-negativity constraint is required to ensure that the

functions are unique.

The reason for selecting the square-root density representation can be seen by noting

that Equation (3.6) implies that the collection of square-root densities can be regarded as

residing on the unit hypersphere [281]. Interestingly enough, another interpretation for

Equation (3.6) can be found in quantum mechanics [83]. In quantum mechanics, the

above definition for Ψ in Equation (3.6) also represents a collection of functions known

as square integrable functions [83]. Furthermore, under the normalization constraint, one

obtains the definition for the well-known Schrödinger equation [233], which is used to

define the wave amplitude of a particle at a specific time and location [61].

The advantage that the square-root probability density function representation has

over others is that the distance metric is assured to exist in both the tangent spaces as

well as between the square-root density functions on the surface of the unit hypersphere.

The guarantee existence of the distance metric is a direct result of the fact that the unit

hypersphere is an embedding in Rn, and hence comes endowed with the usual Euclidean

metric. Another benefit for choosing the unit hypersphere embedded in a higher dimen-

sional Hilbert space, is its well understood differential geometric structure, and many of

the quantities of interest in our quest are available in known analytical forms.
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One might be asking themselves at this point, “Working with square-root densities

has a whole lot of benefits, so why don’t I always work with square-root densities?" One

reason for not using square-root densities is that, in general, the positive definiteness re-

quired by valid covariance matrices is not guaranteed [37], [104]. The existence is directly

tied to the choice of distance measure. If the distance associated with geodesics on unit

hyperspheres (i.e., great circle) is used, then the positive definiteness of a covariance ma-

trix cannot be guaranteed. However, if instead one chooses the distance metric associated

with the chordal distance, then some positive definiteness guarantees become available for

covariance matrices.

We have now selected the desired surface that we will perform our calculation for

decentralized particle filtering - the unit hypersphere. Given that the solution approach

will involve an optimization procedure (gradient descent), the next step is to establish

conditions under which we can expect to determine if a solution exists on our choice of

surface, and if it is a unique solution or not. Intrinsic tools for statistics on manifolds

provide the primary mechanism for establishing existence and uniqueness conditions.

3.4 Intrinsic Statistics on Manifolds

The concepts of an average or the mean of a collection of items is well defined in

Euclidean space. It is easily verifiable that if a particular collection of points in Rn are

under consideration, then the usual arithmetic mean

x =
1

N

N∑
i=1

xi, (3.7)

will produce the point that minimizes the sum-of-squared distances to the collection of

points xi, in the Euclidean distance sense. The minimization of the sum-of-squared Eu-

clidean distances interpretation of the mean value can be extended to more general spaces

as well. To extend the concept requires a reinterpretation of the meaning of distance.
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Given that the space that has been selected to work in is not Euclidean, the question

now is what meaning does the concept of mean value take on when considering our more

general space? More precisely, what is the appropriate meaning of distance needed to

define the desired mean value? Some of the more popular interpretations belong to Fréchet

[177–179], Karcher [114], Kobayashi [154], Kendall [67], Buss and Fillmore [54], Noakes

[207], Oller and Corcuera [210], and Emery [96].

In the works cited belonging to Fréchet [177–179], he was able to determine that

the variance defined as

σ2 =
1

N

n∑
i=1

D(ψ‖ψi)2, (3.8)

where D(·‖·) is the geodesic distance, was minimized when the value of ψ was deter-

mined to be the mean value. Hence, according to Fréchet, the expectation on a general

Riemannian manifold is calculated according to

µ = argmin
ψ∈M

E
[
D(ψ‖ψi)2

]
. (3.9)

In fact, Fréchet was able to generalize his result to general metric spaces.

As powerful as the results produced by Fréchet are, they offer some considerable

challenges when working on non-Euclidean curved spaces. For example, the process of

obtaining the Fréchet mean involves solving an optimization problem that involves the

geodesic distance function. Generally speaking, the ability to show that the geodesic

distance function exists on a particular space is a difficult task. Even if you can prove

that it exists, then proving that the result of the optimization problem is unique is just as

arduous.

In an attempt to address some of these concerns, Karcher [114] decided to go a

different route. Noting that the Fréchet mean is a global mean, Karcher proposed that

instead of determining a global minimum of the variance function in Equation (3.8), one

should actually be concerned with determining a local minimum, of which the Fréchet

variance is a special case.
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The Karcher mean is defined as the element ψ ∈ M, where M is a particular

manifold, that produces a local minimum of Equation (3.8). Using the insight provided

by working in a localized region, Karcher was able to define conditions on the manifold

and on the probability densities that ensured not only the existence of the mean, but also

its uniqueness. Stated here without proof (which is available in [114]), the conditions can

be summarized as:

”If the support of probability density p is defined in a regular geodesic ball of
radius r i.e., Ω ⊂ B (p, r) and regular taken to mean that the radius is such
that 2r

√
κ < π with κ representing the maximum curvature of the manifold,

then ϕ(p) is a convex function of p, and as such has a unique critical point
defined to be the Karcher mean."

Building on the work of Karcher, Kendall [67] refined the existence and uniqueness con-

ditions established by Karcher. In the case of the unit hypersphere, Kendall showed that

the regular ball of radius r was defined such that r = π
2
, which means that as long as the

support of p resided in a open hemisphere, then the Karcher mean will exist, and further-

more it will be unique. One final refinement was contributed by Buss and Fillmore [54]

who were able to show that the open constraint on the hemisphere could be relaxed to say

that the hemisphere could be closed as long as at least one point of the support Ω was

contained in the hemisphere [145].

The method presented for calculating mean values on a Riemannian manifold M

is often times referred to as an intrinsic method, meaning that the actual structure of the

manifold and the Riemannian metric were used to determine the relevant statistics. Other

approaches for calculating statistics are known as extrinsic. Extrinsic methods are men-

tioned for completeness purposes only and do not play a role in the work that follows. For

its lack of use, the extrinsic mean will not be discussed any further.

The significance of this section was the definition of conditions under which one

would be guaranteed the existence of a solution and the uniqueness of the solution in the

form of the Karcher mean. However, the existence and uniqueness are with respect to a

local minimum. Armed with the knowledge that our iterative procedure, using gradient
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descent methods, will converge to a unique result (locally), we are now ready to begin

putting the pieces together for our approach to decentralized particle filtering.

3.5 Decentralized Riemannian Particle Filter

The term agent, henceforth, is used to denote a mobile platform equipped with local

sensors and onboard processing capability. Sensing agents within ad-hoc communication

topologies can often be described generically according to Figure 3.1. The generic de-

scription in Figure 3.1 will serve as a reference point for algorithm design. In particular,

the primary emphasis of the development that follows will be on the sub-processes located

in the Global Fusion block of Figure 3.1. The processes are divided into two main parts.

The first part deals with the decentralized particle filter fusion of global and local data with

the use of the differential geometry of the unit hypersphere. The second part deals with

the process of updating particle weights based on the results of the decentralized particle

filtering approaches presented in the first part.

Figure 3.1: Generic diagram of a sensing agent
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Before proceeding, a few words regarding the naming conventions used in Figure

3.1 are in order. The use of the bold face capital (Z) is used to denote the collection of

available measurements, to include both measurements derived locally and received esti-

mates of landmark states from neighboring agents. The subscript on (Z) is used to identify

which particular agent’s measurement collection is being referenced. As is standard, the

use of the lower case (k) is for identifying particular discrete time steps, and the bold

face (x) is used to denote the state vector of the appropriate dimensions for the respec-

tive agent. The state vector (x) adopts the agent identification given to the collection of

measurements on which it is conditioned.

The bold lower case (z) is used to identify measurements that are obtained by on-

board sensors only. One might also notice that some of the local measurements (z) are

given two subscripts. The subscript values are used to, again, denote a discrete time step

(k), along with the numeric value used to identify the agent that has produced the local

measurements.

Finally, notice that the probability density functions that are inputs to the global

fusion process consist of all available posterior densities resulting from each respective

single local filtering cycle. Associated with the posterior densities used in the global

fusion process is a superscript (f). The superscript (f) is used to signify that the densities

are with respect to landmark states only, and do not represent agent specific states.

3.5.1 Global Update Module. When filtering on the unit hypersphere, there are

three primary tasks required, and they are (1) conversion of the particles into a more useful

probabilistic form (histograms in our case), (2) the actual fusion of the available particle

representations, and (3) the updating of the local agent’s statistics/particles. All three

steps are shown in Figure 3.2. At the core of the first fusion process is an optimization

algorithm based on classical gradient descent methods, first proposed by Pennec [226] for

use in medical imaging analysis.
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Figure 3.2: Block diagram of the algorithmic steps required during the global update.

3.5.2 Conceptual Preview. The proposed algorithm draws upon several differ-

ent technologies, each of which have their own standards and traditions. This section is an

attempt to ease the reader into key components of the algorithmic process, while avoiding

traditional detailed descriptions. Make no mistake, the details are vital and in no way is

this section intending to belittle their significance. The more rigorous presentation of key

mathematical concepts will follow the conceptual preview of this section in Section 3.6.

At the most fundamental level, the goal of the Global Fusion block in Figure 3.1

is to take the data resulting from an agent’s local filter iteration and the communicated

estimates from a collection of neighboring agents, and combine the data in an attempt to

gain a clearer (i.e., more certain) representation of the environment than was previously

held.

The assimilation of local and global data begins by constructing histograms of all

available landmark data. The histograms are then projected onto the unit hypersphere via

a square-root mapping function. Analytical properties of the unit hypersphere, along with

its well understood differential geometry make it an attractive surface for the development

of data fusion algorithms. In fact, all of the necessary instruments for performing decen-

tralized particle filtering are available in an analytical-form, to include exponential maps,

logarithmic maps, and geodesics.
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Taking advantage of the available geometry, the method for fusion amounts to find-

ing a mean tangent vector by iterating between logarithmic and exponential mapping func-

tions. Recall that the logarithmic mapping is used to define the tangent vector originating

at some point ψi on the manifold pointing in the direction of another point ψj on the same

manifold. The result of the successive logarithmic mapping operations will be a collection

of tangent vectors that all originate from an initial starting point ψ1 pointing towards all

other points of interest ψj=2:N .

Once all of the tangent vectors are defined, the goal becomes finding the mean

tangent vector, i.e., , the unit vector pointing in the mean direction. This is accomplished

by simply calculating the arithmetic mean of all the tangent vectors. Upon calculating the

mean tangent vector, it is projected back onto the surface of the manifold by way of the

exponential mapping. The result of the final exponential mapping operation will be a new

mean square-root density ψµ. If desired, the covariance can be calculated as well. Finally,

the newly fused square-root pdf is used to update the local agent’s particle collection.

This algorithm is a gradient descent algorithm. Similar gradient based approaches on

Riemannian manifolds can be found in various research articles [299], [9], [261], [281].

Notionally, the steps to be followed are depicted in Figure 3.3. In Figure 3.3 the

point ψ1 represents the initial mean square-root pdf. The tangent vectors τ 1, τ 2, τ 3, τ 4 all

originate at point ψ1 and are pointing in the direction of their respective ending square-

root density denoted by ψ2:5. The vector τ µ represents the mean tangent vector, which is

then projected back onto the manifold with the exponential map to determine the mean

square-root density ψµ. The conceptual preview hopefully provided a general sense of

the mechanics of the first proposed solution method. The remainder of this section is

dedicated to addressing our choice to utilize histograms as a way of probabilistically rep-

resenting a collection of particles.

3.5.3 From Particles to Probabilities. The first task requiring discussion is the

process for converting a collection of particles into a chosen probabilistic form. For the
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Figure 3.3: Conceptual procedure for global fusion.
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simulation environment developed as a consequence of this research (detailed in Chapter

IV), the histogram was the preferred choice of representation. Histograms are the pre-

ferred density representation because of the practical benefits they provide, mainly that

only a few parameters are required to be passed between agents in order to reconstruct

probability densities. Additional methods for representing a collection of particles with

probability densities were briefly described in Section 2.5.6.

A typical histogram produced by a single agent, for a single landmark state, can be

seen in Figure 3.4. The histogram in Figure 3.4 was generated with 5000 particles and 100

histogram bins, in addition to being normalized to ensure that the total probability sums

to 1.
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Figure 3.4: Histogram plot of a single dimension landmark state

A reader at this point might be wondering “Why choose a histogram as the way

to represent your particles probabilistically?", which is an appropriate question. Sure,

there exists techniques capable of producing far superior probability density estimates to

those produced by a histogram. However, recall that two of the motivating factors for

addressing the decentralized particle filtering problem were to provide an algorithm that is
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1) accessible to a broad range of potential users, and 2) computationally efficient. Hence,

the choice to use histograms for representing particles probabilistically is justified.

Interestingly enough, for the generic distributed filtering definition given in Equa-

tion (2.99), along with the corresponding interpretation given in Section 2.6.2, the use of

histograms is not possible. The reason is due to the need to remove common information

shared between agents. The removal of the common information was performed with the

division operation in Equation (2.99). In the likely event that one or more of the histogram

bins will not contain any particles, resulting in a zero probability value for the correspond-

ing support domain, the division operation will become undefined (i.e., can not divide by

0). Alternatively, nowhere in the algorithm presented in Section 3.6 is there a need to

perform division.

Another point of discussion concerning our use of the histogram is that we construct

our histograms independently for each landmark state. In order to construct histograms

based on individual landmark states, one must make the assumption that each landmark

state is statistically independent of all of the other states. In reality this is clearly not true.

Just consider the fact that the x position and y position states for a single 2D point land-

mark will share a dependency. The weak assumption of independence is addressed using

the same rationale used in the development of the original Covariance Intersection algo-

rithm [132], [285] presented in Section 2.8.2.4. Recall that the existence of an optimal and

practical minimum mean-square error fusion algorithm for systems using completely ad

hoc communication topologies is not obtainable [288], [258]. Instead, we took inspiration

from the original works of Uhlmann, and abandon the pursuit of an optimal algorithm, and

instead seek to protect our decentralized particle filtering algorithm from the worst case

scenario. The difference can be seen in the analogy that “instead of playing to win, we are

playing not to lose". Our first algorithm is described in the next section.
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3.6 Algorithm I: Intrinsic Data Fusion Approach

Processes for producing conservative estimates for our first algorithm are shown in

Figure 3.5. The first process shown in Figure 3.5 is the projection of probability densities

onto the unit hypersphere Sn.

Figure 3.5: Decentralized global fusion procedures

3.6.1 Projecting Onto Sn. The projecting of probability density functions onto

Sn is accomplished in the following manner. First, recall that in order to be classified as a

proper discrete probability density function, the following two conditions must be met

0 6 pi 6 1, (3.10)

and
N∑
i=1

pi = 1, (3.11)

where pi is used to represent sample i from the discrete probability density p. If the

conditions in Equations (3.10) and (3.11) are met, then one can define a mapping such

that

pi 7→ ψi =
√
pi. (3.12)

96



It should be mentioned that by virtue of the mapping definition in Equation (3.12), the

normalization condition in Equation (3.11) is satisfied via

N∑
i=1

ψ2
i = 1. (3.13)

The immediate impact to the present effort is the fact that the collection of square-root

densities ψi, along with Equation (3.13), guarantees that the magnitude of the vectors

represented by {ψi}Ni=1 in Euclidean space Rn will be exactly one, and hence can be inter-

preted as a unit vector residing on the surface of the unit hypersphere Sn.

Ultimately, the projection operation amounts to no more than taking the square-root

of the probability density function. All available probability densities considered by a

single agent for global fusion must reside on the surface of the unit hypersphere before

continuing. Next, the calculation of tangent vectors, associated with all available square-

root probability densities, is performed.

3.6.2 Tangent Vector Calculation. The calculation of tangent vectors is done

with the use of the logarithmic mapping given in Equation (2.18). Recall the logarithmic

map takes the geodesic with endpoint ψi that originates at point ψ1 and maps it to the

unique vector τ that is both tangent to point ψ1 and points in the direction of endpoint

ψi. Furthermore, the vector τ will posses the characteristic of constant velocity over the

interval defined by the geodesic endpoints.

On the surface of Sn, the logarithmic mapping is defined in a two-step process given

previously in Equation (2.20), and is stated here as a matter of convenience, but with ψ2

replaced with ψi for generality

τ i =
τ 1 arccos(〈ψi|ψ1〉)√

〈τ 1|τ 1〉
, (3.14)

where

τ 1 = ψi − 〈ψi|ψ1〉ψ1. (3.15)
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Once all of the necessary tangent vectors are calculated, the task becomes one of finding

the mean tangent vector.

3.6.3 Mean Tangent Vector Calculation. When calculating the mean tangent

vector τ , the result will be a vector pointing in the mean direction i.e.,

τ =
1

N

N∑
i=1

τ i, (3.16)

where N designates the total number of tangent vectors τ to be averaged.

3.6.4 Projection Back Onto Sn. The projecting of the mean tangent vector

back onto the surface of Sn makes use of the following properties of geodesics. First,

geodesics are the shortest length paths between two distinct points along the surface of

a manifold. Second, tangent vectors can be used to uniquely define geodesics. These

properties were used to define the exponential mapping operation defined for the manifold

Sn given previously in Section 2.3.2, and again here as

ExpMapψ1
(τ ) = cos(‖τ‖ · t)ψ1 + sin(‖τ‖ · t) τ

‖τ‖
, (3.17)

where t serves as the parameterization, and is constrained such that t ∈ [0, 1]. Also, to

ensure that the exponential mapping in Equation (3.17) is a bijection (i.e., one-to-one and

onto), the norm of the mean tangent vector is restricted such that ‖τ‖ ∈ [0, π).

3.6.5 Calculate Error. Error calculations in this gradient descent algorithm is

actually rather simple. The calculation of the error is used for the purpose of designating a

stopping criteria for the gradient descent algorithm. At the start of the iteration a minimum

acceptable threshold for exiting the iterative algorithm must be defined. Generally, the

stopping criteria is defined according to

‖τ‖2 < Threshold. (3.18)
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How to define the threshold in Equation (3.18) is the obvious next question. This is where

familiarity with the governing physics of the process that is being optimized becomes

useful. Essentially, the threshold is determined based on a combination of an acceptable

value discerned from what is being optimized, along with what will be utilizing the result

of the optimization. Note, given that the gradient descent method is used to calculate a

local minimum, caution must be used in selecting the mean initialization value for ψ0.

3.6.6 Deciding to Continue or Not. If the algorithm has converged to an ac-

ceptable value, the result will be a mean square-root density. The newly selected mean

square-root density ψ, is then used to update the local statistics and particle collection.

At this point, all of the required quantities for updating the local particles have been

obtained. The focus now shifts to updating the local particle collection with the results.

The algorithmic procedures for updating the local particles with the results of the intrinsic

global fusion process can be seen in Figure 3.6.

Figure 3.6: Algorithmic steps required for updating local particles

3.6.7 Returning Back to Where We Started. The projection back into Euclidean

space merely amounts to providing the inverse operator to the ψ chosen via the gradient

descent algorithm just presented. The inverse operator is exactly what one might suspect,
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the squaring operation which is defined generically according to Equation (3.19)

ψi 7→ pi = ψ2
i . (3.19)

Once back in Euclidean space, the task becomes one of updating the weights for the collec-

tion of particles. Procedures for updating the particle weights will be discussed in Section

3.8.

3.6.8 A Brief Discussion. As previously stated, relationships have been estab-

lished between the unit hypersphere and traditional Euclidean space long before being

considered by this author in this dissertation. Of particular use to the work presented in

this dissertation were the established correspondences in the context of Bayesian nonlin-

ear filtering applications. Leveraging the correspondences between the two spaces, we

were able to adapt existing technologies from multiple research disciplines into a cohe-

sive algorithm that at its core is a gradient-based optimization procedure. To this author’s

knowledge, this is the first algorithm designed with the intent of performing decentralized

particle filtering on the Riemannian manifold Sn. Further distinguishing characteristics

from existing algorithms used in decentralized particle filtering applications include the

use of only the intrinsic geometry of Sn for calculating solutions in conjunction with the

use of histograms for representing particles in a probabilistic fashion.

A decentralized particle filter was successfully formulated and implemented us-

ing the Riemannian manifold Sn. However, the gradient-based algorithm suffers from

a noteworthy limitation. In the algorithm’s current presentation, a mechanism for guard-

ing against estimates with an associated covariance that is smaller than reality i.e., overly

optimistic is lacking. Motivated by this shortcoming, in Section 3.7, we abandon the

gradient-based optimization approach for an alternative method that makes use of the in-

formation divergences presented in Section 2.7, along with the differential geometry of

the unit hypersphere.
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3.7 Algorithm II: Information Geometric Approach

Motivated by the need to protect against overly optimistic data fusion, and the unde-

sirable discarding of an undetermined amount of potentially valuable information, we seek

an alternative approach to the optimization-based algorithm outlined in Section 3.6. In

spite of the limitations of the gradient-based approach, it has shown that the ability to for-

mulate and implement decentralized data fusion concepts using the differential geometry

of the unit hypersphere is not without merit, and that further exploration is justified. Before

outlining our alternative formulation, we first establish necessary relationships between

components used in our approach with existing decentralized data fusion approaches. The

relationships are first discussed at a conceptual level, similar to the presentation in Section

3.5.2.

3.7.1 Establishing Information Relationships. The purpose of the discussion

that follows is to justify our second solution approach for addressing the problem of decen-

tralized particle filtering. As before, the more rigorous presentation of key mathematical

concepts will follow the conceptual preview of this section.

A large majority of the current Bayesian state-of-the-art methods for addressing

conservative data fusion make use of information divergences in some fashion. A rep-

resentative illustration would be the Covariance Intersection algorithm [286] presented

in Section 2.8.2.4, which ensures that a conservative estimate is obtainable (under the

assumptions of the algorithm) by optimizing, with respect to a parameter ω, the trace

or the determinant of the resulting fused information matrix. The CI algorithm has en-

joyed varying degrees of success when applied to an assortment of data fusion prob-

lems [81], [242], [280], [59], [268].

In spite of the numerous documented uses of the CI algorithm, there are known

flaws. For example, it tends to be overly conservative in its estimates [103]. The algo-

rithm is restricted by its reliance on the fact that the densities under consideration must be

adequately described as being Gaussian in nature. The restrictive constraints of the CI al-
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gorithm have been relaxed by the results obtained through the independent investigations

of Mahler [181] and Hurley [121]. Their efforts have resulted in a more general form

which is more amenable to analysis using differential geometric tools.

To summarize the CI reformulation, Mahler made the keen observation that under

the Gaussian assumption, the inflating of the fused information matrices by the CI algo-

rithm was equivalent to allowing the power of the Gaussian function to vary according

to ω ∈ [0, 1] (as opposed to imposing the constraint ω = 1) and normalizing, a process

described mathematically by

p(x)ω∫
x∈X

p(x)ω dx
= N

(
x; x̂,

P

ω

)
, ω ∈ [0, 1]. (3.20)

Furthermore, Hurley made the observation that Equation (3.20) could be extended to the

case with multiple probability densities, and also that the Gaussian restriction could be

removed. If the constraint on the exponent was extended such that the collection of expo-

nents were required to all be positive and sum to 1, then in the two density case one would

obtain the following expression

p1(x)ωp2(x)(1−ω)∫
x∈X

p1(x)ωp2(x)(1−ω)
, 0 6 ωi 6 1 and

N∑
i=1

ωi = 1, (3.21)

which is exactly the definition of the NWGM given in Equation (3.4). Subsequently, Equa-

tion (3.4) also provided a link between the NWGM and the Chernoff information given

in Equation (3.5). The benefits of the generalized Chernoff fusion over the Covariance

Intersection have been documented in the literature [99]. A considerable amount of effort

in recent literature has been spent on trying to obtain meaningful approximations to make

solving Equation (2.113) more practical, e.g. see [99].

Establishing the connection between popular Bayesian decentralized data fusion

techniques is a necessary task for being able to relate existing algorithms to algorithms
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formulated on the unit hypersphere. A particularly useful observance is the geometrical

interpretation of the Chernoff information, an interpretation that has been pointed out by

numerous authors [6, 72, 139, 259]. The information and geometric interpretations asso-

ciated with state-of-the-art Bayesian decentralized data fusion methods establishes a rela-

tionship baseline from which we can begin addressing the shortcomings of the gradient-

based optimization approach.

3.7.2 Conceptual Motivation. The differential geometry of the unit hypersphere

has offered valuable insight into how to formulate fusion strategies on alternative spaces

to the usual Euclidean space. Under the locality constraints presented in Section 3.4, both

Karcher and Kendall establish conditions under which fusion solutions can be assured to

not only exist, but also be unique. Existence and uniqueness assurances are both lux-

uries that, in general, are difficult if not impossible to establish in general optimization

problems.

There is increased analytical value in observing that taking the square-root of a

probability density function will produce a sample point along a geodesic on the unit

hypersphere. The analytical tools available for defining and manipulating geodesics on

the unit hypersphere make it quite simple to generate a collection of samples along the

geodesic connecting points ψ1 and ψi. Equivalently, one can calculate a series of geodesics

along the same exponential map. Each new geodesic, in the generated series, will be

appended to the existing collection of geodesics, a process that is repeated until the entire

distance defined by the exponential mapping operator is covered. This process is referred

to as geodesic interpolation in Section 3.7.3.

Now, given a collection of sample ψ’s, coupled with the constraint that the functions

residing on the unit hypersphere must be positive functions, one can show that the repre-

sentation for each ψ in the original Euclidean space of proper density functions will be a

unique representation. The ability to establish conditions under which the properties of

existence and uniqueness can be guaranteed allows the following conjectures to be made.
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Previously, it has been proven that the existence of geodesics on the surface of the

unit hypersphere is guaranteed [225, 226, 299]. The guaranteed geodesic existence, cou-

pled with the existence and uniqueness guarantees for an individual ψ, one is assured that

there will exist a ψ along the geodesic that corresponds to a unique probability density

function in the originating Euclidean space of proper probability densities. Establishing

the uniqueness of available probability density functions is certainly a step in the right di-

rection. The next task is to establish the link between the availability of a unique probabil-

ity density with the process for generating geodesics on the unit hypersphere. Ultimately,

we look to establish the relationship with the process for selecting a particular ψ along the

geodesic.

The method for generating geodesics on the unit hypersphere have previously been

established in Section 2.3. For example, analytical tools such as exponential and logarith-

mic mappings were utilized in the gradient-based approach presented earlier. In fact, the

parameterized version of the exponential mapping given in Equation (3.17) has direct ties

to the Normalized Weighted Geometric Mean presented in Section 3.2, and hence direct

ties to the Chernoff information.

3.7.3 Performing Geodesic Interpolation. The process begins by determining

the tangent vector τ between the local agent’s square-root density ψ1 and a reconstructed

density from received data provided by a neighboring agent ψi by first defining

ψ1 =

√
p1

(
xfk | Zk−1, z

)
ψi =

√
pi

(
xfk | Zk−1, z

)
,

(3.22)

then calculating

τ i = LogMapψ1
(ψi) . (3.23)

Once the tangent vector is defined, by use of the logarithmic mapping operation, the pro-

cess proceeds by generating the geodesic that connects ψ1 and ψi. The number of square-
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root densities or how densely one wants to sample the geodesic is a parameter value that

needs to be determined prior to implementation. For example, in the simulations carried

out in the course of this research it was determined that 30 samples or 30 square-root

densities provided more than adequate results for the particular problem studied.

To help visualize this process, Figure 3.7 shows two probability density functions

(each could represent a potential landmark state). Within an estimation framework, one

could think of the probability density function labeled p1 in Figure 3.7 as the probabil-

ity density of a single coordinate state for an environmental landmark that is the result

of a Bayesian temporal propagation. Likewise, the probability density function labeled

pi in Figure 3.7 could potentially be a probability density function that represents a mea-

surement taken of the single landmark state. The task that one would want to perform in
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Figure 3.7: Two potential landmark state probability density functions

this scenario would be to project the densities onto the unit hypersphere, and generate the

geodesic that connects the two probability densities. The tool for generating the geodesic

would be the parameterized version of the exponential mapping given in (3.17). Every
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tenth sample of the geodesic generated using Equation (3.17) for the probability densities

in Figure 3.7 is shown in Figure 3.8, where a total of 100 samples were generated. Every

tenth probability density is shown for the clarity of the presentation. Note the densities
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Figure 3.8: One hundred sample densities were generated to form the geodesic between
the two initial probability density functions given in Figure 3.7. Every tenth probability
density function is shown.

shown in Figure 3.8 represent the densities that have been projected back into Euclidean

space already and are not the actual square-root densities.

3.7.4 Information Distance Concepts for Fusion. The original square-root den-

sities ψ1 and ψi along with the square-root densities that comprised the geodesic calculated

in Section 3.7.3 need to be projected back into the original Euclidean space. The projec-

tion is accomplished in the same fashion as in Section 3.6.7, by use of the projection

operator given in Equation (3.19). Recall that in Section 2.8.2.6, the Chernoff information

was identified as an information measure that was capable of providing density estimates

that were conservative when performing decentralized data fusion. In fact, as stated by

Hurley [121] and described in [68], the Chernoff information provides the optimal achiev-

able exponent in the Bayesian probability of error. Optimal, in this context, refers to the

selection of a probability density that is equidistant between two probability densities with
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respect to the Kullback-Leibler divergence

DKL(p*‖p1) = DKL(p*‖p2), (3.24)

where p∗ is the probability density that satisfies Equation (3.24). The next question need-

ing addressed is just how to select the density p∗, or any other desired density for that

matter.

3.7.5 Fusing ψ’s for Density Selection. In the absence of an optimal solution in

multi-agent decentralized data fusion, one must resort to sub-optimal methods. Informa-

tion measures have become a popular tool for sub-optimal methods.

The selection of the density that is equidistant in terms of Kullback-Leibler diver-

gences, as is the case in Equation (3.24), provides inspiration for the selection of a fused

ψ. The definition given in Equation (3.24) uses the meaning of the term middle as starting

from the end points of the geodesic and working towards the middle. Another meaning

of the term middle can be expressed by arbitrarily selecting the density that resides at the

position ω = 0.5. This is equivalent to selecting the density that corresponds to the Bhat-

tacharyya distance. The primary reason for selecting a middle density derives from the

desire to select a density based on a divergence measure that has the property of symme-

try. In general, the Kullback-Leibler density is not symmetric, but it does have a popular

symmetric form given by the Jeffreys Divergence [130], given here as

DJ(p‖q) = 0.5

( N∑
i=1

(pi − qi) ln

(
pi
qi

))
(3.25)

= 0.5

(
DKL(p‖q) + DKL(q‖p)

)
, (3.26)

which amounts to calculating the arithmetic mean of the component Kullback-Leibler di-

vergences. The Jeffreys divergence does provide some difficulties when considered in

the context of density selection. As pointed out by Kailath [146], Basserville [29], and
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Johnson et al., [259], the relationship between Jeffreys divergence and the Chernoff infor-

mation through Steins Lemma [68] is quite a bit more laborious than other divergences.

The relationship between Jeffreys divergence and Chernoff information has little signifi-

cance in itself. However, when viewed within the context of relating existing decentralized

data fusion methods with our method, it takes on increased significance.

Given that the Jeffreys divergence is the result of taking the arithmetic mean of the

component Kullback-Leibler divergence, it is natural to then ask the question are there

any other types of means that could be useful for fusing and selecting particular densities

[135]? The most obvious alternate mean values are the geometric and harmonic means,

given their fundamental relationship with the arithmetic mean [231], expressed through

the so-called Arithmetic-Geometric-Harmonic mean inequality, often abbreviated by AM-

GM-HM and is given by

HM 6 GM 6 AM. (3.27)

A new divergence measure has recently been presented in the instrumental works of

Sinanovic and Johnson [135], [134], and is given the name Resistor divergence as it is

obtained by

DRE(p‖q)−1 = DKL(p‖q)−1 + DKL(q‖p)−1 . (3.28)

As pointed out by Sinanovic and Johnson, Equation (3.28) is equivalent to the harmonic

sum of the component Kullback-Leibler divergences, which is equivalent to half of their

harmonic mean. The Resistor divergence enjoys several key attributes which make an ideal

candidate for density selection. First, it is comprised entirely of component Kullback-

Leibler divergences, making it attractive from a computational perspective (provided the

component Kullback-Leibler divergences are defined). Second, the Resistor divergence

upper-bounds the Chernoff information, meaning that since the Chernoff information rep-

resents the best achievable Bayesian probability of error exponent [68], then selecting a

density based on the Resistor distance is guaranteed to never produce a probability density

that yields an erroneously reduced error exponent. Third, the Resistor divergence provides
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a symmetric divergence measure by interpreting the concept of middle differently than the

Chernoff interpretation. In Equation (3.24), the Chernoff information produces a proba-

bility density function that is equidistant in terms of component Kullback-Leibler diver-

gences. The Resistor divergence essentially reverses the order of the probability density

functions used to calculate the component Kullback-Leibler divergences according to the

following definition

DKL(p1‖p*) = DKL(p2‖p*), (3.29)

where p∗ is the probability density that validates Equation (3.29). Stated in words, Sinanovic

and Johnson provided the interpretation that instead of determining the middle by starting

at the end points of the geodesic and working inwards towards the middle, the Resistor

divergence starts in the middle and works outward towards the ends of the geodesic [134].

In an attempt to solidify some of the useful relationship between the Kullback-

Leibler divergence, various mean representations, Bhattacharyya divergence, and the Cher-

noff information, the following example presentation is offered, and is an adaptation of a

presentation found in Sinanovic and Johnson [135], [134]. Figure 3.9 shows two proba-

bility density functions used to generate Figure 3.10, an adaptation of a figure from [134].

As one might expect, Figure 3.10 clearly demonstrates that the Bhattacharyya dis-

tance occurs when the optimization parameter takes on the value ω = 0.5. Also, the

Chernoff distance occurs when ω = 0.4250, the maximum value of the geodesic curve.

Furthermore, shown in Figure 3.10 is a clear depiction of how the Kullback-Leibler di-

vergence is a non-symmetric function. The derivative of the geodesic curve at the end

points represent the Kullback-Leibler divergences given by DKL(p‖q) and −DKL(q‖p)

respectively. The intersection of the derivatives occurs at the ω value that corresponds to

the density that satisfies Equation (3.29).

A particularly valuable tool offered by Johnson et al., [135], [134] is described with

Figure 3.10. In Figure 3.10, the vertical axis represents values obtained from the evalua-

tion of the functional that is optimized in the definition of the Chernoff divergence given
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Figure 3.9: Two probability density functions used in the creation of Figure 3.10.

in Equation (2.113) and stated again here for convenience,

− log

(∫
p(x)ωq(x)1−ωdx

)
. (3.30)

The curved blue line represents the geodesic that connects two densities p1(x) and p2(x)

and is defined according to

γω(x)
p1(x)ωp2(x)1−ω∫
p1(x)ωp2(x)1−ωdx

, with 0 6 ω 6 1. (3.31)

The vertical lines that run from the individual values defined by each of the information

divergences to the horizontal axis that is defined by the parameter ω represent the value of

ω that when plugged into Equation (3.31) results in the respective information divergence

value. Summarily stated, the ordering of the various information measures along the ver-

tical axis will remain unchanged regardless of what the individual probability densities

under consideration might be. Clearly, the type, shape, and support of various probability
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density functions define the numerical values given to the information measures in Figure

3.10; however the relationship in terms of where along the vertical axis they are defined

will be unchanged. The constant ordering of the information measures in Figure 3.10

assures that the Resistor divergence will always upper bound the Chernoff information

regardless of the individual probability densities considered. Additionally, the Chernoff

information will always be lower bounded by the Bhattacharyya distance.
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ArithmeticKLD = 4.7609

Resistor = 2.335

Figure 3.10: Relationships between various information divergences [134]

To summarize this section, the key points of emphasis were the identification of

both an upper and lower bound on the Chernoff information. Both bounds are computa-

tionally efficient and can be directly related to the use of information measures in existing

decentralized data fusion methods. Hence, the goal of density selection is to select the

density that adheres to both bounds as the newly fused density to be used in the updating

of the local particle collection. The algorithm outlined in this section is shown in the block

diagram presented in Figure 3.11.
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Figure 3.11: Second decentralized geometric particle filtering algorithm

3.8 Updating Particle Weights

In this section two separate particle weight update procedures are presented. The

first procedure is similar to standard particle filtering weight update approaches discussed

in Section 2.5.3 and in [46] with a few differences. The second procedure utilizes the

results of the data fusion procedure on the unit hypersphere directly.

3.8.1 Weight Update With MAP Estimation. The likelihood function for the

collection of particles is used for the purpose of updating the particle weights. In order

to update the weights according to the newly fused density, a few tasks must be accom-

plished. First, is the calculation of the squared distance of the particle collection. This is

accomplished by first calculating the maximum a posteriori or MAP estimate along each

dimension separately for the landmark states. The parameter vector x̂, of MAP estimates,

is then used in the calculation of the squared distance associated with the particle set lead-

ing to the following calculation

D(i) = ‖x̂− x(i)‖2, for i ∈ {1, 2, ....., Np} (3.32)
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where Np represents the total number of particles. The distance calculated in Equation

(3.32) is then used to calculate the desired likelihood given by

Λ
(
x̂ | x(i)

)
= exp


−‖x̂− x(i)‖2

1

Np

Np∑
i=1

‖x̂− x(i)‖2


. (3.33)

The result from calculating the likelihood function in Equation (3.33) is used to update the

particle weights, as in Equation (3.34)

wi
(+) =

wi
(−)×Λ

(
x̂ | x(i)

)
1

Np

Np∑
i=1

wi
(−)×Λ

(
x̂ | x(i)

) . (3.34)

Next, the particles are resampled according to the new weights determined in Equation

(3.34).

This approach suffers from the following flaw under the gradient-based unit hyper-

sphere fusion approach. After maintaining a representation of a structure capable of recre-

ating any of the desired probability density functions, a wealth of potential information is

discarded by adopting a squared distance based approach for constructing likelihood func-

tions that are used to update particle weights. The next, alternate procedure will address

this problem by utilizing the results of the geodesic interpolation process for data fusion

on the unit hypersphere directly.

3.8.2 Weight Update With Geodesic Interpolation. Once the fused probability

density has been selected, the probability weights are updated according to the following

procedure. First, recalling that the choice of density representation was the histogram, as

such, part of the data communicated between agents was the starting bin location in each

data dimension used in the fusion process.
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Starting with the first dimension, a prespecified number of bins are generated, each

of equal bin width. Then the particle values, that were the result of the local filter update

cycle, are weighted according to which bin they reside in. After this process has com-

pleted for each of the individual data dimensions, the result will be a collection of D one

dimensional likelihood values, where D is the total number of data dimensions.

The likelihood values are not held to the same constraints that valid probability den-

sity functions are, mainly that they are not required to sum (integrate in the continuous

case) to unity, nor are they required to be finite [38], [201]. Recall that, under the assump-

tion of independence, a joint probability function can also be defined as the product of

its marginals. There is an analogous relationship among assumed independent likelihood

functions, and it is the joint likelihood function can be expressed as the pointwise product

of the individual likelihood functions [201] according to

Λ(fx1 , fy1 , fx2 , fy2 , fx3 , fy3 , ....) = Λ(fx1)Λ(fy1)Λ(fx2)Λ(fy2)Λ(fx3)Λ(fy3), (3.35)

where fx and fy are used to identify the x and y positions of a particular landmark respec-

tively, and the subscript number is used to identify which landmark is being considered.

The result of the pointwise multiplication of likelihood functions is then used to update

the particle weights that existed just after the local particle propagation cycle. The weight

update is calculated according to

wi
(k) =

w
(i)
(k−1) Λ(fx1 , fy1 , fx2 , fy2 , fx3 , fy3 , ....)

Np∑
i=1

w
(i)
(k−1) Λ(fx1 , fy1 , fx2 , fy2 , fx3 , fy3 , ....)

. (3.36)

The resulting weights are then used to resample the local particles that existed as a result

of the most recent local filter measurement update procedure.

3.8.3 Particle Resampling. In general, the ability to generate samples from

an arbitrary probability density function is extremely difficult. The primary point of diffi-
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culty resides in the fact that one rarely has access to the true density needing to be sampled.

As a result of the complications imposed by arbitrary densities, there have been alterna-

tive methods developed. Chief among the alternatives is the process known as importance

sampling. The importance sampling process, as discussed in Section 2.5.2, suggests draw-

ing samples from a proposal density in order to compute expectations of another density

through the procedure of appropriate weighting. A similar process is utilized in both

weight update algorithms before returning the fusion results to the input of the next local

agent particle filter algorithm iteration.

3.9 Summary

To summarize this chapter, the following key elements are highlighted. First, the

space of probabilities was refined by identifying its associated Riemannian structure. Par-

ticular emphasis was given to the computation of relevant intrinsic statistics in the refined

space. Then two separate data fusion methods were provided, both of which exploited

the Riemannian structure of probabilistic space. The primary surface considered for data

fusion of probabilities was the unit hypersphere. The unit hypersphere was shown to be

ideally suited, under specific constraints, to the data fusion process.

The first algorithm exploited the tangent spaces of projected probability densities,

where tangent vectors were calculated and a mean tangent vector was identified through a

simple gradient descent algorithm. The second algorithm looked to the inherent relation-

ships between the probabilistic space on the unit hypersphere and the theory of informa-

tion measures to perform the data fusion process. The second algorithm was shown to be

related to existing data fusion methods.

Key distinctions between the proposed algorithms and existing algorithms were

stated. Existing procedures can not make use of the simplistic probability density rep-

resentation offered by histograms because they must perform a division operation. We

remove the need to perform the division of the fused density by the common information

through the use of the differential geometric relationships defined on the unit hypersphere.
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In the next chapter the algorithms are examined thoroughly, and compared to exist-

ing data fusion algorithms. Their performances are compared, and differences are high-

lighted. The analysis is performed through the use of a two dimensional navigation sce-

nario.
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IV. Detailed Simulation Analysis and Discussion of Results

4.1 Chapter Overview

The previous chapters have motivated this line of research, presented necessary

background material, and developed novel decentralized geometric particle filtering al-

gorithms. In this chapter, an example scenario is presented along with detailed analysis.

The decentralized particle filtering algorithms presented in Chapter III are compared with

current state-of-the-art fusion techniques, and results are rigorously analyzed. All of the

results presented in this chapter were obtained with a detailed simulation developed in the

MATLABr software environment. The majority of the analysis presented in this chapter

is with respect to the algorithm presented in Section 3.7. When alternative algorithms are

used it will be made explicit. The general models that were used in the simulation envi-

ronment are presented next, followed by the analysis and results obtained under various

operating conditions.

4.2 Simulation Scenarios, Models, and Parameters

4.2.1 Simulation Scenario. Consider the following scenario. Two mobile agents

move in an environment comprised of point features that are used as landmarks. Each

agent moves in a circular trajectory. A typical scenario can be seen in Figure 4.1. In this

particular scenario realization, the 3 point features used are marked using asterisks. The

true trajectory of each agent is conveyed through the dashed blue line with the estimated

trajectory being the solid red line. The dots located in the particle clouds represent the

sample mean of each respective agent’s particles. In the two-dimensional scenario shown

in Figure 4.1, each agent’s motion is characterized by three kinematic states. These states

are a cartesian coordinate position (x, y) and a heading angle ϕ. The agent states can be
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Figure 4.1: Representative scenario considered in the example.

expressed together with the following state vector definition

xa,i =


xa,i

ya,i

ϕa,i

 , (4.1)

where the subscript a denotes agent and subscript i denotes which agent. It is common

place to see Equation (4.1) referred to as an agent’s pose in the robotics literature [243]. As

the agents propagate through the environment they can take measurements of landmarks

in the form of range and bearings measurements. Each landmark is characterized by a

cartesian position expressed as

xl,n =

 xl,n

yl,n

 , (4.2)

where the subscript l denotes landmark and subscript n denotes which landmark. Given

Equations (4.1) and (4.2) the complete state vector considered by each agent is expressed
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as

x =

 xa,i

xl,n

 . (4.3)

4.2.2 Process Model. The process model is used to describe the time evolution

of the states. In this particular process model, each agent moves with both a constant

velocity of 9.5m
s

and a constant turn angle of 4deg
sec

. Additionally, each agent is constrained

to propagate in a planar world, meaning that altitude information is deterministic and fixed.

Each feature is assumed to be stationary but a slight amount of process noise is added at

each filter iteration for stability. There are several known process models that would be

adequate in describing this scenario, which is expressed in general form by xa,i

xl,n

 =

 f(xa,i, u)

xl,n

+

 ωa,i
ωl,n

 , (4.4)

where u denotes a control input and ωa,i and ωl,n represent agent and landmark process

uncertainty respectively. The process noise terms are assumed to be zero mean white

Gaussian noise, i.e.

E[ω(k)] = 0, ∀k (4.5)

with covariance

E[ω(k)ωT (k + t)] =

Q(k), if t = 0;

0, otherwise.
(4.6)

The continuous time kinematics model used to propagate the agents in the simulation is

known in the literature as the unicycle model [227] and given by

f(xa,i, u) =


ẋ(t) = V (t) cos(ϕ(t)),

ẏ(t) = V (t) sin(ϕ(t)),

ϕ̇(t) = S(t),

(4.7)
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where V (t) and S(t) represent the translational and rotational velocities respectively, and

comprise the control inputs. Given Equation (4.7) and the stationary feature assumption,

the unified discrete time process model employed in the simulation took the following

form

xa,i(k)

ya,i(k)

ϕa,i(k)

xl,1(k)

yl,1(k)

xl,2(k)

yl,2(k)

xl,3(k)

yl,3(k)



=



xa,i(k − 1) + V (k) cos(ϕa,i(k − 1))∆t

ya,i(k − 1) + V (k) sin(ϕa,i(k − 1))∆t

ϕa,i(k − 1) + S(k)∆t

xl,1(k − 1)

yl,1(k − 1)

xl,2(k − 1)

yl,2(k − 1)

xl,3(k − 1)

yl,3(k − 1)



+



ωxa,i
(k)

ωya,i
(k)

ωϕa,i
(k)

ωxl,1
(k)

ωyl,1(k)

ωxl,2
(k)

ωyl,2(k)

ωxl,3
(k)

ωyl,3(k)



, (4.8)

where the subscript i identifies which agent, and the subscripts a and l denote agent and

landmark states respectively.

4.2.3 Measurement Model. Measurements of the state of the system are made

according to a nonlinear measurement equation of the generic form

z(k) = h(x(k)) + v(k), (4.9)

where z(k) is the actual measurement made at time k, x(k) is the state at time k, v(k) is

additive white Gaussian measurement noise, and h(·, k) is a nonlinear measurement model

that maps the current state to the measurement space [193]. In the simulation environment,

each agent had access to either range measurements, bearing measurements, or both from

local sensors. The range and bearing measurement model used is defined in Equation
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(4.10) as

z(k) =

 √(xl,n(k)− xa,i(k))2 + (yl,n(k)− ya,i(k))2

arctan
(
yl,n(k)−ya,i(k)
xl,n(k)−xa,i(k)

)
− ϕa,i(k)

+

 vr(k)

vθ(k)

 , (4.10)

where the arctan function in Equation 4.10 is the 4 quadrant version. Similar to the

process noise, the measurement noise is considered to be zero mean white Gaussian noise,

hence

E[v(k)vT (k +m)] =

R(k), if m = 0;

0, otherwise.
(4.11)

4.3 Setting the Stage: Parameters & Assumptions

Unless otherwise stated, the results presented used the parameter values in Table

4.3, along with the assumptions and conditions that follow.

The local propagation of the agent kinematics in the particle filter was performed via

a first order Euler integration of the differential equations given in Equation (4.7), which is

expressed in Equation (4.8). The measurements made available to the agents by their local

sensors were both range and bearing measurements according to Equation (4.10). The pa-

rameters listed in Table 4.3 were used by all of the agents. Furthermore, the process noise

covariance was assumed to be time invariant such that it was held constant throughout the

entire length of a simulation run. Likewise, the measurement noise variances were also

assumed to be time invariant and held constant. It was assumed that all of the agents used

within any particular simulation run were able to access the same global reference frame.

Communication links between agents were modeled as being stochastically avail-

able. The stochastic communication characteristic was produced by first using a random

number generator to produce a value between 0 and 1. An availability selection criteria

was set to 0.5, then a simple test to determine if the random number generated was greater

than or less than the selection criteria was performed. If the number was greater than,

then the agents were allowed to communicate. Similarly, if the number was less than the
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Table 4.1: Parameters values used in the simulation

Name Symbol Value Units

Simulation Length Tf 100.0 seconds

Sampling Period dt 1.0 seconds

Number of Particles Np 5000 unitless

Number of Point Features Nf 3 unitless

Number of Agents Na 2 unitless

Initial Agent Position Covariance Pagx,agy σ2 = 152 meters

Initial Agent Heading Covariance Pagθ σ2 = 12 degrees

Initial Feature Covariance Pfx,fy σ2 = 502 meters

Agent Position (X & Y) Process Noise Covariance ωx,y σ2 = 3.02 meters

Agent Heading (ϕ) Process Noise Covariance ωϕ σ2 = 7.02 degrees

Feature Position (X and Y) Process Noise Covariance ωlx,y σ2 = 3.02 meters

Range Measurement Covariance vR σ2 = 15.02 meters

Bearing Measurement Covariance vθ σ2 = 10.02 degrees

Number of Geodesic Samples γs 30.0 unitless

Number of Histogram Bins Used Nb 50.0 unitless
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selection criteria, then communication between the agents was prohibited. Figure 4.2 rep-

resents the communication availability for a single simulation run where a red bar is used

to indicate that an agent was allowed to communicate with the other agent at the associ-

ated time. Likewise, the absence of a red bar denotes that communication between agents

was not permitted. The use of stochastic communication links was chosen because they

were determined to better represent true network communications over the continuous and

reliable communication links commonly assumed.
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Figure 4.2: Random time epochs when agents communicated

Finally, all of the results shown were obtained via the use of Monte Carlo trials,

where the number of trials performed was chosen to be 100. For purposes of clarity, the

results for agent1 are primarily presented, and if discussion is necessary regarding the

results of other agents as they pertain to a particular situation, it will be done. Otherwise,

it is implied that the results produced by other agents are statistically similar to those for

123



the agent presented. Also, the estimation error is calculated according to

Error = Estimate− Truth. (4.12)

The following can loosely be interpreted as a reading guide for the results and anal-

ysis that follows. The topics presented can be thought of as belonging to one of the fol-

lowing four categories. The first category is concerned with the comparison of the two

algorithms presented in the previous chapter. The second category is focused on what is

called here the operational integrity of the algorithm i.e., does perform as expected under

various testing scenarios. Testing scenarios included the algorithm’s ability to produce

consistent estimates as defined in Equation (4.13), its behavior when the number of agents

is changed, its behavior when the number of particles is changed, and other traditional

validation procedures commonly found in the decentralized data fusion literature. The

next category is focused on the ability of the algorithm to perform in various measurement

scenarios. For example, the situation where the agents have access to range and bearing

measurements, range only measurements, or bearing only measurements were considered.

The final category is a comparison of the proposed algorithm with two current state-of-

the-art methods used for decentralized data fusion.

4.4 Comparing Gradient and Information Based Algorithms

In Chapter III two different decentralized particle filtering algorithms were pre-

sented. One was based on gradient-based optimization methods and the use of the tangent

space of the unit hypersphere, while the other looked to take advantage of the information

interpretation that can be given to the unit hypersphere. In this section the two algorithms

are compared.

4.4.1 Direct Comparison. For a single run of the unit hypersphere based al-

gorithm, the following results in Figures 4.3 and 4.4 were obtained for agent1’s vehicle

and landmark states respectively. Both plots show the estimation error in red, and the
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corresponding filter generated ±1σ bounds in black. Figures 4.3 and 4.4 represent a

Figure 4.3: Estimation error (red) and the corresponding filter generated ±1σ bounds
(black) for agent1’s vehicle specific states

single Monte Carlo trial of the information based algorithm on the unit hypersphere. It

can clearly be seen that the fusion algorithm was able to produce estimation errors that are

well within the ±1σ bounds throughout the entire trial for all states. This is an indication

that the filter generated standard deviations are slightly pessimistic. Figure 4.5 shows all

100 agent1 x-position estimation errors (blue) obtained in the Monte Carlo trials, along

with the mean filter generated ±1σ bounds (red), the standard deviation of the ensemble

estimation errors (yellow), and the mean estimation error (green).

Recall that the reasons for considering the information based approach was to take

advantage of the selected densities and to be able to implement a mechanism to help guard

against overly optimistic estimation results. Upon initial analysis, the two algorithms

surprisingly produced nearly identical results as can been seen in Figures 4.6, 4.7, and 4.8

where the 1σ ensemble error standard deviations are compared for agent1’s x-position, y-

position, and heading angle respectively. Also included in Figures 4.6, 4.7, and 4.8, for a
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Figure 4.4: Estimation error (red) and the corresponding filter generated ±1σ bounds
(black) for agent1’s landmark specific states
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Figure 4.5: Monte Carlo trials (100) showing agent1’s x-position state estimation errors
(blue), mean filter generated ±1σ bounds (red), the ensemble error ±1σ bounds (yellow),
and the mean estimation error (green)
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point of reference is the results produced by attempting to produce a ”middle" probability

density without projecting onto the unit hypersphere. As can clearly be seen, the naïve

approach is inferior to the proposed algorithms.
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Figure 4.6: Comparison of Agent1’s x-position uncertainty obtained by the gradient-
based, information based, and naïve based algorithms in meters (Over 100 Monte Carlo
Trials)

4.4.2 A Closer Look. The results produced by both the algorithms given in the

previous chapter were surprising because of the reasons for considering the alternative

formulation described in Section 3.7. However, upon closer inspection the similarity in

the results can be attributed to the facts that the trajectories of both agents were relatively

benign, that all of the input noises were time invariant Gaussian noises, and that only map

states are communicated between the agents.

The result of the mild dynamics, well modeled Gaussian disturbances, and the shar-

ing of landmark states only was probability densities that were reasonably described as

Gaussian being selected in both the gradient-based and information-based global fusion

processes. Typical results for the x-position of the first landmark can be seen in Figures

4.9 and 4.10 which are representative single dimensional probability density functions for
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Figure 4.7: Comparison of Agent1’s y-position uncertainty obtained by the gradient-
based, information based, and naïve based algorithms in meters (Over 100 Monte Carlo
Trials)
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Figure 4.8: Comparison of Agent1’s heading uncertainty obtained by the gradient-
based, information based, and naïve algorithms in degrees (Over 100 Monte Carlo Trials)
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landmark1’s x-position obtained by the gradient based and information based algorithms

respectively.
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Figure 4.9: Landmark1’s x-position pdf from the gradient-based algorithm where the
green bar represents the true position and the red bar represents estimated position (100
MC Runs)

4.5 Algorithm Operational Integrity

4.5.1 Ability to Perform Consistent Estimation. The first line of analysis was to

determine if the proposed algorithm was capable of producing consistent estimates. For

purposes of clarity, the definition of consistent estimates was given in Section 2.8.2.3 as

Px̃x̃ − E[Pt] � 0, (4.13)

where the symbol � was used to express the fact that the left hand side of Equation (4.13)

represents a positive semi-definite matrix.

In order to determine if the estimates produced were in fact consistent the follow-

ing method was used. Given that in the multi-agent scenario with an ad hoc network an

optimal solution is not available, then the closest to an optimal solution that one can ob-
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Figure 4.10: Landmark1’s x-position pdf from the information-based algorithm where
the green bar represents the true position and the red bar represents estimated position
(100 MC Runs)

tain is in the centralized fusion case. This means that the uncertainty obtained through

the implementation of a decentralized architecture should result in a higher uncertainty

than if a centralized architecture was used. So a simple test of consistency would be the

ratio between the uncertainties of a particular state resulting from the use of a centralized

processing scheme and the use of a decentralized processing scheme i.e.,

φ =
σ
(c)
s

σ
(d)
s

, (4.14)

where the subscript s is used to declare the particular state under consideration, and the

superscripts (c) and (d) identify whether the uncertainty was obtained from the use of

a centralized or decentralized processing scheme respectively. If the results of Equation

(4.14) are less than one, then the estimate is declared to be consistent. However, if the

result produced by Equation (4.14) are greater than one, then the estimate is declared

inconsistent. A similar test can be found in the recent works of Nemra et al., [3], the one
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used here is defined as

φ =

φ < 1, Implies that an estimate is consistent;

φ > 1, Implies that an estimate is inconsistent.
(4.15)

The results for the agent specific states for agent1 over 100 Monte Carlo runs can be seen in

Figures 4.11, 4.12, and 4.13 where Figure 4.11 represents agent1’s x-position coordinate

uncertainty in meters, Figure 4.12 represents agent1’s y-position coordinate uncertainty in

meters, and Figure 4.13 represents agent1’s heading angle uncertainty in degrees.
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Figure 4.11: Agent1 x-position consistency test (Over 100 Monte Carlo Trials)

Clearly, the decentralized geometric particle filtering algorithm is capable of pro-

ducing consistent estimates for this problem.

4.5.2 Individual vs. Centralized vs. Decentralized. There are numerous poten-

tial benefits offered by a multiple agent network, where the data agents undertake tasks

with knowledge of the networks mission, or at least knowledge of a portion of the network,

over just a collection of several data agents operating without regard to any other agent.

It is likely that tasks can be performed in a more timely manner, and superior estimates

can be produce (in a minimum mean square error sense) in the multi-agent decentralized
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Figure 4.12: Agent1 y-position consistency test (Over 100 Monte Carlo Trials)
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Figure 4.13: Agent1 heading angle consistency test (Over 100 Monte Carlo Trials)
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network architecture over the collection of individual agents. The implication here is that

agents operating independently should result in a larger estimation error uncertainty than

the estimation error uncertainty obtained by agents that operate together in some fashion.

Likewise, if a centralized architecture is used, the estimation uncertainty should be smaller

than if a decentralized architecture is used to govern the network.

The so-called estimation error hierarchy can be seen in Figures 4.14, 4.15, and

4.16. As was the case in Section 4.5.1, the figures show the result of 100 Monte Carlo

runs with Figure 4.14 representing agent1’s x-position coordinate uncertainty in meters,

Figure 4.15 representing agent1’s y-position coordinate uncertainty in meters, and Figure

4.16 representing agent1’s heading angle uncertainty in degrees. The suggestion that an
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Figure 4.14: Agent1 x-position uncertainty for centralized processing, decentralized
processing, and individual processing (Over 100 Monte Carlo Trials)

uncertainty hierarchy exists between processing architectures is validated with the results

shown in Figures 4.14, 4.15, and 4.16.

4.5.3 Impact of Number of Particles. A common problem still needing a more

thorough treatment is the number of particles necessary to perform accurate estimation.

Certainly the exact number of particles needed will be a function of the application, but
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Figure 4.15: Agent1 y-position uncertainty for centralized processing, decentralized
processing, and individual processing (Over 100 Monte Carlo Trials)
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Figure 4.16: Agent1 heading angle uncertainty for centralized processing, decentralized
processing, and individual processing (Over 100 Monte Carlo Trials)
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a “rule of thumb" is not available. In short, an analogous rule to the Nyquist rate is not

available, therefore the number of particles used is typically refined through repeated trial

and error, then held constant throughout the length of the filter’s use. It should be noted

that there have been some adaptive sample size algorithms presented in the literature.

For example, an influential adaptive sample size techniques was introduced by Fox [102]

where an adaptive technique based on the use of the Kullback-Leibler divergence to bound

the error in the estimate of the true posterior probability density was proposed. Alvaro Soto

et al. [262] recognized some shortcomings of the Kullback-Leibler divergence sampling

technique, mainly that the samples originate from a proposal density and not from the

desired posterior density and proposed improvements.

The fact of the matter is that the number of particles used will have a direct impact

on a particle filter’s ability to produce accurate estimates. Certainly, there are applications

where the number of particles needed to meet a minimum level of accuracy will change.

For example, in an aerial vehicle application when the trajectory can be described as being

benign, the number of particles needed will surely be less than in the situation where the

trajectory is highly dynamic.

The purpose of this section is not to offer an algorithm for adaptive particle selec-

tion. The intent is to acknowledge the impact that the number of particles has on the ability

to produce faithful estimates, and that the proposed algorithm does not violate this intu-

ition. As can be seen in Figures 4.17, 4.18, and 4.19, as the number of particles increases,

the corresponding Root Mean Square Error (RMSE) in the state estimate decreases. Fun-

damentally, this is because access to more samples allows the particle filtering algorithm

to achieve a more comprehensive representation of the state-space, in addition to a finer

resolution of the state-space. From a more particle point of view, one should notice the

overall scale and that as the number of particles increases the overall impact on the state

uncertainty is not drastic.
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Figure 4.17: Agent1 x-position RMSE estimation accuracy vs. number of particles
(Over 100 Monte Carlo Trials)
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Figure 4.18: Agent1 y-position RMSE estimation accuracy vs. number of particles
(Over 100 Monte Carlo Trials)
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Figure 4.19: Agent1 heading RMSE estimation accuracy vs. number of particles (Over
100 Monte Carlo Trials)

4.5.4 Impact of Number of Agents. In a similar fashion to the analysis per-

formed in Section 4.5.3, the impact of the number of agents used on the accuracy of

estimates obtained is explored. Intuitively, as the number of agents increases, one should

expect that the uncertainty in the state estimates should decrease. The reason for the un-

certainty reduction is due to the added number of measurements made available by the

increasing number of agents. Figures 4.20, 4.21, and 4.22 show the estimation uncertainty

for agent1’s x-position in meters, y-position in meters, and the heading in degrees. As

expected, the scenario run with 8 agents produced smaller estimation uncertainties than

the scenario with only two agents respectively, albeit modest improvement. The improve-

ment of estimation accuracy as a function of the number of agents can also be seen in the

bar plots of Figures 4.23, 4.24, and 4.25 where the height of the bars corresponds to the

final uncertainty of the corresponding state. One can clearly see the gradual improvement

of the final state uncertainty as the number of agents increases from 2 to 8.

4.5.5 Information Analysis. If the centralized processing architecture is as-

sumed to produce estimation results that are the closest to the true value, then the amount
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Figure 4.20: Agent1 x-position uncertainty analysis of estimation accuracy vs. number
of agents (Over 100 Monte Carlo Trials)
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Figure 4.21: Agent1 y-position uncertainty analysis of estimation accuracy vs. number
of agents (Over 100 Monte Carlo Trials)
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Figure 4.22: Agent1 heading uncertainty analysis of estimation accuracy vs. number of
agents (Over 100 Monte Carlo Trials)
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Figure 4.23: Bar plot showing the gradual improvement of Agent1’s final x-position
uncertainty as the number of agents is increased from 2 to 8 (Over 100 Monte Carlo
Trials)
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Figure 4.24: Bar plot showing the gradual improvement of Agent1’s final y-position
uncertainty as the number of agents is increased from 2 to 8 (Over 100 Monte Carlo
Trials)
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Figure 4.25: Bar plot showing the gradual improvement of Agent1’s final heading un-
certainty as the number of agents is increased from 2 to 8 (Over 100 Monte Carlo Trials)
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of Shannon entropy H(p(x)), in the centralized processing scenario should be less than

that obtained in the decentralized processing case. The Shannon entropy is defined as

H(p(x)) =
N∑
i=1

p(xi) log (p(xi)) , (4.16)

where the logarithm is considered to be the natural logarithm in this dissertation, p is a

probability density function, and xi represents the ith sample from the sample set. Like-

wise, the Shannon Entropy obtained by the decentralized processing case should be less

than the case where the agents are operating without any communication between then.

The reduction in Shannon entropy from the no communication case to the decentralized

processing case to the centralized processing case can be seen in Figure 4.26.
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Figure 4.26: Shannon entropy for Agent1 in the centralized, decentralized, and no com-
munication scenarios (Over 100 Monte Carlo Trials)

The same rationale in the Shannon entropy case also hold for the relative informa-

tion case as can be seen in Figure 4.27 where the Kullback-Leibler divergence is calculated

for the decentralized processing case and compared to the no communication case. In both

architectures, the centralized case was used as the reference or target case.
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Figure 4.27: Kullback-Leibler divergence comparison between the decentralized and no
communication scenarios for Agent1 with the centralized scenario used as the reference
case (Over 100 Monte Carlo Trials)

4.6 Performance Under Various Measurement Scenarios

4.6.1 Range and Bearing Case. Most existing measurement configurations, in

scenarios similar to the one considered here, incorporate both range and bearing measure-

ments. However, there is an increasing body of literature concerned with bearings-only

measurement configurations [216], [53], [272], [248]. Furthermore, there does exist a

body of literature concerned with the range-only measurement case as well [105], [126].

The results shown for the following range and bearing measurement scenario, range only

measurement scenario, and bearing only measurement scenario are the results obtained

through 100 Monte Carlo runs with the parameters set to the values in Table 4.3.

In Figures 4.28, 4.29 and 4.30, agent1 specific state estimation errors are shown with

units of meters, meters, and degrees for the agent’s x-position, y-position, and heading an-

gle respectively. Likewise, shown in the Figures 4.31 and 4.32 are agent1’s landmark1 x

and y position estimation errors. Note, only the estimation error and uncertainty bounds

for the first landmark are given, since it is representative of the estimation error and un-
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Figure 4.28: Agent1 x-position state estimation errors with ±1σ ensemble standard
deviation bounds (black), ±1σ mean filter generated standard deviation bounds (red), and
ensemble mean estimation error (blue) for the range and bearing measurement case (Over
100 Monte Carlo Runs)

Figure 4.29: Agent1 y-position state estimation errors with ±1σ ensemble standard
deviation bounds (black), ±1σ mean filter generated standard deviation bounds (red), and
ensemble mean estimation error (blue) for the range and bearing measurement case (Over
100 Monte Carlo Runs)
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Figure 4.30: Agent1 heading angle state estimation errors with ±1σ ensemble standard
deviation bounds (black), ±1σ mean filter generated standard deviation bounds (red), and
ensemble mean estimation error (blue) for the range and bearing measurement case (Over
100 Monte Carlo Runs)

certainty for the two remaining landmarks. It can easily be seen that the estimation error

resides well within the ±1σ bounds. This trend could be representative of having over es-

timated the required amount of measurement noise strength. The implication of the filter

performance shown is that additional tuning of the measurement noise intensities may be

required.

4.6.2 Range Only Case. This section is used to present the results of a range-

only measurement scenario. In Figures 4.33 4.34, and 4.35 the estimation error and as-

sociated uncertainty are shown for agent1’s vehicle specific states under the range only

measurement scenario. In particular, notice how the estimation uncertainty for the head-

ing state of agent1 in Figure 4.35 is larger than the estimation uncertainty obtained in the

range and bearing measurement scenario. This should be expected, since there is no longer

access to angular measurements. However, the lack of angular measurement doesn’t im-

ply that the estimation uncertainty will grow without bound, as indicated in Figures 4.33
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Figure 4.31: Agent1’s landmark1 x-position state estimation errors with±1σ ensemble
standard deviation bounds (black), ±1σ mean filter generated standard deviation bounds
(red), and ensemble mean estimation error (blue) for the range and bearing measurement
case (Over 100 Monte Carlo Runs)

Figure 4.32: Agent1’s landmark1 y-position state estimation errors with ±1σ ensemble
standard deviation bounds (black), ±1σ mean filter generated standard deviation bounds
(red), and ensemble mean estimation error (blue) for the range and bearing measurement
case (Over 100 Monte Carlo Runs)
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and 4.34. This is because the continued range measurement over filter iterations provides

sufficient observability into the heading angle to retard the growth of the estimation error.

Figure 4.33: Agent1 x-position state estimation errors with ±1σ ensemble standard
deviation bounds (black), ±1σ mean filter generated standard deviation bounds (red), and
ensemble mean estimation error (blue) for the range only measurement case (Over 100
Monte Carlo Runs)

In Figures 4.36 and 4.37, the range only estimation error for agent1’s landmark1

states are provided. As in the range and bearing case, the estimation error and correspond-

ing uncertainty are given in units of meters. The uncertainty shown represents the ±1σ

bound.

4.6.3 Bearing Only Case. The final measurement scenario considered is the

bearing-only measurement scenario, which is analogous to typical image-based naviga-

tion. In contrast to the range-only scenario in Section 4.6.2, notice that in Figures 4.38,

4.39, and 4.40 the estimation uncertainty for agent1 is larger in the position states and

smaller in the heading states. The same logic used previously applies to the bearing-only

measurement case as well. That is, access to a direct measurement of angle has the most
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Figure 4.34: Agent1 y-position state estimation errors with ±1σ ensemble standard
deviation bounds (black), ±1σ mean filter generated standard deviation bounds (red), and
ensemble mean estimation error (blue) for the range only measurement case (Over 100
Monte Carlo Runs)

Figure 4.35: Agent1 heading angle state estimation errors with ±1σ ensemble standard
deviation bounds (black), ±1σ mean filter generated standard deviation bounds (red), and
ensemble mean estimation error (blue) for the range only measurement case (Over 100
Monte Carlo Runs)
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Figure 4.36: Agent1’s landmark1 x-position state estimation errors with±1σ ensemble
standard deviation bounds (black), ±1σ mean filter generated standard deviation bounds
(red), and ensemble mean estimation error (blue) for the range only measurement case
(Over 100 Monte Carlo Runs)

Figure 4.37: Agent1’s landmark1 y-position state estimation errors with ±1σ ensemble
standard deviation bounds (black), ±1σ mean filter generated standard deviation bounds
(red), and ensemble mean estimation error (blue) for the range only measurement case
(Over 100 Monte Carlo Runs)
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impact on the angular state. In Figures 4.41 and 4.42, the bearing only landmark estima-

Figure 4.38: Agent1 x-position state estimation errors with ±1σ ensemble standard
deviation bounds (black), ±1σ mean filter generated standard deviation bounds (red), and
ensemble mean estimation error (blue) for the bearings only measurement case (Over 100
Monte Carlo Runs)

tion errors for agent1’s landmark1 state estimates are given in units of meters, along with

±1σ bounds.
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Figure 4.39: Agent1 y-position state estimation errors with ±1σ ensemble standard
deviation bounds (black), ±1σ mean filter generated standard deviation bounds (red), and
ensemble mean estimation error (blue) for the bearings only measurement case (Over 100
Monte Carlo Runs)

Figure 4.40: Agent1 heading angle state estimation errors with ±1σ ensemble standard
deviation bounds (black), ±1σ mean filter generated standard deviation bounds (red), and
ensemble mean estimation error (blue) for the bearings only measurement case (Over 100
Monte Carlo Runs)
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Figure 4.41: Agent1’s landmark1 x-position state estimation errors with±1σ ensemble
standard deviation bounds (black), ±1σ mean filter generated standard deviation bounds
(red), and ensemble mean estimation error (blue) for the bearings only measurement case
(Over 100 Monte Carlo Runs)

Figure 4.42: Agent1’s landmark1 y-position state estimation errors with ±1σ ensemble
standard deviation bounds (black), ±1σ mean filter generated standard deviation bounds
(red), and ensemble mean estimation error (blue) for the bearings only measurement case
(Over 100 Monte Carlo Runs)
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4.7 State-of-the-Art Comparison

In this section, decentralized data fusion on the unit hypersphere is compared to cur-

rent state-of-the-art methods for decentralized data fusion. In particular the methods used

for comparison are the generalized covariance intersection method for Gaussian mixture

models proposed by [287] and the traditional Covariance Intersection method.

Some interesting facts about the simulation results are worth noting here. First, the

traditional Covariance Intersection method was not able to obtain meaningful results when

the initial uncertainty was set to the values in Table 4.1. The reason for the poor perfor-

mance of the Covariance Intersection approach can be attributed to the EKF formulation

having to linearize about the current estimate, in addition to the nature of the resulting

probability density function being inadequately described with Gaussian statistics.

The generalized GMM Covariance Intersection method was able produce reason-

able results but required an excessive amount of computation time. The reason for the

increased requirement for computation was primarily due to initialization with the kmeans

clustering algorithm, coupled with the fact that the results of which were then used by the

Expectation Maximization algorithm for defining the parameters for the GMM. Both the

kmeans algorithm and the Expectation Maximization algorithms are iterative, and given

poor initial conditions greatly impacts their convergence rate. Even though the estima-

tion results obtained by the generalized GMM Covariance Intersection algorithm were

certainly reasonable, it was certainly distinguishable from the fusion process on the unit

hypersphere by the required amount of computation. In fact, the algorithm runtime was re-

ported by MATLABr to be approximately 433.9 seconds. In contrast, the runtime for data

fusion on the unit hypersphere approach was reported to be approximately 20.4 seconds.

In an attempt to further exemplify the improvement in required computation time,

we examined the run times between the two filters when the number of particles and the

measurement types were changed. The results of the run time analysis are presented in

Tables 4.2 and 4.3 for the GMMPF algorithm and the proposed decentralized Riemannian

particle filter (DRPF) algorithm respectively. As the data clearly shows, an order of mag-

152



nitude improvement in required computation time was achieved in all of the cases listed.

Table 4.2: PCCI mean run times varying measurements & particles

1000 2500 5000 7500 10000

Particles Particles Particles Particles Particles

Range and Bearing 171.8 sec 283.4 sec 433.9 sec 633.6 sec 781.8 sec

Range Only 168.8 sec 279.8 sec 426.7 sec 629.3 sec 777.1 sec

Bearing Only 174.9 sec 287.1 sec 438.4 sec 638.4 sec 786.2 sec

Table 4.3: DRPF mean run times varying measurements & particles

1000 2500 5000 7500 10000

Particles Particles Particles Particles Particles

Range and Bearing 9.3 sec 15.6 sec 20.4 sec 30.8 sec 39.6 sec

Range Only 9.8 sec 16.4 sec 20.7 sec 32.0 sec 41.2 sec

Bearing Only 9.9 sec 16.5 sec 21.5 sec 34.3 sec 42.8 sec

Now, a word of caution is in order. The comparison of runtime results between any

algorithm collection should be viewed with a degree of skepticism. The results are subject

to the available computer hardware, the degree of optimization of the relevant source code,

and simulation environment used, among various other simulation parameters. However,

given that the results shown were obtained on the same computer, within the same simula-

tion environment, and by the authors own source code (with similar degrees of optimiza-

tion), the runtime results presented do suggest at least an order of magnitude improvement

in the required runtime. A direct comparison between the three algorithms in terms of

mean filter generated 1σ standard deviations obtained by each of the three filter formula-

tions can be seen in Figures 4.43, 4.44, and 4.45, which show the estimation uncertainty

for agent1’s x-position in meters, y-position in meters, and the heading in degrees. Recall
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Figure 4.43: Agent1’s x-position mean filter generated 1σ standard deviations compari-
son for the proposed information based unit hypersphere algorithm, traditional Covariance
Intersection in an EKF framework, and Gaussian Mixture Model Particle Filter (GMMPF)
(Over 100 Monte Carlo Runs)
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Figure 4.44: Agent1’s y-position mean filter generated 1σ standard deviations compari-
son for the proposed information based unit hypersphere algorithm, traditional Covariance
Intersection in an EKF framework, and Gaussian Mixture Model Particle Filter (GMMPF)
(Over 100 Monte Carlo Runs)
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Figure 4.45: Agent1’s heading angle mean filter generated 1σ standard deviations com-
parison for the proposed information based unit hypersphere algorithm, traditional Co-
variance Intersection in an EKF framework, and Gaussian Mixture Model Particle Filter
(GMMPF) (Over 100 Monte Carlo Runs)

that back in Section 4.4.2, the resulting probability density functions that were the result

of the unit hypersphere fusion were shown to be adequately described as being Gaussian

in nature. This fact would seem to contradict the claim of poor Gaussian descriptions as

being a cause for the inferior estimation performance of the traditional Covariance Inter-

section approach. However, recall that the Gaussian description was appropriate for the

landmark states, since they were what was being communicated between the agents. The

Gaussian description did not pertain to the probability density functions that described

the agent specific states. The Gaussian description is inadequate for the agent states as

a result of the choice of models used in the simulation. The process model describing

the agent states had notable nonlinearities, as can be seen in Equation (4.8). Where the

process model for the landmark states was completely linear due to their being modeled

as stationary landmarks.
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4.8 Summary

This chapter was used to present the simulation environment and results. Both pro-

cess and measurements models were detailed. Assumptions used in the simulation and

models were given explicitly. The analysis was divided into four distinct categories.

The first category focused on comparing the two proposed algorithms. The algo-

rithms were shown to produce similar estimation results.

The second category was concerned with the operational integrity of the proposed

algorithm. The algorithms integrity was evaluated against various conditions to include a

rudimentary consistency analysis, communication topologies, number of agents, number

of particles, and finally in terms of Shannon entropy and Kullback-Leibler divergence.

The third category was comprised of several different measurement scenarios used

to validate the proposed algorithms of Chapter III. Scenarios included range and bearing

measurements, range only measurement, and bearing only measurement scenarios.

The fourth category was dedicated to comparing the derived algorithms with cur-

rently available methods in the decentralized data fusion literature. The proposed algo-

rithms out performed both the traditional Covariance Intersection algorithm formulated

in an extended Kalman filter approach, as well as, the Covariance Intersection approach

to Gaussian Mixture Model particle filtering. The GMM particle filtering approach was

able to produce comparable estimation results, but with more than an order of magnitude

increase in the required computation time. The next chapter will provide a summary of

the research performed, highlight the proposed research contributions, and identify areas

worthy of further research.

156



V. Conclusions

5.1 Introduction

This chapter is intended to serve multiple purposes, chief among them is to delineate

between the research performed and the proposed scientific contributions stated in Chapter

I. Another purpose of this chapter is to draw conclusions based on the presented work.

Furthermore, this chapter will offer potential avenues worthy of future research that were

identified throughout the course of this research effort.

The body of work presented in this dissertation has extended the current state of the

art in decentralized particle filtering. The general research field of data fusion is vast and

offers several interesting research questions. The subclass of problems concerned with

decentralized data fusion is no exception. One of the questions addressed in this research

was the formulation of decentralized particle filtering algorithms capable of producing es-

timates that did not suffer from the incorporation of redundant information, also known as

the data incest problem or inconsistent fusion problem. If the problem of inconsistent esti-

mation is not addressed appropriately, it will likely lead to overly optimistic estimates, and

eventual filter divergence. There have been several approaches to solving the inconsistent

estimation problem offered throughout the available literature. The novel approaches of-

fered in this dissertation exploited the synergetic relationship that has been shown to exist

between differential geometry and nonlinear filtering.

The fact that geometry and filtering are intimately tied is not a secret. In fact, a

geometric methodology was used by Kalman in his original derivation of the now widely

used Kalman filter [148]. Even the state of the art solution methods to the inconsistent

fusion problem, like Covariance Intersection, look to exploit the geometric relationships

between covariance matrices to formulate convex optimization problems.
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5.2 Value Added by the Research Effort

This research effort has developed novel decentralized particle filtering algorithms

based on the correspondences that exist between the research fields of differential geom-

etry and nonlinear filtering. The well understood differential geometry of the unit hy-

persphere played a pivotal role in the formulation of the decentralized particle filtering

algorithms presented in Chapter III.

A key research contribution was made through the demonstration of a never before

used general framework for performing decentralized particle filtering that is based on a

non-Euclidean geometric interpretation of decentralized data fusion. Current decentral-

ized filtering methods represent a dichotomy of techniques. The first class of methods

requires the ability to linearize models so that Kalman based methods can be used for

decentralized data fusion. The second class of methods makes use of particle filtering

technology by requiring that complex filtering densities be represented with mixture mod-

els for decentralized data fusion. Our framework relies on no such requirements.

Another research contribution was made by projecting probability density functions

onto the surface of the unit hypersphere, mainly that filtering calculations were now able

to be performed in closed-form. The use of closed-form calculations has impacted the

field of decentralized particle filtering in primarily two ways. First, by no longer requiring

costly iterative numerical approximations to filtering operations, the implementation of al-

gorithms that require significantly less computational resources are made available, which

ultimately improves computational efficiency. Second, the proposed algorithms removed

the implementation bottleneck of having to perform computationally costly parameteriza-

tion procedures associated with the conversion of particle representations into continuous

probability density representations, and in so doing, does not constrain the type of proba-

bility density functions being considered.

Additional research contributions can be seen through the rigorous analysis of re-

sults obtained in simulation, wherein the proposed decentralized particle filtering algo-

rithms were shown to provide superior fusion performance over currently available al-
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gorithms, under a variety of scenarios in under a variety of performance metrics. For

example, analysis was performed based on the impact of the number of particles and

the number of agents used on the estimation performance. The information and entropy

content of simulation results were examined, along with various measurement scenarios.

Furthermore, we successfully adapted an algorithm capable of providing existence and

uniqueness guarantees for solutions to the decentralized particle filtering problem under

mild assumptions. Existence and uniqueness guarantees are not associated with exist-

ing approaches unless under restrictive assumptions to the network topology or available

probabilistic representations.

Although, it was shown that the performance gains with respect to achievable ac-

curacy were modest when compared to the popular GMM particle filtering formulation.

However, the true value added when compared to the GMM particle filtering formulation

can be seen in the reduction in required algorithm runtime of an order of magnitude in the

scenario studied.

The following is a summary list of the proposed novel research contributions of the

work documented in this dissertation, and can also be found in Chapter I.

1. Demonstrated a never before used general framework for performing decentralized

particle filtering based on a non-Euclidean geometric interpretation.

2. Presented decentralized particle filtering algorithms that provide closed form filter-

ing calculations, currently unavailable in the general case.

3. Adapted an algorithm capable of providing existence and uniqueness guarantees for

solutions to the decentralized particle filtering problem.

4. Established a technology bridge between multiple research communities that per-

mits access to previously unavailable analysis tools.

5. Demonstrated, through empirical evidence, that an order of magnitude improvement

in computational performance is possible with the proposed algorithms.
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In the opinion of this author, the research presented in this dissertation along with

the existing literature on the use of differential geometric methods in nonlinear filtering

applications have only begun to scratch the surface of possible formulations. Throughout

the course of this research, several interesting research problems and hints to potential

formulations of solution approaches have manifested themselves in one form or another.

It is doubtful that any single researcher can provide the necessary attention to all of the

identified research questions; however, a few of the more prominent ones are mentioned

next.

5.3 Areas Worthy of Future Considerations

The research conducted in this dissertation has highlighted multiple areas worthy of

further research. The following is a partial list of interesting research questions left open.

1. More realistic environmental modeling to include non-point feature representations,

non-stationary feature models, full six degree of freedom kinematics, etc.

2. More realistic sensor models in the form of investigating the impact of limited sensor

range, limited field of view (FOV), etc.

3. The incorporation of a decision maker in the algorithm for purposes of path plan-

ning, target assignment, etc.

4. Investigate the feasibility of formulating the entire fusion process without having to

ever leave the unit hypersphere.

5. Investigate the impact of higher fidelity density estimation techniques on algorithm

performance.

6. Investigate the utility of other differential geometric surfaces for use in the decen-

tralized data fusion process.

7. A detailed analysis of the impact of limited communications or intermittent com-

munications.
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8. Investigate the utility of using the unit hypersphere in defining a potential rule-of-

thumb for establishing necessary sample size.

9. Explore how additional tasks associated with navigation and tracking be formulated

in this framework eg., data association, feature detection, map management, etc.

10. Investigate the relationships between the geometry of the agents, the available sen-

sors on individual agents, and achievable estimation accuracy of the agents.

11. Integrate so called down stream functions like guidance and control to investigate

the closed-loop performance.

12. Identify metrics or guidelines for determining when agents should communicate and

when communication may be counter-productive?

13. Investigate techniques for describing the information that agents share about them-

selves and the environment? Furthermore, determine if the information description

is universal or situationally dependent.

14. Finally, investigate methods for monitoring network health, identifying misinforma-

tion and malicious network attacks, and methods to remedy network intrusions.

A deeper understanding of the fundamental role that information plays in decentral-

ized data fusion has yet been adequately explored. In the opinion of this author, infor-

mation and its interpretation are at the core of truly understanding multi-agent systems.

The determination of how information percolates throughout a multi-agent system is an

interesting research agenda worthy of consideration.

Clearly, great benefit resides in the implementation of decentralized data fusion.

The true benefit is still somewhat hazy. It will likely become more focused as some of the

questions listed above begin to be answered.

5.4 Final Thoughts

The true power of the differential geometric framework originates from its ability to

accommodate an assortment of scenarios. For example, in the event that there exists the
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need to compare two probability density functions as is the case in filtering problems, sig-

nal detection problems, and feature classification problems, the framework can be utilized.

In the case of redundant information, the intuitive representation of the abstract concepts

of similarity and information were made possible through the use of differential geometry.

The rate at which hardware and software technologies are maturing is making de-

centralized data fusion methods a practical option for many application areas. From an

Air Force perspective, applications such as navigation, tracking, and targeting can benefit

from decentralization. Likewise, Air Force applications impose considerable constraints

on timing, reliability, and accuracy. The ability to provide timely and reliable information

to decision makers is vital to the success of the Air Force mission. This research has shown

through the use of differential geometry that timeliness and reliability are realizable when

employing decentralized systems.

The research has advanced the state of the art in decentralized data fusion. However,

there is still significant work to be done if systems based on a decentralized architecture

are to be realized in an Air Force operational environment.
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Appendix A. Topics From Topology and Real Analysis

A.1 Introduction

This appendix is used to provide background definitions for topics typically found

in topology and analysis. The reason is twofold. First, in order to benefit from the use of

manifolds, one needs to assume some basic topological structure is available. Second, to

serve as an accessible presentation in the event that a reader is unfamiliar with topology

and/or analysis. The material found in this appendix can be found in a number of excellent

references. The primary sources for this appendix include textbooks [69], [97], [202],

[14], [245], [119], [204] and lecture notes obtained during the following courses [85],

[215], [86], [87].

A.2 Definitions From Analysis

Definition A.2.1. A collection is used to refer to a set of objects whose elements are also
sets.

Definition A.2.2. A partition of a set A is a collection of disjoint nonempty subsets of A
whose union is all of A.

Definition A.2.3. If set X possess an order relation, say <, and if a < b then (a, b)
represents the set

{x | a < x < b}; (A.1)

and is called an open interval in X . If X is empty a is the immediate predecessor of b,
and b is the immediate successor of a.

Definition A.2.4. A function φ : A → B is said to be injective or one-to-one if for every
pair of distinct points in A, their image under φ are distinct.

[φ(a) = φ(a′)]⇒ [a = a′] (A.2)

Definition A.2.5. A function φ : A → B is said to be surjective or onto if every element
of B is the image of some element of A under the function φ.

[b ∈ B]⇒ [b = φ(a), for at least one a ∈ A] (A.3)

Definition A.2.6. A function φ : A → B is said to be bijective if it is both injective and
surjective.
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Figure A.1: An injective mapping. The original figure can be found in reference [202].
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Figure A.2: A surjective mapping. The original figure can be found in reference [202].
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Definition A.2.7. Let b be an element of a subset of A called A0. If x 6 b for every x in
A0 then A0 is bounded above and b is called an upper bound.

Definition A.2.8. If the set of all upper bounds forA0 has a smallest element, that element
is called the supremum or least upper bound

Definition A.2.9. Let b be an element of a subset of A called A0. If x > b for every x in
A0 then A0 is bounded below and b is called a lower bound.

Definition A.2.10. If the set of all lower bounds forA0 has a largest element, that element
is called the infimum or greatest lower bound

A.3 Definitions From Topology

Definition A.3.1. A set A is said to be countably infinite if there exists a bijective corre-
spondence

f : A→ Z+, (Z is the integers)

Definition A.3.2. A topology on a set X is a collection of subsets T of X having the
following properties:

1. ∅ and X are in T
2. The union of any of the elements of any subcollection T is in T
3. The intersection of the elements of any finite subcollection of T is in T

A set X that has a defined topology is called a topological space.

Definition A.3.3. A topological space X is called a Hausdorff space if for every pair of
distinct points x1 and x2 there exist neighborhoods U1 and U2 of x1 and x2 respectively,
that are disjoint.

Definition A.3.4. Let X and Y be topological spaces; let φ : X → Y be a bijection. If
the function φ and its inverse φ−1 are continuous, then φ is called a homeomorphism.

Definition A.3.5. Let U and V be open sets in Rn. A homeomorphism φ : U → V from
U onto V is called a C∞ differentiable homeomorphism or diffeomorphism, if both φ and
φ−1 are continuous and infinitely differentiable C∞.

A.4 Norms, Metrics, and Inner Products

Definition A.4.1. Let V be a set endowed with operations of addition and scalar multi-
plication. If the elements of V are real valued then V is called a real vector space if the
following conditions are satisfied for all x, y, z ∈ V , and all scalars c, c1, c2 ∈ R:

1. x+ y = y + x
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2. x+ (y + z) = (x+ y) + z

3. There exists a set called the empty set denoted as ∅ such that x+ ∅ = x

4. For all elements x there exists a unique element −x such that x+ (−x) = 0

5. 1 · x = x

6. (c1 · c2) · x = c1 · (c2 · x)

7. c · (x+ y) = c · x+ c · y
8. (c1 + c2) · x = c1 · x+ c2 · x

Definition A.4.2. A subspace V0 of a vector space V is a nonempty subset of V which
satisfies the following two requirements:

1. For any pair x, y ∈ V0, x+ y ∈ V0
2. For any x in V0 and any scalar c, c · x ∈ V0

Definition A.4.3. An inner product on a real vector space V is a real function denoted as

〈x, y〉 : V × V → R (A.4)

such that for all x, y, z ∈ V and all c ∈ R the following is true:

1. 〈x, y〉 = 〈y, x〉
2. 〈c · x, y〉 = c · 〈x, y〉
3. 〈x+, z · y〉 = 〈x, z〉+ 〈y, z〉
4. 〈x, y〉 > 0, ∀x 6= 0

Definition A.4.4. A norm on a real vector space V is a mapping such that

V = Rn → R (A.5)

and is typically denoted by
‖ · ‖ : V → [0,∞) (A.6)

such that for all x, y ∈ V and scalars c the definition for vector space, subspace, and
inner product hold. A vector space endowed with a norm is called a normed space.

Remark 1. A norm ‖ · ‖ defines a metric d(x, y) = ‖x − y‖ on V , i.e., a function that
measures the distance between two elements x and y of V , such that the following four
properties hold ∀x, y, z ∈ V

1. Symmetry: d(x, y) = d(y, x)

2. Positive Definite: d(x, y) > 0,∀x 6= y
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3. Equality Condition: d(x, x) = 0

4. Triangle Inequality: d(x, z) 6 d(x, y) + d(y, z)

Definition A.4.5. A metric on a vector space V is a mapping (function)

d(·, ·) : V × V → [0,∞) (A.7)

that satisfies the properties of a norm ∀x, y, z ∈ V . A Space endowed with a metric is
called a metric space.

Remark 2. In this definition of a metric space, the space V is not necessarily a vector
space. In fact, any space endowed with a metric is a metric space.

Remark 3. Inner products and norms may not be defined on metric spaces!

A.5 Hilbert and Banach Spaces

Definition A.5.1. A Hilbert spaceH is a vector space endowed with an inner product and
associated norm and metric, such that every Cauchy sequence in H has a limit in H .

Remark 4. Consider a Euclidean space Rn. It is obviously a vector space endowed with
the usual inner product, norm, and associated metric given by,

1. Inner Product: 〈x, y〉 = xTy

2. Norm: ‖x‖ =
√
xTx =

√
〈x, x〉

3. Metric: ‖x− y‖
such that every Cauchy sequence takes a limit in Rn. This makes Rn a Hilbert space.

Definition A.5.2. A Banach space B is a normed space with associated metric

d(x, y) = ‖x− y‖ (A.8)

such that every Cauchy sequence in B has a limit in B.

Remark 5. The difference between a Banach space and a Hilbert space is the source of
the norm. In Hilbert spaces, the norm is defined via the inner product and in Banach
spaces the norm is defined directly from the definition.
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