

Avoiding Common Security Flaws in Composed

Service-Oriented Systems

Michael Atighetchi, Partha Pal, Joseph Loyall

Raytheon BBN Technologies

Cambridge, MA

{matighet,ppal,jloyall}@bbn.com

Asher Sinclair

US Air Force Research Laboratory

Rome, NY

asher.sinclair@rl.af.mil

Abstract— Network-centric information systems are increas-

ingly called upon to support complex tasks and missions that
serve multiple communities of interest. As a result, existing
capabilities are exposed as services in a service-oriented system,
and newer capabilities are derived by discovering and compos-
ing available services. While service-orientation enables and
facilitates such composition-based system construction, the
evolving nature and variety of standards and the varying level
of compliance of otherwise feature-rich vendor products has
made achieving acceptable level of security and resilience in
such systems a daunting and error-prone task. This paper pre-
sents a number of factors that contribute to the security of
composed service-oriented systems, and outlines ways to avoid
common pitfalls and mistakes that stem from these factors and
weaken the resiliency and survivability of the composed system.

Keywords: Service Oriented Architecture, Trustworthy system

design, Information Assurance, Survivability

I. INTRODUCTION

There is no systematic and commonly accepted way to
analyze the security and resiliency guarantees of a composed
system that combines multiple functional as well as defen-
sive services and components. Without proper support for
analysis and understanding, system developers may end up
constructing a system that introduces some protection, but
leaves major vulnerabilities exposed; or a system that intro-
duces new vulnerabilities due to incorrect composition; or a
system that impacts performance or increases the resource
footprint significantly for only a small increase in protection.

The analysis must take into account (i) the footprint and
overhead of the protection services and defense mechanisms,
(ii) the security and protection that they provide, and (iii)
conditions such as resource constraints and threats of the
targeted deployment environment. All three dimensions are
important. System owners and administrators often gravitate
to shiny new security tools and mechanisms without realiz-
ing that they do not fit the available resources of the target
environment, and addresses only a subset of their security
needs. The result is overloaded resources, significantly re-
duced performance, potential self denial-of-service and a
false sense of security while considerable parts of the com-
posed system remain exposed to security attacks.

Service Oriented Architecture (SOA) based systems are
inherently composition-based. New functionality is ex-
pressed as orchestrations over services. While this approach
is useful for quick integration and realizing new services and
functionality based on well-defined workflows, it is prone to
configuration errors and lacks support for systemic proper-
ties, such as security, resiliency, and efficiency.

The contribution of this paper is to identify a number of
factors that contribute to the security and resiliency of com-
posed systems. We provide goodness criteria—conditions or
constraints stemming from and involving these factors that
avoid the common composition pitfalls. This work serves as
a precursor for an experimental approach to validate that the
composed system indeed satisfies the goodness criteria.

II. RELATED WORK

The Secure Content Automation Protocol (SCAP) [1]
NIST standard specifies a multi-purpose framework for au-
tomated configuration, vulnerability and patch checking,
technical control compliance activities, and security meas-
urement. SCAP tends to express security assertions in very
concrete terms and focuses mostly on the configuration state
of devices, while the constraints presented in this paper are
more abstract and also include interactions between multiple
software components (e.g., services).

The patterns community has identified a number of secu-
rity patterns [2] [3]. While similar in terms of the abstraction
level of presentation, our work differs from the patterns work
because we focus on adaptive composed systems and lay out
the foundation for future analytical and experimental valida-
tion of constraints on software structure and interaction pat-
terns.

III. PATH TO SAFE & SECURE COMPOSITIONS

Based on our ongoing research in adaptive cyber security
and advanced middleware [4,5,6] , we observe that success-
ful engineering of a survivable SOA-based system i.e., sys-
tem that combines multiple defenses or composes multiple
services with different defensive capabilities, depends on at
least the following factors:
A. Coupling: Interactions and components that need to be treat-

ed together

B. Separation: Aspects that need to be kept separate

C. Ordering: Functions that need to be performed in a certain

order

D. Keeping Secrets Secret: Information that needs to remain

hard to guess

DISTRIBUTION A. Approved for public release; distribution is unlim-
ited. (Approval AFRL PA#88ABW-2012-1859)

This work was supported by the US Air Force Research Laboratory

(AFRL) under contract FA8750-09-C-0216.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 2012 2. REPORT TYPE

3. DATES COVERED
 00-00-2012 to 00-00-2012

4. TITLE AND SUBTITLE
Avoiding Common Security Flaws in Composed Service-Oriented
Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Raytheon BBN Technologies,10 Moulton Street,Cambridge,MA,02138

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
To be presented at the 6th Workshop on Recent Advances in Intrusion Tolerance and reSilience (WRAITS
2012), Boston, MA, June 25, 2012

14. ABSTRACT
Network-centric information systems are increas-ingly called upon to support complex tasks and missions
that serve multiple communities of interest. As a result, existing capabilities are exposed as services in a
service-oriented system, and newer capabilities are derived by discovering and compos-ing available
services. While service-orientation enables and facilitates such composition-based system construction, the
evolving nature and variety of standards and the varying level of compliance of otherwise feature-rich
vendor products has made achieving acceptable level of security and resilience in such systems a daunting
and error-prone task. This paper pre-sents a number of factors that contribute to the security of composed
service-oriented systems, and outlines ways to avoid common pitfalls and mistakes that stem from these
factors and weaken the resiliency and survivability of the composed system.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

E. Residuals: Minimizing or at the very least, being aware of the

residual vulnerabilities that get introduced when new func-

tional and security elements are integrated into the system.

F. Coverage: Whether the composition covers system parts and

interactions that were uncovered before (good) or adds unnec-

essary defenses

G. Cost: Adequacy of defenses given a threat model and re-

source environment

H. Elasticity: Ability of a composed system to reconfigure by

shedding vulnerable defenses

Consideration of each of the above factors can lead to
various configuration instantiations, some secure and some
vulnerable, depending on the defenses being composed and
the system context to which the composition is applied. The
text boxes in each of the following subsections (A through
H) represent the initial cut at formalizing the criteria for good
composition stemming from the corresponding factor ex-
pressed in pseudo propositional logic. In the future, we plan
to use such constraints for model checking using a light-
weight formal methods tool (e.g., Alloy [7]).

A. Coupling

Advertised services can be coupled physically, i.e., when
service S and T are both exposed for external consumption
and both hosted on the same physical node, or logically, i.e.,
when S needs T to operate and without T, S has no value.

For coupled service interactions, protecting one service
(e.g., S) and not protecting the other would leave the com-
posed system significantly vulnerable.
Consideration of this factor brings to fo-
cus the couplings that exist across multi-
ple client-service interaction flows (see
Figure 1) when designing defenses for
multiple externally visible (i.e., consumed
by clients) services.

As an example context where this fac-
tor influences the success/failure of the composition, consid-
er the fact that service invocation is frequently preceded by
service registration and lookup operations. If service invoca-
tion is protected by TLS, the service registration and lookup
also need to be protected by TLS. Otherwise, an adversary
can take over the less protected look up /discovery service
and insert itself as a man in the middle in all service registra-
tion and look up interactions, which in turn, will break confi-
dentiality and integrity of the TLS protected service.

Another example involves availability. If a service is
highly available, i.e., uses redundancy and other availability
mechanisms to support high invocation load and remain
available under multiple failures, the registry and lookup
interactions must also offer comparable level of availability.

The goodness criteria for the class of compositions influ-
enced by this factor can be formalized as a constraint over
business information flows (or flows in short) based on the
following definitions:

Def. 1: A flow is defined as a triple <srcIP, dstIP,
dstPort> representing a TCP connection between a client at
srcIP and a service offered at dstIP, dstPort. Flows can have
associated properties. We are initially considering the fol-
lowing four properties:

 Encrypted: a flow is encrypted if the information it carries

cannot be observed by a network sniffer.

 Signed: a flow is signed if the recipient can detect content

tampering in transit.

 Redundant: if the service offered by (dstIP, dstPort) of

flow x is offered by a different (dstIP, dstPort) pair of at

least one other flow y.

 Diverse: if the offered services of two redundant flows

have different host or AS implementation signature

Def. 2: Two flows x and y are coupled if they have the
same dstIP, or the client’s need for service consumed in flow
x cannot be fulfilled if flow y is not available, or the client’s
need for service consumed in flow y cannot be fulfilled if
flow x is not available.

For a set of coupled flows, all member flows have compara-
ble levels of property p where p is an element of {encrypted,
signed, redundant, diverse}.

At the most basic level, if one member flow x in a set of

coupled flows is encrypted [signed or redundant or diverse],
and another member is not encrypted [signed or redundant or
diverse], the composed system has a security risk.

B. Separation

In contrast to the previous influencing factor, this factor
draws attention to system elements, i.e., components and
capabilities, that must be treated separately, i.e., tight cou-
pling or common protection will result in reduced effective-
ness and increased security risk. Figure 2 visualizes this fac-
tor.

As a specific instance of composi-
tion influenced by this factor, consider
the fact that defense mechanisms es-
sentially protect either the information
that is being processed and managed
by the information system being defended (i.e., as defined
earlier, flows) or the business components that pro-
cess/manage such data. Some defense mechanisms handle
the flows inline while others watch over, analyze the behav-
ior of, and manage the life cycle of the business components.
The command and control interaction with these defense
mechanisms i.e., the reports they issue and the control signal
they receive, often share the same path without proper isola-
tion among the data and control. A good composition will
establish isolated paths for control and data messages, so that
data load cannot be used to impede the control. The extent of
the isolation needs to be commensurate within the
cost/resource parameters of the deployment context.

Monitoring a function or a component provides a second
instance of composition influenced by this factor. Monitor-
ing is frequently used for security, fault tolerance and system
management. In all cases, a level of independence between
the monitor and the monitored must exist in order for the
composed system to function as expected. The monitoring
mechanism, such as a watchdog [8], and the monitored com-
ponent such as a proxy, must not be in the same process, and
preferably not on the same host; otherwise failure of the
monitored component may blind monitoring.

Figure 1. Coupled

Interactions

Figure 2. Separation

S

T

1

1
2

2

Coupling

Separation

Another example arises in redundancy management.
Replicas of components are frequently used for fault and
intrusion tolerance. Placing multiple replicas in the same
process, in the same virtual machine (VM), or on the same
host, is less effective than placing them separately because
otherwise a process crash, VM crash, or host crash would
take out both replicas. The goodness criterion stemming
from this factor can be stated as follows:

If X is a defense mechanism protecting Y, where Y can be a
system component or an information flow, then disruption in
Y should not cause disruption in X.

C. Ordering

It is not uncommon for a survivable system to subject in-
formation flowing through it to multiple checks at various
inspection points. In many cases, the checks are at different
system layers, but it may happen that multiple checks are
performed at the same abstraction layer in the same inspec-
tion point. For instance, multiple application level checks
such as request-rate limiting, request-size checking, and in-
put validation can be performed by a set of proxies operating
either in series or in parallel. In such cases, the ordering of
the checks (as shown in Figure 3)
can make the composition effec-
tive or ineffective.

Intuitively, it might appear
that a strategy like biggest differentiator first or most expen-
sive check last is the right way to compose the different
checks. However, we recommend a strategy that organizes
the checks based on how deeply the check needs to interpret
or process the information. For example, putting the input-
validation check before the request-rate limiting check may
make the rate-limiting defense ineffective because input val-
idation involves quite a bit of parsing and interpretation of
the request, and can be bogged down by a request flood.
Similarly, putting a request-size check before a request-rate
check will make the defense against request flood ineffec-
tive: the size check involves a significant amount of interpre-
tation and processing of the requests (though less than input
validation). The goodness criterion resulting from this factor
is stated below:

If two defense mechanisms X and Y are in line with a busi-
ness information flow and are collocated (in the same pro-
cess or node), then X should process the flow before Y only
if X is at a lower abstraction level (i.e., does not need to
parse, process or interpret the flow as high as Y).

D. Keeping Secrets Secret

A number of security techniques rely on keeping some
designated piece of information secret: if the adversary can
find out or guess such information, the security protection
provided by these mechanisms will be bypassed. Passwords
provide one example, if passwords are discovered or can be
guessed, a password-based access control/authentication
mechanisms offer no protection. Similarly, in the context of
encryption, the decryption key should not be easily guessable
or easily discovered. However, in composition-oriented sys-

tem construction, it is not uncommon to face the need to
transmit, share or store passwords and key materials. Storing
and transmitting such material in clear text, choosing pass-
words that are easy to guess, storing clear text passwords in
obvious locations are examples of bad system configurations
that should be avoided and are easily overlooked.

Influence of this factor however, is not limited to pass-
words and key material. One of the essential features of a
survivable system is adaptability or its ability to mount adap-
tive defensive response. But merely adding multiple types of
adaptive features or even organizing them in defense-in-
depth layers may not readily provide the expected effective-
ness. What is often overlooked in the design of adaptive sys-
tem is its predictability to an adversarial observer. The kind
of adversary DoD systems are facing are patient and well-
motivated, and are willing to invest significant amount of
time and resources passively observing the target system or
observing how the system responds under gentle fuzzing and
probing without drawing significant attention. If the adver-
sary can predict how the system is going to respond, he can
pre-plan and position himself at the right location and with
the right counter-response. In other words, predictable re-
sponses are indicative of an ill-composed system, and make
it easier for attackers to plan and execute multi-stage attacks.
A specific example of predictable response is when a replica
management strategy restarts replicas in well-known places.

While we advocate making adaptive responses unpre-
dictable, this variability comes at a cost. Legitimate clients
need to be signaled to adapt to the new configuration, and it
is hard to gain a statistically significant amount of “random-
ness” or “unpredictability”. The goodness criterion for this
factor can be summarized as:

If defense mechanism M performs a specific action A, where
A could be a dynamic reconfiguration of the system, an ac-
cess control decision or a transformation of data, the trigger
for A (i.e., exactly what condition causes the composed sys-
tem to mount the specific action A) should be hard to guess
without significant access and privilege in the system.

E. Residuals

Adding new components to a system, even when the new
components perform security functions, introduces new risks
because changing the system may modify the system’s attack
surface and vulnerability profile and these changes could
potentially be for the worse (as visualized by the red arrow in
Figure 4). To illustrate the issue, consider an application
firewall introduced to defend services hosted on a Web serv-
er. But the application firewall itself now becomes a new
attack target. Success of the survivability architecture in
composing the defenses with the defended components de-
pends on whether the attack surface and vulnerability profile
of the composed system is changed in favor of the defense.
Intuitively, a good composition im-
plies that the composed system has a
reduced attack surface and smaller
vulnerability profile than the individ-
ual components being composed.
However, we need a few definitions

Figure 3. Ordering

Figure 4. Residuals

Ordering

Residual

first in order to formalize the goodness criteria for this factor.
Def. 3: A defense mechanism X covers a component Y if

(a) X pre- or post-processes the same information that is pro-
cessed by Y or (b) X monitors Y.

Def. 4: X reduces Y’s attack surface if (a) X is a pre-
processor and all ingress to Y is through X, or (b) X is a
post-processor and all egress from Y is through X, or (c) X
detects or responds to failures in Y.

Def. 5: The composition of X and Y has a reduced attack
surface if X reduces Y’s attack surface and X has self protec-
tion and no unprotected access.

Def. 6: The composition of X and Y has a smaller vul-
nerability profile than Y if (a) there are attacks that succeed
against Y alone, but not against the composed system, and
(b) all attacks that succeed against the composed system also
succeed against Y alone.

Given these definitions, the goodness criterion for this
factor can be stated as:

If defense mechanism X covers a component Y then X com-
posed Y has reduced attack surface and smaller vulnerability
profile.

As an illustration, let us consider a simple control loop

that composes a mechanism Y looking for attack signatures
in single IP packets with a mechanism X blocking connec-
tions from a specified source. X will block the source IP I if
Y has encountered bad packets from I. The residual vulner-
ability in this case is that source IPs can be spoofed (e.g.,
rewriting the source field in TCP SYN packets), and by
spoofing IP addresses (i.e., making them appear from legiti-
mate client IP addresses), an adversary can use the control
loop to get those client’s IP addresses blocked. It is also pos-
sible that a corrupt mechanism X can arbitrarily start block-
ing IP addresses. The composition instance violates the
goodness criteria because the composition of X and Y result-
ed in a wider attack surface (with the possibility of manipu-
lating firewalls), and does not reduce the vulnerability profile
(neither X nor Y addresses spoofing). This concern can be
addressed, for example, by composing the OODA loop with
IPsec protections on the network layer, which can provide
anti-spoofing guarantees if configured correctly. Another
mitigation approach involves observing packets over time,
which makes spoofing more difficult for the attacker (since
spoofed responses don’t get back to the attacker machine).

F. Coverage

The idea behind this factor is to capture the intuitive un-
derstanding that defenses need to match the anticipated
threats. It is quite common to introduce the latest security
technique or tool into the system without a clear understand-
ing of the purpose, mode of operation, and security benefits
of the newly introduced mechanism. For example, inserting
SQL injection protection into a service enclave that does not
use any SQL database is an instance of a bad composition.
The unnecessary check not only adds to the memory and
performance footprint, but also increases system complexity
and therefore unnecessarily increases the attack surface. Fig-
ure 5 tries to visualize two situations that are pathological. At

the top, a small threat is defended against by a lot of defens-
es. At the bottom, a large threat is inadequately covered by
only one defense.

Formalizing the goodness criteria for this factor assumes
that defenses are profiled and annotated, and a threat analysis
has been performed on the given system.

Def 7: We define coverage of a composed system as the
ratio of the number of threats
being mitigated by at least
one component of the com-
posed system to the total
number of threats to the sys-
tem identified in the threat
analysis.

 Initially, the undefended
system starts with a low
coverage score, and as new
defenses are added, the coverage score of the composed sys-
tem increases. The goodness criterion then can be stated as:

Composition of X and Y has coverage greater than the indi-
vidual coverage of either X or Y.

G. Cost

No defense is absolute, and it is understood that we can
only strive for an adequate level of security. Threat coverage
as explained in the previous section is one aspect of adequa-
cy, and the other aspect has to do with cost. While it is easy
to proclaim or require that defenses be commensurate with
available resources, the practice of defense-enabling a given
system faces a number of obstacles and often results in costly
and inefficient solutions. The objective of this influencing
factor is to draw attention to the cost of composing multiple
defenses and help guide designers and system developers
towards a more appropriate and more efficient solution.

In the context of evaluating the cost of composed sys-
tems, we are restricting our-
selves to resource and perfor-
mance cost. Considerations
include the initial upfront cost
of additional resource re-
quirements, and runtime oper-
ating cost in terms of perfor-
mance penalty and resource usage.

An example of a bad composition includes deploying a
sophisticated event interpretation technology that requires
multiple dedicated hosts and still requires minutes to com-
plete in a tactical environment. First, the requirement of ad-
ditional nodes puts undue (and possibly unachievable) pres-
sure on the deployment context. In addition, the response
time achieved does not match with the operational tempo of
the deployment context. While accuracy might be very high,
the delay imposed by the analysis will likely reduce effec-
tiveness against attacks that spread quickly. Instead, a better
choice might involve the use of anytime algorithms that can
compute some answers early on and refine the results if more
time is available.

Assuming that the defenses are annotated with resource
costs and that the resource restrictions of the deployment

Figure 5. Threat & Coverage

Figure 6. Cost & Performance

Watch

dog

Watch

dog

Watch

dog

Watch

dog

Threat & Coverage

Watch

dog

Cost & Performance

context are documented, the goodness criteria for this factor
can be formalized as:

If defense mechanism X covers component Y, (a) X’s static
resource requirements can be accommodated in the deploy-
ment context, and (b) the processing and communication
delay introduced by Y does not increase the response time of
Y beyond the expected optempo of the deployment context
(expected response time for business requests, expected re-
sponse time for defensive actions).

H. Elasticity

In the context of cyber-attacks and survival, the ability to
shed defenses if necessary (i.e., decomposition), often be-
comes as critical as composition. If an attack cripples a de-
fense mechanism or component in such a way that the sys-
tem degrades beyond acceptable levels, it may be better to
run without the protection of that defense mechanism. For
instance, imagine a zero-day exploit kills or corrupts the sin-
gle packet authorization (SPA) mechanism that sits at the
boundary of the protected service and does not allow any
incoming request unless the request provides a valid crypto-
graphic credential. Neither restarting the SPA mechanism
nor giving up (i.e., stopping the system) is a good option, but
shedding the SPA—i.e., running the system without the SPA
would perhaps be acceptable. Similar situation may arise
when a critical security advisory is issued, and the system
administrators need to balance the risk of running with a
highly vulnerable defense and not having that defense. How-
ever, it is not always easy or simple to do so in a system that
integrates multiple defenses. We introduce the notion of
composition elasticity to describe the characteristics of sys-
tems where such shedding is possible. In other words, shed-
ding is harder to do in a non-elastic composed system.

Although achieving elasticity is a design and implemen-
tation task, it is easy to identify the factors that make the
composed system non-elastic. The two major factors that
contribute to elasticity are coupling and interface preserving
insertions. If two defensive mechanisms are coupled i.e.,
depend on each other, then it is harder to remove either of
them. If the degree of coupling is large, i.e., B is coupled
with A1, A2, … An, it becomes even harder. Therefore one
goodness criterion stemming from elasticity is:

Elasticity of the composition of X with a system S goes
down as the coupling between X and S increases.

Another important point to consider in this context is that
much of survivability- and security-focused computation is
done on intercepted information flow. In a way, that is akin
to subjecting the undefended information flow through a
number of security focused layers. If care is not taken to pre-
serve the interfaces of the original communicating party,
shedding the defense mechanism becomes more difficult.
On the other hand, if the defense X was inserted in an inter-
face preserving manner, when X becomes corrupt or unusa-
ble, it could be substituted by another interface compliant
variant X1 of the defense mechanism X, which in turn, will

force the adversary to start from scratch again against X1.
This leads to the other criterion stemming from this factor:

Composition of service X with service Y is more elastic if X
and Y have the same interface.

IV. RED TEAM EVALUATION

The factors influencing the safety and security of com-
posed SOA-based systems and the goodness criteria de-
scribed in this paper are based on project that developed a
prototype survivable SOA-based system [4]. The prototype
survivable system was subjected to a variety of attacks dur-
ing a week-long Red Team Exercise [9] at AFRL Rome NY.
Apart from evaluating the prototype survivable system’s
ability to withstand attacks, the exercise also aimed to evalu-
ate the quality of the compositions involved in the construc-
tion of the prototype system. The exercise was based on a
collaborative testing paradigm in which the independent Red
Team was given complete access to source code and an esca-
lating level of privilege by way of different attacker starting
points. While a detailed discussion of the results is beyond
the scope of this paper (they will be available in a forthcom-
ing paper), we note that the prototype survivable system ex-
hibited significant resilience and adaptability at multiple lay-
ers in the red team exercise. In the remainder of this section,
we highlight a number of cases in which the factors de-
scribed in this paper provided direct benefits.

We improved the architecture’s elasticity by defining
several configurations (e.g., with SPA and without SPA,
with adaptive response and without) that shed different de-
fenses. In the process of standing up and verifying these con-
figurations, we minimized unnecessary coupling in the sys-
tem. Also, we achieved redundancy and diversity (both part
of coupling dependency) by standing up two Termination
Proxy nodes in the Crumple Zone with different TLS-stream
splitting methods. To achieve separation, we confined traffic
to isolated network zones, resulting in
multiple Ethernet and IP networks. Fur-
thermore, we used process boundaries to
enforce separation between Termination
Proxies that provide endpoints for client
interactions and Mechanism Proxy
Neighborhoods that perform filtering on
application traffic. We manually speci-
fied and analyzed ordering of firewall
rules, e.g., to ensure that single packet
authorization checks happen before rate
limiting. In addition, we specified orders
of application-level checks, e.g., mandat-
ing rate limiting before white list checks before simulated
execution in canary proxies. To establish coverage argu-
ments, we analyzed the network flows for defense-in-depth
coverage asserting that flows are constrained by at least one
of Netfilter [10], JVM security policies [11], or SELinux
[12] policies. Furthermore, SPA and checks running in the
crumple zone’s Mechanism Proxy Cloud (MPC) added addi-
tional protections. Figure 7 shows the resulting defense in

Figure 7. Defense-

In-Depth

SPA

Netfilter

SELinux

JVM

MPC

depth layout of multiple policy enforcement mechanisms
working together.

We also built up models of observed network flows by
experimentally determining the type of flow by running reg-
ular expressions against network capture files. Analysis of
these models for coupling constraints revealed that flow from
the Crumple Zones to the protected service were not protect-
ed by TLS, while flows from the client to the Crumple Zone
were protected by TLS. Figure 8 shows a picture of the or-
dering violation found through analysis of network flows
during the Red Team exercise.

V. CONCLUSION AND NEXT STEPS

Effective cyber defense today requires multiple individu-
al mechanisms selected and configured according to specific
threats in a specific environment to work together synergisti-
cally. The main contribution of this paper is to describe con-
straints for good compositions, which provides two benefits.
First, the factors and the goodness criteria provide the system
engineers with guidance for composition orient system con-
struction. Second, the formalization of the criteria using a
propositional logic like pseudo-language paves the way for
automated analysis and assessment of composed systems in
the future.

Software developers can use the constraints described in
this paper to assess the architecture and design of distributed
systems composed of business logic and security function to
discuss design tradeoffs and document decisions, thereby
increasing the security of resulting systems.

Formalization of goodness criteria is clearly a first step in
the long road to automated model checking for safe and se-
cure composition. Software engineering and system con-
struction techniques are rapidly evolving. New defense
mechanisms as well as new attacks are constantly emerging.
However, in the rapidly changing landscape, the structural
nature of the goodness criteria involving the basic and fun-
damental aspects of distributed system interactions is a step
in the right direction.

Starting with the goodness criteria at design time, it is
possible to derive interaction patterns or conditions that can
be checked at runtime. A specific next step we are planning
to explore is to use domain-specific languages to (a) suc-
cinctly describe composed survivable systems, (b) debug
described compositions through model checking techniques,
e.g., using Alloy [7], and (c) generate lower-level mandatory
access control policies, e.g., for SELinux or Netfilter, once
the described composition is conflict free.

REFERENCES

[1] NIST. (2011, June) Security Content Automation Protocol. [Online].
http://scap.nist.gov/

[2] Joseph Yoder and Jeffrey Barcalow, "Architectural Patterns for
Enabling Application Security," in PLoP, 1997.

[3] Markus Schumacher, Security Patterns: Integrating Security and
Systems Engineering.: Wiley, 2005.

[4] Michael Atighetchi et al., "Crumple Zones: Absorbing Attack Effects
Before They Become a Problem," in CrossTalk - The Journal Of
Defense Software Engineering, March/April 2011.

[5] Paul Benjamin, Partha Pal, Franklin Webber, and Paul Rubel, "Using A
Cognitive Architecture to Automate Cyberdefense Reasoning," in
Proceedings of the 2008 ECSIS Symposium on Bio-inspired, Learning,
and Intelligent Systems for Security(BLISS 2008), Edinburgh, Scotland,
2008.

[6] J. Chong, P. Pal, M. Atighetchi, P. Rubel, and F. Webber,
"Survivability Architecture of a Mission Critical System: The DPASA
Example," in Proceedings of the 21st Annual Computer Security
Applications Conference, 2005, pp. 495-504.

[7] MIT. (2010, September) Alloy Community Web Site. [Online].
http://alloy.mit.edu/community/

[8] (2012, Mar) Wikipedia: Watchdog Timer. [Online].
http://en.wikipedia.org/wiki/Watchdog_timer

[9] B.J Wood and R.A Duggan, "Red Teaming of advanced information
assurance concepts ," in DARPA Information Survivability Conference
and Exposition, 2000. DISCEX '00, Hilton Head, SC, 2000, pp. 112 -
118.

[10] Netfilter.org. (2010, June) Netfilter home page. [Online].
http://www.netfilter.org/

[11] Peter V. Mikhalenko. (2007, April) Java security: Policies and
permission management. [Online].
http://www.techrepublic.com/article/java-security-policies-and-
permission-management/6178805

[12] NSA. (2012, Jan) SELinux FAQ. [Online].
http://www.nsa.gov/research/selinux/faqs.shtml

Figure 8. Coupling Violation

Client Crumple

Zone

SSL TCP
Protected

Service

