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Minority carrier diffusion lengths (L,) are measured for GaN, GaN/AlGaN, and GaN/InGaN
core-shell nanowires using a technique based on imaging of recombination luminescence. The effect
of shell material on transport properties is measured. An AlGaN shell produces Ly values in excess
of 1 um and a relative insensitivity to wire diameter. An InGaN shell reduces effective diffusion
length, while a dependence of L on diameter is observed for uncoated nanowires. © 2011 American

Institute of Physics. [d0i:10.1063/1.3573832]

Gallium nitride (GaN) nanowires have shown promise
for applications in optoelectronics, high power, and high
speed devices.'™ For many potential applications, the trans-
port behavior of minority carriers affects device performance
and serves as an indicator of material quality. Determination
of minority carrier diffusion lengths (Lg) is generally per-
formed using electron beam induced current (EBIC),””’ light
induced transient grating,8 or a combination of measure-
ments of lifetime with estimates of minority carrier
mobility.9‘10 Strengths and limitations of these approaches
vary but most either require contacts or lack the spatial res-
olution for nanostructure characterization.

In this paper, we utilize an imaging approach that allows
for a direct measure of Ly from an image of the lumines-
cence associated with carrier diffusion and recombination.
Near field scanning optical microscopy (NSOM) is used in
conjunction with charge generation in a scanning electron
microscope (SEM) to measure a series of core-shell nano-
wires and determine the effect of the shell material.

Samples are mounted in a Nanonics MultiView 2000
atomic force microscope (AFM). This instrument allows for
independent scanning of both sample and fiber probe and
direct electron beam access to the sample. In transport imag-
ing, the NSOM probe is scanned while the incident beam is
fixed at a point on the sample to generate excess carriers. The
probes are cantilevered fibers with apertures ranging from
100 to 500 nm. Collection efficiency is strongly dependent
on aperture size, so tradeoffs are required between AFM res-
olution and optical collection. For this work, we utilized tips
of 200-300 nm diameter.

Transport imaging depends on maintaining the spatial
distribution of the luminescence associated with carrier re-
combination. This is in contrast to standard cathodolumines-
cence (CL) in which the excitation point is scanned and all
recombination light is mapped to the point of excitation. The
fundamental approach is basically an optical Haynes—
Shockley experirnent.“_13 While transport imaging in thin
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films can be done using far field techniques, the size of the
structures and the small diffusion lengths observed in GaN
nanowires require the resolution provided by near field
imaging.m‘15

We investigated GaN nanowires, as well as core-shell
structures with GaN cores and either AlGaN or InGaN shells.
GalN nanowires were grown by metal-catalyzed metal or-
ganic chemical vapor deposition on r-plane sapphire sub-
strates coated with 2 nm Ni at a temperature of 900 °C. The
resulting nanowires are single crystalline and have triangular

cross sections with a [1120] growth orientation and one

(0001) and two equivalent {1101} facets.” The nanowires are
unintentionally doped n-type with typical lengths of
5-30 wm and diameters of 100—800 nm. Further details on
GaN nanowires grown by this method have been previously
publishf:d.16’17 Residual doping has been estimated to be
~10" cm™ based on measured resistivity as a function of
diameter and modeling of surface depletion effects.!”
InGaN shell growth18 was carried out at a temperature of
710 °C for 10 min. AlGaN shell growth was carried out at
1075 °C for 8 min. AlGaN layers ranged in thickness from
~10-25 nm with Al mole fraction ranging from 20%-30%
as determined by cross-sectional scanning transmission mi-
croscopy and energy dispersive x-ray spectroscopy. The In-
GaN layers ranged in thickness from ~30-90 nm with In
mole fraction of ~17%. Cross-sectional images of represen-
tative core-shell nanowires from the samples are presented in

Ref. 19. Little to no InGaN growth is observed on the (0001)
facet,18 whereas AlGaN growth is observed on all three
nanowire facets.

Figure 1 shows 300 K CL spectra for the three samples:
GaN/AlGaN, uncoated GaN and GaN/InGaN nanowires. The
nanowires are dispersed on Si, so substrate luminescence is
negligible. In all cases, the band edge luminescence associ-
ated with GaN is observed, along with broad defect-related
luminescence. Yellow luminescence is present in all cases
and has previously been shown to be predominantly from the
surface layer in individual GaN nanowires, though also
present in the center region.20 No luminescence is evident
from the shell layers.

© 2011 American Institute of Physics
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FIG. 1. (Color online) CL spectra of GaN/AlGaN, GaN, and GaN/InGaN
nanowires. Spectra were taken at room temperature with electron beam en-
ergy of 20 keV. Note that the intensity is on a logarithmic scale.

For transport imaging experiments, a single nanowire is
selected. The electron beam is incident at a fixed point. The
NSOM tip is scanned and the panchromatic luminescence
distribution is collected and displayed as intensity as a func-
tion of position.

Figure 2 shows the topography (left) and NSOM (right)
distributions for an uncoated GaN wire. The point of carrier
generation is just below the image and NSOM scanning is
performed in the region adjacent to the incident electron
beam. The wire diameter is ~500 nm, determined from the
SEM image. The AFM image, while useful for determining
the axis for extraction of the spatial variation in the intensity,
is not a good indication of wire diameter due to the convo-

FIG. 2. (Color) Topography (left) and near field optical intensity (right)
images during e-beam excitation of a GaN nanowire.
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FIG. 3. (Color online) Luminescence intensity as a function of position for
GaN/AlGaN (@), GaN (H), and GaN/InGaN (A) nanowires. All nanowires
are of diameter ~700 =50 nm.

lution of the NSOM probe (250 nm) with the nanowire.

The highest luminescence intensity is observed, as ex-
pected, in the region adjacent to the point of excitation, de-
creasing with distance from that point. Figure 3 shows the
intensity distributions as a function of position for GaN,
GaN/AlGaN, and InGaN/GaN wires with ~700 nm diam-
eter. Data are normalized to a starting intensity. The opera-
tion of the NSOM in the SEM limits the working distance
and therefore the best resolution for nanowire diameter is
~50 nm.

For diffusion in one dimension, the minority carrier dis-
tribution and associated luminescence intensity distribution
are given by I(x)=(g/2L)exp(-x/Ly) where I is intensity, g
is generation rate, L is diffusion length, and x is the distance
from the point of excitation. The diffusion length is obtained
from the slope of a plot of In(I) as a function of x. This yields
an effective diffusion length, with the combined effect of
recombination associated with both bulk and surface effects.

Measurements were made for the three types of wires
described above. Table I summarizes the results. In all cases,
the electron beam excitation energy was 20 keV and the
probe current was 3 X 10710 A. We use the lowest possible
probe current in order to operate in the low excitation regime
where the excitation does not significantly change the popu-
lation of majority carriers. Consistent values of L, for lower
probe currents indicate that the low excitation limit has been
achieved.

For nanowires of comparable diameter, the
AlGaN shell produces the longest effective Ly, with the un-
coated wires intermediate and InGaN/GaN showing the
smallest value. This behavior is consistent with the role of

TABLE I. 300 K minority carrier diffusion lengths for GaN/AlGaN, GaN,
and GaN/InGaN wires.

Diameter Diffusion length
Wire (nm) (nm)
AlGaN/GaN-n-type 200 1100
500 1200
700 1100
GaN-n-type 300 130
500 660
700 830
InGaN/GaN-n-type 500 350
700 430
1000 470
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AlGaN as a wider bandgap material, creating a barrier for
recombination at the surface. InGaN, in contrast, has a
smaller bandgap than GaN. Density functional calculations
suggest a conduction band alignment of ~0.5 eV for a 17%
In concentration.”' The band bending resulting from this dis-
continuity at the InGaN/GaN interface will produce a deple-
tion region in the wire that will enhance the diffusion of
minority carrier holes to the surface. This is evident in both
the decreased band to band CL and in the reduced effective
Lyg.

Within a given material system, we have imaged mul-
tiple wires to determine the effect of wire diameter. For the
AlGaN/GaN wires, the dependence on wire diameter is
small, again indicating the role of the AlGaN shell in reduc-
ing the effect of surface recombination. This is consistent
with previous evidence for passivation of GaN nanowire sur-
face states by an AlGaN shell.”** For the uncoated GaN
wires, however, L, is reduced from 710 to 130 nm, as diam-
eter decreases from 700 to 300 nm.

Since these are n-type wires, the diffusion lengths reflect
the transport of holes. In MBE-grown structures, lifetimes
ranging from ~0.5 to 3 ns were measured for Si doped wires
with diameters ranging from 250 to 1000 nm.* Combining
this with a reported value of hole mobility in GaN nanowires
of 12 ¢cm?/V s, one obtains an estimated L4 of 120 to 300
nm for an uncoated wire, consistent with the values reported
here.

For comparison with transport imaging, we performed
EBIC measurements on similar GaN/AlIGaN and uncoated
GaN wires. The contacts were Ni/Au with 40 nm of Ni de-
posited, followed by 70 nm of Au. Only one sample was
available in each case. For the GaN/AlGaN nanowire, a plot
of the collected current along the wire as a function of
position19 results in a characteristic decay length of 1.0 um
at the left side and 1.4 um on the right side for a wire with
diameter of ~800 nm. Since an ohmic contact is not avail-
able at one end of the structure, the magnitude of the EBIC
current is affected by the contact behavior and values for
diffusion length cannot be directly obtained.”® However, the
characteristic length determined from the decay of the col-
lected current can provide an independent order of magni-
tude estimate for carrier diffusion. For the uncoated GaN
wire, this results in a characteristic length of 260 nm for a
~200 nm diameter wire, significantly less than measured for
the GaN/AlGaN structure of comparable diameter.

In summary, we have applied a near-field imaging tech-
nique to measure minority carrier diffusion lengths in GaN,
GaN/AlGaN, and GaN/InGaN nanowires. This optical ap-
proach allows for direct measure of Ly without the need for
contact fabrication. The results show that nanowires with an
AlGaN shell have the longest diffusion lengths (~1.2 um)
for diameters ranging from 200 to 700 nm. For both GaN
and GaN/InGaN structures, the effective diffusion lengths
are reduced, most likely by surface recombination effects.
Size dependent diffusion lengths are observed in the un-
coated GaN structures, consistent with prior reports of diam-
eter dependent lifetimes and mobilities in similar structures.
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