! \)RAESTANTIA PER SCIENT[AM ,

NAVAL
POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

THE UNEXPLORED IMPACT OF IPV6 ON INTRUSION
DETECTION SYSTEMS

by
Keith A. Gehrke

March 2012

Thesis Advisor: Robert Beverly
Second Reader: J.D. Fulp

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE OMFgf,fGo,‘"zf;g‘i,V_eg’lgg

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE
ADDRESS.

1. REPORT DATE (DD-MM-YYYY2. REPORT TYPE 3. DATES COVERED (From — To)
26-3-2012 Master’s Thesis 2010-01-04—2012-03-30
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

The Unexplored Impact of IPv6 on Intrusion Detection Systems

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER
Keith A. Gehrke

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT]
NUMBER

Naval Postgraduate School
Monterey, CA 93943

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
Department of the Navy 11. SPONSOR/MONITOR'’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited

13. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government. IRB Protocol Number: XXXX

Wi&l%ggﬁ}lce.{works steadily adopting and transitioning to the next generation Internet Protocol, IPv6, careful consideration
must be given to IPv6-specific implications on network protection. While Network Intrusion Detection Systems (NIDS) assist
in protecting current IPv4 DoD networks, NIDS performance in operational DoD IPv6 environments is largely unknown. As a
step toward more rigorous NIDS evaluation, we investigate the extent to which known IPv4 attacks are able to evade detection
when converted to equivalent IPv6 attacks. Utilizing 13 general attack classes, we test the IPv6 readiness of two popular open
source NIDSs: SNORT and BRO. Attacks in each class are evaluated in a virtual test bed that models both “native” and
“transitional” networks. In the native IPv6 environment, we achieve a 95% detection rate for SNORT as compared to 8% with
BRO. In addition, we discover a bug in SNORT where a carefully crafted IPv6 packet causes the NIDS to fail open, allowing
full circumvention. Our findings suggest that, with respect to IPv6, both NIDS signatures and NIDS software require
additional testing and evaluation to be operationally ready.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF|18. NUMBER|19a. NAME OF RESPONSIBLE PERSON
a. REPORT |b. ABSTRACT|c. THIS PAGE| ABSTRACT S;GES

. . . 19b. TELEPHONE NUMBER (include area code
Unclassified | Unclassified | Unclassified uu 117 ()

NSN 7540-01-280-5500 Standard Form 298 (Rev. 8-98)
i Prescribed by ANSI Std. Z39.18

THIS PAGE INTENTIONALLY LEFT BLANK

il

Approved for public release; distribution is unlimited

THE UNEXPLORED IMPACT OF IPV6 ON INTRUSION DETECTION SYSTEMS

Keith A. Gehrke
Lieutenant, United States Navy
B.S., University of Phoenix, 2002

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL

March 2012
Author: Keith A. Gehrke
Approved by: Robert Beverly
Thesis Advisor
J.D. Fulp

Second Reader

Peter J. Denning
Chair, Department of Computer Science

il

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

With DoD networks steadily adopting and transitioning to the next generation Internet Protocol,
IPv6, careful consideration must be given to IPv6-specific implications on network protection.
While Network Intrusion Detection Systems (NIDS) assist in protecting current [Pv4 DoD net-
works, NIDS performance in operational DoD IPv6 environments is largely unknown. As a
step toward more rigorous NIDS evaluation, we investigate the extent to which known IPv4
attacks are able to evade detection when converted to equivalent IPv6 attacks. Utilizing 13
general attack classes, we test the IPv6 readiness of two popular open source NIDSs: SNORT
and BRO. Attacks in each class are evaluated in a virtual test bed that models both “native”
and “transitional” networks. In the native IPv6 environment, we achieve a 95% detection rate
for SNORT as compared to 8% with BRO. In addition, we discover a bug in SNORT where a
carefully crafted IPv6 packet causes the NIDS to fail open, allowing full circumvention. Our
findings suggest that, with respect to IPv6, both NIDS signatures and NIDS software require
additional testing and evaluation to be operationally ready.

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction

1.1
1.2
1.3
1.4

Background of IPv6 and NIDS Readiness Posture .

Research Questions
Significant Findings .

Thesis Structure .

2 Background and Related Work

2.1
2.2
2.3
24
2.5

IPv6 Overview .

NIDS Overview .

IPv6 vs. NIDS

Lists of Exploits Overview

Fuzz Testing Overview .

3 Methodology

3.1
32
33
34
3.5

Test Bed.

Baseline .

The Attacks
Transitional Test Case

Fuzz Testing .

4 Detection Results

4.1
4.2
4.3
4.4
4.5

“Native” Detection Results
Transitional Detection Results .
BRO/SNORT and FTP .
SNORT Rules

SNORT 2.9.0.5 Bug .

vii

B W W N -

18
24
26
39

41
41
43
43
50
51

53
53
67
76
77
78

4.6 Fuzz Testing .

5 Conclusions

5.1 Recommendations .

5.2 Future Work .

List of References

Initial Distribution List

viil

83

85

88

89

96

97

List of Figures

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11
Figure 2.12
Figure 2.13
Figure 2.14

Figure 2.15

Figure 3.1

Figure 3.2

Figure 4.1

Figure 4.2

IPv6 address space. From [8]
Example of global unicast IPv6 address.
Example of link local IPv6 address.
IPv6 protocol header. From [8]
Extension headers. From [8]
Fragmented packet. From [8]
General ICMPv6 packet. L.

Router Solicitation message.

Router Advertisement message.

Neighbor Solicitation message.
Neighbor Advertisement message.
Simple example using SNORT NIDS. From [23]
SNORT functional diagram from [26]

BRO functional diagram from [27]

Attacks on IPv6 related to the auto-configuration process. From [33]

IPv6 “Native” testbed.

IPv6 Transitional testbed.

IPv4 port scanresultsin BRO

IPv6 port scanresultsin BRO

X

11
13
14
15
16
17
17
20
21
23
35

42
42

54

54

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15
Figure 4.16
Figure 4.17
Figure 4.18
Figure 4.19
Figure 4.20
Figure 4.21
Figure 4.22
Figure 4.23
Figure 4.24
Figure 4.25
Figure 4.26

Figure 4.27

Comparison of port scan event resultsinBRO
BRO Events.bst log for IPv6portscan
Entry for Flood_ DHCPc6 in Weird.log for BRO
SNORT output for Alive6
SNORT output for Alive6 with -S2option
SNORT output for Alive6 with -S4 option
SNORT alert from portscan6.py
SNORT alert from NMAP6
SNORT detection for Toobigé
SNORT detection for Fake DHCPS6
SNORT detection for RSMURF6
SNORT results for Flood_Advertise6
SNORT detection for Denial6 with large hop-by-hop headers
SNORT detection for Fragmentation6
SNORT output for Exploit6
IPv6 Transitional port scan resultsin BRO
BRO Transitional NMAP6results
Weird.log results for Detect-new-IPv6 in Transitional BRO
BRO Transitional results for Flood DHCPc6
SNORT Transitional results for portscan6.py
SNORT Transitional results for NMAP6
SNORT Transitional results for Toobigé
SNORT Transitional results for Flood_Advertise6
SNORT Transitional results for Denial6

SNORT Transitional results for Fake_router6 using fragmentation

54
55
56
57
57
57
58
58
59
59
60
61
62
63
63
67
67
68
69
70
71
71
72
72

73

Figure 4.28
Figure 4.29
Figure 4.30
Figure 4.31
Figure 4.32
Figure 4.33
Figure 4.34
Figure 4.35

Figure 4.36

Figure 4.37

Figure 5.1

BRO “Bad dotted address” error message

BRO Dotted_to_Addr function in Net_util.cc

SNORT rules. From [23]

SNORT output for Implementation6 with 128 hop-by-hop headers . . .

Normal processing of extension headers in decode.c

First 43 lines of code for DecodeIPV60ptions

Switch Cases in DecodeIPV60ptions

[lustration of recursion in DecodeIPV60ptions

Example code for possible fix for SNORT 128 invalid hop-by-hop header
bug

SNORT 2.9.2.1 fix to 128 hop-by-hop header bug. From [23]

IPv6 attack detection percentages

X1

76
77
78
79
79
80
81
81

82
83

87

THIS PAGE INTENTIONALLY LEFT BLANK

Xii

List of Tables

Table 2.1
Table 2.2

Table 2.3

Table 3.1

Table 3.2

Table 4.1
Table 4.2

Table 4.3

Extension header precedence

Unchanged attacks

Attacks with new considerationsinIPv6

Attack Matrix

Options for Fuzz_ip6 From [32]

List of SNORT “ICMP type not decoded” detections

Detection Matrix

Transitional Detection Matrix

Xiii

12
30
38

45
52

64
66

75

THIS PAGE INTENTIONALLY LEFT BLANK

X1V

List of Acronyms

AH Authentication Header

ARP Address Resolution Protocol

ASCII American Standard Code for Information Interchange
CA Certification Authority

CGA Cryptographically Generated Addresses
DAD Duplicate Address Detection

DHCP Dynamic Host Configuration Protocol
DNS Domain Name Service

DoD Department of Defense

DoS Denial of Service

DDoS Distributed Denial of Service

ESP Encapsulating Security Protocol

FTP File Transfer Protocol

GDB GNU Project Debugger

ICMP Internet Control Message Protocol
TANA Internet Assigned Numbers Authority
IDS Intrusion Detection System

IP Internet Protocol

IPS Intrusion Prevention System

IPsec Internet Protocol Security

IPv4 Internet Protocol Version 4

IPv4 Internet Protocol Version 6

IRC Internet Relay Chat

LAN Local Area Network

XV

MiTM Man in the Middle

MLD Multicast Listener Discovery

MTU Maximum Transmission Unit

NA Neighbor Advertisement

NAT Network Address Translation

ND Neighbor Discovery

NDP Neighbor Discovery Protocol

NFA Non-Deterministic Finite Automata
NIDS Network Intrusion Detection System
NIQ Node Information Query

NIST National Institute of Standards and Technology
NS Neighbor Solicitation

OS Operating System

QoS Quality of Service

PCRE Perl Compatible Regular Expressions
PMTUD Path MTU Discovery

RA Router Advertisements

RFC Request For Comment

RIR Regional Internet Registry

RS Router Solicitation

SEND Secure Neighbor Discovery

SLAAC Stateless Automatic Address Configuration
TCP Transport Control Protocol

THC The Hackers Choice

UDP User Datagram Protocol

XVi

Acknowledgements

This thesis was made possible by Dr. Rob Beverly and Mr. J.D. Fulp. The guidance, direction,
and attention to detail that they have contributed is very appreciated. To both of you, I give a

sincere thank you.

To my wonderful family, especially my beautiful wife Katrina, I owe you all a tremendous
amount of gratitude. The amount of sacrifice required by you during this process was more
than I could have asked for, yet you gave it unquestionably. Your support and caring only

proves how lucky I am to have you all, thank you.

xXvii

THIS PAGE INTENTIONALLY LEFT BLANK

XVviii

CHAPTER 1:

Introduction

It is inevitable. Internet Protocol version 6 (IPv6) [1] will replace Internet Protocol version 4
(IPv4) [2] as the protocol backbone of our packet-switched networks, devices, and eventually
the Internet. In fact, with the last IPv4 /8 address blocks being issued in early February 2011
and the 8 June 2011 world IPv6 day (discussed in §2.3), the start-again stop-again conversion
to IPv6 is rapidly approaching [3]. This movement towards IPv6 brings to light the need for
knowledge of IPv6 infrastructure and how to secure it (e.g., Network Intrusion Detection, Fire-
walls, Access Control Lists). To date, these remain mostly little explored domains. Industry
(e.g., Google, Akamai, Yahoo, Ericsson, and Cisco) has made the move towards IPv6 with
events like World IPv6 day, and now it is time for everyone else to get on board. This includes
the federal government and Department of Defense infrastructure, which must be prepared for

IPv6 in order to prevent having to catch up on the trend.

IPv4 address exhaustion has been and continues to be an increasingly serious problem. Recently
the Regional Internet Registries (RIRs) have begun to allow IPv4 address holders to sell address
blocks in order to free up claimed (but un-used) [Pv4 address space, thus creating a market like
scenario. Stop-gap measures tried in the past along with those tried today, such as allowing an
IPv4 address market, only buys time and does not solve the fundamental address scarcity [4].
In fact, as IPv4 address scarcity increases, the mechanisms designed to cope with IPv4 address
exhaustion (e.g., NAT) are no longer good enough. These coping mechanisms limit end-to-end
reachability, application functionally, and stifle innovation (particularly in the content industry).
With the economic push from industry stake holders such as content providers, the driving force

behind IPv6 adoption today is fundamentally different from that of even 5 years ago.

An August 2005 memorandum to all U.S. Federal Government Chief Information Officers re-
quired systems to transition to IPv6 by June 2008 [5]. Despite sporadic adoption, this mandate
has yet to take place. The on-again and off-again nature of the pending need for IPv6 has made
many in the military networking community slow to focus any attention on IPv6. However, this
change is coming. All DoD networks will, in the future, be operating in an IPv6 environment
and must be protected from adversaries who are rapidly gaining knowledge of IPv6 weaknesses
and exploits (§2.3). Amid the current conversion to IPv6, few have considered the associated

vulnerabilities. A focused effort must be placed on how IPv6 changes the DoD network operat-

ing environment. We therefore examine how to protect DoD networks and information, before,

during, and after the IPv6 transition process.

Current IPv6 security efforts have focused primarily on attack theory and vulnerabilities. Specif-
ically, the impact of IPv6 attacks on host computers, the network stack, and operating systems
(OS). This thesis will explore the impact of IPv6 attacks on Network Intrusion Detection Sys-
tems (NIDS) as well as the the possibility of new IPv6 attacks.

1.1 Background of IPv6 and NIDS Readiness Posture

This thesis will focus on the exploration of the impact IPv6 vulnerabilities and attacks will have
on NIDSs. Even though many NIDSs support IPv6, there are common misconceptions about the
level of security provided by the existing NIDS signatures available to detect attacks in an IPv6
environment. While determining the effect a vulnerability or attack will have on a particular
host can show the impact on a specific operating system (OS), router or computer, doing so
does not aid in the detection or prevention of these vulnerabilities or attacks. A determination
of the NIDSs “IPv6 readiness” must be conducted. To evaluate readiness, each NIDS must be

tested against IPv6 vulnerabilities and attacks, both theoretical and actual.

Another common misconception is that IPv6 is secure and there is no need to be concerned
with its vulnerabilities or possible attacks. This is not the case, for example any application
layer attack possible in IPv4 will still be just as dangerous in IPv6 [6]. Flooding (§2.4.1) type
attacks like Denial of Service (DoS) attacks will still be a threat to our networks, just as they
were in IPv4 [7]. Networks will still be susceptible to Man-in-the-Middle attacks (§2.4.1),
unauthorized access (§2.4.2), as well as attacks against the Physical or Data-link layers, as we
was the case with IPv4 [8]. Any expectation that IPSec [9] combined with the increased size of
the IPv6 address space will cure existing network security problems when we “go native” IPv6,
is an oversight. The misconception that the large IPv6 address space hides hosts from malicious
scanners, without any further detection or prevention, is dangerous [5]. These short-sited beliefs

are in themselves vulnerabilities that can be expected to be exploited.

The adoption of IPv6 presents new and unique challenges to which the industry is just be-
ginning to adapt. To accurately assess the risks on networks and the impact on the NIDS,
we must first look at existing threats that have been changed due to protocol differences be-
tween IPv6 and IPv4. Some existing IPv4 threats may map directly to IPv6, some may require

modification, and entirely new IPv6-specific threats may be introduced. These threats include,

but are not necessarily limited to, LAN-based attacks (Address Resolution Protocol [ARP] or
Neighbor Discovery Protocol [NDP] §2.1.4), attacks against DHCP (for IPv6 DHCPv6, DoS
attacks against routers (hop-by-hop extension headers rather than router alerts), and fragmen-
tation §2.4.2 (IPv4 routers performing fragmentation versus IPv6 hosts via extension head-
ers)) [8]. Next, the threats unique to IPv6 networks must be examined. Attacks focused against
ICMPv6 (§2.1.3), auto configuration (§2.1.1), IPv6 multicast (§2.1.1), and extension headers
(§2.1.2) present targets of opportunity for the hackers interested in IPv6 because its traffic is not
tracked on par with IPv4, and the security measures in place for [IPv4 are not present for IPv6;
making it an ideal covert communications channel [5]. Finally, IPv6 fuzz testing [10] should be
performed on the IPv6 NIDS implementations, specifically targeting the impact on the NIDS,
in an effort to determine the effect of IPv6-unique vulnerabilities.

1.2 Research Questions
This thesis asks two primary questions: which known IPv4 exploits are feasible or infeasible
when converted to IPv6? And will popular open source NIDSs detect these IPv6 attacks? These

primary objectives can be achieved through answering the secondary questions:

e What are the current IPv6 exploits?
o What exploits are newly enabled by IPv6?

e What is the impact of automated IPv6 fuzz testing on the NIDSs?

These questions are answered in a controlled virtual IPv6 test bed that permits repeatable testing
in a sanitized environment. The test bed transmits converted attacks between hosts. This thesis
considers two popular open-source Network Intrusion Detection Systems: SNORT and BRO.
The NIDS’ passively observe traffic on the subnet between hosts. These experiments provide
detailed results of IPv6 attack to NIDS detection, or NIDS detection profiles, that can be used in

future research for the development of signatures and, where feasible, patches for given attacks.

1.3 Significant Findings
On the basis of an attack matrix (§3.3) developed from thirteen general attack classes, two
open source NIDSs were used in a controlled test bed, configured, and tested in two IPv6 en-

vironments. More than 80 controlled tests were conducted, 40 “Native” and 40 “Transitional”,

producing two detection matrices. Fuzz testing of NIDS reactions to changes in packets was

also conducted. Careful analysis of all data revealed:

e SNORT 2.9.0.5 in the “Native” environment produced a 95 percent detection success rate,

and a 93 percent detection success rate in the Transitional environment.

e In the “Native” environment both BRO 1.5.3 and BRO version 2.0 produced an eight
percent detection success rate, while in the Transitional environment they produced a five

percent detection success rate.

e Discovered a vulnerability in SNORT 2.9.0.5 when sending a large number of hop-by-hop
extension headers. This bug, located in Decode.c, allows for an attacker to put SNORT
into a state of infinite recursion that prevents it from processing any subsequent packets,

thereby allowing an attacker to circumvent the NIDS.

e A Bug in net_util.cc produces a “bad dotted address” error message when BRO 1.5.3 is

processing IPv6 FTP traffic.

e For both versions of BRO, not all IPv6 events are processed. Due to a problem with IPv6
data flow, events are not making it to the Event Handler which in most cases prevented

detection.

1.4 Thesis Structure

The remainder of this thesis is organized as follows:

e Chapter 2 covers the basics of IPv6, differences between IPv4 and IPv6, Network Intru-
sion Detection Systems, defines the List of Exploits to be used, as well as gives a brief

description of Fuzz testing.

e Chapter 3 discusses the IPv6 testbed configuration for the experiments and discusses the

exploits used against the NIDSs in the experiments.

e Chapter 4 provides the results of experiments and contains detection profiles for each
NIDS.

e Chapter 5 contains conclusions drawn from Chapter 4 and recommended future work.

CHAPTER 2:
Background and Related Work

This chapter is intended to provide an overview of IPv6 while highlighting some of the protocol
differences from the current main stream Internet protocol, IPv4 [2]. This chapter also provides
overviews of Network Intrusion Detection Systems (NIDS), relevant IPv4 and IPv6 exploits,
automated protocol fuzz testing, and the IPv6 capabilities of todays NIDSs. The list of attacks
described in this section will be further defined in later chapters and is meant to set a base line

for the reader to comprehend the possibilities and impact of each attack.

2.1 1IPv6 Overview

IPv6 is the new version of the Internet Protocol, designed as the successor to IP version 4

(IPv4) [2]. The changes from IPv4 to IPv6 fall primarily into the following categories: [1]

Expanded Addressing Capabilities

Header Format Simplification

Improved Support for Extensions and Options

Flow Labeling Capability

Authentication and Privacy Capabilities

In comparison to IPv4, IPv6 provides many improvements with respect to simplicity, rout-
ing speed, quality of service (QoS), and security [1]. IPv6 has the potential to improve secu-
rity and confidentiality of transmitted information by utilizing its built-in security mechanisms.
Both IPv4 and IPv6 are layer three (network layer) routing protocols that rely on an addressing
scheme. However, IPv6 was designed to resist the need for additional new features and to have
minimal impact on upper and lower level protocols. The IPv6 protocol has a new header format,
larger address space, efficient hierarchical addressing and routing infrastructure, stateless and
stateful address configuration, built-in security (IPsec), better support for QoS, new protocols
for neighboring node interaction, and extensibility [11]. IPv6 was designed as an upgrade or

next iteration of IPv4. In fact careful consideration was given to the fact that transition from

IPv4 to IPv6 may be a slow process drawn out over time, which meant that transition mecha-
nisms had to be built in, and IPv4 and IPv6 needed to be able to work in tandem. Even though
IPv6 has many upgrades from its predecessor, it shares [Pv4’s foundation, adopting some of its
characteristics, strengths, and weakness. This rings true from the average user’s perspective,
where the transition to IPv6 from IPv4 will be completely transparent, leaving them with no
idea of which protocol they are using nor what its capabilities, limitations or vulnerabilities are.
Thus, while IPv6 has fixed some of IPv4’s problems, for example the relatively small address

space, it introduces its own issues and problems to be considered.

2.1.1 Addressing

Address Space

Unlike IPv4 with its 32 bit addressing space, IPv6 uses 128 bits to define its address space. This
produces vast numbers of addresses that dwarf those available in IPv4. For example if every
subscriber was given a /48 Global Unicast Address prefix, each would contain 45 variable bits.
This means that each subscriber would have 48 bits minus the 3 bit type field, which leaves each
subscriber with 45 variable bits from which addresses can be derived, see Figure 2.2. That is,
the number of available prefixes is 2% or about 35 trillion [12] .This increase from 32 bits to 128
bits also provides more levels of addressing hierarchy, a greater number of addressable nodes,
and a simplified auto-configuration of addresses; all of which provide the network engineer
increased flexibility. Specifically, the larger address space allows for many more devices and
users on the internet as well as extra flexibility in allocating addresses, thus eliminating the need
for address conservation practices (e.g., NAT) and simplifying the auto-configuration process.
IPv6 addresses identify interfaces within one of three hierarchical regions of the network. The

scope of an address could be link-local, site-local, or global [13].

IP Addresses

As with IPv4, IPv6 addresses have the most-significant part of the address placed to the left,
allowing for easy recognition of various address formats when logically dividing the 128 ad-
dress bits into bit groups that can then be associated with special addressing features. The
largest group of IPv6 addresses are global unicast addresses. The rest of the address groups are
composed of unspecified and loopback addresses, multicast addresses, and link- and site-local

addresses. Some of the ranges of addresses currently in use are illustrated in Figure 2.1.

Unspecified address

el Loopback address

2001::/16 "Sub-TLA" (RFC 2450} normal addresses
2002::/16 "6to4" (RFC 3056) automatic tunnels
JFFE::/16 "Bbone" (RFC 2471) testing addresses
FES0::/10 Link=local addresses

FECQ::/10 Site-local addresses

FFOO::/8 Multicast addresses

Figure 2.1: IPv6 address space. From [8]

As shown in Figure 2.1 there are three types of IPv6 addresses: [14]

e Unicast: An identifier for a single interface. A packet sent to a unicast address is deliv-

ered to the interface identified by that address.

e Anycast: An identifier for a set of interfaces (typically belonging to different nodes). A
packet sent to an anycast address is delivered to any one of the destination nodes identified
by that address (the “nearest” one, according to the routing protocols’ measure of the

distance).

e Multicast: An identifier for a set of interfaces (typically belonging to different nodes). A
packet sent to a multicast address is delivered to all interfaces identified by that address.

In IPv6 broadcast addresses are not available; instead multicast is used. For example, the ~’link-
scope all-hosts multicast” address, ££02: : 1, corresponds to the IPv4 subnet-local broadcast
address, 255.255.255.255.

AIl TPv6 interfaces are required to have at least one link-local unicast address. A single interface
may also have multiple IPv6 addresses of any type (Unicast, Multicast, Anycast) or scope [14].
Additionally multicast routing scalability is improved in IPv6 due to the addition of an added
“scope” field to each multicast address. The addition of the “anycast address” is defined to
allow for the delivery of a packet to any one of a group of nodes [1]. The IPv6 address is
broken up into two 64 bit sections, the first is for network identification, while the second half
identifies the host or Interface. Figure 2.2 shows the IPv6 Global Unicast Address breakdown,
while Figure 2.3 shows the breakdown of the IPv6 Link Local Address.

€——— Provider ——3€— Site —>€ Host >
+3bits »#4—— 45 bits ————»4— 16 bits —»4+—————64 bits ——————>»

001 Global Routing Prefix Subnet Interface ID

Figure 2.2: Example of global unicast IPv6 address.

+ 128 bits >
+—16 bits —» +—— 4 bits ——»

FE80::/10 Global Routing Prefix Interface 1D

Figure 2.3: Example of link local IPv6 address.

Host Auto-configuration

An IPv6 host interface can have multiple unicast addresses, a link-local address (which is the
first address assigned to the interface), and one or many global or site-local addresses. Configu-
ration of interfaces in IPv6 is controlled by the protocol itself [13]. The host auto-configuration
feature allows hosts joining a link to configure link-local addresses for their interfaces as well as
to check the uniqueness and validity of assigned addresses. Stateless auto-configuration is the
process that allows an IPv6 host to be assigned addresses based on local router advertisements
(RA) §2.1.4. In contrast, IPv4 uses the stateful address auto-configuration protocol, or Dynamic
Host Configuration Protocol (DHCP). In the stateful auto-configuration model, a host obtains
the interface addresses as well as other required information such as the address of the default
gateway a DNS server from a DHCP server. The DHCP server maintains a manually admin-
istered list of hosts and keeps track of which addresses have been assigned to which hosts. In
addition, IPv6 offers stateless DHCPv6 which is a procedure during which addresses are con-
figured according to the router advertisements along with additional information given to the

host, such as default gateway and DNS servers, via a DHCP server.

2.1.2 1Pv6 Header

The IPv6 protocol header is the first place where noticeable differences from 1Pv4 exist. One

of the key differences is in the Source and Destination addresses. Whereas IPv4 uses only 32

bit addresses, IPv6 uses 128 bit addresses. In addition, some of the IPv4 header fields have
been dropped or made optional. Examples of these dropped fields include, Flags, Identifier,
and Checksum. While the Fragment and Options and Padding fields have been replaced by
IPv6 extension headers. This is to reduce the common-case processing cost of packet handling
and to limit the bandwidth cost of the IPv6 header [1]. The specific fields of the IPv6 protocol

header are shown in Figure 2.4. [8]

(" Version Traffic Class Flew Label)
{4 Bits) (8 Bits) (20 Bits)
Payload Length Next Header Hop Limit
(16 Bits) {8 Bits) |8 Bits)
Source Address
(128 Bits)
Destination Address
(128 Bits)
. vy

Figure 2.4: IPv6 protocol header. From [§]

The fields within the IPv6 header each have very specific jobs. Here is a list of those fields and
their use:

e Version: Always equal to 6 for IPv6.

o Traffic Class: Identifies the priority and class of service of this packet.

e Flow Label: For future use in identifying packets that are part of a unique flow, stream,

or connection.
e Payload Length: Defines the length in octets of the packet that follows the IPv6 header.
o Next Header: Identifies the type of header that follows the IPv6 header.
e Hop Limit: Counter for the remaining number of hops that the packet can traverse.
e Source Address: The IPv6 address of the node that originated this packet.

e Destination Address: The IPv6 address that this packet is destined for.

When comparing the IPv4 header to the IPv6 header it is noticeable that the IPv6 header is
cleaner, with fewer fields and is aligned to support the current processors found in most host
computers and devices by using 4 and 8 bit boundaries that make header disassembly more
efficient. The IPv6 header has also been made more simple by removing all the fields (from
IPv4) that have little to no use in the v6 version of the protocol. In an attempt improve perfor-
mance the IPv6 header only contains essential data with everything else (e.g., fragmentation)
handled by extension headers. Overall, the IPv6 header has been streamlined for simplicity and

performance.

Extension Headers

In IPv6, extension headers are used to indicate the transport layer information of the packet
(TCP or UDP), or to extend the functionality of the protocol. Extension headers are identified
with the Next Header (NH) field within the IPv6 header. This field is similar to the Protocol
field in an IPv4 packet [8]. The next header field, which is 8 bits long, identifies the header
following the IPv6 header. These optional headers indicate what type of information follows
the IPv6 header.

Extension headers follow the IPv6 header and are a sequential list of optional internet layer
information that are encoded in separate headers that may be placed between the IPv6 header
and the transport layer header in the packet [1]. The typical format of an extension header is
an 8-bit option type that contains the number of the next extension header in the list, an 8-bit
unsigned integer of option data length that tells how long the header is, and the option data
payload that is of variable size. Extension headers can be combined, where several appear
concatenated (or “chained”) in a single packet, but typically only a few are included [8]. The

structure and arrangement of extension headers is illustrated in Figure 2.5.

10

Next Header
=8TCP

Routing
Header

Layer 2
Header

Next Header
= 43 Routing

Layer 2 Routing 4 TCP Data
Header Header £ der | Fragment

Next Header

=43 Routing

Figure 2.5: Extension headers. From [8]

An IPv6 packet may carry zero or more extension headers, each identified by the Next Header
field of the preceding header. With one exception, the Hop-by-Hop option header, extension
headers are not examined or processed by any node along a packet’s delivery path, until the
packet reaches the node (or each of the set of nodes, in the case of multicast) identified in the
Destination Address field of the IPv6 header [1]. The contents of each extension header de-
termines where to proceed to the next header, or if the Next Header value is Null continue to
process the packets data. The use of extension headers follow strict rules and order of prece-

dence. The following rules apply to the use of extension headers:
e Each extension header should not appear more than once, with the exception of the Des-
tination Options header.
e The Hop-by-Hop Options header should only appear once.

e The Hop-by-Hop Options header should be the first header in the list because it is exam-
ined by every node along the path.

e The Destination Options header should appear a most twice (before a Routing header and

before the upper-layer header).
e The Destination Options header should be the last header in the list, if it is used at all.

e The Fragment header should not appear more that once and should not be combined with

the Jumbo Payload Hop-by-Hop option.

11

Because extension headers have a specific order, as defined in RFC 2460, they must be pro-

cessed in the order they appear in the packet. This order of precedence is defined in Table 2.1.

IPv6 Header

Hop-by-Hop Options header
Destination Options header

Routing header

Fragment header

Authentication header

Encapsulation Security Payload header
Destination Options header
Upper-layer header

O| 0| | O\ | | W[—

Table 2.1: Extension header precedence

Since the extension header must be parsed with the Next Header field to determine what to do
next each extension header has a unique number used in the preceding header’s Next Header
field. This allows the receiving node to know how to parse the header to follow. These numbers
are defined by IANA [15] and follow the IPv4 protocol numbers. For more information on

Extension headers or protocol numbers see RFC2460 [1] or [15].

Fragment Header

“Fragmentation” is the term given to the process of breaking down an IP datagram into smaller
packets, each with its own packet header, to be transmitted over different types of network
media and then reassembling them at the other end. This process is an integral part of the IP
protocol and is covered in depth in [2]. Or restated, it is the process of dissecting the packet
into smaller packets to be easily carried across a data network that does not have the capability
to carry large packets. Fragmentation occurs due to networks with varying sizes of Maximum
Transmission Units (MTUs) [8].

The Fragment Header is used by an IPv6 source to send a packet larger than would fit in the
path MTU to its destination [1]. Unlike IPv4, fragmentation in IPv6 is performed only by
source node and not by routers along the path (in-network fragmentation). Each packet receives
a unique Fragment Identifier and is identified by the value 44 in the preceding Next Header
field. In order to send any packet that is too large, the source node may divide the packet
into fragments and send each fragment as a separate packet, which is then reassembled at the
destination node. Figure 2.6 illustrates how the large packet (top) needs to be fragmented into

the two smaller packets (bottom). The original packet is made up of an unfragmentable part that

12

contains the original IPv6 header plus any extension headers that must be processed by nodes
en route to the destination. The fragmentable part is fragmented creating multiple packets, each
having the unfragmentable part, including any headers that are required (e.g., routing header or

Hop by Hop extension header), as well as a fragment header. [8]

Unfragmentable Part Fragmentable Parl
Link Layer IPvE Transport Link Layer
(Header Header Header Lhus Traller]
Fragment 1 Fragment 2
Link Layer IPvE Transport Link Layer
(Header Header - Header ot Traller
L X " - r
Untragmentable Part Fragment 1
Link Layer IPvE Link Layer
(Header Header - Eayicad Trailer)
'\._.‘,_I . T]
Unfragmentable Part Fragment 2

Figure 2.6: Fragmented packet. From [8]

2.1.3 ICMPvé6

IPv6 uses the Internet Control Message Protocol (ICMP6) as defined for IPv4 [16], with a
number of changes [17]. ICMPv6 is vital to the proper operation of the IPv6 protocol. Unlike
ICMP for IPv4, which is not required for IPv4 communications, ICMPv6 has features that
are required elements which cannot be completely filtered [8]. For example the host auto-
configuration and Neighbor Discovery Protocol (NDP) §2.1.4 both require ICMPv6 messages
to be able to complete address assignments and perform Duplicate Address Detection (DAD);
both of which are vital to IPv6 operation. ICMPv6 operates on top of IPv6 as an extension
header but actually works in conjunction with IPv6 for protocol operations. ICMPv6 is an

integral part of IPv6, and must be fully implemented by every IPv6 node [17].

ICMPv6 is used by IPv6 nodes to report errors encountered in processing packets, and to
perform other internet-layer functions, such as diagnostics and testing (e.g., traceroute6).
ICMPv6 messages contain a type and a code that relate the details of the message to the type

of message, as well as a checksum and a payload of variable size. ICMPv6 error messages re-

13

lay useful information back to the source of the packet about any error that may have occurred
along the path. The general packet structure for ICMPv6 is shown in Figure 2.7.

8-bit [CHD 3-bit [CMP

Type Code 16-bit ICMP Checksum

ICMP Contents (dependent on type and code)

Figure 2.7: General ICMPv6 packet.

e Type: The type field indicates the type of message.

e Code: The code field depends on the message type and is used to create an additional

level of message granularity.

e Checksum: The checksum field is used to detect data corruption in the ICMPv6 message
and parts of the IPv6 header. (for more information on how to calculate the checksum see
RFC 4443)

ICMPv6 can be considered as the backbone of the IPv6 protocol, providing the following func-
tions: [8]

e Neighbor Discovery Protocol (NDP), Neighbor Advertisements (NA), and Neighbor So-
licitations (NS) provide the IPv6 equivalent of IPv4 Address Resolution Protocol (ARP)

functionality.

e Router Advertisements (RA) and Router Solicitations (RS) help nodes determine infor-
mation about their LAN, such as the network prefix, the default gateway, and other infor-

mation that can help them communicate.
e Echo Request and Echo Reply support the Ping6 utility.
e PMTUD determines the proper MTU size for communications.

e Multicast Listener Discovery (MLD) provides IGMP-like functionality for communicat-

ing IP multicast joins and leaves.

14

e Multicast Router Discovery (MRD) discovers multicast routers.
e Node Information Query (NIQ) shares information about nodes between nodes.

e Secure Neighbor Discovery (SEND) helps secure communications between neighbors.

2.1.4 Neighbor Discovery

IPv6 nodes on the same link use Neighbor Discovery to discover each other’s presence, to deter-
mine each other’s link-layer addresses, to find routers, and to maintain reachability information
about the paths to active neighbors. [18] Neighbor Discovery is the IPv6 equivalent of ARP,
which maps layer 2 MAC addresses to IP addresses in an IPv4, network and is a required func-
tion for proper communication in the IPv6 protocol which is done automatically by each host
interface. Hosts also use Neighbor Discovery to find neighboring routers that are willing to
forward packets on their behalf and to actively keep track of which neighbors are reachable and

which are not to assist in efficient routing.

Router Solicitation

The purpose of router solicitation is to force routers to generate router advertisements imme-
diately rather than at their next scheduled time. It is used when a node joins the network,
and needs to be configured [13]. This message is sent to the all-routers multicast address
(FF01:0:0:0:0:0:0:2 [19]) and has a hop limit value of 255. Figure 2.8 displays the Router
Solicitation message format.

- 32 Bila L
8 8 a | =]
Typa Codg Checksum
Rasanaad
Oiplicrs

Figure 2.8: Router Solicitation message.

Router Advertisement
Router Advertisements are sent periodically and in response to a Router Solicitation. The source
address must be the link-local address of the corresponding router interface (the one that sent

it). The destination address can either the source address of an invoking router solicitation or the

15

the all-nodes multicast address (FF01:0:0:0:0:0:0:1 [19]). The format of the IPv6 Router

Advertisement message is shown in Figure 2.9.

ROUTER ADVERTISEMENT (RA) MESSAGE FORMAT

TYPE CODE CHECKSUM

HOP-LIMIT | 4 | 0 | RESERVED | Router Litetime

REACHABLE TIME

RETHANSMIT TIMER

OPTIONS

Figure 2.9: Router Advertisement message.

This is an ICMPv6 message with the type number of 134, while the code is 0. The M and O
bits are the “managed address configuration” and the “other stateful configuration” flags, which
determine whether or not DHCP will be used. The router lifetime is in seconds, and a value of
zero means the router is not a default router. The reachable time field indicates the time - in
milliseconds - that a node assumes a neighbor is reachable after having received a reachability

confirmation [13].

Neighbor Solicitation

Neighbor Solicitation is the IPv6 equivalent to IPv4 ARP requests. Nodes send Neighbor So-
licitations to request the link-layer address of a target node while also providing their own link-
layer address to the target [18]. When a node needs to resolve an address, Neighbor Solicitations
are sent via multicast. When the node seeks to verify the reachability of a neighbor, Neighbor
Solicitations are sent via unicast. Figure 2.10 shows the format of the Neighbor Solicitation

message.

The type of the Neighbor Solicitation message is 135 and the code is 0. The Source Address
is either an address assigned to the interface from which this message is sent or if Duplicate
Address Detection (DAD) [20] is in progress the unspecified address(0:0:0:0:0:0:0:0 [14])

16

-+ 32 Bits *
8 8 B | 8
Type Code Checksum
Reserved
— Target Addrass —
Options

Figure 2.10: Neighbor Solicitation message.

[18].

Neighbor Advertisement
A Neighbor Advertisement is sent out in response to a Neighbor Solicitation or periodically in
order to propagate new or changed information quickly. The Neighbor Advertisement message

format can be seen in Figure 2.11.

32 Bits
8 8 8 | 8

Type Code Checksum

R|(S|O Reserved

— Target Address —

Options

Figure 2.11: Neighbor Advertisement message.

If the solicitation’s source address is the unspecified address, the advertisement’s destination
address is the all-nodes multicast address. The R bit indicates that the node is a router. The S
bit indicates that the advertisement is sent as a response to a neighbor solicitation. The O bit is
the override flag. When set, it indicates that the advertisement should override an existing cache

entry and update the cached link-layer address [13].

17

Prior Work

In his 2006 thesis, Savvas Chozos tested the security features of IPv6’s stateless

auto-configuration process as well as the Neighbor Discovory Protocol, both using ICMPv6.
During his research Chozos used Jpcap [21] to capture and build appropriate ICMPv6 auto-
configuration messages which he then used to implement two DoS threats to the IPv6 auto-
configuration procedure in a laboratory IPv6 network. Since the auto-configuration features
of IPv6 are focused on user convenience, there are known trade-offs between convenience and
security. The result of both of Chozos’ DOS attacks were successful. These results led to the
conclusion that IPv6 auto-configuration in environments with non-trustworthy hosts is prone to
attacks, and if host authentication cannot be achieved, transition to stateful auto-configuration
with the use of trusted DHCPv6 servers should be considered. While the most serious effects
of the attacks were anticipated, a couple of unanticipated compliance defects in the IPv6 imple-
mentation for Linux were also identified. For Chozos, these results indicate that these threats

are real, and further studies are required to identify suitable countermeasures [13].

2.2 NIDS Overview

Intrusion Detection is a fundamental practice in Network Security. Network Administrators use
many methods and devices to keep the information residing on their networks safe. Firewalls
(packet filters) are one such device that can be used to filter out packets that may potentially
harm hosts inside a network. A Firewall is a combination of hardware and software that isolates
an organization’s internal network from the Internet at large, allowing some packets to pass and
blocking others. A firewall allows a network administrator to control access between the outside
world and resources within the administered network by managing the traffic to and from these
resources [22]. Unfortunately, for Intrusion Detection, this is not enough. For effective network
security we need a device that not only examines the headers of all packets passing through it
(like a packet filter or Firewall), but also performs payload inspection, which is not performed
by a packet filter. When this type of device observes a suspicious packet, or a suspicious series
of packets, it could prevent those packets from entering the internal network or, because the
activity is only deemed as suspicious, the device could let the packets pass, but send alerts to
a network administrator, who can then take a closer look at the traffic and take appropriate
actions. [22] An NIDS is the type of device that generates alerts when it observes potentially
malicious or suspicious traffic. A device that blocks such suspicious traffic is called an intrusion

prevention system (IPS), however the IPS will not be covered in this research.

18

NIDS systems are broadly classified as either signature-based systems or anomaly-based sys-
tems. A signature-based NIDS maintains an extensive database of attack signatures. Each
signature is a set of rules pertaining to an intrusion activity. A signature may simply be a list of
characteristics about a single packet (e.g., source and destination port numbers, protocol type,
and a specific string of bits in the packet payload), or may relate to a series of packets [22]. As
network traffic flows a signature-based NIDS inspects every passing packet, comparing each
packet with the signatures in its database. If a packet matches a signature in the database, the
NIDS generates an alert. The Signature-base NIDS has some disadvantages. It requires pre-
vious knowledge of an attack in order to generate an accurate signature, leaving it unable to
detect new attacks. It may flag suspicious activity that is not actually an attack resulting, in a
false alarm, and since every packet must be compared with an extensive collection of signa-
tures. An NIDS can become overwhelmed with processing and actually fail to detect malicious

packets.

The anomaly-based NIDS creates a baseline traffic profile as it observes it in normal opera-
tion. The NIDS then looks for packet streams that are statistically unusual, for example, an
inordinate percentage of ICMP packets or a sudden exponential growth in port scans and ping
sweeps [22]. This does not require any previous knowledge other than the baseline traffic profile
making it possible to detect new or undocumented attacks. However this advantage is somewhat
outweighed by the fact that it is an extremely challenging problem to reliably and consistently
distinguish between normal and statistically unusual traffic. Currently most NIDS deployments

are primarily signature-based, although some include some anomaly-based features [22].

An NIDS can be used to detect a wide range of attacks, including network mapping, port scans,
TCP stack scans, DoS bandwidth-flooding attacks, worms, viruses, OS vulnerability attacks,
as well as application vulnerability attacks. Today, thousands of organizations employ NIDS
systems [22]. Many of these deployed systems are proprietary, marketed by Cisco, Check Point,
and other security equipment vendors. But many of the deployed NIDS systems are public-
domain (or open source) systems, such as the popular SNORT [23] and BRO [24] NIDSs.
Payload inspection systems like SNORT and BRO utilize regular expressions for their rules due

to their high expressibility and compactness. [25] An example of a simple network setup using
SNORT is shown in Figure 2.12

19

Simple Snort Netwark Topology

Rautar %
(IT21E1 1)
it G—F
-

Franal
(172 16.1.2 External)
{90111 Inkemal)

Snont PSICS Manzgement
(192 1688 1.1 Intemal) Whiork siation
M Eatamial Address) (192 1E8.1.2)

.,

!
TITERTRT

Irrierral Natwad
10xxx

Figure 2.12: Simple example using SNORT NIDS. From [23]

SNORT NIDS

Snort is an open source network intrusion detection/prevention system (NIDS/IPS) developed
by Sourcefire. Combining the benefits of signature, and anomaly-based inspection, Snort is the
most widely deployed NIDS/IPS technology worldwide [23].

The SNORT NIDS uses the PCRE Engine for regular expression matching on the payload. The
software based PCRE Engine utilizes a Non-Deterministic Finite Automata (NFA) engine based
on certain opcodes which are determined by the regular expression operators in a rule. Each rule
in the SNORT ruleset is translated by a PCRE compiler into a unique regular expression. Since
the software based PCRE engine can match the payload with a single regular expression at a
time, and needs to do so for multiple rules in the ruleset, the throughput of the SNORT NIDS

system dwindles as each packet is processed through a multitude of regular expressions [25].

A large default set of rules comes with SNORT, while also allowing for development of local
site rules for customization. SNORT performs protocol analysis, content searching/matching,
and can be used to passively detect a variety of attacks, such as buffer overflows, stealth port

scans, web application attacks, and OS fingerprinting attempts, as well as many others.

20

Figure 2.13 illustrates the functional diagram of SNORT followed by a detailed list to describe

each function.

Sclected Output Mode

Log files. congole, sockets.)

Outpuiir: Plugins - Detection Plugins
-~ "

Detection Engine ol

- * References
T Reads/ Applies ~~~of Fulefils [

Preprocessors

Decoder

f

Packet Capture Module

|

Nework Traffic

Figure 2.13: SNORT functional diagram from [26]

The following is description of each module is taken from [26].

e Packet Capture Module is based on the popular packet programming library libpcap; it

can be optimized for performance and provides a high-level interface for packet capture.

e Decoder fits the captured packets into data structures and identifies link level protocols.
It then looks at the next level, decodes IP, and finally looks at the TCP/UDP in order
to determine ports and addresses. SNORT is capable of alerting if it finds malformed
headers (unusual length TCP options, etc.)

e Preprocessors can be considered a kind of filter, which identifies things that should be
checked later (in the next modules e.g., the Detection Engine), such as suspicious con-
nection attempts to some TCP/UDP ports or too many TCP SYN packets sent in a short
period of time (port scan). [The Preprocessor’s function is to take packets potentially dan-
gerous for the detection engine and try to find known patterns, and thus perform stateful

protocol analysis.]

21

e Rules Files are plain text files which contain a list of rules with a standardized syntax.
This syntax covers protocols, addresses, and associated output plug-ins. These rules files

can be updated locally.

e Detection Plug-ins are modules referenced from its definition in the rules files. They are

used to identify patterns whenever a rule is evaluated.

e Detection Engine The Detection Engine makes use of the detection plug-ins. It matches

packets against rules loaded into memory during SNORT initialization.

e Output Plug-ins are the modules which allow for the formatting of notifications (alerts,

logs) for the user to access them in many ways (console, external files, databases, etc).

BRO NIDS

BRO is an intrusion detection system that works by passively watching traffic seen on a net-
work link. It is built around an event engine that pieces network packets into events that reflect
different types of activity. This activity can be anything from seeing a connection attempt, an
FTP request or reply, or a user having successfully authenticated during a login session. Bro
runs the events produced by the event engine through a policy script, which the BRO admin-
istrator supplies, however in general the NIDS will operate using large portions of the scripts
(analyzers) that come with the BRO distribution [24].

BRO has its own specialized policy language that allows a site to tailor BROs operation, both
as site policies evolve and as new attacks are discovered. If BRO detects something of interest,
it can be instructed to either generate a log entry, alert the operator in real-time, or execute a
command (e.g., to terminate a connection or block a malicious host). In addition, BROs detailed

log files can be particularly useful for forensics.

It should be noted that BRO is intended for use by sites requiring flexible, highly customizable
intrusion detection. It has been developed primarily as a research platform for intrusion detec-

tion and traffic analysis. It is not intended for someone seeking an “out of the box” solution.

22

Figure 2.14 displays the functional diagram of BRO.

Policy seript Real-time notification

¥

T

Policy Layer

Event Stream

bemmm -

Slgnature Control

T R—

Event Control
¥

Signature

Signatures —» .
Engsine

Event Engine

Filtered Pacleet Stream

R b «

Paclet Filter !
¥

Paclet Capture

|

Network Traffic Stream

Figure 2.14: BRO functional diagram from [27]

Below is a quick description of what each module does, taken from [28]:

e Packet Capture like SNORT, BRO captures traffic using libpcap. This aids in porting
BRO to different Unix varieties, and allows it to operate on tcpdump [29] packet traces

(for offline analyses).

e Event Engine This layer performs several integrity checks to assure that the packet head-
ers are well-formed. For example, it verifies the IP header checksum is correct. At this
point BRO reassembles IP fragments so the network layer analyzer can inspect complete

IP datagrams. It sends events to the Policy Layer.

e Signature Engine inspects the packet stream, and generates an event each time a signa-

ture is matched. Those events can then be analyzed by a policy script.

e Policy Layer The policy script interpreter executes scripts written in a specialized BRO
language. These scripts specify event handlers which are happenings received for the

Event Engine Layer, each occurrence is passed to the interpreter.

23

For high performance, BRO relies on use of an efficient packet filter to capture only a subset
of the traffic that transits the link it monitors. Scripts (called analyzers) for analyzing different
protocols and different types of activity have been built into BRO for flexibility. This gives the
administrator the ability to pick and choose among these analyzers for which types of analysis
he/she wants to enable; then BRO will only capture traffic related to the analyzers that have
been selected. Overall BRO provides a flexible, highly stateful, efficient, and adaptable network
security monitor [24].

2.3 1IPv6 vs. NIDS

On 8 June, 2011, top websites and Internet service providers around the world, including
Google, Facebook, Yahoo, Akamai and Limelight Networks joined together with more than
1000 other participating websites in World IPv6 Day for a successful global-scale trial of the
new Internet Protocol, IPv6 [30]. The collaborators of this event coordinated a 24-hour test
flight of IPv6. This event helped demonstrate that major websites around the world are well-
positioned for the move to a global IPv6-enabled Internet, enabling its continued exponential
growth [30]. However, even with the depletion of [Pv4 addresses and the events on World IPv6
day, the adoption of IPv6 has been slow. The development of NIDSs to support IPv6 is no
different. There has been little effort to expand the current set of NIDS (Network Intrusion
Detection Systems) to support the IPv6 protocol [25]. This has been due mostly to lack of de-
mand. To date, BRO NIDS and SNORT NIDS have implemented IPv6 into their systems. It
can be expected that as demand for IPv6 increases, so will development of NIDSs to support

IPv6 protocol.

Another area where slow demand for IPv6 has had an impact is the deployment experience of
the industry. This has resulted in the lack of experience in securing IPv6 networks. To this
point it has not presented a significant problem due to the limited adoption of IPv6. However,
IPv6 is becoming a larger target for hackers, and as it becomes more popular it will continue to
grow as a target of attacks. As of now, IPv6 is the “wild west” with wide open spaces and few
security obstacles for a hacker to avoid or overcome. The IPv6 environment is already being
used for malware, attack propagation, and even as Internet Relay Chat (IRC) channels and back
doors for more sophisticated hackers [8]. There are already several DoS attacks and a few
IPv6 worms. The 2002 Slapper worm attacked Apache Web servers via TCP port 80, creating
copies of itself and spreading to other Apache Web servers randomly. The Slapper worm uses

a sophisticated command and control channel that would allow a hacker to send commands to

24

the infected servers. One of these could send a flood of IPv6 packets toward a victim making it
the first worm with any type of IPv6 component to it [8]. Another worm, W32/Sdbot-VJ, uses
IPv6 to disguise itself [8]. By creating a file (WIPv6.exe) the W32/Sdbot-VJ worm leverages
the popularity of IPv6 which would hopefully prevent the user or system from deleting it due to
the possibility that it may have something to do with the Windows IPv6 drivers. Several DoS
attacks also exist as the hacker community has begun to explore IPv6. This exploration will only
increase in its allure as the number of targets increases and IPv6 protocol weaknesses become
more understood. In fact, IPv6 capabilities have started to be added to several popular hacker
tools. Tools like SCAPY6 [31] and The Hackers Choice (THC) IPv6 Attack Tool Kit [32], both
of which are easy to install and relatively simple to use. It is because of this lack of experience
in securing IPv6 networks, the growing knowledge of the protocol by attackers, and the current
status of the mostly un-monitored environment and tools to take advantage of it, that more
hackers will be drawn to IPv6. All of which further emphasize the need for effective NIDSs.

One of the benefits that IPv6 presents to the NIDS is its simplified header and its use of 4
or 8 byte data boundaries. From an NIDS perspective this is excellent because for a modern
CPU, taking apart the IPv4 header to detect subtle packet crafting is very inefficient due to the
alignment of the data fields. With IPv6, the decomposition of the various fields of the header
and extension headers can be done efficiently [25]. This results in a gain in NIDS performance,
represented in a per-packet processing speed increase. On the downside of the shift to IPv6
is the possibility that many, many more devices could be connected to the Internet due to the
large address space of IPv6 and the technological advances of everything from game systems to
refrigerators. The result would be for all of those devices to be exploited and used in an attack.
Thus presenting the need to protect or defend these systems with an NIDS. To do this, perhaps
the most important hurdle is that of authentication and encryption: a sophisticated NIDS would
want to at least verify the validity of the Authentication Header (AH) in each packet, if not
check the contents of the Encapsulating Security Protocol (ESP) Header [25]. This presents a
problem to performance since it is processing-intensive to decrypt and process these packets on

the fly at megabits per second, or higher, rates.

In terms of technology, with the exception of the larger address set and integrated cryptography,
there is little else to differentiate IPv6 from IPv4 from an NIDS perspective. The uses of IPv6
technology present the greatest challenges as IPv6 may finally do what IPv4 could not, put

“everything on the Internet.”

25

Deployment of IPv6 places increased pressure on the requirement for a paradigm change from
current localized solutions to a much more distributed system, and in particular, from the “anti-

virus lookalike” to a system finally resembling a proper sentry [25].

2.4 Lists of Exploits Overview

The adoption of IPv6 presents new and unique challenges that industry is just beginning to
adapt to. To be able to transition an organization’s networks and hosts there are many obstacles
to overcome. Perhaps the greatest of these obstacles is security. Although IPv6 both simplifies
and improves IPv4, it poses several significant security challenges [33]. The first challenge
rests within a built-in feature designed to improve security: IPSec [9]. The problem is that even
though IPSec support is mandatory, its use is not, which keeps holes open for old or existing
attacks while opening the door for new IPv6 specific ones. To complicate matters, some of
IPv6’s beneficial features have their own security implications that are not yet fully understood
[33]. In addition, not all of the old security problems encountered in IPv4 went away. In fact
some problems that affect [Pv4 networks, such as application layer attacks, rogue devices, and
packet flooding can also affect IPv6 networks [33]. Not to mention any new unanticipated

attacks that will be developed once IPv6 has been targeted by the hacking community.

IPv6 security is in many ways the same as IPv4 security [34]. Packets travel through the network
via the same mechanisms and any upper or lower layer protocol remains unchanged. Having
said that, there are still some significant differences between IPv4 and IPv6 that change the types
of attacks that will be seen on an IPv6 network. There has been very little research into what
attacks IPv6 networks will face or what mechanisms will be required to protect them. Partic-
ular items of concern that need to be addressed are securing Router Advertisements, handling
of fragment reassembly and analysis, the lack of Neighbor Discovery §2.1.4 (e.g., ICMPv6
typel135/146 messages) and DHCPv6 inspection in edge switches, as well as IPv6 Node Infor-
mation Queries [35] [36].

Presence of the IPv6 protocol brings new demands for typical network protection mechanisms
such as firewalls and intrusion detection systems that need to be upgraded to support IPv6
correctly [7]. The adoption of IPv6 presents a challenge for any mechanism relied upon to
secure networks. IPv6 may not only be vulnerable to existing IPv4 threats, but also presents
new threats specific to IPv6. The good news is that IPv6 is more resistant to some threats than
IPv4. However this does not change that fact that there is significant work to be done in the area

of IPv6 security.

26

General Attack Classes

There are thirteen general attack classes or categories, derived from Convery and Miller’s 2004
paper [34], that attackers use to exploit [IPv4 networks and hosts. These classes remain relevant
with the IPv6 protocol stack. Each of the following general attack classes have either been
made significantly easier, harder, or have no impact (or remain consistent) when considered in

an IPv6 environment and will be covered in more detail in the following section.

1. Sniffing

2. Application Layer Attacks

3. Rogue Devices

4. Man In the Middle (MITM)

5. Flooding

6. Reconnaissance

7. Unauthorized access

8. Header Manipulation and fragmentation
9. Layer 3 spoofing

10. Address Resolution Protocol (ARP) and Dynamic Host Configuration Protocol (DHCP)

attacks
11. Broadcast Amplification Attacks (smurf)
12. Viruses and Worms

13. Translation, Transition, and Tunneling

24.1 Consistant Threats

As stated in §2.4, some threats like application layer attacks remain mostly the same in IPv6 as
they did in IPv4. This is because the implementation of IPv6 only affects layer 3 and has no
direct impact on layer 7 of the OSI model. In fact, many of today’s common attacks are appli-

cation layer attacks. To this group of attacks belong buffer overflow attacks, web application

27

attacks (e.g., CGI attacks), different types of viruses and worms, etc [7]. Rogue device attacks
such as an unauthorized laptop, rogue router, or rogue wireless access point are common in an
IPv4 network and are not substantially changed in IPv6 [34]. Transition to IPv6 will not impact

these types of attacks.

Flooding Attacks

A flooding attack is a very frequent type of attack. The flooding is an attack that floods a
network device, such as a router or a host, with large amounts (more that it can process) of
network traffic. This attack can take the form of a local or distributed Denial of Service (DoS)
attack and can cause network resources to become unavailable. Arrival of IPv6 did not change
basic principles of a flooding attack [7]. However, with the introduction to new extension
headers and ICMPv6 message types along with the dependence on multicast addresses, IPv6

may introduce more ways of developing flooding attacks for malicious purposes.

Sniffing

Sniffing or eavesdropping on network traffic also remains unchanged. The tcpdump [29] tool
has been implemented with IPv6 support, thus the sniffing of network traffic remains unchanged
between [Pv4 and IPv6.

Worms

Worms are another threat that remain mostly unchanged when considered with IPv6. Since
worms are generally application layer threats, worms such as Melissa which spreads via email
will be unaffected in an IPv6 environment [37]. However one of the popular mechanisms for
worm propagation is random address-space probing. This allows a fast operating worm to scan
an entire address space in a matter of hours. This was emphasized by Staniford et al. in their
2002 paper titled “How to own the Internet in your spare time [38].” In this paper, they conclude
that it is realistic for an attacker to gain control of a million or more hosts via the use of Worms
on an IPv4 Internet. Thus giving the attacker the ability to conduct a mass Distributed Denial
of Service (DDoS) attack, access sensitive information (e.g., credit card numbers, passwords),
purposely sow confusion, as well as do deliberate damage to infrastructure. In a IPv4 32 bit
address space, random address-space probing can be done quickly in order to find new hosts
to infect. However when attempted with IPv6, with its 128 bit address space, scanning is a
much more difficult and time consuming task. In fact, if we assume that the number of hosts
on the Internet does not increase by a factor proportional to the address increase, then the work

296

factor for finding a target in an IPv6 internet would be approximately greater than that of

28

IPv4 [37]. This work increase would seem to make the random scanning worms irrelevant due

to the scan time expense.

In the Bellovin et al. paper analyzing propagation strategies of worms in an IPv6 environment,
they noted that address-space scanning worms such as Code Red will have a tough time effec-
tively finding vulnerable victim hosts in an IPv6 environment [37]. The adoption of IPv6 re-
moves one of the two ways address-space scanning is currently performed by making it infeasi-
ble to use a uniformly distributed random number generator to select new target addresses [37].
The other method, biasing the search space by scanning within the same subnet, preferentially
spreads locally and is a much more feasible method [37]. However even scanning within an
IPv6 subnetwork seems to be an unattainable goal for any worm. Even with only having to
scan the local IPv6 subnet, a worm would be required to scan through 80 bits of local address
space, which is a massive number and daunting obstacle. Thus, in an IPv6 environment, the
worm threat itself does not change. However the method by which worms find hosts may have

to change.

Man In The Middle (MITM)

The general theory of the Man in the Middle (MITM) threat does not change with IPv6. Because
the IPv4 and the IPv6 headers have no security mechanisms themselves, each protocol relies on
the IPsec protocol suite for security [34]. Since it is only mandatory for IPv6 implementations

to support IPsec, but does not require it to be used, [Pv6 falls prey to the same security risks
posed by a MITM attack.

Table 2.2 lists the IPv4 attacks that remain mostly unchanged when converted to IPv6. The

table shows current IPv4 attack types or vulnerabilities next to their IPv6 counterpart.

29

Attacks Mostly Unchanged When Converted to IPv6

Attack Type
IPv4 Attack | Analog IPv6 Vulnerability
Sniffing
TCPDUMP | TCPDUMP(IPv6 enabled)
Man in The Middle (MITM)
Various Parasite6
Various Redirect6
Flooding
Flood_Advertise6
Fake _router6

Table 2.2: Unchanged attacks

2.4.2 New Threats

This section outlines attacks that change significantly when considered in the IPv6 protocol
address space. This section is based largely on Convery and Miller’s 2004 paper on threat
comparison and best practices [34]. IPv6 specific threat studies will also be covered in this

section, however this will be as they relate to host and not NIDS detection.

Reconnaissance

Generally the first attack performed, reconnaissance, is an attempt by the adversary to learn
about your network in an effort to find possible holes or weaknesses. Convery and Miller
state, “this includes both active network methods such as scanning as well as more passive
data mining such as through search engines or public documents. [34]” The active host probing
or port scanning is an attempt for an attacker to discover specific information about hosts and
network devices on the victim’s network. This includes how they interconnect and what traffic
is being passed between them. Passive data mining can be considered environmental data to

assist the attacker in theorizing different ways to attack the victim network.

Typical IPv4 methods of collecting information are ping sweeps, port scans, and application and
vulnerability scans. Reconnaissance in IPv6 differs from IPv4 in two relevant ways. The first is
that ping sweep or port scan, when used to enumerate hosts on a subnet, are much more difficult
to complete in an IPv6 network [34]. This 1s emphasized by Caicedo et al. in their 2009 paper
where they note, the potentially huge size of IPv6 subnets makes reconnaissance attacks more

30

difficult [33]. The large size of the IPv6 address space makes port scanning, whose procedures
are identical for IPv4 and IPv6, more tedious and time consuming. With a default subnet on
an IPv6 network being 64 bits, that means that to perform a scan on the whole subnet it is
necessary to make 2% probes, a next to impossible task [7]. Or as summarized by Convery and
Miller, a network that ordinarily required sending 256 probes now requires sending more than
18 quintillion probes to cover an entire subnet. A task that would take “28 centuries of constant
I-million-packets-per-second scanning” to find the first host on the first subnet on a /64 IPv6

network containing 100 active hosts [34].

In an attempt to prove application vulnerability scans, or OS fingerprinting, have similar possi-
bilities in IPv6 as they do in IPv4. Nerakis, in his 2006 thesis, used existing TCP/UDP packet
probing methods along with IPv6 Extension Headers to attempt to determine the version and
type of remote host operating systems. Nerakis discovered that existing TCP/UDP methods
work, however it is more difficult to perform in an IPv6 environment. This is believed to be due
in part to the larger address space and the (at the time) experimental nature of IPv6 with similar
OSs possibly reusing IPv6 code [39].

IPv6’s reliance on Multicast addresses will do just the opposite, making the adversaries life eas-
ier. The multicast address structure as defined in RFC 2375 [40] lets the attacker identify groups
of key network components, such as the all router or all DHCP servers for a given network. This
gives the attacker an almost hand delivered list of devices to scan for vulnerabilities, making his
reconnaissance possible if not easy. This defined list of multicast addresses is clearly for legit-
imate protocol use, however it opens IPv6 up for reconnaissance as well as “simple flooding”

attacks, or something more sophisticated that is designed to subvert the device [34].

Unauthorized Access

The Unauthorized Access attack is the type of attack in which an adversary tries to exploit
the open transport policy found in IPv4. There is nothing in the protocol stack that limits the
number of hosts that can connect to one another on an IP network. Attackers rely on this fact

to establish connectivity to upper-layer protocols and applications on inter-networking devices
and hosts [34].

31

To aid in preventing this attack the need for access controls is the same in IPv6 as it is in IPv4,
though eventually the requirement and use of IPsec may enable easier host access control. Be-
sides the mandatory support for IPsec, IPv6 technology differences that enable unauthorized
access include Extension Headers, ICMP, Multicast and Anycast Inspection. In the case of Ex-
tension headers, which replaced the IPv4 IP options, all IPv6 endpoints are required to accept
IPv6 packets with a routing header. This can be used by an attacker to circumvent security
policies because of the possibility that the endpoint does not only accept the IPv6 packet but
also processes it and forwards it, which possibly bypasses a networks firewalls [34]. For ICMP,
which is not required by IPv4, current best practices are generally in favor of complete filter-
ing. However, ICMPV6 is an integral part of IPv6 operations and cannot be completely filtered
without preventing communications. Since many of the utilities in IPv6, such as Neighbor Dis-
covery, use ICMPvV6, there are many opportunities to use it to aid in an Unauthorized Access

Attack and thus subvert the networks’ security policies or bypass firewalls.

Header Manipulation and Fragmentation

The misuse of IPv6 routing and fragment headers can give an adversary tools to perform DoS
attacks as well as avoid access controls. RFC 2460 [1] stipulates that all IPv6 nodes have to
be able process routing headers. Because routing headers can be used to avoid access controls
based on destination addresses, this presents a significant security issue. For instance, if an
intruder sends a packet to a publicly accessible address with a routing header containing a
“forbidden” address (address on the victim network) the publicly accessible host will forward
the packet to a destination address stated in the routing header (e.g.,”forbidden” address) even
though that destination address is filtered [7]. This enables the adversary the ability to perform
a DoS attack by using this publicly accessible host to redirect spoofed packets.

Historically fragmentation has been used in IPv4 to bypass access controls or slip attacks past
routers, firewalls, and in particular NIDSs. The IPv6 specification [1] does not allow packet
fragmentation by intermediary devices. In other words, only the source host can perform frag-
mentation. The source node could move port numbers from the first fragment to bypass security
monitoring devices (which do not reassemble fragments) expecting to find transport layer pro-
tocol data in the first fragment [7]. Convery and Miller hypothesize that it is also possible to
use the combination of multiple extension headers and fragmentation to create the same ability
for the intruder to hide an attack. Since the “IPv6 minimum MTU is 1280 octets” a good secu-
rity policy for IPv6 would have any packet with a MTU less that 1280 be dropped, but this is
not always the case. Thus, an attacker can use large numbers of packets with small fragments

32

(MTU <1280) to overload reconstruction buffers on the target system in an attempted DoS and
possibly causing it to crash [34] [7] .

Layer 3 Spoofing

“Spoofing” is the ability of an attacker to modify their source IP address and the ports they are
communicating on to appear as though traffic was initiated from another location or application.
In the current IPv4 environment these attacks occur everyday, enabling adversaries to perform
DoS attacks or conduct spam, worm, or virus attacks. A promising benefit of the IPv6 protocol
is the globally aggregated nature of the IPv6 address space. This means that IPv6 allocations
are set up in such a way as to easily be summarized at different points in the network. Thus,
Internet Service Providers can perform network egress filtering [41] to ensure that at least their
customers are not spoofing outside their own ranges. This, unfortunately, is not required and
has little impact on “spoofing” attacks; keeping this type of attack as relevant in IPv6 as it was
in [Pv4 [34].

Address Resolution Protocol (ARP) and Dynamic Host Configuration Protocol (DHCP)
attacks

ARP and DHCP attacks attempt to subvert the host initialization process or a device that a
host accesses for transit. These types of attacks try to get end hosts to communicate with an
unauthorized or compromised device or attempt to configure these hosts with incorrect network

information such as default gateway, DNS, or IP address [34].

In their 2004 paper, Convery and Miller note that IPv6 has no inherent security added to the
IPv6 equivalents of DHCP (DHCPv6) or ARP (Neighbor Discovery). With the preference to
Stateless Auto-configuration over DHCP, IPv6 is open for attacks in these areas. Although
DHCP servers may be used on occasion, especially for setting up hosts with network config-
uration information, dedicated servers are not common in IPv6. Stateless Auto-configuration

messages can be spoofed to allow an adversary to deny access to devices [34].

With the many types of devices that now connect to todays networks and the Internet, IPv6
replaces ARP with elements of ICMPvV6 called Neighbor Discovery §2.1.4, which has the same
inherent security as ARP in IPv4 [34]. This means that there are many options for these types
of attacks in IPv6 based on vulnerabilities associated with ICMPv6. IPsec, the default security
mechanism for IPv6, does not allow for automatic protection of the auto-configuration process.

Thus, the Secure Neighbor Discovery Protocol (SeND) [42] was created to protect this process.

33

SeND uses Cryptographically Generated Addresses (CGA) and asymmetric cryptography as a

first line of defense against attacks on integrity and identity.

In his 2007 thesis, Marcin Pohl evaluated SeND. He found that even thought SeND claims to
achieve mutual authentication of hosts and routers without the need for a Certification Authority
(CA), SeND does not really offer mutual authentication without a CA and is susceptible to CPU
exhaustion attacks [43]. However, without SeND both router and Neighbor solicitation and
advertisement messages can be “spoofed” and will overwrite existing neighbor discovery cache
information on a device, resulting in the same issues present in IPv4 ARP. What this means
is that a spoofed router discovery could inject a bogus router address that hosts listen to and
perhaps choose for their default gateway. Then the bogus router can record traffic and forward
it to proper routers without detection; leaving the adversary the ability to perform MITM or
DoS attacks at will [34].

Ciacedo et al. cover a DoS attack on the Duplicate Address Detection (DAD) protocol and its
procedures in their 2009 paper. In this type of attack an attacker on the local link waits until
a node sends an NS packet. The attacker then falsely responds with a neighbor advertisement
(NA) packet, informing the new node that it is already using that address. Upon receiving the
NA, the new node generates another address and repeats the DAD process; the attacker again
falsely responds with an NA packet, thus repeating the whole process. They note, eventually

the new node gives up without initializing its interface [33] .

Another possible attack exploiting the stateless auto-configuration process is a MITM attack.
This is possible when a node needs a MAC address of another node on the subnet and sends
a NS message to the all-nodes multicast address. An attacker on the same link can see the
NS message and reply to it with the corresponding NA message, thereby taking over all traffic

between the two original nodes.

Figure 2.15 graphically shows the process of three IPv6 auto-configuration (ARP/DHCP) type

attacks.

34

Node A
[\fiCriITI) Attacker

DoS attack on DAD protocol

(Message to “all nodes” multicast address)

Who has the IP address of node A?
(Attacker reply)

I have node A's IP address. Here itis.

MITM attack through packet spoofing

| (NSmessage) -
Who has the IP address of node B?
% (NA message from attacker) %

Tﬁave node B's IP, my MAC address is [attacker’s MAC].

Bogus router implantation attack
(RS message)
Who is a router?

(Fake RA from attacker)
I'm a router.

Figure 2.15: Attacks on IPv6 related to the auto-configuration process. From [33]

Broadcast Amplification Attacks (smurf)

Broadcast Amplification attacks, also know as “smurf™ attacks, are DoS attacks the take advan-
tage of the ability to send echo requests with a destination address of a subnet broadcast and a
spoofed source address, using a victim’s IP address. This generates a response from all host on

that subnet directly to the victim’s host creating a flood of echo response messages.

In IPv6, since the concept of broadcast addresses is removed from the specification [1] and
protocol, these types of attacks are mitigated. In regard specifically to “smurf” attacks, ICMPv6
messages should not be generated as response to a packet with a multicast destination address,
a link layer multicast, or a link layer broadcast address as stated in RFC 2463 [44]. Even
though this effectively kills “smurf™ attacks in properly implemented IPv6 stacks, exceptions
are made making these attacks possible on the local subnet. If a target has mis-implemented
IPv6, it responds with an echo reply to the All-Nodes multicast address, this generates a mass
of response traffic sent directly to the target. However, if each host has a properly implemented

IPv6 stack, these attacks are effectively mitigated.

Viruses and Worms
As discussed in §2.4.1, traditional worms and viruses remain unchanged with IPv6. The prop-

agation methods of these types of attacks may encounter some difficulty with the large address

35

space, which is seen in the Bellovin et al. 2006 paper [37]. Because of this difficulty most
worms would be less effective in an IPv6 environment simply because of their inability to find

hosts to infect.

Translation, Transition, and Tunneling

With the transition to IPv6 already underway, careful consideration must be given to the pe-
riod between native IPv4 and native IPv6. As IPv4 networks are converted, there will be a
considerable period of time where a transition mechanism will be required. During this “in-
between” time, vulnerabilities specific to the transition mechanism must be taken into account

and evaluated. There are several approaches to transitioning from IPv4 to IPv6:

e Dual stack
e Tunneling

e Translation

Each of these approaches have their own security considerations to be taken into account when
deciding how to transition to IPv6. Convery and Miller state that the existence of so many
transition technologies creates a situation in which network designers need to understand the
security implications of the transition technologies and select the appropriate one for their net-
work [34]. To this point when discussing IPv6 native access, we have discussed vulnerabilities

and attacks that assume the end host is dual stacked, having both IPv4 and IPv6 infrastructure.

Tunneling refers to the transmission of data intended for use only within a private, sometimes
corporate, network through a public network in such a way that the routing nodes in the public
network are unaware that the transmission is part of a private network. In this case, IPv6 is
tunneled through the public IPv4 infrastructure. The IPv6 global Internet uses numerous tunnels
over the existing IPv4 infrastructure. This is generally done through a tunnel broker such as
Hurricane Electric [45] due to the complexity of setting up and managing these tunnels. Tunnels
are difficult to configure and maintain and too complex for the isolated end user, so the concept
of the tunnel broker was presented to help early IPv6 adopters to hook up to an existing IPv6
network. Additionally Convery and Miller noted that in many of the transition studies done,
automatic tunneling mechanisms are susceptible to packet forgery and DoS attacks. These
risks are the same in IPv4, however IPv6 increases the number of paths of exploitation for

the adversaries [34]. Relay translation technologies, such as 6to4 [46], introduce automatic

36

tunneling with third parties as well as additional DoS possibilities. Although, much like the
case with tunneling IPv6, new avenues for exploitation are created and the risks do not change
from those with IPv4 [34,46]. Finally, this thesis is not intended to discover new threats or
vulnerabilities associated with all of the transition mechanisms, however it will explore the

reaction of NIDSs to known IPv6 threats in a tunneled environment.

Table 2.3 lists IPv4 attack classifications that have new or unique considerations when converted
to IPV6. Just as in Table 2.2, the table shows current IPv4 attack types or vulnerabilities next to
their IPv6 counterpart. Note: Tunneling will be tested on a modified testbed in experiments to

be run separately, and all tests assume each host is operating in a dual stack environment.

37

Attacks with Special Consideration When Converted to IPv6

Attack Type
IPv4 Attack Analog IPv6 Vulnerability
Reconnaissance
Ping Sweep Ping Sweep (Detect-New-1P6)
Port Scan Port Scan (Alive 6)
Multicast (Alive6)
Unathorized Access
IP Options Extention Headers
ICMP ICMPV6 (Redir6)
Multicast Insp(Fake-Advertise6)
Anycast Insp
Header Manipulation
and Fragmentation
Fragmentation Overlapping Fragments

Out of Order Packets (evasion)

Spoofing
Layer 3 (Ip Addr) Spoof6
Layer 4 (SYN flood) | Syn6
ARP & DHCP
DHCP MITM DHCP6
SLAAC
ICMP6 (RA, Discovery)
ARP ICMP6
Nieghbor Discovery (NDP)
Parasite6(like ARP MITM)
Bcest Amplification (SMURF)
SMURF SMURF6
RSMUREF (linux)
Routing Attacks
(Flooding, OSPFv3, RIPng

Rapid Announcement,

Flood-Router6

Route Removal,

Fake_MLDrouter6

Bogus Routes)

Fake_Router6

Table 2.3: Attacks with new considerations in IPv6

38

2.5 Fuzz Testing Overview

Fuzz testing or fuzzing is a software testing method that stemmed from a paper written in 1990
by Miller et al. [10] The origin of the idea came on “one dark and stormy night,” when one of
the authors was logged onto his workstation connected via a dial-up line from home and the rain
had affected the phone lines; resulting in frequent spurious characters on the line [10]. What
they realized was that those spurious and random characters would, at times, crash programs
on the workstation. These programs included a significant number of basic operating system
utilities [10]. With the assertion that “basic utilities should not crash,” they started a systematic
test of utility programs running on various version of the UNIX operating system. As a result
of their testing they were able to crash 25-33% of the utility programs on any version of UNIX
that was tested [10].

Today, fuzz testing is often an automated or semi-automated process, that inputs invalid, un-
expected, or random data into a computer program. The program is then monitored for errors
or exceptions such as crashes. This method is commonly used to test for security problems
in software or computer systems prior to their release or use. For the purpose of this research
fuzz testing will be accomplished by generating random inputs to parts of IPv6 packets (e.g.,
header fields, extension headers, or data) and monitoring each NIDS as well as the destination
hosts for symptoms of errors or exceptions. This series of fuzz tests will explore the impact on
each NIDS by conducting fuzzing in the areas of ICMPv6, fragmentation (extension headers),

multicast, and router advertisement.

39

THIS PAGE INTENTIONALLY LEFT BLANK

40

CHAPTER 3:
Methodology

The intent of this thesis was to determine: i) which exploits that exist with [Pv4 signatures are
feasible or infeasible with conversion to IPv6, and ii) will popular open source NIDSs detect
these IPv6 attacks, as evidenced by testing two open source NIDSs. We broke down attack
types into thirteen general categories, looked for an IPv4 attack in each category, transitioned
that attack to IPv6 and then sent that attack in a virtualized network. If the attack was specific
to IPv6, we developed that attack or used existing implementations, e.g., [32]. Once the attacks
were conducted, an attempt was made to determine the cause of any false negatives. To do this

we had to look deeper into each NIDS and study their detection mechanisms and flow.

At the onset of our research our intent was to test each NIDS as an “out of the box” config-
uration in an attempt to determine the readiness at initial installation. In practice, we found
that each of the NIDSs were so locally configurable that their default installation required
unique configuration changes, such as Ethernet adapter, ICMP detection profile, and scan de-
tection. This required an initial change in philosophy, as we ended up testing the NIDSs in a
slightly modified from default configuration. For example both NIDSs had to be configured
with the -—enable-ipv6 or ——enable-brov6 option in order for them to process IPv6 traffic.
SNORT also required some changes in the snort.conf, sfPortscan in particular, which needed
uncommenting to enable port scan detection as well as changing the sensitivity to these scans
from Low to High. We also had to set the path to SNORT’s decoder and preprocessor rules,
as well as uncomment include $PREPROC_RULE PATH/preprocessor.rules and include
$PREPROC_RULE PATH/decoder.rules in snort.conf. All other changes involved network and

host ethernet adapter setup variables.

3.1 Test Bed

To effectively test both NIDSs, an IPv6 “Native” (completely IPv6) test bed was constructed,
as shown in Figure 3.1. For this, we used a virtual network designed in Oracle’s VirtualBox
[47] running on a Dell Precision T3500, Dual Intel Xeon 2.4GHz, 6 GB RAM, 2x 500 GB
hard drives with Windows 7 SP1 [48] as the host operating system. The virtual machines
Test_host, End_host, End_host2, BRO_server, and SNORT _server were each loaded with Ubuntu
10.10 [49]. SNORT _server was configured with SNORT version 2.9.0.5, while BRO _server was

41

configured with BRO version 1.5.3. Finally BRO2 server was loaded with FreeBSD release 8.2
configured with BRO version 2.0.

IPv6 “Native™
Virtual Test Bed

IPvé
2001:6c0:1973::/64 End_host2
IPv6 router(radvd)

Test_host
Packet Generator
(attacker)

SNORT server BRO_server BRO2_BSD
SNORT IDS BRO IDS BRO ver. 2.0

Figure 3.1: IPv6 “Native” test bed.

3.1.1 IPv6 Transitional Test Bed

To appropriately test the NIDSs in a Transitional environment a few changes needed to be made
to the “Native” Test Bed outlined in §3.1. Displayed in Figure 3.2, the Transitional Test Bed
includes moving End _host2, connecting it via IPv6 to Test_host to allow it to act as a router
(radvd) and then connecting it to End_host via a V4 to V6 tunnel. The placement of each NIDS

outside this tunnel enabled us to determine reactions to attacks in a Transitional environment.

IPv6 Transitional Virtual Test Bed

IPv6
2001:6c0:1973::/64

2001:6c0:1973::10/64

Tunnel IPv6 thru IPv4

Test_host End_host2
Packet Generation |Pv6 router(radvd) E('l ?ﬁrn?]s !
(attacker)

IPv4 Network
192.168.23.0/
24

SNORT_server BRO_server BRO2_BSD
SNORT IDS BRO IDS BRO ver. 2.0

Figure 3.2: IPv6 Transitional test bed.

42

3.2 Baseline

To ensure initial detection capabilities and NIDS setup, a baseline needed to be created. The
easiest way to set this baseline was to find a well known IPv4 attack or detectable reconnaissance
method that had a rule or signature built into each NIDS. Thus a baseline was set using two
sequential TCP port scans, one written in SCAPY [31] portscan4.py and the other using NMAP
[50], in IPv4. Each of these scans send packets one right after another as fast as possible in
order to scan the target hosts TCP ports. Port scans were chosen as a baseline since each NIDS
had a built-in rule/policy for detection of this type of traffic and port scans are fairly simple to
construct and use. This also gave us a method that was above IP layer but below the Application
layer in order to test the NIDSs operation. After some simple additional configuration changes,
each NIDS detected the baseline IPv4 attacks. The next step was to send the corresponding
attack using IPv6 while monitoring the network and NIDS logs for activity.

3.3 The Attacks

Table 3.1 lists the general attack classes with IPv4 attack types and their respective IPv6 counter-
part. Since our purpose was to test the IPv6 readiness of the chosen NIDSs we used the thirteen
general attack classes, then found IPv4 attacks that fit into those classes. From these attacks we
either devised corresponding IPv6 attacks in SCAPY®6 [31], a Python based packet generation
tool, or found existing attacks. Our primary source of existing IPv6 attack implementations was
the THC IPv6 Attack-toolkit [32]. Note that Table 3.1 only lists ten general classes. This is due
the exclusion of Application layer attacks, the joining of sniffing and reconnaissance into one

class, and covering Transition, Translation, and Tunneling in the Transitional test case §3.4.

43

Attacks to determine NIDS IPv6 Readiness

Attack Type

IPv4 Attack

IPv6

Reconnaissance

Port Scan

Alive6(resolve addresses)

Alive6(Invalid Header)

Alive6(Invalid Hop by Hop)

portscan.py portscan6.py
NMAP NMAP6(scan ports)
NMAP6 (TCP connection scan)
Unauthorized Access
ARP Poisoning(ICMP) | Fake_Advertise6
DNS Fake_ DNS6
Route Implanting Toobigb

Host Configuration

DHCP DoS

DoS-new-IPv6

Detect-new-1Pv6

Fake_DHCPS6

NDPexhaust

Broadcast Amplifica-
tion Attacks(SMURF)

SMURF

SMURF6

RSMURF6

Routing Attacks

Various

Fake_Router6

Fake_MLDrouter6(Solicitate)

Fake_MLDrouter6(Terminate)

Fake MLD26(Query)

Fake_MLD26(Add)

Fake _MLD26(Delete)

Kill_router6

Man in The Middle
(MITM)

Various

Parasite6

Flooding

Various DoS

Denial6(large Hop by Hop)

Denial6(large dst Header)

DHCP flooding

Flood_DHCPc6

Various

Flood_Advertise6

Flood_MLD6

Flood_MLDrouter6

Flood_Solicitate6(Network)

Flood_Solicitate6(Target IP)

44

Attacks to determine NIDS IPv6 Readiness (cont)

Attack Type
IPv4 Attack IPv6
Rogue Devices
Rogue Router Fake_Router6
Fake MLD6
Fake_MLDrouter6(Advertise)
Fragmentation
Fragmentation Fragmentation6
Fake _Router6(Fragmentation)
Kill_Router6(Fragmentation)
Exploit
Malware Transfer | FTP Malware
Various Exploit6
Implementation6
Table 3.1: Attack Matrix
Reconnaissance

Generally the first attack performed, as stated in §2.4.2, was reconnaissance; i.e., an attempt by
the adversary to learn about a network in an effort to find possible vulnerabilities or weaknesses.
Included in this is both active and passive methods. One example of active host probing, or
port scanning, is an attempt for an attacker to discover specific information about hosts and
network devices on the victims network. This includes how they interconnect and what types of
traffic is being passed on the subnet. Passive data mining, which can be considered a method to
retrieve environmental data to assist the attacker in theorizing different ways to attack a victim’s
network, would be a good example of a passive method. Examples include sniffing network
traffic, looking at BGP tables in order to determine network addresses, browsing the targets
web site, or even “Who-is” searches in order to gain information on the target’s IP address
space. For our testing, our initial selection for reconnaissance was Alive6, however we also

included NMAP scans, as well as portscan6.py.

Alive6 shows the attacker what IPv6 addresses are alive and working in a given network seg-
ment. This is done with a variety of scan types including, Invalid Header, Ping, tcp syn ssh, and
Invalid Hop by Hop. Each of these attack options allow an attacker to determine not only how
a host reacts to each type of scan sent, but also lets him/her know if there are active hosts on the
network segment and what their addresses are. For simplicity, we used the Invalid Header and

Invalid Hop by Hop options.

45

portscan6.py is a simple 1000 port scan starting at port 0, written in SCAPY.

Unauthorized Access

The Unauthorized Access attack §2.4.2 is the type of attack where an adversary tries to exploit
the open transport policy, that does not limit the number of hosts that can connect to a one
another on a IP network, found in IPv4. Attackers rely on this fact to establish connectivity
to upper-layer protocols and applications on inter-networking devices and hosts [34]. To re-
iterate a point covered in §2.4.2, besides the mandatory support for IPsec, IPv6 technology
differences that enable unauthorized access include extension headers, ICMP, multicast and
anycast Inspection. In the case of extension headers, which replaced the IPv4 IP options, all
IPv6 endpoints are required to accept IPv6 packets with a routing header. This can be used
by an attacker to circumvent security policies because of the possibility that the endpoint not
only accepts the IPv6 packet but also processes it and forwards it, which possibly bypasses a
network firewalls [34]. For ICMP, which is not required for communications in IPv4, current
best practices are generally in favor of complete blocking. In contrast, [CMPv6 is an integral
part of IPv6 and cannot be entirely blocked without preventing communications. Since many
components of IPv6 use ICMPv6, e.g., Neighbor Discovery, there are many opportunities to use
ICMPv6 to aid in an Unauthorized Access attack and thus subvert network security policies or
bypass firewalls. For this purpose, Fake _Advertise6, Fake DNS6d and Toobig6é were used in

our tests.

Fake_Advertise6 allows the attacker to falsely advertise an IPv6 address using the Neighbor
Advertisement process (NA) detailed in §2.1.4. The false NA can either be sent to a specific
target or the all-nodes multicast address. Fake DNS6d creates a simple, but fake, DNS server
that serves the same IPv6 address (set by the attacker) to any lookup request it receives. While
the Toobig6 attack allows an attacker to set a specified MTU on a target, thus allowing for
a possible redirect of traffic and a subsequent unauthorized access. This is the same idea as
implanting a route using ICMPv6 redirects, except in this case Toobig6 uses this method to
reduce the MTU of the victim.

Host Configuration Attacks

ARP and DHCP attacks as covered in §2.4.2 attempt to subvert the host initialization process
or a device that a host accesses for transit. These types of attacks try to get end hosts to com-
municate with an unauthorized or compromised device, or attempt to configure these hosts

with incorrect network information such as default gateway, DNS, or IP address [34]. For this

46

type of attack we chose a Denial of Service (DoS) in DoS-new-IPv6 and Detect new_IPv6,
Fake DHCPS6 and finally NDPexhaust.

Both DoS-new-IPv6 and Detect new_IPv6 take advantage of the SLAAC and NDP §2.1.4 pro-
cesses to either deny or discover new IPv6 addresses. DoS-new-IPv6 uses Duplicate Address
Detection (DAD) discussed in §2.4.2 in order to conduct a DoS on any host attempting to cre-
ate a new IPv6 address. This is done by simply sending a message, stating that the address
selected by that host is already taken, back to the host attempting to create a new address.
Fake DHCPSG6 is a simple attack that creates a fake DHCP server on the network that can be
used to configure a host with an address as well as set a DNS server, allowing the attacker
to point hosts to a server of their choosing. The NDPexhaust attack continuously pings ran-
domly chosen IPs in the target network. This requires all hosts on that network to complete the
NDP process, performing Duplicate Address Detection (DAD) as well as develop a neighbor

discovery table in cache, for each ping which eventually starves them of resources.

Broadcast Amplification Attacks (smurf)

Broadcast Amplification attacks, also know as “smurf™ attacks §2.4.2, are DoS attacks that take
advantage of the ability to send echo requests with a subnet broadcast destination address and
a spoofed source address of the victim’s IP. This requests generates a response from all hosts
on that subnet directly to the victim’s host, creating a flood of echo response messages. This
was an extremely versatile attack with IPv4, however in IPv6 it was considered to be obsolete
due to the lack of broadcast addresses. This is not the case, as attackers can take advantage of
multicast addresses and mis-implemented IPv6 stacks. This type of attack is still very relavent
on the local subnet, where you can generate loads of network traffic, and may also be viable
on remote subnets that have not implemented IPv6 correctly (this is a rare exception to the
rule). The THC toolkit [32] provided SMURF6 and RSMURF6, both of which were used to
represent this type of attack.

Routing Attacks

This class of attack includes any attack focused on network routing mechanisms. For our pur-
pose, we chose Fake _Router6, Fake MLDrouter6, Fake ML.D26, and Kill router6.

Fake MLDrouter6 is used for Multicast Listener Discovery (MLD) [51] and allows you to
solicit and terminate membership, while Fake MLD26 is used for MLDvV2 [52] and allows the
attacker to query, add, or delete MLD devices.

47

Man In The Middle (MITM)

The Man in the Middle (MITM) attack involves any attack where an attacker can insert them-
selves into the network between hosts and monitor or modify traffic without knowledge of the
communicating hosts. The general theory of the MITM threat does not change with IPv6. Be-
cause the IPv4 and IPv6 headers have no security mechanisms themselves, each protocol relies
on the IPsec protocol suite for security and authentication [34]. Since it is only mandatory for
IPv6 implementations to support IPsec and is not required to be used, IPv6 falls prey to the same
security risks posed by a MITM attack. In fact there are plenty of new opportunities for MITM
attacks in IPv6 for example an attacker can create fake router using Router Advertisements
(RA). For this attack we used Parasite6.

Parasite6 is an IPv6 ARP spoofer that redirects all local traffic to the attacker’s system by
falsely answering Neighbor Solicitation (NS) §2.1.4 requests, allowing the attacker to claim to

be any system on the network.

Flooding Attacks

As covered in §2.4.1 a flooding attack is a common attack type. It is an attack that can flood
a network device, such as a router or a host, with large amounts (more that it can process) of
network traffic. This attack can take the form of a local or distributed Denial of Service (DoS)
and can cause network resources to become unavailable. Arrival of IPv6 did not change basic
principles of a flooding attack. However, with the introduction of new extension headers and
ICMPv6 message types, along with integral multicast support, [IPv6 may introduce more ways to
develop malicious flooding attacks. In this case Flood_Advertise6, Denial6, Flood_ DHCPc6,
Flood _MLD6, Flood_MLDrouter6, Flood_Solicitate6, and Fake_Router6 were chosen. For
Denial6 there are options for oversized Hop by Hop header and oversized destination header,

for our purposes both were chosen.

Rogue Devices

A Rogue Device is any unauthorized device connected to the network that poses a significant
risk to the organization. This is typically a router or server (e.g., DHCP) on a network which is
not under the administrative control of the network administrator. It can be a device connected
to the network by a user who may be either unaware of the consequences of their actions or may
be knowingly using it for network attacks such as MITM or DoS. Fake_Router6, Fake MLD6,
and Fake_MLDrouter6 (advertise) served this purpose in our tests.

48

Fragmentation

Fragmentation, covered in §2.4.2, deals with the misuse of fragment headers to perform DoS
or avoid access controls such as Firewalls, Routers and NIDSs. IPv6 has eliminated fragmen-
tation in the intermediate devices (e.g., Routers), however fragmentation can be performed at
the end host. Malicious end hosts may attempt to avoid detection or conduct a DoS using frag-
mentation. For our test purposes we chose Fragmentation6, and the fragmentation options for
Fake_Router6, and Kill_Router6.

Exploit

An exploit is a piece of software, a chunk of data, or sequence of commands that takes advantage
of a vulnerability in an OS, application, or computer. Exploits generally cause unintended or
unanticipated behavior to occur on the system being exploited. This frequently includes such
things as gaining control of a computer system via privilege escalation or some type of DoS
attack. To test this type of attack we transferred known malware via ftp, sent Exploit6, and
used Implementation6 from the THC toolkit.

Exploit6 performs attacks from various CVE [53] known IPv6 vulnerabilities on the target
and reports back to the attacker upon completion. The Common Vulnerabilities and Exposure
(CVE) is a dictionary of publicly known information security vulnerabilities and exposures
that can be used for Intrusion Detection, vulnerability management and alerting, and patch

management.

In the case of Implementation6, which looks for various OS implementation vulnerabilities,
Implementation6d can also used as a listener on End_host to ensure appropriate results were
passed. Implementation6d is generally used to ensure the attack can successfully operate
through a firewall, which was not required for our tests since there was no firewall in our test
bed.

3.3.1 The Tests

As stated in §3.3 most of our tests used attacks from the THC IPv6 toolkit [32]. The THC
website has descriptions of these [Pv6 attacks in a README file distributed with the toolkit. A
broad range of attack types were chosen in an attempt to try to paint a good picture of overall
IPv6 readiness of BRO and SNORT. In some cases, both IPv4 and IPv6 attacks were sent,
however this was not true for every attack. For example, Implementation6 is an IPv6 only

attack, of which there is no equivalent in IPv4. Each NIDS used for this research was designed

49

in order to allow any rule or policy to detect attacks in both IPv4 and IPv6. In other words, if
an attack has an IPv4 rule/policy then that same rule should detect the attack when sent in IPv6.

To prove this we used our baseline attacks.

For testing purposes, each IPv6 attack was sent from Test_host to either of End_host or End_host2,
while BRO_BSD, BRO2_server and SNORT _server, each loaded with their NIDS namesake
passively monitored all network traffic. After each test was sent, manual log inspection was
conducted at each NIDS to determine detection. For SNORT, detection results were logged in
Alerts.log, and for BRO the detection results were logged in one of many log files, typically
Alarm.log or Weird.log, found in /usr/local/bro/logs/current. For BRO Version 2.0 (BRO2),
detection results were also logged in one of many logs found in /usr/local/bro/logs/current,

typically Weird.log or Notice.log.

To test the deep packet inspection capabilities of BRO and SNORT, a piece of malware was
sent from Test_host to End_host via File Transfer Protocol. The ftp server, running on End_host,
utilized the VSFTPD [54] FTP server. The malware sent over ftp, named Slackbot, is an older
piece of malware that was discovered on October 9, 2001 [55]. For detection purposes we
wanted an older, well recognized piece of malware that would not be difficult to detect. To
verify that it was easy to detect, we ran the copy we used in the test through a meta site called
Jotti [56] that tests a particular file against 20 free online virus scanners. All 20 detected the file

as malware making it a perfect selection for our tests.

When performing the actual transfer, Slackbot was sent three times. For two of the transfers,
the malware was sent only as an executable (.exe) in order to determine if the NIDSs were
inspecting the payload and would alert on this activity. The difference between the two initial
transfers was that for the first transfer, the file was named malware.exe, but for the second
transfer we removed the extension and renamed the file to malware. For the third transfer
we compressed the malware.exe file into a zip file called malware.zip and then conducted the
transfer. This was also done in order to determine how the NIDSs were inspecting packet
payloads in an ftp transfer, as well as to find out if they would alert on any part of the payload

name. This is discussed further in §4.3.

3.4 Transitional Test Case

To account for the period of time that our networks are neither completely IPv6 nor completely

IPv4, a Transitional Test Case was created. This was done in order to cover the Transition,

50

Translation, and Tunneling attack class. Using the Transitional Test Bed displayed in Figure
3.2, each attack listed in the Attack Matrix shown in Table 3.1 was sent again from Test_host to
End_host via End_host2 which was configured as a router (radvd). All log files were recreated

in order to provide separate results for the Transitional Test Case.

3.5 Fuzz Testing

Fuzz testing as covered in §2.5, is generally a process that inputs invalid or unexpected random
data to a piece of software or a computer. For our purposes, since we were only interested in
testing the NIDS reaction to changes in the packets and streams, a slight variation from the
traditional method was needed. Our intention was to fuzz the NIDSs and not a particular piece
of software or host. To do this each NIDS was run inside GDB [57] while Fuzz_ip6 [32] was
run from Test_host against End_host. The options for Fuzz_ip6 are listed in Table 3.2. Each
test was conducted from Test_host and directed at End_host. Examples of the test formats are
Fuzz ip6 -IFSDHRJ -2 ethO End_host and Fuzz ip6 -x -IFSDHRJ -2 ethO End_host. Once an
exception or error was discovered, GDB preserved the state of the program execution stack. We
then initiated a manual process of setting debugging break points and tracing the root cause of
any traffic that caused the NIDS to crash.

51

Options:

-1 fuzz ICMP6 echo request (default)

-2 fuzz ICMP6 neighbor solicitation

-3 fuzz ICMP6 neighbor advertisement

-4 fuzz ICMP6 router advertisement

-5 fuzz multicast listener report packet

-6 fuzz multicast listener done packet

-7 fuzz multicast listener query packet

-8 fuzz multicast listener v2 report packet

-9 fuzz multicast listener v2 query packet

-X tries all 256 values for flag and byte types

-t number continue from test no. number

-T number only performs test no. number

-p number perform an alive check every number of tests (default: none)
-n number how many times to send each packet (default: 1)

-1 fuzz the IP + ICMP header too

-F add one-shot fragmentation, and fuzz it too (for 1)

-S add source-routing, and fuzz it too (for 1)

-D add destination header, and fuzz it too (for 1)

-H add hop-by-hop header, and fuzz it too (for 1 and 5-9)
-R add router alert header, and fuzz it too (for 5-9 and all)
-J add jumbo packet header, and fuzz it too (for 1)

You can only define one of -1 ... -7, defaults to -1.

Table 3.2: Options for Fuzz_ip6 From [32]

52

CHAPTER 4:

Detection Results

This chapter seeks to answer our primary research questions and thus determine the IPv6 readi-
ness of the tested NIDSs. To do this, analysis of our detection data for each attack listed in

Chapter 3 will be conducted in order to provide clear determination of detection.

4.1 *“Native” Detection Results

The results for all tests sent in the “Native” environment are recorded in Table 4.2. A “Yes” re-
sult indicates that the attack resulted in a recognizable alert recorded in either BRO or SNORT’s
alert/alarm log. However, a “No” result means that either the NIDS did not have a rule or pre-
processor written for that attack or that it was unable to correctly process the traffic. In SNORT’s
case a “No” means that an alert wasn’t implemented in the default configuration or that a spe-
cific rule had not been, or in most cases could not be, included for that attack. We found that
SNORT was able to initially detect 52 percent of the attacks sent. However, in all the tests con-
ducted, the event log was constructed properly showing the correct type and amount of packets
sent in the attack. Given the event log, it would not be difficult to write rules to alert on these
events since SNORT is properly handling detection and logging of these events, in particular
ICMPv6 type events.

4.1.1 BRO -BRO V2

In BRO, the IPv6 attacks and their detection results did not show the complete picture. By
complete picture, we mean that the lack of detection did not represent what was actually hap-
pening inside the NIDS. In many of the test cases, multiple sent packets were not captured by
BRO’s event logging. For example, when conducting an intense IPv6 scan using NMAP [50]
or portscan6.py, not all packets are analyzed. BRO alerted on these attacks and processed some
but not all of the packets. Doing an NMAP one packet per port scan of all ports on End_host in
an IPv4 configuration resulted in the alert shown in Figure 4.1. The alert for this port scan was

accompanied with threshold messages at a certain number of ports scanned such as 50 or 250.

53

t=1320692142.221451 no=PortScan na=NOTICE_ALARM_ALWAYS es=bro sa=192.168.23.1
p=73/tcp num=5@ msg=192.168.23.1% has\ scanned\ 5@\ portsh of\ 192.168.23.2
tag=Ble-3b2d-1

t=1320692142 . 845871 no=PortScan na=NOTICE_ALARM_ALWAYS es=bro sa=192.168.23.1
p=276/tcp num=250 msg=192.168.23.1%\ has\ scanned 25@% ports\ of\ 192.168.23.2
tag=Ble-3b2d-2

t=1320692145.374887 no=PortScan na=NOTICE_ALARM_ALWAYS es=bro sa=192.168.23.1
p=1027/tcp num=10G0@ msg=192.168.23.1\ has\ scanned‘ 1@0@@%\ portsh of\
192.168.23.2 tag=Rle-3bZd-3

Figure 4.1: IPv4 port scan results in BRO

In IPv6, when running the same NMAP scan (NMAP6), BRO gave the alert listed in Figure 4.2
called LowPortTrolling, this time without any threshold messages. These indications were also
produced when running portscan6.py.

1323255193 .9658863 LowPortScanSummary 2081:6cB:1973::1 scanned a total of 18 low ports
1323285193 .958853 PortScanSummary 28681 :6cA:1973::1 sconned g total of 22 ports

Figure 4.2: IPv6 port scan results in BRO

This indicates that BRO was not processing all the events in IPv6 since the scans were traversing
the same number of ports. Running Wireshark [58] in the background during the scans verified
the same number of ports being scanned each time the attack was run. When terminating BRO,
after performing these scans a small fraction of the total number of packets sent (46 out of 6000)
were logged, which was another indication that BRO was having trouble creating event streams
from IPv6 traffic. Similar behavior, where the IPv6 event log was not a complete picture,
happened in every case where an attack was sent and not alerted on. BRO also had trouble with
incomplete events or missing packets of the event in some attacks that were alerted on, such as
in the Figure 4.2 example. We investigated these missing packets further by looking at BRO
events in events.bst produced by adding the @load capture-events to the BRO configuration file
in local.bro. During our investigation into this issue we noticed that the packet level events in

the event.bst, as seen in Figure 4.3, were identical with the exception of the address field.

IPv4 port scan

Event [13226937@9.773258] connection_rejected([id=["=192.168.23.1, orig_p=2@/tcp, resp_h=192.168.23.5, resp_p=1/tcp], orig=[size=0,
state=1], resp=[size=8, state=6], start_time=1322693709.77316, duration=9.89437103271484e-05, service={}, addl="", hot=0,
history="Sr"])

IPv6 port scan

Event [1322691439.1009@4] connection_rejected([id=[orig_h=20@1:6c0:1973::1, orig_p=20/tcp, resp_h=20081:6c@:1973::5, resp_p=21/tcp],

orig=[size=@, state=1], resp=[size=0, state=6], start_time=1322691439.10061, duration=0.800295877456665039, service={}, addl="", hot=0,
history="Sr"])

Figure 4.3: Comparison of port scan event results in BRO

The results, displayed in Figures 4.3 and 4.4, show that BRO is capable of IPv6 detection when

54

the proper information is passed through its detection mechanisms. However in most of our

attacks not all packets were being processed beyond the Event Engine level.

Event [1323380915.260397] connection_rejected([id=[orig_h=2001:6c0:1973::1, orig_p=20/tcp, resp_h=2001:6c8:1973::2, resp_p=110/tcp],
orig=[size=0, state=1], resp=[size=@, state=6], start_time=1323380915.26 duration=1.9873486328125e-06, service={}, add hot=0,
history="Sr"])Event [1323380915.262155] connection_rejected([id=[orig_h=2001:6c0:1973::1, orig_p=20/tcp, resp_h=2001:6c0:1973::2,
resp_p=111/tcp], orig=[size=@, state=1], resp=[size=B, state=6], start_time=1323380915.26215, duration=2.14576721191406e-86, service=
{}, addl="", hot=@, history="Sr"])

Event [1323388915.262155] notice_alarm{[note=LowPortTrolling, msg="low port trolling 20@1:6c0:1973::1 portmap", sub=<uninitialized-,
conn=<uninitialized>, iconn=<uninitialized>, id=<uninitialized>, src=2001:6c®:1973::1, dst=<uninitializeds>, p=111/tcp,
user=<uninitialized>, filename=<uninitialized>, method=<uninitialized>, URL=<uninitialized>, n=<uninitialized>, aux=<uninitializeds,
action=NOTICE_ALARM_ALWAYS, src_peer=[id=0, host=127.0.@.1, p=B/unknown, is_local=T, descr="", class=<uninitialized>], tag="1d-7142-2",
dropped=<uninitialized>, captured=<uninitialized>, do_alarm=<uninitialized>]NOTICE_ALARM_ALWAYS)

Event [132338@915.262155] notice_action([note=LowPortTrolling, msg="low port trolling 20@1:6c@:1973::1 portmap”, sub=<uninitialized>,
conn=<uninitialized>, iconn=<uninitialized>, id=<uninitialized>, src=2001:6c@:1973::1, dst=<uninitialized>, p=111/tcp,
user=<uninitialized>, filename=<uninitialized>, method=<uninitialized>, URL=<uninitialized>, n=<uninitialized>, aux=<uninitializeds,
action=NOTICE_ALARM_ALWAYS, src_peer=[id=0, host=127.0.0.1, p=0/unknown, is_local=T, descr="", class=<uninitialized>], tag="1d-7142-2",
dropped=<uninitialized>, captured=<uninitialized>, do_alarm=<uninitialized>]NOTICE_ALARM_ALWAYS)

Event [1323380915.275@78] connection_rejected([id=[orig_h=2001:6c0:1973::1, orig_p=20/tcp, resp_h=2001:6c0:1973::2, resp_p=113/tcp],
orig=[size=0, state=1], resp=[size=0, state=6], start_time=1323380915.27498, duration=0.0@0100135803222656, service={}, addl="", hot=0,
history="5r"1)

Figure 4.4: BRO Events.bst log for IPv6 port scan

Even though BRO has a policy in place and is receiving the appropriate packets at the Packet
Capture level, it fails to detect IPv6 attacks that it is capable of detecting in IPv4. This indicates
that BRO may not be reconstructing event streams at the Event Engine level or that software
incompatibilities exist. In an attempt to find these software incompatibilities, we ran BRO
inside GDB [57] for debugging purposes. The results of our debugging, however, revealed no

one clear problem with BRO software and remains an item for future work.

When running NMAP6 and portscan6.py in BRO V2 (BRO2) we noticed that most (consis-
tently more that 90 percent) if not all packets were being dropped and logged in the Notice.log.
We considered this as an indication that BRO2 used a policy in order to determine that dropping
these packets was required, although since every TCP connection request and rejection were
logged in the conn.log, meaning that BRO2 had indications of a vertical port scan and did not
alert on it, we did not consider this a detection of the attack. Similar activity was seen in a few

other attacks, such as SMURF6 and Denial6, and again not considered as detection.

Detect-New-IPv6

In BRO2, after running Detect-new-1Pv6, we discovered ”bad UDP checksum” activity in the
Weird.log. After looking at the packets, we determined that the checksums were actually correct
at both End_host and at the NIDS, therefor we did not consider this activity as detection.

Flood DHCPv6

In other cases, we also considered similar activity in BRO’s Weird.log as a sign of non-detection.
For example, in the case of Flood_DHCPc6 we considered the “Bad UDP checksum™ message
in Weird.log to be a sign of the NIDS mis-interpreting the packets. Figure 4.5 shows the output

55

from BRO’s Weird.log for the attack. BRO2 showed the exact same activity in its Weird.log for
this attack.

1323973233.813373 febA:10A:A:8:0/546 = ffB2::1:2/847: bod_UDP_checksum
1323973233.813395 febA::208:0:0:0/546 = ffB2::1:2/6847: bod_UDP_checksum
1323973233.813397 febA::308:0:0:0/546 = ffB2::1:2/647: bod_UDP_checksum
1323973233.813638 febA:40A:A:0:0/546 = ffB2::1:2/847: bod_UDP_checksum
1323973233.813634 febA:EOA:AA:B/R46 = fTB2::1:2/847: bod_UDP_checksum
1323973233.813733 febA:60A:A:0:0/546 = ffB2::1:2/847: bod_UDP_checksum
1323973233.813862 febA:TOAAA:0/546 = fTB2::1:2/847: bod_UDP_checksum
1323973233 .813866 febA: 808 :A:0:0/546 = ffB2::1:2/847: bod_UDP_checksum
1323973233 .813988 febA: 008 :A:8:0/546 = ffB2::1:2/647: bod_UDP_checksum
1323973233 .613954 fedA:qff:8:8:8/845 = fTBZ2::1:2/847: bad_UDP_checksum
1323973233 .814112 febA::boA:AA:BR46 = fTB2::1:2/847: bod_UDP_checksum
1323973233 .614116 fedA::cAA:A:8:8/845 = FTBZ2::1:2/847: bad_UDP_checksum
1323973233.814213 febA:dof:A:8:0/546 = ffB2::1:2/847: bod_UDP_checkszum
1323973233 .614333 fedA::e@A:0:8:8/845 = FTBZ2::1:2/847: bad_UDP_checksum
1323973233 .814342 febA:fOA:A:A:0/546 = ffB2::1:2/847: bod_UDP_checksum
1323973233 .814464 febA:10AB:0:0:0/646 = ffBZ2::1:2/647: bad_UDP_checksum
1323973233 .814468 febA: 1180 :0:0:0/646 = ffBZ2::1:2/647: bad_UDP_checksum
1323973233 .814591 fedA:1280:0:0:0/646 = ffBZ2::1:2/647: bad_UDP_checksum
1323973233 .814505 febA: 1560 :0:0:0/646 = ffBZ2::1:2/647: bad_UDP_checksum
1323973233 .814716 febA:1480:0:0:0/546 = ffBZ2::1:2/647: bad_UDP_checksum
1323973233.A14728 febA:16AR:A:A:A/540 = FFAZ::1:2/547 0 bad_UDP_checksum
1323973233 .A16208 febA: 1680 :A:A:A/540 = FFAZ::1:2/547: bad_UDP_checksum
1323973233 .A16204 febA: 1 7AR:A:A:A/540 = FFAZ::1:2/547 0 bad_UDP_checksum
1323973233 .A16206 febA: 1000 A :A:A/5460 = FFAZ::1:2/547: bad_UDP_checksum
1323973233 .A16208 febA: 198 A :A:A/5460 = FFAZ::1:2/547: bad_UDP_checksum
A:A = 1

1323973233.815218 febA:1a8a:

A/REG = FEEZ::1:2/847: bad_UDP_checkzum

Figure 4.5: Entry for Flood_DHCPcb in Weird.log for BRO

4.1.2 SNORT
SNORT’s performance, as discussed in §4.1, indicated a higher level of IPv6 readiness. This

subsection presents detailed detection results.

Alive6
SNORT detected Alive6, shown in Figure 4.6, as “ICMP type not decoded” and lists the link

local addresses for both the source and destination.

56

[**] [116:431:1] {short_decoder) WARNING: ICMPE type not decoded [*+]
[Closzification: Misc activity] [Priority: 3]

12/21-89:46:56.772418 e 10060 1 HEAA : AAEE :AoBE : 277 :feb3:9fh3 —

T efi - Aa6E :BEaa :

AAEE :Aa88 ;271 f :fe35 19567

IPVYE-ICMP TTL:2EE TOS:@x@ ID:0 IpLen:48 Dgmlen:72

[#%] [116:431:1] (snort_decoder) WARNING: ICMPE& tyvpe not decoded [#%]
[Clazzificotion: Misc activitw] [Prioritwy: 3]

12/21-89:46:66.772432 o8 :A0EE :AAAA :HEEE :AcBE 1 277 :fe55:93587 —=
fedd 10868 10088 :

BRAE :B08E 1271 :feb3 197 h3

IPY&-ICHMP TTL:zZER TOS:Ax@ ID:A Iplen:4d8 Dgmlen:64

Figure 4.6: SNORT output for Alive6

Figure 4.7 displays the detection results for Alive6 with the -S 2 invalid header option.

[**] [116:251:1] (snort_decoder’y WARNING: IPw6 header includes on invalid
value for the "next header" field [¥%]

[Classification: Generic Protocol Command Decode] [Prioritw: 3]
12/21-18:84:04 803235 2001 :A6CH 11973 :AREE : AAAE - ARAE :AAEA :AAE1 —=

fTH: G008 808 : AE06 : 800 DA :BEaE0 188a1

PROTO:125 TTL:255 TOS:8x8 ID:8 IpLen:4@ Dgmlen:?2

Figure 4.7: SNORT output for Aliveb with -5 2 option

Figure 4.8 displays the detection results for Alive6 with the -S 4 invalid hop-by-hop header
option. This is an IPv4 rule event that is generated when a possibly crafted ICMP Source
Quench datagram (ICMP Type 4) is detected without the corresponding code specification,

which is a sign of malicious activity.

[**] [1:18474:1] I(MPv6 Echo Request [**]

[Classification: Misc activity] [Priority: 3]

11/02-11:02:36.826072 2001:06c8:1973:0000: 6000 : 0000 : 0000: 0001 -> ff@2:0000: 0000 : BBV : 00E : 0000 : B0\ : A0B1
IPV6-ICMP TTL:255 T0S:@x@ ID:3372665894 Iplen:4@ DgmlLen:72 RB

[**] [1:448:7] IMP Source Quench undefined code [**]

[Classification: Misc activity] [Priority: 3]

11/02-11:02:36.826086 2001:86c@:1973:0000: 0000 : 0000 : 0000: 0082 -> 2001:06c8:1973:0000: 0006 : 0000 : B0 : 0001
IPV6-ICMP TTL:64 T0S:@x@ ID:@ Iplen:4@ DgmlLen:12@

[**] [1:448:7] ICMP Source Quench undefined code [**]

[Classification: Misc activity] [Priority: 3]

11/82-11:02:36. 826087 2001:06c0:1973:0000: 6000 : 0000 : 0000: 2002 -> 2001:06c8:1973: 0000 : 000 : 0000 : A0S : 6001
IPVE-ICMP TTL:64 T0S5:@x@ ID:@ Iplen:4@ DgmlLen:120

Figure 4.8: SNORT output for Alive6 with -S 4 option

57

Portscan6.py
The results of portscan6.py are listed in Figure 4.9. Notice that SNORT detected “Bad-Traffic

TCP port 07, this is because portscan6.py starts scanning at port O and is a valid detection.

[**] [116:446:1] (snort_decoder) WARNING: BAD-TRAFFIC TCP port @ traffic [**]
[Classification: Misc activity] [Prierity: 3]

11/25-16:16:25.564163 2001:06c0:1973: 0000 0000 2000 : 2000 2001:208 ->
2001:96c0: 1973 : BBO0 : BROO : POV : POOD : DBA5: 0

TCP TTL:64 TOS:8x@ ID:@ Iplen:4@ DgmLen:6@

kkExkkCx Cog: @xB Ack: @x@ Win: Ox20080 Tcplen: 20

[**] [116:446:1] (snort_decoder) WARNING: BAD-TRAFFIC TCP port @ traffic [**]
[Classification: Misc activity] [Prierity: 3]

11/25-16:16:25.564283 2001:06c@:1973: 0000 : G000: P00 : DOGO: DOB5:0 ->

2001:06c0: 1973 : 00O : GPOD : GOV : BDAD : DORL : 20

TCP TTL:64 T0S:8x@ ID:@ Iplen:4@ DgmLen:6@

*REARQEE Cog: @xB Ack: @x1 Win: @x@ Tecplen: 20

[**] [116:431:1] (snort_decoder) WARNING: ICMP& type not decoded [**]
[Classification: Misc activity] [Prierity: 3]

11/25-16:16:30.560400 fel0:0000:0000: 00G0: Padd: 27ff: fed@3:face ->
2001:96c0:1973 : 0OOO : GEOO : POV : POOA : GEA1

IPVE-ICMP TTL:255 TOS:@x@ ID:@ Iplen:48 Dgmlen:72

Figure 4.9: SNORT alert from portscan6.py

NMAP6
Figure 4.10 illustrates the SNORT detection results from NMAP6.

[**] [122:1:1] PSNG_TCP_PORTSCAN [**]

[Classification: Attempted Information Leak] [Priority: 2]
11/25-16:24:45 528430 2001:06c@:1973:0000: 0000 : 0000 : 0000 0001 ->
2001:06c@: 1973 : 0000 : GO0 : 0000 : POAA : BEAS

PROTO:255 TTL:64 TOS:0x@ ID:0 IplLen:4@ Dgmlen:236

[**] [116:431:1] (snort_decoder) WARNING: ICMP& type not decoded [**]
[Classification: Misc activity] [Priority: 3]
11/25-16:24:50.532351 fe80:0000:0000: 0000: 0add: 27ff: fed3: face -»

2001:@6c0: 1973 : 0000 : POOO : GOOD : BEOA : BEA1
IPVE-ICMP TTL:255 TOS5:@x@ ID:® Iplen:4@ DgmLen:72

Figure 4.10: SNORT alert from NMAPG6

Toobig6
The detection results from Toobig6é are shown in Figure 4.11. The detection of the "ICMPv6
packet of type 2 (message too big)” including ICMP unassigned type 2, is an exact detection.

58

[**] [116:285:1] (snort_decoder) WARNING: ICMPv6 packet of type 2 (message too big) with MTU field < 1280 [**]
[Classification: Generic Protocol Command Decode] [Priority: 3]

83/09-14:48:49. 803056 2001:06c0:1972:0000:0000: HR0A: 0BA0: 0001 -> 2081:06c@:1973:0000: 0BEE : 006E : HO0E : 6D
IPVE-ICMP TTL:255 TOS:@x@ ID:@ IpLen:4@ DgmlLen:549

[**+] [1:1394:12] SHELLCODE x86 inc ecx NOOP [**]

[Classification: Executable Code was Detected] [Priority: 1]

83/09-14:48:49,. 803056 2001:06c0:1972:0000:0000: 0000 : 0600 : 0001 -> 2001:06c@:1973:0000: 00AE : 006E : HOOE : 6R2
IPVE-ICMP TTL:255 TOS:@x@ ID:9 IpLen:4@ DgmlLen:549

[**] [1:460:8] IMP unassigned type 2 [**]

[Classification: Misc activity] [Priority: 3]

83/09-14:48:49. 803056 2001:06c0:1972:0000:0000: 0000 : 0000 : 0001 -> 2001:06c@:1973:0000: 00AE : 006E : HOOE : 6O2
IPVE-ICMP TTL:255 TOS:@x@ ID:® IpLen:4@ DgmlLen:549

Figure 4.11: SNORT detection for Toobig6

Fake DHCPS6

Figure 4.12 displays the SNORT output from Fake DHCPS6, showing Test_host advertising
itself as a DHCP server to the all_hosts multicast address (FF02::1) and the subsequent invalid
and ICMPv6 traffic.

[*¥*] [116:431:1] (snort_decoder’ WARNING: ICMPE twpe not decoded [+#]

[Clazzification: Mizc activity] [Priority: 3]

12/86-11:81:42,512625 2001 :00c0:1973 ;0000 :B00E ;D000 ;8000 0081 —= fE2 ;0000 ;0068 ;0880 ;60

Jala By alalaBalalala Ha sl

IPVM&-TCHP TTL:2ER TOS:8xB ID:B Iplen:48 Dgmlen:?Z2

[*¥*] [116:431:1] (snort_decoder’ WARNING: ICMPE twpe not decoded [+#]

[Clazzification: Mizc activity] [Priority: 3]

12/86-11:81:42.512638 2001 :00c0:1973 ;0000 :D0GE ;D000 ;0000 :0082 —= 2081 ;8508 :1973 ;0880 ; 800 ;008E : 6856 ;Bea1
IPVE=ICHP TTL:255 TOS5:8xA ID:A IpLen:z48 Dgmlen:72

[*#*] [116:275:1] (snort_decoder’ WARNING: IP dgm len = coptured len! [**]
1z/86-11:81:42 . R12875

[*#*] [116:275:1] (snort_decoder’ WARNING: IP dgm len = coptured len! [**]
1z/86-11:81:42 . R12876

Figure 4.12: SNORT detection for Fake_DHCPS6

RSMURF6

SNORT detection results for RSMURF6 are shown in Figure 4.13. This attack resulted in
several different SNORT alerts, each of which could be used to write a rule for its detection in
IPv6. For instance, this attacks solicits a reply from the target (End_host) which is an ICMPv6
type 129 (echo reply) to the all-hosts multicast address (FF02::1). That traffic alerts SNORT

and the resulting “ICMP6 packet to multicast address” warning is issued.

59

[¥*] [116:432:1] {snort_decoder) WARNING: ICHMPE packet to multicost oddress [++]
[Classification: Misc activity] [Priority: 3]

12/19-12:2A:52 145951 fe50:0000 10080 :0088 16000 :27f f :fe35:9557 - fTOZ 0000 :0008 :
BEEE : GO6A : HEEE :AG0E : BEE1

IPVE-ICMP TTL:1 TOS:E8xA ID:A Iplen:48 Dgnlen:64

[##] [1:18473:1] ICMPw6 Echo Reply [**]

[Classification: Misc activity] [Priority: 3]

12/19-12:20:52.145981 =50 ;0000 :6AA8 :AAEE :AoAA 271 f :fe35:9887 - fAZ 0000 ;0066 :
AARE : AARE :AAAE :ABEA : BEE1

IPVe-ICHP TTL:1 TOS:8xA ID:A Iplen:48 Dgnlen:6d

[**] [116:151:1] {short decoder) WARNING: Bad Traffic Same Sro/Dst IR [%]
[Classification: Potentially Bad Traffic] [Prioritw: 2]

12/19-12:20:52.,145983 0200000000 10000 : 0000 10000 10000 10001 - FFOZ 0000 10000 @
BaPE : 0066 :A008 0088 : 5081

IPVE-ICHP TTL:ZEE TOS:8x8 ID:8 Iplen:48 Dgmlen:6d

== http:/ www . zecur ityfocus .combid 2666] [Kref == http://ove.mitre.org/cgi-bin/c
vename .cqifname=2805-B658] [xref == http://ocve.mitre.org/cgi-bindocvename .cgi?nome
=1999-8016]

[**] [116:432:1] (snort_decoder) WARNING: ICMPE packet to multicost oddress [*%]

[Closzificotion: Mizc activity] [Prioritw: 3]

12/19-12:2A:52 145956 fe80 :AAAA :AAAA :AAGE :A0AA 271 f :fedo ed426 — FTAZ QA0 :ARGA :ABAA :AAGE : ABEA :AEAA :HAAL
IPYE-ICHP TTL:1 TOS:8x8 ID:A Iplen:48 Dgnmlen:&d

[##] [1:15473:1] ICHPw6 Echo Reply [*+]

[Classification: Misc activity] [Priority: 3]

12/19-12:20:52 145986 {280 0000 :BA00 (0068 :A0AA 271 f :feboe426 - FAZ 0000 :AREE :AHAE :AREE : AHEA :BEAE -HAAL
IPVE-ICMP TTL:1 TOS:E8xA ID:A Iplen:48 Dgnlen:64

[**] [116:432:1] {snort_decoder) WARMING: ICMPE packet to multicast address [**]

[Classification: Misc activity] [Priority: 3]

12/19-12:20:52.145999 {250 :0AAA :BAAE :AAEE :AaAA 271 f :fe35:95587 - fTAZ 0000 :AREE :AEAE :AREE : AHEA :BEAE :HAAL
IPVe-ICHP TTL:1 TOS:8xA ID:A Iplen:48 Dgnlen:6d

Figure 4.13: SNORT detection for RSMURF6

Flood_Advertise6

Figure 4.14 displays the detection results for Flood_Advertise6, where the three alerts listed
appear to be from different IP addresses going to the all_host multicast address. With closer
inspection, however, each of these three addresses share the same first 80 bits
(fe80:0000:0000:0000:0218) which could be an indication of one host generating random

addresses to flood advertisements on the network segment.

60

[**] [116:431:1] {srort_decoder) WARNING: ICHMPG twpe not decoded [+%]
[Clazsification: Mizc actiwvity] [Priority: 3]

A3/87-13:31:22.863330 Teb0 10a0E 10080 18008 10215 1557 ifeddical —=
02 : A00E :AE0H : A80E :ABEE : AB0E :AEEE : AEE1

IPVE-ICHP TTL:285 TOS:8x8 ID:8 IpLen:48 Dgmlen:y2

[**] [116:431:1] {srort_decoder) WARNING: ICHMPG twpe not decoded [+%]
[Clazsification: Mizc actiwvity] [Priority: 3]

A3/87-13:31:22.863335 feS0 1PARE 10080 :AA0A 18215 :F7ff ifebe ieblh —=
1Bz : 006 :ABEE : A08E :ABEE : A88E ABEE : AEE1

IPVYE-ICHMP TTL:255 TOS:8x8 ID:A IpLen:48 Dgmlen:72

[**] [116:431:1] {snort_decoder) WARMING: ICMPG type not decoded [+#]
[Clazsificotion: Miszc activity] [Priority: 3]

A3/87-13:31:22.863389 T80 :AE6A 1DEAA :B06A 10218 1eBf f ifeh3 18642 —=
A2 : AREE :BARA : ARER :BEEA : ARAA : AEEE :AAEL

IPVYE-ICHMP TTL:255 TOS:8x8 ID:A IpLen:48 Dgmlen:72

Figure 4.14: SNORT results for Flood_Advertise6

Denial6

Figure 4.15 illustrates the detection results from Denial6 test case 1 (large hop-by-hop headers
with router-alert filled with unknown options). It would be difficult, but not impossible, to
write a SNORT rule for this traffic. Since there is a large amount of traffic between the two
hosts, and each packet contains options with the same value, ID:516 for example, there are
pieces that could be used to build a detection rule. On the other hand, Denial6 using test case 2
(large destination header filed with unknown options) resulted in an output of only ICMP echo

requests and replies from the two hosts and would require more work in order to develop a rule.

61

[**] [1:18474:1] ICMPwE Echo Request [®*]
[Classification: Misc activity] [Pricrity

11/18-88:42:25.559638 2001:06ch:1973:0020:

2001:06c0:1973: 0000 : G000 : GO0 : PEOR : @eR2
IPVE-ICMP TTL:255 TOS:0x@ ID:516 Iplen:48

[**] [1:18474:1] ICMPwE Echo Request [*%]

[Classification: Misc activity] [Priority:
11/18-08:42:25.559654 2001:06c0:1973:0000:

2001:06c0:1973: 0000 : 0000 : PO : DO : BBG2
IPVE-ICMP TTL:255 TOS:@x@ ID:516 Iplen:4@

[**] [1:18474:1] ICMPvE Echo Request [*¥]

[Classification: Misc activity] [Priority:
11/18-B8:42:25.559656 2001:06ch:1973:0000:

Z2001:06c@:1973: 0000 : 3000 : B0 : BEA : BEE2
IPYE-ICMP TTL:255 TOS:@x@ ID:516 Iplen:4@

[*=*] [1:18474:1] ICMPwE Echo Request [®*]

[Classification: Misc activity] [Priority:
11/18-B8:42:25.559657 2001:06ch:1973:0000:

2001:96c0:1973: 0000 : 6000 : G000 : PEOR : de2
IPYB-ICMP TTL:255 TOS:0x@ ID:516 Iplen:48

[**] [1:18474:1] ICMPwE Echo Request [*%]

[Classification: Misc activity] [Priority:
11/18-08:42:25.559658 2001:06c0:1973:0000:

2001:06c0:1973: 0000 : 0000 : PO : DO : BBO2
IPVE-ICMP TTL:255 TOS:@x@ ID:516 Iplen:4@

: 3]
POGD: POGG: PR : BREL ->

DgmLen: 1488

3]
QR0 : 0000 PORE: BedL ->
DgmLen: 1480

3]

QIR0 : 0000 V006 BEaL ->
DgmLen: 1480

3]

QR00: 0000 PRBG: BedL ->
DgmLen: 1480

3]

QR0 : 0000 PRRG: BedL -

DgmLen: 1480

Figure 4.15: SNORT detection for Denialb with large hop-by-hop headers

Fragmentation6
Fragmentation6 resulted in multiple SNORT alerts listed in Figure 4.16. We again see
SHELLCODE x86 inc ecx NOOP which is an indicator rule that is meant to be used in conjunc-

tion with other rules for a more complete picture, along with several fragmentation alerts.

62

[**] [1:1394:12] SHELLCODE %86 inc ecx NOOP [+*]
[Clossification: Executoble Code wos Detected] [Priority: 1]

12/88-17:39:57.663776 2001 :06c8 11973 :0EEE : DEEE : AEEE : DEEEA :BAE2 - 2081 :06cH 11973 :BEE0 :AEHE :AE00 :AEE0 : AEE1
IPYE-ICMP TTL:64 TOS:Ex8 ID:8 Iplen:4d Dgmlen:27l

[*¥*] [123:18:1] (spp_frog3) Bogus fragnentation pocket. Possible BSD attock [#¥]

[Closzification: Attempted Adminiztrator Privilege Goin] [Priority: 1]

12/86-17:39:59.4075553 2661 0608 1973 : B0 : AEED : AAEE : BEEA :BAEL —> 2061 :80ch ;1973 ;BE00 ;6600 ;6080 :AEEE0 ;662
IPYGE-FRAG TTL:64 TOS:Ex7 ID:3735881884 Iplen:4@ Dgmlen:4d

Frog Offset: Bx@BBEA Frog Size: OxEBBS

[**] [123:5:1] (spp_frog3) Zero-byte frogment pocket [#+]

[Closzification: Attempted Denial of Service] [Priority: 2]

12/88-17:39:59.675053 2601 :06c8 11973 :0EEE : DEEE : AEEE : DEEEA :BAEL - 2081 :06cH 11973 :BEE0 :AE08 :AE00 :AEE0 : 6082
IPYG-FRAG TTL:64 TOS:Ex7 ID:3735881384 IplLen:4@ Dgmlen:4d

Frog Offset: Bx@BBEA Frog Size: OxEBBS

[**] [123:16:1] {=pp_frag3) Bogus fragmentation packet. Possible B3D attaock [++]

[Classification: Attempted Administrator Privilege Gain] [Priority: 1]

12/85-17:48 168683657 2001 :B6cH 11973 : 0HGE : HEOAE 1 AADE :DAEA :00AL — 2081 :B6cH 1973 :0A0A :BEGE :BEEE :ABRE :B0EZ
IPYE-FRAG TTL:64 TOS:8x8 ID:3735831885 Iplen:4@ Dgmlen:49

Frog Offset: BxABAA Frog Size: AxARAT

[*#*] [123:18:1] {spp_frug3} Bogus frogmentation pocket. Possible B3D attock [kx]

[Classification: Attempted Administrator Privilege Gain] [Priority: 1

12/85-17:40 :63.679506 2001 1060011973 ;0006 : 0E0E 1 AADA :DAE0 0061 — 2001 :06cH 1973100800 :6O6E (600G :A0EE :A0AZ
IPYE-FRAG TTL:64 TOS:8x8 ID:3735831886 Iplen:48 Dgmlen:4d

Frog Offzet: BxEBE8 Frog Size: Bx0085

[*#*] [123:5:1] (spp_frogd) Zero-byte frogment packet [#*)]

[Classification: Attempted Denial of Service] [Priority: 2]

12/85-17:40 :63.679506 2001 1060011973 ;0006 : 0E0E 1 AADA :DAE0 0061 — 2001 :06cH 1973100800 :6O6E (600G :A0EE :A0AZ
IPYE-FRAG TTL:64 TOS:AxA ID:3735851886 Iplen:4A Dgmlen:4d

Frog Offzet: BxEBE8 Frog Size: Bx0085

[**] [123:18:1] (spp_frog3) Bogus fragmentation pocket. Possible BSD attock [#%]

[Classification: Attempted Administrator Privilege Gain] [Priority: 1]

12/85-17:40 :66 669628 2001 :B6cH 11973 : 0006 1 0E0E 1 AADE : DABA 10061 — 2001 :06cH 1973 100808 16068 (600G :A0AE :A0AZ
IPYE-FRAG TTL:64 TOS:BxA ID:3735881867 Iplen:48 Dgmlen:49

Frag Offzet: BxB0A8 Frog Size: Gx0089

[**] [123:2:1] {spp_fragd) Teardrop attock [**]

[Classification: Attempted Denial of Service] [Priority: 2]

12/85-17:40 :66 669628 2001 :B6cH 11973 : 0006 1 0E0E 1 AADE : DABA 10061 — 2001 :06cH 1973 100808 16068 (600G :A0AE :A0AZ

IPYE-FRAG TTL:64 TOS:ExB ID:37358581867 IpLen:4@ Dgnlen:d4d
Frog Offset: BxAO08 Frog Size: AxBEA9

Figure 4.16: SNORT detection for Fragmentation6

Exploit6

The SNORT output for Exploit6 are not so clearly detectable, this due to the fact that this attack
has multiple test cases based on multiple known CVE listed attacks. As seen in Figure 4.17,
the attacker (Test_host) sends an ICMPv6 packet to End_host which is immediately followed by

invalid packets.

[#*] [116:431:1] (snort_decoder) WARNIMG: ICMPS type not decoded [#4]

[Claszification: Misc activity] [Priority: 3]

12/86-11:601:42 512625 2061 :06C8:1973 10600 : 0600 : HAA0 :BO00 8081 -> TTOZ:0A0E :000E :AO6E :A0
B8 : BA8E0 :BHAE0 : ABEL

IPVG-ICHP TTL:255 TOS:Ex@ ID:A IpLen:4@ Danlen:vz

[**] [116:431:1] (short_decoder’y WARNING: ICMPE type not decoded [+¥]

[Clossification: Misc octivity] [Priority: 3]

12/A6-11:A1 :42 512638 2001 :A6CA 1973 :ARRA 1 AROA :ARAA :AAAA :APEZ - ZAA1 :AGCA 1975 :AROA :ARAA :ARAA : BEEA :AAA1
IPVE-ICMP TTL:2565 TOS:8xA ID:8 IpLen:48 Dgnlen:?2

[*#*] [116:276:1] (short_decoder) WARNIMG: IP dgm len = coptured lenl [*%]
12/86-11:01 :42 512875

[*#*] [116:276:1] (short_decoder) WARNIMG: IP dgm len = coptured lenl [*%]
12/86-11:01 :42 512876

Figure 4.17: SNORT output for Exploitb

63

Other ‘“Native” Detection Results

Table 4.1 lists all attacks that presented “ICMP type not decoded” as an alert in SNORT’s
Alert.log. This alert is an indication that the IPv6 packets from the attacks are getting processed
correctly up to SNORT’s Detection Engine (see Figure §2.13), denoting that the only thing
preventing exact detection is a specific rule, which can be tailored from inspections of the

attack’s traffic, for each particular attack.

Fake_Advertise6 Fake_DNS6 DoS-new-IPv6
Detect-new-IPv6 NDPexhaust SMURF6
Fake_MLDrouter6 Fake_MLD26 Kill_router6
Parasite6 Flood_DHCPc6 Flood_MLD6
Flood_MLDrouter6 | Flood_Solicitate6 | Fake MLD6
Fake Router6 Implementation6

Table 4.1: List of SNORT “ICMP type not decoded” detections

64

Table 4.2 displays the results of all “Native” tests.

“Native” Detection Matrix

Detection
Attack Type BRO | BRO2| SNORT
IPv4 Attack IPv6 Attack
Reconnaissance
Port Scan Alive6(resolve) No No Yes
Port Scan Alive6(Inv. Hdr) No No Yes
Port Scan Alive6(Inv. Hop by Hop) || No No Yes
portscan4.py portscan6.py Yes** | No+ | Yes*
NMAP NMAP6(scan ports) Yes** | No+ | Yes
NMAP NMAPG6(TCP scan) Yes** | No Yes
Unauthorized Access
ARP Poison- | Fake_Advertise6 No No Yes
ing(ICMP)
DNS Fake _DNS6 No No Yes
Route Im- | Toobig6 No No Yes
planting
Host Configuration
DHCP DoS DoS-new-IPv6 No No Yes
Detect-new-1Pv6 No No+ | Yes
Fake_DHCPS6 No No Yes
NDPexhaust No No+ | Yes
Broadcast Amplification Attacks(SMURF)
SMURF SMURF6 No No+ | Yes
RSMURF6 No No+ | Yes
Routing Attacks
Various DoS Fake_Router6 No No No
Fake _MLDrouter6(Sol.) No No Yes
Fake_MLDrouter6(Term.) || No No Yes
Fake MLD26(Query) No No Yes
Fake_MLD26(Add) No No Yes
Fake_MLD26(Delete) No No Yes
Kill_router6 No No Yes

65

“Native” Detection Matrix Cont.

Detection
Attack Type BRO | BRO2 | SNORT
IPv4 Attack IPv6 Attack
Man in the Middle (MITM)
| Various | Parasite6 No No Yes
Flooding
Various DoS Denial6(Irg Hop by Hop) No No Yes
Denial6(large dst Hdr) No No+ | Yes
DHCP flood- | Flood_DHCPc6 No+ | No+ | Yes
ing
Various Flood_Advertise6 No No Yes
Flood_MLD6 No No Yes
Flood_MLDrouter6 No No Yes
Flood_Solicitate6(Network) || No No Yes
Flood_Solicitate6(Target IP) || No No Yes
Rogue Devices
Rogue Router | Fake Router6 No No No
Fake_MLD6 No No Yes
Fake_MLDrouter6(Adv.) No No Yes
Fragmentation
Fragmentation | Fragmentation6 No No Yes
Fake Router6(Frag) No No Yes
Kill Router6(Frag) No No Yes
Exploit
Malware FTP Malware No No Yes#
Transfer
Various Exploit6 No No+ | Yes
Implementation6 No Yes(w) Yes

Table 4.2: Detection Matrix Notes:* our Scapy portscan6 scanned TCP port 0 which was
detected by SNORT, ** BRO detected after we enabled event tracing, # Read string “Malware.exe”,
+ dropped packet activity in Notice.log, (w) Weird.log activity.

66

4.2 Transitional Detection Results

The results for all tests sent in the Transitional environment are recorded in Table 4.3. Just as
in §4.1, a “Yes” result indicates that the attack resulted in a recognizable alert being recorded
in either BRO or SNORT’s alert/alarm log and a “No” result meant that an alert was not issued
for that attack. For SNORT, just as illustrated in §4.1, all events were constructed and logged
appropriately, which meant that detection was simply a matter of writing rules rather than mod-
ification of the NIDS itself. As covered in §3.1.1, the period of time in which networks are
operating with both IPv4 and IPv6 addresses is considered Transitional. We do not expect
NIDS performance to improve during this period since the NIDS will be required to detect both
IPv4 and IPv6 attacks, while at the same time be able to detect attacks from packets inside a

tunneled environment.

4.2.1 BRO - BRO V2

Asin §4.1.1, BRO’s performance in the Transitional environment fell short of readiness. Again,
we discovered that BRO and BRO2 were not processing all events and that our detection results

did not convey any indication of true readiness or IPv6 operability of the NIDS.

Portscan6.py
Figure 4.18 shows the simple alert log entry in BRO for portscan6.py. Just as in the “Native”

environment, IPv6 port scan events were not processed completely.

1324419552 .841568 LowPortTrolling low port trolling 2881:6cA:1973::1 portmap

Figure 4.18: IPv6 Transitional port scan results in BRO

NMAP6

The Transitional results for NMAP6, shown in Figure 4.19, are just as simple as with
portscan6.py and again not a representation of the entire event or of all packets sent. BRO2,
just as in §4.1.1, showed all connection request/rejections in the conn.log and all packets being

dropped in Weird.log for portscan6.py and NMAP6.

1324491 329.6A75R9 LowPortTralling Llaw port trolling 2881:6cA:1975::1 RS tch
(EMD

Figure 4.19: BRO Transitional NMAP6 results

67

Detect-New-IPv6
For Detect-new-I1Pv6 in the Transitional environment we again saw activity in BRO’s Weird.log,

shown in Figure 4.20, which we did not consider detection.

1324493975 .873768 20A1:6c8:1973::5/6363 = ffA2::fb/E363: bad_UDP_checksum
1324493976 .673333 20A1:6cH:1973::6/6363 = ffA2::fb/E363: bad_UDP_checksum
1324493977.9512584 20A1:6c8:1973::6/6363 = ffA2::fb/E363: bad_UDP_checksum
1324403973 .652856 20A1:608:1973::5/6363 = ffA2::fb/E363: boad_UDP_checksum
1324497635 .636091 felF: afB:27ff :Tel3:face/B303 » ffEZ::fb/R3R3: bad_UDP_checksum
1324497635 .636127 felB::aBB 27 f :fefb:37c/6353 = ffB2::fb/E363: bad_UDP_checksum
1324497635 .685117 felf:alf:27ff :fed3:face/B303 = ffE2::fb/R3R3: bad_UDP_checksum
1324497635 .,885913 febB::qB0 27 f :fedd:face/5353 = ffE2::fb/B353: bad_UDP_checksum
1324497636.137474 febB::qB0 27 f :fedd:face/5353 = ffE2::fb/B353: bad_UDP_checksum
1324497636 .1575158 eS8 :aBB 27 ifefb:37c /8353 = ffB2::fb, /5353 bad_UDP_checksum
1324497636, 337762 febB::qBB 27 f :fedd:face,/5353 = ffE2::fb/E353: bad_UDP_checksum
1324497636 ,884968 fe88::qB0 27 f :fed3:face,/5353 = B2 :fb/E353: bad_UDP_checksum
1324497637 .676385 fed0: tadBi27ff ifel3face/B353 » FTEZ:ifb B353: bad_UDP_checksum

Figure 4.20: Weird.log results for Detect-new-IPv6 in Transitional BRO

For BRO2, just as in §4.1.1, we discovered “bad UDP checksum” activity in the Weird.log and

again we did not consider this detection.

Flood DHCPc6

In the Transitional environment BRO and BRO2 interpreted Flood_ DHCPc6 as “Bad UDP
checksum” messages in the Weird.log, just as in §4.1.1 and displayed in Figure 4.21. This was
also not considered as detection.

68

[L325154977.
4712506
B
A7L2AT
LAT1ETS
ATE2TE
4712E4
L471EE9
471378
471358
471358
471453
471633
471634
471631
471634
472191
472193
472194
472194
472195
472196
LATELAT
AT22T2
472355
472356
ATE4ES
475195
AT3ETE
473359
475361
47343
473584
478575
47366
473663
475735
47917
479188
479151

13251584977
1325184977
1325184977
13251584977
1325184977
1325184977
13251584977
1325184977
1325184977
13251584977
1325184977
1325184977
13251584977
1325184977
1325184977
13251584977
1325184977
1325184977
13251584977
1325184977
1325184977
13251584977
1325184977
1325184977
13251584977
1325184977
1325184977
13251584977
1325184977
1325184977
13251584977
1325184977
1325184977
13251584977
1325184977
1325184977
13251584977
1325184977
1325184977

478774

fedd:
fegn:
fedd:
fedd:
fegn:
fedd:
fedd:
fegn:
fedd:
fedd:
fegn:
fedd:
fedd:
fegn:
fedd:
fedd:
fegn:
fedd:
fedd:
fegn:
fedd:
fedd:
fegn:
fedd:
fedd:
fegn:
fedl:
fedd:
fegn:
fedl:
fedd:
fegn:
fedl:
fedd:
fegn:
fedl:
fedd:
fegn:
fedl:
fedd:

2188
HaGlEH
1386
1488 :
HalalaH
Hal5l5H
Ha15H
HalalaH
HelElEH
Helal5H
HalalsH
Hel5l5H
Helal5H:H
H=l5l5H
Hyol5H
HilalEsHGH
11A8:a;
112080
11368 ;
11468
HIEE
1688 :
1veEa
11868
:198a:
i1la@a;
11bEaE
tlcaa:
s1d@a;
11eB@a
1f|Ea:
1288 ;
12168
12288
Hec sl
12468
Hel sl
12668
Her sl
1208a

Lo B v e v ey B e e O B o R Y w0

R e e e e e e e e e e e e e e e R R T

Lo B v e v ey B e e O B o R Y w0

e R R R R e R R R R R

8540 = FRE2::
B/546 = TTAZ::
B/546 = FFAZ::
8540 = FRE2::
B/546 = TTAZ::
B/546 = FFAZ::
8540 = FRE2::
B/546 = TTAZ::
B/546 = FFAZ::
8540 = FRE2::
B/546 = TTAZ::
B/546 = FFAZ::
8540 = FRE2::
B/546 = TTAZ::
B/546 = FFAZ::

(B/546
1B/546
:B/546
(B/546
1B/546
:B/546
(B/546
1B/546
:B/546
(B/546
1B/546
:B/B46
(B/546
1B/546
:B/B46
(B/546
1B/546
:B/B46
(B/546
1B/546
:B/B46
(B/546
1B/546
:B/B46
(B/546

R U U O T A R R U L R U U R R A A

PRRPRRRPERRERRERRRRR®

ffaz::
ffaz::
ffazZ::
ffaz::
ffaz::
ffazZ::
ffaz::
ffaz::
ffazZ::
ffaz::
ffaz::
ffAzZ::
ffaz::
ffaz::
ffAzZ::
ffaz::
ffaz::
ffAzZ::
ffaz::
ffaz::
ffAzZ::
ffaz::
ffaz::
ffAzZ::
ffaz::

27847
AP
125047
27847
AP
125047
27847
AP
125047
27847
AP
125047
27847
AP
125047

PRPEPRRERRERRERRRERBERERBRERERERRER

27847
125547
125547
27847
125547
125547
27847
125547
125547
27847
125547
125547
27847
125547
125547
27847
125547
125547
27847
125547
125547
27847
125547
125547
27847

bad_UDP_check=um
bad_UDP_checksum
bad_UDP_checksum
bad_UDP_check=um
bad_UDP_checksum
bad_UDP_checksum
bad_UDP_check=um
bad_UDP_checksum
bad_UDP_checksum
bad_UDP_check=um
bad_UDP_checksum
bad_UDP_checksum
bad_UDP_check=um
bad_UDP_checksum
bad_UDP_checksum
bad_UDP_checksumn
bad_UDP_checksum
bad_UDP_checksum
bad_UDP_checksumn
bad_UDP_checksum
bad_UDP_checksum
bad_UDP_checksumn
bad_UDP_checksum
bad_UDP_checksum
bad_UDP_checksumn
bad_UDP_checksum
bad_UDP_checksum
bad_UDP_checksumn
bad_UDP_checksum
bad_UDP_checksum
bad_UDP_checksumn
bad_UDP_checksum
bad_UDP_checksum
bad_UDP_checksumn
bad_UDP_checksum
bad_UDP_checksum
bad_UDP_checksumn
bad_UDP_checksum
bad_UDP_checksum
bad_UDP_checksumn

Figure 4.21: BRO Transitional results for Flood_DHCPc6

69

4.2.2 SNORT

As discussed in §4.2 we expected SNORT, in the Transitional scenario, to performed similarly
well as compared to the “Native” scenario (§4.1.2). As expected, the detection of attacks in the
Transitional environment paralleled SNORT’s results in the “Native” environment. This section

will illustrate some of the SNORT Transitional detection results.

Portscan6.py
Figure 4.22 shows the results from portscan6.py. Unlike what is shown in §4.9, SNORT’s

detection of portscan6.py included an alert for a TCP port scan.

[**] [116:446:1] (short_decoder) WARNING: BAD-TRAFFIC TCP port @ troffic [%]
[Clazzification: Misc activity] [Prioritw: 3]

12/28-14 124 :39.611549 2801 :86cH 11973 :A0BA 1 AADA : BEED :A0AA :AB1A 1A -= 2881 :AccA 1197
310888 1 BABE :ARAA :HAAE 1 AAEL 128

TCP TTL:64 TOS:B8xA ID:A Iplen:4d8 Dgmlen:od

whRAKRRE Seqr BxA Ack: Bxl Win: BxB Tcplen: 2@

[**] [122:1:1] PSHG_TCP_PORTSCAN [#%]

[Clazsification: Attempted Information Leak] [Priority: 2]
12/20-14:24:39.611565 2881 :06c0 11973 10608 : 0000 : DO0E 10688 10001 —= 20E1:86c0:1973:
BEEE : BEEE :B080 :DAEEA : BE1E

PROTO:2E5 TTL:64 TOS:AxB ID:A IpLen:48 Dgmlen:233

[**] [116:431:1] (=hort_decoder’y WARMING: ICMPE type not decoded [*#]
[Clazzification: Misc activity] [Prioritw: 3]
12/20-14 124 239644956 2HA1 :A6cAH 11975 :BEAR : AAAA : BEEE :BEAA :ARE1L - fTEZ :ABAB :ABEE :

AREE :A880 :A0A1 :f FBA 1 BEaL1A
IPVME-ICMP TTL:26R TOS:@xA ID:A Iplen:48 Dgmlen:?2

Figure 4.22: SNORT Transitional results for portscan6.py

NMAP6
The detection alert shown in Figure 4.23 and 4.10 illustrates SNORT’s ability to detect NMAP6

TCP scans in both Transitional and “Native” environments. Figure 4.23 displays the Transi-

tional alert results for NMAP6.

70

[*#] [116:431:1] {short_decoder) WARNING: ICMPE twpe not decoded [*%]
[Closzification: Misc octivity] [Prioritw: 3]

12/21-18:15:37 143184 2881 A6 11973 (BEAE :AARE : AREE :FEAA 1 AA1E —=
2081 1B6cA 119773 1 BE0E :BAEE 1 BAAA 1 BEEE : AAE1

IPVE-ICHP TTL:2B5 TOS:8xA ID:A IpLen:48 Dgmlen:?:2

[*#] [122:1:1] P3NG_TCP_PORTICAN [#+4]

[Elaszification: Attempted Information Leak] [Priority: 2]
12/21-18:15:37 143788 2881 A0 11973 :BEAE :AARE : AREEA :FEAE 1 FAA1 =
ZAE1 :AGCA 11973 1 AARA :AREA : BEAA : FARG :AR1H

PROTO:265 TTL:64 TOS:BxA ID:A IpLen:48 Dgmlen:236

Figure 4.23: SNORT Transitional results for NMAPG6

Toobig6
In the Transitional environment SNORT provided the same alerts as those shown in §4.1.2.

[**] [116:285:1] {snort_decoder’ WARNING: ICMPwE packet of type 2 (messoge
too big) with MTU field = 1288 [+]

[Closzification: Generic Protocol Command Decode] [Priority: 3]
12/20-12:27 246 486683 2001 :B6CH 1973 10068 - BAAA :BEEE - AAAA :BEEL —=

28A1 1Bk 11973 (AREE :BAAR 1 AEEE :BAGA 1RE18

IPYe-ICHP TTL:2EE TOS:8x8 ID:8 IpLen:48 Dgmlen:lz249

[**+] [1:1394:12] SHELLCODE x36 inc ecx WOOP [+#]
[Closzification: Executable Code was Detected] [Prioritw: 1]
12/29-12:27 246 450683 20801 18608 21973 10008 : AGA 10008 :0AAA 10001 —=
2881 1868 11973 10008 :BAAA ;D000 :BAGA ;0018

IPVE-ICMP TTL:26E TOS:8x@ ID:A IpLen:48 Dgmlen:i1249

[**] [1:468:3] ICHMP unassigned twpe £ [*#]

[Clazsification: Misc activity] [Prioritw: 3]

12/29-12 127146 466683 2881 :PB6cH 11975 :BARE :ARAE :AREA : AREEA :ARE1L =
2AA1 :BGch s 1973 (AEEE :BAAA 1 AEEE : BAGE :AE16

IPVYe-ICHP TTL:2EE TOS:8x@ ID:A IplLen:d48 Dgmlen:lz249

Figure 4.24: SNORT Transitional results for Toobigb

Flood_Advertise6
Figure 4.25 displays the detection results for Flood _Advertise6, where the three alerts listed

appear to be from different IP address going to the all_host multicast address. Again, with
closer inspection, however, each of these three addresses share the same first 80 bits
(£e80:0000:0000:0000:0218) which could be an indication of one host generating random

addresses to flood advertisements on the network segment.

71

[**] [116:431:1] (snort_decoder’) WARNING: ICMPE type not decoded [+%]
[Closzificotion: Mizc activity] [Prioritw: 3]

12/21-11:25:14 579143 fedd 0000 :HAAE 1 AAAA 1A215 1487 f :fe2l 12786 —
ffH2 ;6808 :BE00 : BE8E0 ;0088 :D06a ; 9008 : a0a1

IPVE-ICHP TTL:25E TOS:8x8 ID:A IplLen:4d Dgmlen:72

[**] [116:431:1] {=znort_decoder’) WARMING: ICMPE type not decoded [+%]
[Clazsification: Misc actiwvity] [Prioritw: 3]

12/21-11:258:14 531863 fedd :AA0A :HAAA 1 AAAA 1B215 821 f :fedd :Tobd —=
02 :BE60 :AAAE :HEAE :BEEA 1AEEA : AREE : ARE1

IPYE-ICHP TTL:255 TOS:8x8 ID:8 IpLen:48 Dgmlen:72

[**] [116:431:1] {=snort_decoder’) WARMING: ICMPE type not decoded [%%]
[Clazsification: Misc actiwvity] [Prioritw: 3]

12/21-11:258:14 552091 fedt :BA00 :HAAA 1 AAAA 1A215 1997 f (fedc i 7TH3T —=
fTHZ :AAEE :AAAE :HEAEA :HOEA :FEEEA : AREE : ARE1

IPYE-ICMP TTL:255 TOS:8xA ID:A IpLen:48 Dgmlen:?2

Figure 4.25: SNORT Transitional results for Flood_Advertiseb

Denial6

SNORT’s detection results in the Transitional environment for Denial6 test case 1 (large hop-
by-hop headers with router-alert filled with unknown options), shown in Figure 4.26 are more
accurate than those seen in Figure 4.15 from §4.1.2. In this case SNORT alerted on an uniden-

tified IPv6 header options type.

[**] [116:279:1] (snort_decoder) WARNING: IPvE header includes an undefined opti
on type [*¥]

[Clazsification: Generic Protocol Commond Decode] [Priority: 3]
12/21-11:46:49 . 425348 20681 :86cH 11973 10666 :BE0E : BA6E : BEEE (AEE1 = 26610606 :1975:
AAAA ; AOEE : AAAE : BEEE : BE1E

IPMG-ICHP TTL:ZB5 TOS:Ex@ ID:516 Iplen:48 Damlen:l4d6

[##] [1:18474:1] ICHPwE Echo Request [##]

[Clazsification: Misc activity] [Prioritw: 3]

12/21-11:45:49.425348 2081 8608 11973 10668 ;0006 : BA60 1 BEAEA 1PEE1 —> 2681 :00c8:1973:
ARAR ; ABEE ; AAAE : AEAA ; BE1E

IPMG-ICHP TTL:ZB5 TOS:6x8 ID:516 IplLen:48 Damlen:l4dm

[**] [116:279:1] (snort_decodsr) WARNING: IPv6 header includes an undefined opti
on type [##]

[Clazsification: Generic Protocol Command Decode] [Priority: 3]

1242111 ;4549 426709 20881 (808 11973 6666 HEEE : BEEE : ABEA : AAA1 - ZAB1:B0cH ;1973
ARAR ; ABEE ; AAAE : AEAA ; BE1E

IPMG-ICHP TTL:ZB5 TOS:6x8 ID:516 IplLen:48 Damlen:l4dm

Figure 4.26: SNORT Transitional results for Denial6

72

Fake_router6 With Fragmentation
Figure 4.27 displays the detection results from Fake_router6 using fragmentation. What is seen
with this alert is much like that from the alert seen with Fragmentation6 in §4.1.2, with the
exception that SNORT alerts on overlapping fragments in this attack.

[**] [123:1@:1] {=pp_frog3) Bogus frogmentotion packet. Possible BSD ottock [H*]

[Elazzification: Attempted Administrotor Priwvilege Gain] [Priority: 1]

12/21-11:21:41 691565 fe50:DOAE A0 10OAR 000 277 f 1Feb3:9fb3 —» {FB2:0DOA:0000

BEIEIR : BADE : BEAR :ABHE :HEAL

IPYE-FRAG TTL:255 TOS:AxEA ID:17739787 IplLen:48 Dgmlen:66
Frog Offset: BxBBEE Frag Size: OxBEL1A

[**] [123:53:1] (=pp_frog3) Fragmentation overlop [*]

[Clazzification: Generic Protocol Commond Decode] [Prioritw: 3]

12/24-11:21:41 691665 febE 0000 :ABEE B00E :BaBE 271 f :feb3:9fb3 —= 2 10000 : BEEE
BEIEE : AEAA : ABEE :AREA : AEEL

[PYE-FRAG TTL:255 TOS:@x<E@ ID:17739787 Iplen:4@ Damlen:6e

Frog Offset: BxBBEE Frag Size: OxPE14

[**] [123:1@:1] {spp_frog3) Bogus frogmentotion pocket. Possible BSD ottock [#%]
[Elazsification: Attempted Administrotor Privilege Gain] [Pricrity: 1]

12/21-11:21 :46.685382 &0 0680 :A00A :BEA :BaBA :27F f :Feb3:9Ffb3 - FEZ:0ABE 0688 @
BEEA : BARE : ARAE :HBEE :AREL

Figure 4.27: SNORT Transitional results for Fake_routerb using fragmentation

Other Transitional Detection Results

Just as seen in Table 4.1 for the “Native” environment, in the Transitional environment SNORT
presented “ICMP type not decoded” as an alert in Alert.log for each listed attack, which is an
indication that the IPv6 packets from the attacks are getting processed correctly up to SNORT’s

Detection Engine, and thus a sign of detection.

73

Table 4.3 displays the results of all tests in the Transition test case.

Transitional Detection Matrix

Detection
Attack Type BRO | BRO2| SNORT
IPv4 Attack IPv6 Attack
Reconnaissance
Port Scan Alive6(resolve) No No Yes
Port Scan Alive6(Inv. Hdr) No No Yes
Port Scan Alive6(Inv. Hop by Hop) || No No Yes
portscan4.py portscan6.py Yes** | No+ | Yes*
NMAP NMAP6(scan ports) Yes** | No+ | Yes
NMAP NMAPG6(TCP scan) Yes** | No Yes
Unauthorized Access
ARP Poison- | Fake_Advertise6 No No Yes
ing(ICMP)
DNS Fake _DNS6 Yes% | Yes(w) Yes
Route Im- | Toobig6 No No Yes
planting
Host Configuration
DHCP DoS DoS-new-IPv6 No No Yes
Detect-new-1Pv6 No No Yes
Fake_DHCPS6 No No Yes
NDPexhaust No No+ | Yes
Broadcast Amplification Attacks(SMURF)
SMURF SMURF6 No No+ | Yes
RSMURF6 No No+ | Yes
Routing Attacks
Various DoS Fake_Router6 No No No
Fake _MLDrouter6(Sol.) No No Yes
Fake_MLDrouter6(Term.) || No No Yes
Fake MLD26(Query) No No Yes
Fake_MLD26(Add) No No Yes
Fake_MLD26(Delete) No No Yes
Kill_router6 No No No

74

Transitional Detection Matrix Cont.

Detection
Attack Type BRO | BRO2 | SNORT
IPv4 Attack IPv6 Attack
Man in The Middle (MITM)
| Various | Parasite6 No No Yes
Flooding
Various DoS Denial6(Irg Hop by Hop) No No+ | Yes
Denial6(large dst Hdr) No No Yes
DHCP flood- | Flood_DHCPc6 No+ | No+ | Yes
ing
Various Flood_Advertise6 Yes(w) Yes(w) Yes
Flood_MLD6 No No Yes
Flood_MLDrouter6 No No Yes
Flood_Solicitate6(Network) || No No Yes
Flood_Solicitate6(Target IP) || No No Yes
Rogue Devices
Rogue Router | Fake Router6 No No No
Fake MLD6 No No Yes
Fake _MLDrouter6(Adv.) No No Yes
Fragmentation
Fragmentation | Fragmentation6 No No Yes
Fake Router6(Frag) No No Yes
Kill Router6(Frag) No No Yes
Exploit
Malware FTP Malware No No Yes#
Transfer
Various Exploit6 No No+ | Yes
Implementation6 No Yes(w) Yes

Table 4.3: Transitional Detection Matrix Notes:* our Scapy portscan6 scanned TCP port 0
which was detected by SNORT, ** BRO detected after we enabled event tracing, # Read string “Mal-
ware.exe”, + dropped packet activity in Notice.log, (w) Weird.log activity, % showed as portscan.

75

4.3 BRO/SNORT and FTP

During the FTP transfers with the Slackbot malware (discussed in §3.3.1), neither BRO nor
SNORT detected the Slackbot malaware.exe payload with their deep packet inspection capa-
bilities. The only detection that occurred during any of the transfers was SNORT alerting that
an executable was being transferred when the file was named malware.exe. No alert was given
when the extension (.exe) was removed or when the file was zipped, this indicates SNORT was
simply alerting on a filename with an executable (.exe) extension being transferred over FTP.

We ran the same transfers on an [Pv4 network setup with the same results.

4.3.1 BRO FTP Results

The preceding result is not particularly useful since more varieties of malware samples would be
needed to be sent to test payload inspection detection capabilities in BRO and SNORT. However,
we deemed that since the results were mostly the same moving ahead with more of these tests
did not seem useful. However, when sending the FTP transfers over an IPv6 network, BRO
returned some error messages that suggested it was having difficulty processing these events
in IPv6, just as in the indications seen in §4.1 and §4.2. Figure 4.28 shows the actual error

messages received.

tester@RO-VirtualBox:~/logs$ sudo /usr/local/bro/bin/bro -i eth® /usr/local/bro/share/bro/site/local.bro -t trace-1-1282011-v6.log
Execution tracing ON.

listening on eth@

1323371431.633088 error: bad dotted address: 2001:6c@:1973::11423021

13233719@5.097@753 error: bad dotted address: 2001:6c@:1973::11343881

1323371920.363719 error: bad dotted address: 2081:6c8:1973::11552611

1323371925.002372 error: bad dotted address: 2001:6c@:1973::114@376l

1323371934.444545 error: bad dotted address: 2001:6c@:1973::11412191

1323371940.094269 error: bad dotted address: 2001:6c@:1973::11420521

Figure 4.28: BRO “Bad dotted address” error message

The BRO event logs contained very few of the packets during the transfer which again led us to
believe that BRO had more fundamental problems with IPv6, at least where FTP transfers were
concerned. BRO was now also printing some error messages captured in Figure 4.28. We ran
the malware.exe transfer again, but this time, while debugging BRO using GDB [57] to get a
better idea of what was happening. One of the breakpoints we set was in a file called ner_util.cc
on line 238. Figure 4.29 has the contents of dotted_to_addr in net_util.cc which takes a const
char* as a parameter and returns a unit_32 value. The function converts an IPv4 string into a
unsigned integer representation of an IPv4 address. However, in this case it was being passed an
IPv6 string and returning O after failing the check in the second if statement. Returning O here

resulted in failing to create the event properly in BRO’s event log. Another problem with this

76

type of traffic is that the IP address is contained within the the data portion of the FTP control
packets, which is the same problem that is seen in Network Address Translation (NAT), thus
obscuring the addresses to the NIDS.

224 uint3Z dotted_to_oddr(const char® addr_text)
225 {

226 int oddr[4]:

227

228 if { ssconf{oddr_text,

279 gl 6", oddr+B, oddrel, oddrsZ, oddre3) 1= 4)
23a {

231 error{"bod dotted address:", oddr_text J;

232 return B3

233 T

234

238 if (oddr[8] < B || oddr[1] < & || oddr[2] < @ || oddr[3] <8 ||
236 addr[8] = 255 || addr[1] > 255 || addr[2] = 255 || addr[3] = 255 3
237 {

238 error ("bod dotted address:", oddr_text);

239 return B;

248 +

241

242 uint3z o = {addr[8] «< 243 | (oddr[1] == 163 | {addr[2] =< 8) | oddr[3];
243

244 /f e perhaps do gethostbyoddr here?

245

246 return uint3z¢htonl{n)y;

247 T

Figure 4.29: BRO Dotted_to_Addr function in Net_util.cc

net_util.cc does have a function called dotted_to_addr6, but it was not being called in this case.
BRO also had a very difficult time processing IPv6 packets with FTP. It reported that only three

packets were processed after the BRO process was terminated at the end of this FTP test.

4.4 SNORT Rules

The detection matrix displayed in Table 4.2 shows BRO at a 10 percent detection success rate
and SNORT at a 52 percent detection success rate. However, these numbers only paint part
of the picture. In the previous two sections we outlined the difficulties BRO had even adding
IPv6 traffic to its event logging. In the cases where SNORT did not detect, examination of its
event logging indicated that these events were being captured effectively. The events actually
looked nearly identical in the logs in most of the cases. In other examples SNORT logs showed
detectable events, such as in Figure 4.24 or Figure 4.10. In both these cases only rule problems
exist, where a rule can be written to alert on these events, meaning SNORT’s underlying engine

1s still sound.

Taking into account this ability to develop rules for detection, the revised detection rate for
SNORT sits at 95 percent for “Native” and 93 percent in the Transitional environment. In this

sense, SNORT is more IPv6 capable as rules just need to be written, but in contrast to BRO,

7

fundamental code changes and/or debugging should not be necessary. Figure 4.30 displays a
few simple externally developed IPv6 related SNORT rules that are not part of the built in rule

set, however the addition of these rules would improve SNORT’s IPV6 readiness.

alert ip icmp any -> any any (msg:"IPve ICMP Router Advertisement”; itype:134;
classtype:icmp-event; sid:20@0001; rev:1;)

alert ip any any -> any any (msg:"TTL or Hop Limit = 5@"; tt1:5@;
classtype:attempted-recon; sid:20@0002; rev:1;)

Figure 4.30: SNORT rules. From [23]

4.5 SNORT 2.9.0.5 Bug

While running Implementation6 we discovered a warning message we had not seen before,
shown in Figure 4.31. This message by itself is not alarming, however when we sent the next
attack we discovered that SNORT was no longer processing packets. One of the test cases in
Implementation6 had allowed our next attack to circumvent the NIDS. In fact, the NIDS had
failed open which means that it did not crash and sat in a state of infinite recursion. Failing
in this state would be a serious problem in a live NIDS, allowing an attacker to quietly bypass

SNORT and easily slip any subsequent attacks into the victim’s network.

Since there are more than 40 tests in this attack we isolated the test responsible for the problem.
To isolate, we ran each test individually while monitoring SNORT’s reaction by running it in the
GDB debugger. After running each test case individually, we discovered that test 3 “128 hop-
by-hop headers” was responsible for the SNORT failure. This test case uses 128 hop-by-hop
headers, each with a value of zero to ensure that the OS’s IPv6 stack is processing the headers

correctly.

Figure 4.31 shows the output of SNORT after entering recursion. Note that this is the only

indication operators would see, and may possibly miss if not using the verbose logging option.

78

WARNING:
WARNING:
WARNING:
WARNING:
WARNING:
WARNING:
WARNING:
WARNING:
WARNING:
WARNING:

Figure 4.31: SNORT output for Implementation6 with 128 hop-by-hop headers

The Problem

After searching through the SNORT-2.9.0.5/src/ directory in order to trace the “decoder
got too many layers; next proto is 7 warning message, we found decode.c to be the source
of the problem. We discovered that SNORT was being sent into infinite recursion between
DecodeIPV6Extensions and DecodeIPV60ptions. The normal process for decoding exten-

sion headers is listed in Figure 4.32.

decoder
decoder
decoder
decoder
decoder
decoder
decoder
decoder
decoder
decoder

got
got
got
got
got
got
got
got
got
got

too
too
too
too
too
too
too
too
too
too

mary
mary
many
mary
marny
many
mary
many
mary
mary

layers; next proto
layers; next proto
layers; next proto
layers; next proto
layers; next proto
layers; next proto
layers; next proto
layers; next proto
layers; next proto
layers; next proto

DecodelPV6

DecodelPV6Extensions

is
is
is
is
is
is
is
is
is
is

RN N B N N N R

DecodelPV6Extensions

DecodelPV60ptions

Figure 4.32: Normal processing of extension headers in decode.c

Each extension header is processed by DecodeIP6, sent to DecodeIPV6Extensions, then if it

has any options it is passed to DecodeIPV60ptions where it is finally passed back to

DecodeIPV6Extensions. Itis in this process where we found the problem.

As we traced the operation of decode.c during test 3 we discovered that at a given point (num-
ber of hop-by-hop headers) it was recursing between two functions DecodeIPV6Extensions
and DecodeIPV60ptions. With further tracing and stepping through break points we finally

discovered the problem function was DecodeIPV60ptions.

79

Figure 4.33 shows the first 43 lines of the DecodeIPV60ptions function in Decode.c. At line

S hdrlen is set to 0, while line 15 shows the recursion entry point.

1 void DecodeIPVeOptions(int type, const uint8_t *pkt, uint32_t len, Packet *p)
2 {

3 printf("Entering: %s (len: %d)\n", __func__, len);

4 IPBExtension *exthdr;

5 uint3zZ_t hdrlen = @;

g

7 /* This should only be called by DecodeIPV6 or DecodeIPV6Extensions
3 * so no validation performed. Otherwise, uncomment the following: */
9 /* AF(IPH_IS_VALID(p)) return */

10

11 pc.ipvbopts++;

12

13 /* Need at least two bytes, one for next header, one for len. */
14 /* But size is an integer multiple of 8 octets, so B is min. */
15 if{len < sizeof(IPeExtension))

16 {

17 printf("Len %d is less than sizeof(IP6Extension: %d)\n",

18 len, sizeof(IPEExtension));

19 DecoderEvent(p, DECODE_IPV&_TRUNCATED_EXT,

20 DECODE_IPVG_TRUNCATED_EXT_STR,

21 1, 13;

22 return;

23

24

25 exthdr = (IP6Extension *Jpkt;

26

27 printf("Determine IP6 extension. Count: %d Max: %¥d\n",

23 p->ip6_extension_count, IPG_EXTMAX);

29 if(p->ipb_extension_count < IP6E_EXTMAX)

30 {

31 p->1ip6_extensions[p->ip6_extension_count].type = type;

3z p->ipb_extensions[p->ipb_extension_count].data = pkt;

33

34 // TBD add layers for other ip6 ext headers

s switch (type)

36

37 case IPPROTO_HOPOPTS:

38 if (len < sizeof(IPGHopByHop))

30 {

40 DecoderEvent(p, DECODE_IPV6_TRUNCATED_EXT,

41 DECODE_IPVE_TRUNCATED_EXT_STR,

42 1, 1);

43 return;

Figure 4.33: First 43 lines of code for DecodeIPV60ptions

When DecodeIPV60ptions is called, hdrlen is set to zero and then based on a set of switch
cases, is then set appropriately to be passed back to DecodeIPV6Extensions.

As DecodeIPV60ptions is processing hop-by-hop headers a count of the extension headers
(p—>ip-extension_count) is compared to a set value for the maximum number of extension
headers (IP6_EXTMAX). This would not normally be an problem, however since IP6_EXTMAX
is hardcoded to 40, when the p->ip_extension_count exceeds this set maximum, the switch

cases that set hdrlen are never reached. In this event, hdrlen is never updated.

Figure 4.34 shows a few of the switch cases where hdrlen is set and passed

back to DecodeIPV6Extensions, where the next header processed. At this point,
DecodeIPV6Extensions calls back to DecodeIPV60ptions until IP6_EXTMAX is hit and then
it loops in this state indefinitely between DecodeIPV60ptions and

DecodeIPv6Extensions.

80

29 if(p->ipb_extension_count < IP6_EXTMAX)

31 p->ip6_extensions[p->ipb_extension_count].type = type;

32 p->ip6_extensions[p->ip6_extension_count].data = pkt;

EE]

34 // TBD add layers for other ip6 ext headers

35 switch (type)

36 {

37 case IPPROTO_HOPOPTS:

38 if (len < sizeof(IP6HopByHop))

39 {

40 DecoderEvent(p, DECODE_IPVE_TRUNCATED_EXT,

a DECODE_IPV6_TRUNCATED_EXT_STR,

42 1, 1);

43 return;

44 }

45 hdrlen = sizeof(IP6Extension) + (exthdr->ipbe_len << 3);
46 if (CheckIPVeHopOptions(pkt, len, p) == @)

47 PushLayer(PROTO_IP&6_HOP_OPTS, p, pkt, hdrlen);

43 break;

49

50 case IPPROTO_DSTOPTS:

51 if (len < sizeof(IPEDest))

52 {

53 DecoderEvent(p, DECODE_IPVE_TRUNCATED_EXT,

54 DECODE_IPV6_TRUNCATED_EXT_STR,

55 1, 1)

56 return;

57 }

53 if (exthdr->ip6e_nxt == IPPROTO_ROUTING)

59 {

&0 DecoderEvent(p, DECODE_IPVE_DSTOPTS_WITH_ROUTING,
61 DECODE_IPV6_DSTOPTS_WITH_ROUTING_STR,
62 1, 1);

€3 }

64 hdrlen = sizeof(IP6Extension) + (exthdr->ipbe_len << 3);
65 if (CheckIPVeHopOptions(pkt, len, p) == @)

66 PushLayer(PROTO_IP6_DST_OPTS, p, pkt, hdrlen);
67 break;

[

2] case IPPROTO_ROUTING:

Figure 4.34: Switch Cases in DecodeIPV60ptions

Figure 4.35 illustrates the recursion between DecodeIPV60ptions and

DecodeIPV6Extensions, where hdrlen is always zero.

DecodelPV6Extensions

Hdrlen=0

DecodelPV60ptions

Figure 4.35: lllustration of recursion in DecodeIPV60ptions

81

Possible Fix

Figure 4.36 displays a potential simple fix for decode.c that prevents DecodeIPV60ptions
from looping indefinitely once ip6_extension_count is equal to or greater than IP6_EXTMAX
by adding an else statement to the function that allows it to return when hdrlen has not be
set. Note that this is not the only solution, only a quick simple fix. In fact, after researching this
problem further, we discovered that the Sourefire team had fixed this in the current development
version (2.9.2.1) released 24 January, 2012.

128

120 case IPPROTO_AH:

130 /* Auth Headers work in both IPv4 & IPvb, and their lengths are
131 given in 4-octet increments instead of 8-octet increments. */
132 hdrlen = sizeof(IP6Extension) + (exthdr->ip6e_len << 2);
133 break;

134

135 default:

136 hdrlen = sizeof(IP6Extension) + (exthdr->ip6e_len << 3);
137 break;

138 3}

139

140 p->ipb_extension_count++;

141 }

142 /* Note: potential 128 hop-by-hop headers "fix" */

143 else {

144 printf("Should return because I never set hdrlen\n");

145 return;

146

147

148 ifChdrlen > len)

149 {

150 DecoderEvent(p, DECODE_IPVG_TRUNCATED_EXT,

151 DECODE_IPV6_TRUNCATED_EXT_STR,

152 1, 13;

153 return;

154 1

155

156 DecodeIPVoExtensions(*pkt, pkt + hdrlen, len - hdrlen, p);

157 1

158

Figure 4.36: Example code for possible fix for SNORT 128 invalid hop-by-hop header bug

82

Figure 4.37 displays the SoureFire team’s fix for decode.c in version 2.9.2.1.

void DecodeIPVBOptions(int type, const uint8_t *pkt, uint3Z2_t len, Packet *p]
{

IPBExtension *exthdr;

uint32_t hdrlen = @;

/* This should only be called by DecodeIPVW6 or DecodeIPVGExtensions
* 50 no validation performed. Otherwise, uncomment the following: */
A* AF(IPH_IS_VALID(p)) return */

pc.ipveopts++;
/* Need at least two bytes, one for next header, one for len. */

/* But size is an integer multiple of 8 octets, so 8 is min. */
if(len < sizeof(IP6Extension))

{
DecoderEvent(p, DECODE_IPVG_TRUNCATED_EXT,
DECODE_IPVG_TRUNCATED_EXT_STR,
1, 1
return;
}

if (p->ip6_extension_count == IPG_EXTMAX)
DecoderEvent(p, DECODE_IP6_EXCESS_EXT_HOR,
DECODE_IP6_EXCESS_EXT_HDR_STR,

SIS
return;

Figure 4.37: SNORT 2.9.2.1 fix to 128 hop-by-hop header bug. From [23]

4.6 Fuzz Testing

Fuzz testing was completed as discussed in §3.5. During this testing 19 test cases were con-
ducted and over 39 million packets were sent. These fuzz tests covered ICMPV6 services (echo
request, neighbor solicitations and advertisements, and router advertisements), MLD services
(report, done, and query packets), flag and byte type values, fragmentation, hop-by-hop headers,
as well as router alerts and jumbo packet headers.

As discussed in §3.5, each NIDSs was run inside GDB during fuzzing while we waited for faults
created by the fuzzed packets. During this process, we encountered no ill effects to fuzzing from
any of our selected NIDS. Since our intent was to fuzz test the NIDSs reactions to changes in the
traffic they were monitoring, any impact on the target host was not recorded. However during
testing, we observed no impact on the target host either. Unfortunately, upon completion, the
results of our fuzzing revealed no impact or data. Although these results were disappointing,

they did aid us in answering the question of IPv6 readiness for each of our NIDS.

83

THIS PAGE INTENTIONALLY LEFT BLANK

84

CHAPTER 5:

Conclusions

In this thesis we set out to answer two primary questions: which exploits that exist with IPv4
signatures are feasible or infeasible with conversion to IPv6, and whether popular open source
NIDSs detect these IPv6 attacks. Both of these questions derive from a single requirement: are
commonly used Network Intrusion Detection Systems ready for IPv6? To answer this question
we examined common IPv4 attacks and exploits and classified them in thirteen attack cate-
gories. We then converted IPv4 attacks from each class their IPv6 equivalent. When direct
conversion was not possible, we used attacks analogous to their IPv4 counterpart. Our IPv6
attacks consisted of a combination of SCAPY [31] scripts and programs from the THC IPv6-
attack-toolkit [32].

To evaluate the converted attacks, we created a controlled virtual test bed and configured two
two open source NIDSs (BRO and SNORT). Each attack was sent in the testing environment,
followed by an exhaustive process of NIDS and systems log inspection in order to provide

detailed detection results and to arrive at final conclusions.

It is important to note that our research was aimed both at a “native” IPv6 environment as well
as a “transitional” one. By transitional, we are referring to the period of time that IPv4 and
IPv6 will coexist by means of any transition mechanisms that may be utilized. This transitional
period, where the use of Tunnels, Translation, and Transition mechanisms will be required,
is intended to bridge the gap between where we are today and when all systems are IPv6 or
“native.” It is important to understand the distinction between the native and transitional periods,

as well as the vulnerabilities associated with each.

Our original intent had each NIDS being configured as an “out of the box™ solution in order to
give us an initial picture of readiness. However, in reality there are quite a few configuration
changes that must be made to each NIDS. One such configuration change required had to do
with the reconnaissance attack or port scan. In order for SNORT to detect these scans, operators
need to enable, via configuration, sfPortscan in snort.conf. This was just one of many issues

that led us to conclude that neither of these NIDSs are “out of the box” solutions for IPv6.

85

For example, rule/policy “tuning” will always need to take place. Thus, our definition of readi-
ness is one where the NIDS is configured to detect our IPv4 attacks (for ground-truth) and is

configured for IPv6.

Overall IPv6 readiness was determined from actual attack detection, or the ability to detect
with slight modification (e.g., rules, signatures, or policies). From our research results shown
in Table 4.2 we determined that SNORT initially detected 52 percent of attacks sent. We also
determined that the non-alerted attacks, the remaining 48 percent, could be easily detected with
locally written rules. Any detection issues discovered with SNORT were in its configuration
or rules, which can be instituted by system administrators, and is therefore not a fundamental
software or design limitation. This leads to the determination that SNORT is indeed IPv6 ready,
requiring only a handful of rules and configuration changes to post a detection success rate of

95 percent in a “Native” environment.

BRO on the other hand had an 8 percent detection success rate. This detection success rate
would have been lower had we not enabled built in “event tracing” which seemed to enable
port scan detection. In an attempt to be thorough, an exhaustive debugging process was used
to determine why BRO performed poorly. We found that in many cases BRO is not rebuilding
IPv6 events in the EVENT ENGINE, and that in other cases BRO is not appropriately deal-
ing with IPv6 addresses themselves. For example, when we transferred Malware.exe via FTP,
the function Dotted_to_Address in Net_Util.cc returns a “Bad Dotted Address” error. Another
suspicious indication from BRO was the actual packets received versus the reported packets re-
ceived by BRO. When sending portscan6.py, we transmitted over 6000 packets, however BRO
reported on only 46 of those packets, despite logging all of the packets in the event.bst log. We
were unable to determine the root cause of this issue, however we believe it to be related to
IPv6 stream reconstruction. This event reconstruction problem is not an implementation issue,
it is more fundamental in nature and will require more development from the BRO design team.
When considering the IPv6 readiness of BRO, the issues we discovered along with our noted

detection percentage lead to the conclusion that BRO is not yet IPv6 ready.

Figure 5.1 summarizes our results and shows the detection percentage for attacks in both the

“Native” and Transitional environments.

86

Dection Percentages

100

95

90

80

70

60

50 B Native

B Transitional

40

30

20

BRO SNORT BRO2

Figure 5.1: IPv6 attack detection percentages

5.0.1 A Bugin SNORT
The discovery of a bug in SNORT 2.9.0.5 during testing brings to light a few key points. First, it

is possible cause this version of SNORT by stacking together enough, in this case more than 40,
hop-by-hop extension headers. After failing open, SNORT is no longer operational, allowing
an attacker to fully circumvent the NIDS. The result of sending these hop-by-hop headers,
as discussed in §4.5, is the NIDS entering a state of infinite recursion and not being able to
process any subsequent packets. To further complicate matters, while in this state of recursion
SNORT appears to be running correctly, giving the operator no indication that it is not actually
processing traffic. The end result allows a hacker to evade the NIDS and pass any traffic that
they want onto a victim’s network completely undetected. This becomes a serious security
problem for anyone running this or an earlier version of the SNORT NIDS. The silver lining
here is that the current version of SNORT (2.9.2.1 as of the time of this writing) released on
24 January, 2012, inadvertently fixed this problem while attempting to fix an unrelated problem
with Teredo. The second key point is that even though SNORT is IPv6 ready there may still
be similar vulnerabilities in the code or new ways in which to evade it. This requires constant
update management by both SNORT developers and users. Finally, this bug highlights the

importance of research and testing (e.g., like that in this thesis and Fuzz testing).

87

5.0.2 Fuzzing

We had expected that in response to Fuzz tests conducted, one of the NIDSs would have
alarmed, halted, been circumvented, or given some other than normal indication, however this
was not the case. Even though the Fuzz testing results seen in §4.6 were not what we expected,
there is value in Fuzzing. The Fuzz tests performed in this thesis aided in the development of an
IPv6 readiness conclusion and possibly set the stage for further Fuzzing. Our Fuzz tests were
limited to services (e.g., [CMPv6, hop-by-hop headers, flags) and did not go any more granular.
It is possible to generate Fuzzed packets that are more granular in order to test the NIDS’s re-
action to all kinds of altered and invalid traffic. We have left this type of Fuzz testing for future

work.

5.1 Recommendations
This section lists recommendations based on our research data and conclusions in order to

improve IPv6 readiness and detection performance for the selected NIDSs.

e Neither NIDSs implement IPv6 by default. If the installer does not carefully research
configuration options before installation, they will not get IPv6 support. This could be
alleviated by simply enabling IPv6 support by default, or possibly making it easily se-
lectable for those users and administrators who may have specific protocol needs. As

support for IPv6 grows, so will the need for the NIDSs that protect it.

e Development of IPv6 specific rules is needed. A drafted set of default IPv6 rules would
bolster the NIDS and enhance out of the box IPv6 readiness. This set of rules could be
implemented, stored, and developed for each NIDS, or official as part of cross-NIDS,
standardized, rule sets such as SNORT’s VRT [23].

e Continuously monitor vulnerability or exploit development sites. For example, the CVE
[53] or THC [32] could provide powerful reference tools for NIDS developers in order to

stay on top of attack and vulnerability trends.

e Existing tool kits and exploits, such as those found on the THC or Backtrack [59], could
be used as a NIDS and rule set regression tool. Tools found on these sites should be
tested and implemented during the version development process. This practice would

greatly improve NIDS IPv6 readiness.

88

e While investigating the bug in SNORT 2.9.0.5, we discovered that the NIDS failed open
allowing all subsequent traffic after the fault to pass without report. In cases like this, in
order to improve security and protection, we recommend that NIDSs fail closed. In other
words, where possible we suggest that system faults shut down the NIDS in such a way
that the operator/administrator can not help but notice. This process improvement will
not only improve the protection offered by the NIDS but also enhance bug reporting and
development.

5.2 Future Work

In our research we have done the ground work and have made an initial determination of the
IPv6 readiness of the tested NIDSs. Future work to enhance or complete our effort along with
actually making the NIDSs IPv6 ready and the discovery of additional attacks may be accom-
plished in the following ways:

e Testing should continue in the area of exploits. This should include payload delivery,
remote execution, and transitional mechanisms such as tunnels and translation devices.

Increase effort should be made to monitor and use developments listed in the CVE’s [53]

e BRO development to increase IPv6 support in the areas of the items discovered in this
research as well as those that will be discovered with more exhaustive debugging. For
both version 1.5.3 and version 2.0, more detailed work on IPv6 will be needed and it is
rumored that the next iteration of BRO development will be solely to work these IPv6

issues.

e SNORT rules/signatures and BRO polices should be written to enhance detection. The
bolstering of built-in databases and repositories such as VRT [23] for specific IPv6 issues
and attacks would enhance the protection offered by both NIDS tested. For SNORT,
additional rules to detect Router Advertisements, and Neighbor Solicitations as well as

specific IPv6 attacks would provide a good foundation for protection.

e Finding additional IPv6 attack vectors remains an area of great need. Fuzz [10] testing
could be used as a tool to discover new attacks, as well as to determine the impact on
each of the NIDSs, and may enhance development in the areas of Intrusion Detection and

Prevention.

89

e Examination of False Alarm rates would greatly increase the readiness and performance
of each NIDS. This should include a close look into the false-positive and false-negative
rates of not only this research’s test bed environment, but also real world IPv6 traffic

environments.

Finally, the growing adoption of IPv6, along with the DoD and industry push for it, enhances
the need for IPv6 readiness in our Networks and Intrusion Detection Systems. It is hoped that
the research provided in this thesis lays the foundation for an increased awareness and work

towards general IPv6 security posture readiness.

90

REFERENCES

[1] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6) Specification.” RFC 2460
(Draft Standard), Dec. 1998. Updated by RFCs 5095, 5722, 5871.

[2] J. Postel, “Internet Protocol.” RFC 791 (Standard), Sept. 1981. Updated by RFC 1349.

[3] Hurricane Electric Internet Services, “Hurricane electric ipv4 exhaustion counters.”
http://ipv6.he.net/statistics, April 2011.

[4] K. Claffy, “Tracking IPv6 Evolution: Data We Have and Data We Need,” ACM SIGCOMM
Computer Communication Review (CCR), pp. 43—48, Jul 2011.

[5] J. St Sauver, “ipv6 technical challenges,” NSFTA Canada, Montreal, Quebec, Nov. 2010.

[6] A. Choudhary, “In-depth analysis of ipv6 security posture,” in CollaborateCom, pp. 1-7,
20009.

[7] D. Zagar and K. Grgic, “Ipv6 security threats and possible solutions,” World Automation
Congress, 2006.

[8] S. Hogg and E. Vyncke, IPv6 Security. Cisco Press, 1st ed., 2008.

[9] S. Kent and R. Atkinson, “Security Architecture for the Internet Protocol.” RFC 2401
(Proposed Standard), Nov. 1998. Obsoleted by RFC 4301, updated by RFC 3168.

[10] B. Miller, L. Fredriksen, and B. So, “An empirical study of the reliability of unix utilities,”
Commun. ACM, vol. 33, pp. 32-44, December 1990.

[11] P. Hart, “A management perspective of the department of defense (dod) internet protocol
version 6(ipv6) transition plan, where it is today, and where it needs to be by the year
2008,” Master’s thesis, Naval Postgraduate School, Monterey, CA, 2006.

[12] TAB and IESG, “TAB/IESG Recommendations on IPv6 Address Allocations to Sites.”
RFC 3177 (Informational), Sept. 2001. Obsoleted by RFC 6177.

[13] S. Chozos, “Implementation and analysis of a threat model for ipv6 host autoconfigura-
tion,” Master’s thesis, Naval Postgraduate School, Monterey, CA, 2006.

[14] R. Hinden and S. Deering, “Internet Protocol Version 6 (IPv6) Addressing Architecture.”
RFC 3513 (Proposed Standard), Apr. 2003. Obsoleted by RFC 4291.

[15] TANA, “lana-port numbers.” http://www.iana.org/assignments/service-names-port-
numbers/service-names-port-numbers.xml, Oct. 2011.

[16] J. Postel, “Internet Control Message Protocol.” RFC 792 (Standard), Sept. 1981. Updated
by RFCs 950, 4884.

[17] A. Conta, S. Deering, and M. Gupta, “Internet Control Message Protocol (ICMPv6) for
the Internet Protocol Version 6 (IPv6) Specification.” RFC 4443 (Draft Standard), Mar.
2006. Updated by RFC 4884.

91

[18] T. Narten, E. Nordmark, W. Simpson, and H. Soliman, “Neighbor Discovery for IP version
6 (IPv6).” RFC 4861 (Draft Standard), Sept. 2007. Updated by RFC 5942.

[19] R. Hinden and S. Deering, “IP Version 6 Addressing Architecture.” RFC 4291 (Draft
Standard), Feb. 2006. Updated by RFCs 5952, 6052.

[20] S. Thomson and T. Narten, “IPv6 Stateless Address Autoconfiguration.” RFC 2462 (Draft
Standard), Dec. 1998. Obsoleted by RFC 4862.

[21] SourceForge, “Jpcap.” http://sourceforge.net/projects/jpcap/, Sept. 2011.

[22] J. Kurose and K. Ross, Computer Networking: A Top-Down Approach. USA: Addison-
Wesley Publishing Company, 5th ed., 2009.

[23] Sourcefire, “Snort homepage.” http://www.snort.org, April 2011.
[24] The Bro Project, “Bro homepage.” http://www.bro-ids.org, April 2011.

[25] A. Mitra, W. Najjar, and L. Bhuyan, “Compiling pcre to fpga for accelerating snort ids,” in
Proceedings of the 3rd ACM/IEEE Symposium on Architecture for networking and com-
munications systems, ANCS *07, (New York, NY, USA), pp. 127-136, ACM, 2007.

[26] A. Arboleda and C. Bedon, “Snort diagrams for developers,” Tech. report, Universidad
del Cauca - Colombia, 2005.

[27] R. Sommer and V. Paxson, “Enhancing byte-level network intrusion detection signatures
with context,” Proceedings of the 10th ACM conference on Computer and communication
security CCS 03, p. 262, 2003.

[28] M. C. Moya, “Analysis and evaluation of the snort and bro network intrusion detection
systems,” Sept. 2008.

[29] SourceForge, “Tcpdump.” http://www.tcpdump.org, Feb. 2011.

[30] Internet Society, “World ipv6 day.” http://www.worldipvéday.org, June 2011.
[31] SecDey, “Scapy homepage.” http://www.secdev.org/projects/scapy, April 2011.
[32] V. Hauser, “Thc-ipv6 attack tool kit.” http://www.thc.org/thc-ipv6, April 2011.

[33] C. Caicedo, J. Joshi, and S. Tuladhar, “Ipv6 security challenges,” Computer, vol. 42, pp. 36
—42, feb. 2009.

[34] S. Convery and D. Miller, “Ipv6 and ipv4 threat comparison and best-practice evaluation
(v1.0),” www.seanconvery.comv6-v4-threats.pdf, March 2004.

[35] M. Crawford and B. Haberman, “IPv6 Node Information Queries.” RFC 4620 (Experi-
mental), Aug. 2006.

2

[36] D. Morr, “Thoughts on ipv6 security, take two.
http://www.personal.psu.edu/dvm105/blogs/ipv6/2009/05/thoughts-on-ipv6-security-
take.html, May 2009.

92

[37] S. Bellovin, A. Keromytis, and B. Cheswick, “Worm propagation strategies in an ipv6
internet,” USENIX ;login, vol. 31, pp. 70-76, February 2006.

[38] S. Staniford, V. Paxson, and N. Weaver, “How to own the internet in your spare time,” in
Proceedings of the 11th USENIX Security Symposium, (Berkeley, CA, USA), pp. 149-167,
USENIX Association, 2002.

[39] E. Nerakis, “Ipv6 host fingerprint,” Master’s thesis, Naval Postgraduate School, Monterey,
CA, 2006.

[40] R. Hinden and S. Deering, “IPv6 Multicast Address Assignments.” RFC 2375 (Informa-
tional), July 1998.

[41] P. Ferguson and D. Senie, “Network Ingress Filtering: Defeating Denial of Service At-
tacks which employ IP Source Address Spoofing.” RFC 2827 (Best Current Practice),
May 2000. Updated by RFC 3704.

[42] J. Arkko, J. Kempf, B. Zill, and P. Nikander, “SEcure Neighbor Discovery (SEND).” RFC
3971 (Proposed Standard), Mar. 2005.

[43] M. Pohl, “Experimentation and evaluation of ipv6 secure neighbor discovery protocol,”
Master’s thesis, Naval Postgraduate School, Monterey, CA, 2007.

[44] A. Conta and S. Deering, “Internet Control Message Protocol (ICMPv6) for the Internet
Protocol Version 6 (IPv6) Specification.” RFC 2463 (Draft Standard), Dec. 1998. Obso-
leted by RFC 4443.

[45] Hurricane Electric Internet Services, “Hurricane electric homepage.” http://ipv6.he.net/,
April 2011.

[46] C. Aoun and E. Davies, “Reasons to Move the Network Address Translator - Protocol
Translator (NAT-PT) to Historic Status.” RFC 4966 (Informational), July 2007.

[47] Oracle, “Virtualbox homepage.” https://www.virtualbox.org/, Sept 2011.

[48] Microsoft Corporation, “Microsoft windows 7 homepage.”
http://windows.microsoft.com/en-us/windows7/products/home, Sept 2011.

[49] Canonical Ltd., “Ubuntu homepage.” http://www.ubuntu.com/, Sept 2011.
[50] NMAP, “Nmap homepage.” http://nmap.org/, Sept 2011.

[51] S. Deering, W. Fenner, and B. Haberman, “Multicast Listener Discovery (MLD) for IPv6.”
RFC 2710 (Proposed Standard), Oct. 1999. Updated by RFCs 3590, 3810.

[52] R. Vida and L. Costa, “Multicast Listener Discovery Version 2 (MLDv?2) for IPv6.” RFC
3810 (Proposed Standard), June 2004. Updated by RFC 4604.

[53] MITRE, “Cve homepage.” http://cve.mitre.org/, Jan 2012.

[54] C. Evans, “Vsftpd setup page.” https://security.appspot.com/vsftpd.html, Dec 2011.

93

[55] Symantec, “Symantec slackbot page.” http://www.symantec.com/security _response/
writeup.jsp?docid=2001-100912-0421-99, Dec 2011.

[56] Jotti, “Jotti homepage.” http://virusscan.jotti.org, Dec 2011.

[57] Free Software Foundation Inc., “Gnu project debugger homepage.”
http://www.gnu.org/s/gdb/, Dec 2011.

[58] Wireshark Foundation, “Wireshark homepage.” http://www.wireshark.org/, Dec 2011.
[59] BackTrack, “Backtrack-linux homepage.” http://www.backtrack-linux.org/, Jan 2012.

94

Referenced Authors

Aoun, C. 36
Arboleda, A. 9, 20
Arkko, J. 33
Atkinson, R. 2, 26

BackTrack 88

Bedon, C. 9, 20
Bellovin, S. 28, 29, 35
Bhuyan, L. 19, 24-26

Caicedo, C. 9, 26, 30, 34, 35

Canonical Ltd. 41

Cheswick, B. 28, 29, 35

Choudhary, A. 2

Chozos, S. 6,7, 15-17

Claffy, K. 1

Conta, A. 13, 35

Convery, S. 26, 27, 29-34, 36,
46, 47

Costa, L. 47

Crawford, M. 26

Davies, E. 36
Deering, S. 1, 5,7, 8, 10-13, 15,
16, 31, 32, 35, 47

Evans, C 50

Fenner, W. 47

Ferguson, P. 33

Fredriksen, L. 2, 39, 89

Free Software Foundation Inc.
51, 55,76

Grgic, K. 2, 26-28, 30, 32
Gupta, M. 13

Haberman, B. 26, 47

Hart, P. 5

Hauser, V. 13, 24, 41, 43, 47, 49,
51, 85, 88

Hinden, R. 1, 5, 7, 8, 10-12, 15,
16, 31, 32, 35

Hogg, S. 2, 7-14, 24

Hurricane Electric Internet

Services 1, 36

IAB 6

IANA 12

IESG 6

Internet Society 24

Joshi, J. 9, 26, 30, 34, 35
Jotti 50

Kempf, J. 33

Kent, S. 2, 26
Keromytis, A. 28, 29, 35
Kurose, J. 18, 19

Microsoft Corporation 41

Miller, B. 2, 39, 89

Miller, D. 26, 27, 29-34, 36, 46,
47

Mitra, A. 19, 24-26

MITRE 49, 88, 89

Morr, D. 26

Moya, M. Calvo 23

Najjar, W. 19, 24-26
Narten, T. 15, 16
Nerakis, E. 31
Nikander, P. 33

95

NMAP 42, 53
Nordmark, E. 15, 16

Oracle 41

Paxson, V. 9, 23, 28
Pohl, M. 34
Postel, J. 1, 5, 12, 13

Ross, K. 18, 19

SecDev 24, 42, 43, 85
Senie, D. 33
Simpson, W. 15, 16
So, B. 2, 39, 89
Soliman, H. 15, 16
Sommer, R. 9, 23
Sourcefire 9, 11, 19, 78, 83, 88,
89
SourceForge 17, 23, 28
St Sauver, J. 1, 2
Staniford, S. 28
Symantec 50

The Bro Project 19, 22, 23
Thomson, S. 16
Tuladhar, S. 9, 26, 30, 34, 35

Vida, R. 47
Vyncke, E. 2, 7-14, 24

Weaver, N. 28
Wireshark Foundation 54

Zagar, D. 2, 26-28, 30, 32
Zill, B. 33

THIS PAGE INTENTIONALLY LEFT BLANK

96

Initial Distribution List

1. Dudly Knox Library
Naval Postgraduate School
Monterey, California

2. Defense Technical Information Center
Ft. Belvoir, Virginia

3. Head, Information Operations and Space Integration Branch,
PLI/PP&O/HQMC, Washington, DC

97

