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ABSTRACT 

The thesis addressed the control system development for a high-speed surface vessel. In 

particular, the work utilized modern adaptive control techniques to design a speed 

following controller for the SeaFox ASV; the vehicle features three distinct speed, 

regimes including the displacement, rapid transition and planing regimes. The study 

started with the collection of experimental data required to characterize the operating 

modes and the inherent nonlinear phenomena of the high-speed ASV. Then, it proceeded 

to system identification study with an objective to develop a mathematical model of the 

vehicle thus aiming to represent the ASV’s speed dynamics at various regimes and to 

facilitate control system development. After completing the model development, three 

speed following controllers were designed: A classical Proportional-Integral-Derivative 

(PID), a nonlinear Model Reference Adaptive (MRAC) and a L1 Adaptive Controller. 

The motivation behind the choice of three different controllers is two-fold.  First, 

comparison of the linear and nonlinear control approaches is desired to better illustrate 

the achievable control architecture limitations. Second, comparing two types of nonlinear 

adaptive control architectures allowed the selection of the best control algorithm for 

operating the ASV speed in the presence of highly non-linear dynamics and significant 

disturbances acting on it.  Furthermore, each controller is integrated with the SeaFox 

mathematical model and implemented with and without realistic operational disturbances. 

This provided a basis for objective comparison among the controllers and gave a means 

to demonstrate their relative robustness and performance characteristics. Finally, the 

MRAC and the PID controller were implemented onboard the actual SeaFox ASV and 

tested in numerous sea-trials under natural conditions to once again demonstrate the 

advantages and limitations of the chosen control architectures. 
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I. INTRODUCTION 

A. SEAFOX 

The SeaFox is a 15′5″ rigid hull inflatable boat (RHIB) originally designed by 

Northwind Marine.  It has a JP-5 fueled water jet propulsion system and is capable of 

reaching speeds over 30 knots.  The SeaFox has the option to be controlled manually, 

remotely using a handheld controller, or automatically using a GPS-based waypoint 

guidance system.  For this thesis, we consider employment of the RHIB as an 

Autonomous Surface Vehicle (ASV).  Employment possibilities of the RHIB include 

naval applications such as  Riverine Operations, Maritime Interdiction Operations (MIO), 

Port Security, and Intelligence, Surveillance, and Reconnaissance (ISR) missions 

according to [1], [2].   Focusing on the Riverine community, the Center for Autonomous 

Vehicle Research (CAVR) at the Naval Postgraduate School (NPS), in a combined effort 

with Virginia Tech, are developing capabilities for autonomous reconnaissance in 

unknown environments.  The SeaFox ASV must possess the ability to autonomously 

navigate in restricted waterway while avoiding obstacles above and below the waterline.  

This capability would also allow troop or supply movement without the need of a boat 

crew, thus minimizing the possibility of attack on military personnel.  During MIO, a 

network of autonomous vessels could be used to cooperatively localize and approach 

suspicious surface vessels without putting service members in harm’s way.  An overall 

goal of CAVR is to make the SeaFox ASV a completely autonomous vehicle capable of 

operating within a network of autonomous vehicles under variable environmental 

conditions and mission load outs without the need of re-tuning the onboard control 

system prior to every mission. 

B. DESIGN REQUIREMENTS  

To be able to accomplish these missions, the SeaFox ASV must have greater 

levels of onboard autonomy. This must include the ability to: 

1. Build and update an internal representation of the environment through its 

sensors. 
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2. Localize its own position with respect to the local operational 

environment. 

3. Determine the optimal path to reach the desired destination. 

4.  Automatically navigate the recommended course in coordination with 

other autonomous vehicles. 

These basic requirements for a vehicle to be autonomous enable behaviors such as 

obstacle and vessel tracking and avoidance.   

ASV position localization is performed by an onboard Global Positioning System 

(GPS) and Inertial Measurement Unit (IMU). The other three requirements are being 

addressed by a joint project for ASV Riverine Autonomy between the Naval Postgraduate 

School and Virginia Tech.  This is being achieved in part using forward looking sonar 

and a surface scanning laser [3]. 

An important enabling component of this research is the ability to vary throttle 

speeds and actuate to the desired speeds with minimal errors. In riverine operations, with 

potentially significant river currents, a robust throttle controller is a critical component of 

greater ASV autonomy. 

C. PROBLEM STATEMENT 

For most powerboats there are three different operating regimes: displacement, 

transition, and planing.  Marshall [4] states that in the displacement mode, the hull is 

supported by buoyancy.  In the transition region, the hull is still supported predominantly 

through buoyancy but the hull shape begins to produce hydrodynamic lift as well.  In the 

planing mode almost all of the boat’s weight is supported by hydrodynamic lift (Figures 1 

and 2).  
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Figure 1.   SeaFox Operating in the  
Displacement Regime 

Figure 2.   SeaFox Operating in the 
Planing Regime 

 

Figure 3 shows a typical speed plot as SeaFox accelerates from 0% to 75% 

throttle command.  It can be seen that there are three distinct regions in which the speed 

profile can be divided; the displacement and planing regimes with a rapid transition 

between the two.  Even though the SeaFox ASV exhibits the three regime behavior, it 

only has the ability to operate in the displacement and planing regimes when given a 

constant throttle command.  Past efforts at speed control have been unsuccessful because 

each regime has very distinct hydrodynamic characteristics which contribute to the 

nonlinearities in the overall velocity model, thus making conventional control 

architectures inadequate. 
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Figure 3.   SeaFox Speed Regimes 

D. THESIS OBJECTIVES 

The objective of this thesis is to develop and test a single speed controller that 

will adapt to the hydrodynamics of different operating regimes.  To accomplish this, a 

mathematical model representing SeaFox’s throttle versus speed dynamics is developed.  

The model represents the distinct characteristics of each speed regime.  Next, three 

controllers are developed, namely, a Proportional-Integral-Derivative (PID), a Model 

Reference Adaptive Controller (MRAC), and a L1 controller.  The intent of developing 

three controllers is to facilitate a comparative study between standard linear control 

theory (PID) and relatively new adaptive control theory (MRAC and L1).  Next simulated 

trials are presented with the three controllers. Finally, the PID and MRAC controllers are 

implemented within the control structure of SeaFox and results are presented. The thesis 

concludes with final remarks and recommendations for future work.  
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II. DATA GATHERING AND MODELING 

A. CHAPTER OVERVIEW 

This chapter presents an analysis of experimental data collected at Lake San 

Antonio near Paso Robles, CA. The data is used to implement a mathematical model of 

SeaFox in a Matlab Simulink environment. The intent is to develop a model which is 

accurate enough to develop speed controllers capable of accommodating the unique 

characteristics of the SeaFox ASV. 

B. MODELING APPROACH 

Many different approaches have been taken to model surface vessels dynamics.  

One common approach is to model the vessel dynamics based on equations of motion.  

Triantafyllou and Hover [5] and Fossen [6] have taken this approach to develop extensive 

methods for modeling surface vessels using a standard six degree-of-freedom (6DOF) 

model of the vehicle’s dynamics.  These models tend to work well when all of the control 

forces are known and the vessel remains in the displacement regime but as the vessel 

transitions through regimes, the dynamics change, thereby invalidate the model.   

Savitsky [7] has done extensive work in modeling hydrodynamic characteristics 

in planing surface vessels but, as with non-planing craft, a thorough knowledge of the 

vessel’s drag characteristics and the propulsion performance is required.  Determining the 

drag coefficients for the SeaFox ASV would require a long series of tow-testing 

experiments, or a computer model to be in analyzed using Computational Fluid 

Dynamics (CFD) software to develop a table of drag coefficient as a function of speed 

and/or trim angle.  A series of field experiments would also be required to completely 

understand the SeaFox water jet characteristics as well as the interaction between the air 

and water boundaries within each individual regime.  Even if this were done, it is still not 

possible to develop a mathematical model to represent the vessel’s behavior within the 

transition region, since the vessel cannot remain in transition at steady state.   

A second approach is to collect experimental data that plots the ASV’s speed as a 

function of the throttle command.  With this approach it is possible to gather data with 
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numerous throttle changes and, using a System Identification process, develop models 

that represent all three regimes.  The drawback to this approach is that the resulting 

models are valid only for a given SeaFox loading and only for conditions close to those 

experienced during the data collection. 

It was determined that the model based on experimental data was the most 

suitable because it allowed modeling of the transition regime and captured the essential 

nonlinearities and their bounds.  This approach also did not require additional equipment 

and reduced the amount of field experimentation required significantly. 

C. DATA GATHERING 

Experimental data was gathered on Lake San Antonio near Paso Robles, CA.  

Lake San Antonio was selected because it provided the most benign test environment 

available.  During early morning conditions, wind and current had very little effect on 

SeaFox’s speed.  These effects were considered negligible and, therefore, minimized the 

model inaccuracies induced by outside forces.  

When using waypoint navigation, SeaFox is programmed to follow straight line 

paths at a constant velocity, not conduct a series of high-speed maneuvers in succession.  

Therefore, constant heading trajectories were considered a reasonable approach to data 

collection.  In addition, holding the heading constant ensured that the vehicle speed 

changes were due primarily to the thrust provided by the water jet combined with the 

vessel drag.  Had turns been executed during these sea trials, turning dynamics would 

have been coupled with speed dynamics, thereby corrupting the throttle-to-speed 

relationship.   

The SeaFox throttle input is given in terms of throttle percentage.  The allowable 

throttle percentage inputs range from 0% to 99%.  When collecting the data, the goals 

were to capture the vehicle dynamics associated with various step inputs and to determine 

the crossover points between the displacement, transition, and planing regimes.  The 

following list details the throttle step inputs that were issued to SeaFox during the sea 

trials. 
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• From 0% to 99% then 99% to 0% 

• From 0% to 99% and back down to 0% in 50% increments 

• From 0% to 99% and back down to 0% in 25% increments 

• From 0% to 99% and back down to 0% in 10% increments 

• When an approximation of the throttle setting at which transition occurs is 

determined, 1% increments beginning at 5% prior to the expected 

transition point. 

Figure 4 shows a representative sample of data gathered during the field 

experimentation.  The blue line shows the ordered throttle command while the red line 

shows the vehicles speed.  It can be seen that the speed data taken from the GPS unit was 

quite noisy, especially at higher speeds.  This is, in part, due to GPS sensor noise caused 

by rapid changing of its attitude toward the open sky resulted from interaction between 

the hull and the water surface.  It was noticed that when SeaFox was planing, very little 

of its hull was in contact with the water; therefore, even though the conditions were 

relatively calm, any disturbance on the water surface had a much greater effect of the 

vessel’s speed.   

 
Figure 4.   Speed and Throttle Command Data from Field Experimentation 
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D. MOTIVATION FOR MODEL STRUCTURE 

Initial analysis of the recorded data revealed overshoot behavior in the vehicle’s 

velocity when given a step command, especially in the planing regime.  This behavior is 

indicative of a second order system, therefore the model structure was developed based 

on the following generic second order linear model [8]: 

 
2

n nx+2ζω x+ω x=0   

where:  

 x is the vehicle velocity 

 ζ is the damping ratio 

 nω is the natural frequency 

Figure 5 presents the speeds achieved for given throttle commands.  The red line 

represents maximum speed achieved at a specified throttle command during acceleration. 

The blue line represents the minimum speeds achieved during deceleration.  The shaded 

region represents the variation between the maximum and minimum speeds recorded 

while planing.  It can also be seen that the vehicle speed that correlated to the transition 

from the displacement regime to the planing regime was different than the speed that 

correlated with transition from the planing regime to the displacement regime.  For this 

specific set of data, transition from the displacement regime occurred at 4.2 m/s and the 

vehicle would rapidly increase to 15.5 m/s.  When decelerating, transition from the 

planning regime to the displacement regime would occur at 9 m/s and rapidly decelerate 

to 3 m/s.  Due to this hysteresis it was determined that there would need to be six distinct 

sub-systems in the model to accurately depict the three operating regimes as well as 

SeaFox’s behavior during acceleration and deceleration.  The sub-systems were set up to 

represent the regimes as follows: Acceleration while in the displacement, transition, or 

planing regimes, and deceleration while in the displacement, transition, or planing 

regimes. 
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Figure 5.   Throttle vs. Speed from Experimental Data Showing Hysteresis 

E.  SYSTEM IDENTIFICATION 

There are multiple methods in which experimental data can be used to develop a 

mathematical model [9].  Two processes were used while modeling SeaFox experimental 

data: 1) the System Identification Toolbox available in MATLAB™ and 2) a process 

involving the fminsearch function within the MATLAB environment.  Using two 

methods provided a means of comparing and validating the results of the System 

Identification process.  If both methods produce matching results then the parameters can 

be regarded as reasonable and trustworthy estimates of the actual parameters.   

Prior to developing the models, the experimental data needed to be processed to 

remove outliers.  The data was pre-processed using MATLAB’s embedded Curve Fitting 

Toolbox.  The Loess method used creates a smooth data set through linear least-squares 

fitting with a second degree polynomial [10].  This process was completed for all of the 

data sets that appeared to be free of outliers and that were collected from sea trials that 

were 20 seconds or longer in duration. 
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The MATLAB embedded System Identification Toolbox is designed to develop a 

best-fit, user defined model from experimental data sets.  The process in which the plant 

parameters were developed are outlined in [11].  After all of the data sets were pre-

processed they were imported into the System Identification Toolbox.  Because it was 

desired to create a second order linear model to represent each regime, the Process Model 

option was chosen.  To develop the correct structure of the transfer function, the process 

model was set to develop a model of an under-damped system with two poles and a 

delay.  This would produce the parameters of the transfer function: 

d-T s 2
n

2 2
n n

Ke ωG(s)=
s +2ζω s+ω

 

where: 

K is the DC gain 

Td is the time delay in the system 

ζ is the damping ratio 

nω is the natural frequency 

Figure 6 shows the setup of the Process Models GUI.  After the toolbox completed the 

estimation of the model parameters, the values of K, ζ , nω , and the fit percentage were 

recorded for later comparison.  The fit percentage was based on the following equation: 

ˆnorm(y-y)Fit % = 1- *100
norm(y-mean(y))

 
 
 

 

where y is the measured output and ŷ is the simulated model output as outlined in [11] . 

This process was completed for all valid data sets that did not transition out of their 

original regime. Results from this analysis are provided in Appendix A, Tables 1 

through 4.   
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Figure 6.   Process Models GUI 

The second method for determining the transfer function variables utilized the 

fminsearch function as demonstrated in [11].  In this method, a model shown in Figure 7 

was used to determine the error between the actual data and simulated system response 

given values of K, ζ , and nω .  Figure 7 represents a second order model developed in 

Simulink with the input being the recorded throttle commands from the experimental data 

and the output being error between experimental data speed and the speed produced from 

the model.  The total error was compared to a set tolerance and then, using a Nelder-

Mead simplex algorithm, the fminsearch function modified the parameters for the next 

iteration [12].  This process was continued until the square of the errors was within 0.01 

of the actual data.  When the process was completed, the values of K, ζ , and nω were 

recorded for later comparison.  Results from this analysis are provided in Appendix A, 

Tables 5 through 8.   
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Figure 7.   fminsearch Parameter Estimation Model 

Data sets in which the ASV’s speed remained in either the displacement or 

planing regime were used when determining the model parameters using either the 

System Identification or the fminsearch method.  This allowed modeling the vehicle’s 

characteristics outside of the transition regime.  Once values of K, ζ , and nω  were 

determined for the displacement and planing regimes using both methods, it was 

observed that within the individual regimes, there was very little deviation between the 

System Identification results and the fminsearch results.  The parameter values for each 

region were then averaged to develop a set of values that best modeled the average plant 

characteristics.   

Mathematical modeling of the transition region is difficult due to the inability to 

manually maintain SeaFox’s speed within this region as well as the inability to isolate 

data from the trial runs that was solely in the transition region.  To model the transition 

regions, it was necessary to interpolate parameter values from models of the planing and 

displacement regions, as well as data sets which included transitions between all regions. 

After model parameters were determined for all three regimes in acceleration and 

deceleration, a final model was developed to simultaneously incorporate each of the six 

sub-models.  Logic was implemented to select the appropriate regime sub-model based 

on the current speed and throttle commands.  
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A time delay of approximately 1.5 seconds, between throttle command and speed 

response, was noticed during the data gathering and system identification processes.  This 

delay represented the processing time of the signal as well as the actuating time of the 

engine components and it was consistent throughout all of the operating regions.  To 

account for this in the Simulink model of SeaFox, a Transport Delay block was inserted 

in the command input signal.  Figures 8 and 9 show examples of the simulated model 

response compared to actual SeaFox data.  More comparisons can be seen in Appendix B.  

Figure 10 shows the complete Simulink model representing SeaFox’s throttle vs. speed 

dynamics.  The blue subsystems represent the displacement, transition, and planing 

regimes when accelerating while the yellow represent the three regimes when 

decelerating.   The green section represents the logic process that determines which 

regime, or subsystem, represents the current ASV dynamics.  The input to the model are 

actual throttle commands from experimental data while the output is the speed 

determined from the model and the error between the model output and the experimental 

data. 

 

 
Figure 8.   Model Comparison with Actual Data for a 0% to 99% Throttle Change 
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Figure 9.   Model Comparison with Actual Data for a 85% to 0% Throttle Change 
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Figure 10.   SeaFox Throttle Dynamics Model
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III. CONTROLLER DESIGN 

A. CHAPTER OVERVIEW 

This chapter addresses the design of three control algorithms representing 

qualitatively different control architectures; they include (i) PID, (ii) MRAC, and (iii) L1 

controllers. On one hand, they represent the increasing complexity of control architectures 

in an attempt to address the nonlinear nature of the control problem.  On the other hand they 

demonstrate the achievable controller structure, as well as the required tradeoffs. Each 

controller is integrated with the SeaFox model discussed in Chapter II and can be simulated 

with and without realistic operational disturbances.  This provides a basis for objective 

comparison among the controllers and gives a means to show relative robustness and 

performance in the challenging operational conditions. Comparisons are performed with 

simulated reference commands in the displacement, transition, and planing regions. 

B. PID CONTROLLER WITH GAIN SCHEDULING 

The first controller to be implemented using the SeaFox model is the Proportional-

Integral-Derivative (PID) controller.  The results using the PID controller will be the 

performance baseline to which the results of the MRAC and the L1 controller will be 

compared.  PID controllers are some of the most widely used industrial controllers in marine 

and aerospace engineering.  This is due to their simplicity and robustness in the presence of 

limited disturbances.  The PID controller takes into account the current error, the 

accumulation of past errors, and the rate of change of the error as described in [13].  Figure 

11 illustrates a basic PID controller.  The mathematical expression for the ideal PID 

controller can be expressed as follows: 

( ) ( ) ( )cU s G s E s=  

with 

( ) 1 11
i

c p d
K NG s K K
s N

s

 
 

= + + 
 +
 
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where: 

 E is the error between the reference command and the plant output 

 Kp is the proportional gain 

 Ki is the integral gain 

 Kd is the derivative gain 

 N is the filter coefficient for the derivative approximation 

 

Figure 11.   Basic PID Controller Block Diagram (From Åström and Hägglund, 1995) 

The problem faced when attempting to use a PID controller onboard SeaFox is that it 

is a linear controller with constant parameters with no explicit knowledge of the plant 

varying dynamics.  Because the hydrodynamic properties change as SeaFox transitions 

through the speed regimes, it creates significant nonlinearities within the plant.  To 

compensate for the nonlinearities, a simple gain scheduling approach can be incorporated to 

account for the varying plant parameters.  The gain scheduling is implemented so that as the 

ASV transitions between the displacement and planing regimes, the values of Kp, Kd, Ki, 

and N are adjusted to adapt to the new plant parameters.  Astrom [14] states that “an 

adaptive controller is a controller with adjustable parameters and a mechanism for adjusting 

the parameters.”  By this definition, addition of the gain scheduler converts the standard PID 

controller into the simplest variant of an adaptive controller. 
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Because the SeaFox has upper and lower bounds on the control signal, integrator 

windup becomes an issue that must be accounted for.  When the control signal reaches the 

limits of the actuator, the feedback loop becomes broken.  At this point, the integrator will 

continue to integrate the error and possibly create a very large output.  This would require 

an error signal of the opposite sign to be exhibited for a long period of time in order to 

counteract this “wind up.”  One method to account for windup is through back-calculation 

as outlined in [13].  Back-calculation determines the difference in the control signal and the 

saturation limits and then feeds this error through a gain then back to the integrator.  This 

creates a feedback path around the integrator which causes the control signal to stabilize at 

the saturation limit and allows it to react as soon as the error signal changes sign.   

A problem in using a pure derivative term is that the output is proportional to the rate 

of change of the input error signal.  Since there is always some noise associated with the 

sensors, this can produce noisy changes in the error signal.  This would lead to unnecessary 

and extreme actuator movement and equipment damage.  To counter this negative effect, the 

pure derivative term has been replaced with a derivative filtering scheme.  The design of the 

PID controller with the anti-windup feature and derivative filtering scheme can be seen in 

Figure 12.  This model represents the controller as a function the scheduled gains and the 

error between the plant output and the reference values. 

 
Figure 12.   PID Controller with Anti-Windup and Derivative Filtering 
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A low-pass filter is implemented to attenuate high frequency control signals and 

limit the rate at which the control signal may vary.  This has been done to smooth the 

transitions between control commands and to avoid damaging the SeaFox mechanical 

equipment due to large, rapidly varying commands.  A complete model of the PID controller 

implementation can be seen in Figure 13.  This diagram shows the overall relationship 

between the reference command, plant output, controller, gain scheduler, pre-filter, and 

throttle control limiter. 

 
Figure 13.   System Diagram with PID Controller combined with Gain Scheduling and 

Low-Pass Filter 

In [13], there are several methods available for tuning PID controllers, including 

manual (Ziegler-Nichols method) and automatic tuning methods which can be chosen based 

on user preference.  A version of automatic tuning was used to tune the SeaFox PID 

controller.  An fminsearch script similar to that in Appendix C was used to minimize the 

overshoot and settling time allowed by the controller. This procedure was performed with a 

low-speed reference signal to determine the gain values for the displacement regime.  This 

process was repeated with a high-speed reference signal to determine the gain values for the 

planing regime.  This process was validated using a Ziegler-Nichols method combined with 

engineering intuition[13].  The tuned parameters are listed in Appendix D.   
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C. COMPOSITE MRAC WITH INPUT CONSTRAINTS AND GAIN 
SCHEDULING 

The MRAC was the first variant of adaptive control architecture to be developed for 

the SeaFox ASV.  The MRAC was chosen due to the following advantages over linear 

control designs: 

• Guaranteed asymptotic stability 

• Robust performance in the presence of bounded disturbances 

• The ability to define the desired plant behavioral characteristics through the 

use of a reference model 

• Detailed knowledge of the actual plant parameters is not required 

By utilizing the composite MRAC scheme, the transient characteristics obtained will be 

improved over the conventional MRAC by utilizing prediction and tracking errors. 

Ioannou and Fidan[15] state that a Model-Reference Adaptive Control (MRAC) is 

typically composed of four parts: a plant, a reference model, a controller, and an adaptive 

law.  The relationship between these components can be seen in Figure 14.  The plant that 

the MRAC is designed to control usually has a known structure but some or all of the plant 

parameters may be unknown.  This type of controller is useful for plants such as SeaFox, 

which exhibit second order speed behavior, but have unknown parameters that vary with 

speed and environmental factors. 
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Figure 14.   Block Diagram of a Model Reference Adaptive Control  
(From Ioannou and Fidan, 2006) 

The reference model is used to define the ideal plant response.  The design of the 

reference model must take into account the desired performance of the plant and must have 

characteristics which are achievable; these reasonable bounds were identified during the 

system identification process.  A relatively non-aggressive first-order model was used in 

designing the MRAC for the SeaFox.  The desired outcome from using a first-order 

reference model was to minimize the amount of overshoot displayed by the ASV, while 

keeping the rise time within a feasible range.  The goal was to limit the overshoot to 10% 

and to maintain the rise time under one minute for any step command.  The reference model 

is expressed by the following equation: 

0( ) ( ) ( ),  0,  (0)m m m m m mx t a x t b r t a x x= + < =  
 

where 

 

 

 is the reference model output, 
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MRAC adaptation laws through the use of state predictors as described in [16].  The state 

predictors produce an estimate of the plant output at the next time step for use in the control 

law in order to improve performance.  The composite adaptive law is represented by the 

following set of equations: 

0

0

( ) ( ) ( ) ( ) ( )

( ) ( )( ( ) ( ))sgn( ),  (0)

( ) ( )( ( ) ( ))sgn( ),  (0)
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where u is the controller command, xk and rk are the adaptive gains, γ , xγ  and rγ are the 

adaptation gains and ( )x t is the state output of the plant.  The state predictor is represented 

by the following equation: 

 

0ˆ ˆ( ) ( ) ( ) ( ),  (0)p m mx t a x t a x t b r t x x= + + =   

where x̂ is the predicted state output and x is the prediction error.  By choosing p ma a>

the prediction error dynamics will converge to zero much faster than the tracking error 

dynamics, thereby improving the adaptation rates of the system. 

SeaFox is also limited in the range of available throttle commands.  Although it is 

possible to command negative throttle commands to induce reverse motion but for the sake 

of keeping the system model of reasonable complexity the throttle command range was 

limited by [0% , 99%].  Since the input command to the system is constrained, the tracking 

error dynamics between the reference model and the plant become unbounded.  The 

constraint on the control input can be seen as: 

max

max max

( ),  ( )
( )

sgn( ( )),  ( )
c c

c c

u t u t u
u t

u u t u t u
 ≤=  >

 

where cu  is the commanded control input and maxu  is the maximum control input allowed 

by the system. 

With the above constraint the reference model becomes:  

( ) ( ) ( ( ) ( ))m m m m ux t a x t b r t k u t= + + ∆  
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where ( ) ( )cu u t u t∆ = − and uk is an additional adaptive gain.  The new adaptation law is: 

( ) ( )( ( ) ( ))u u mk t u t e t x t bγ γ= ∆ −   

with uγ being a new adaptation gain.  There is an extensive body of research addressing 

stability of numerous variations of MRAC.  Proofs of their stability can be found in [16], 

[17]. 

Although MRAC design techniques can develop controllers for systems with 

unknown parameters, these techniques are developed to achieve the desired performance 

assuming that those parameters are constant.  As it was discussed in the previous chapter, 

SeaFox has three speed regimes with very distinct parameters.  Therefore, to account for 

variation of control parameters in each speed regime, gain scheduling was once again 

utilized to adjust the values of pa , γ , xγ , rγ  and uγ .  This illustrates one of the drawbacks 

of using MRAC; even though MRAC can accommodate unknown plant parameters, some 

knowledge or physical insight into the plant dynamics is required to properly develop and 

tune the controller.   

In control architectures such as the MRAC, parameter drift becomes a concern for  

the system stability.  Parameter drift usually occurs when there are small tracking errors 

between x  and mx .  While the tracking errors might remain small, the errors between the 

estimated plant parameters and the actual plant parameters may grow, causing an increase in 

control effort and eventually leading to instability of the system.  There are multiple 

methods which counter the negative effects of parameter drift such as using projection based 

operators, σ -modification or e -modification[15].  In the case of the MRAC implemented 

onboard SeaFox, a modification of the projection operator technique that limits the 

integrator outputs of xk , rk , and uk was utilized.  This enabled keeping the parameters 

bounded to maintain stability.  The full implementation of the composite MRAC with input 

constraints can be seen in Figures 15 through 18. 

There are no standard predefined tuning methods for determining the gains in a 

MRAC system.  Again, practical implementation and tuning still relies heavily on a 

designers’ knowledge of the system and the operational conditions.  The tuning process used 
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for the SeaFox design consisted of an iterative tuning in which the gains were adjusted 

based on the objective measurements and in part on engineering intuition.  The tuned 

controller parameters are listed in Table 10 in Appendix D. 

 

 
Figure 15.   Composite MRAC 

 

 

Figure 16.   Composite MRAC Reference Model 
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Figure 17.   Composite MRAC State Predictor
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Figure 18.   Composite MRAC Adaptive Law and Controller 
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D. L1 CONTROLLER 

The L1 control architecture is a relatively new method in the field of adaptive 

control.  The key difference and the goal of the L1 adaptive control is to decouple the 

adaptation rate from the robustness properties.  The architecture of the L1 controller 

differs from that of the MRAC such that with the MRAC, the adaptation rate and 

robustness are closely coupled, forcing a design trade-off; if a fast adaptation rate is 

desired, stability margins suffer.  From [18], the advantages of L1 adaptive control theory 

are as follows: 

• Guaranteed robustness in the presence combined with fast adaptation 

• Separation of adaptation and robustness 

• Guaranteed transient response. 

• Guaranteed time-delay margin. 

• Uniform scaled transient response dependent on changes in initial 

conditions, unknown parameters, and reference inputs. 

The design of the L1 controller for the SeaFox is based on the pioneering work of 

Dr. Naira Hovakimyan who has done extensive development and analysis on the L1 

controller and its properties.  The implementation of the L1 controller follows the 

architecture presented in [18–20].  A block diagram of the L1 control structure is shown 

in Figure 19 as a reference in the following discussion. 
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Figure 19.   L1 Adaptive Controller Block Diagram (From Hovakimyan and Cao, 

2010a) 

As with other methods of adaptive control, the L1 controller is designed to 

develop a control signal for a system with unknown parameters and bounded 

disturbances.  Unlike the MRAC approach described above, the values of the plant 

parameters, although unknown, are allowed to be time-varying.  This is a major 

advantage of the L1 architecture over the MRAC architecture because it eliminates the 

need for gain scheduling. 

From Figure 19 it can be seen that the L1 controller structure is somewhat similar 

to that of the MRAC, however the reference model is not an explicit part of the L1 

controller.  Instead, the reference model is accounted for in the design of the state 

predictor.  Also, the L1 controller has a low-pass filter in the control signal, whereas the 

MRAC architecture does not.   

The low-pass filter and the state predictor are instrumental in decoupling the 

adaptation rate and robustness.  This decoupling allows a designer to tune robustness 

properties via the parameters of the low-pass filter, while separately increase the 

adaptation rate via the adaptation gains.   
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The chosen filter parameters, which determine the filter bandwidth, directly affect 

the performance and the stability of the system.  The L1 controller proofs of stability use 

the L1 norm of a cascaded system for determining the filter parameter requirements.  This 

is how the L1 controller gets its name.  By using the small gain theorem and the induced 

L1 norm through the L∞ norm of the inputs and outputs, the performance of the system 

can be determined to be bounded and stable [18]. 

Using the approach of the L1 theory, the following state predictor was used: 
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where ˆ ( )tω , ˆ( )tθ , and ˆ ( )tσ are based on the following adaptation laws: 
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where ˆ( ) ( ) ( )x t x t x t= − is the estimation error, Γ >0 is the adaptation gain, Proj() is the 

projection operator, and P is the solution to the Lyapunov equation T
m mA P PA Q+ = − .  

For the purpose of the SeaFox controller design, Q was initially chosen to be identity.  

The control signal is determined by: 

( ) ( )
ˆ( ) ( )( ( ) ( ))g

u s k s
s D s s k r s

χ
χ ν

= −
= −  

where k>0, 11/ ( )T
mkg c A b−= − , and ( )D s is a transfer function that leads to a stable 

( ) ( ) / (1 ( ))C s kD s kD sω ω= + .  Stability proofs can be found in [20].  Implementation of 

the control structure can be seen in Figures 20 through 22. 
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Figure 20.   L1 Adaptive Controller 

 
Figure 21.   L1 Control Law  
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Figure 22.   L1 Adaptive Law 

As with the MRAC, there is no standard tuning procedure for the L1 controller.  

The controller tuning relied on an iterative process and engineering intuition to determine 

the parameter values.  This tuning process determined values of Γ and mA , the transfer 

function ( )D s , and the bounds for ω̂ , σ̂ , and θ̂ .  Their numerical values can be found 

in Appendix D.  
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IV. SIMULATION AND SEA TRIAL RESULTS 

A. CHAPTER OVERVIEW 

This chapter presents a comparative analysis of the performance of the PID, 

MRAC, and L1 controllers.  Each controller is compared based on their speed tracking 

performance and control effort for a given reference command within each of the three 

regimes.  This chapter also compares the performance of the PID and the MRAC 

controllers during sea trials on Monterey Bay. 

B. SIMULATION RESULTS 

During the simulation phase, the PID, MRAC, and L1 controllers were analyzed 

in the Simulink environment to compare their relative ability to accurately track a 

reference command with minimal control effort.  Most controllers can be tuned so that 

there is minimal error between the reference command and the plant output but in most 

cases this requires increased control effort.  For ASV’s such as SeaFox, this can be a 

detrimental effect because an aggressive control effort can lead to an increased 

probability of engine failure and higher maintenance costs.  The goal in tuning the 

controllers for SeaFox was to minimize tracking error while maintaining control effort at 

a minimum to reduce the risk of excessive wear on the mechanical equipment. 

In each simulation the system was subject to three conditions: no disturbances, a 

constant disturbance, and an oscillatory disturbance.  The case without a disturbance 

represents benign conditions similar to those found on a lake on a calm day.  The case 

with a constant disturbance represents a steady headwind or current.  The oscillatory 

disturbance represents operations in rough seas with large swells. 

1. Displacement Regime Results 

Figure 23 shows the system responses when given reference commands of 3 m/s 

without disturbances.  All three controllers exhibit acceptable responses.  The L1 

controller has the smallest rise time and exhibits very minor oscillations.  Figure 24 

shows the controller command signal for the same scenario.  Again, all three controllers 
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exhibit acceptable behavior in that they all have smooth control signals.  The L1 does 

have a slight overshoot but this is due to the aggressiveness of the controller.  The small 

oscillations of the L1 controller are shown here to illustrate the tradeoff between the 

fastest rise time (performance) and robustness. Attenuating these oscillations is 

straightforward but will result in longer rise time.  It also important to note that the 

controller processing speed is much higher than throttle controller’s ability to accept 

commands.  Therefore, the small, high frequency oscillations will be attenuated by the 

throttle controller.   

 
Figure 23.   System Response: 3 m/s Reference Command, No Disturbance 
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Figure 24.   Controller Response: 3 m/s Reference Command, No Disturbance 

Figure 25 shows the system responses for a given reference commands of 3 m/s 

with a constant 3 m/s disturbance.  All three of the controllers exhibit an over-shoot in the 

initial response but the adaptive controllers compensate very quickly and converge to the 

commanded speed with only slight oscillations about the reference signal.  The PID 

controller, again, has the slowest response time and has difficulty tracking the reference 

command.  It exhibits much larger oscillations about the reference command compared to 

the MRAC and L1 controllers.  
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Figure 25.   System Response: 3 m/s Reference Command, Constant Disturbance 

Figure 26 shows the controller command signal for the same scenario.  The 

adaptive controllers are obviously significantly more aggressive in tracking the reference 

command as shown by initial command signal and the small oscillations in steady state.  

Even though this requires more control action than the smooth control signal of the PID 

controller, it is an acceptable tradeoff for the improved performance. 
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Figure 26.   Controller Response: 3 m/s Reference Command, Constant Disturbance 

Figure 27 shows the system responses for a given reference commands of 3 m/s 

with a sinusoidal disturbance having a peak amplitude of 2 m/s and a frequency of 

0.1 rad/sec.  This disturbance approximates operations in rough seas, particularly when 

the ASV travels up the face of a swell and then down the back side.  The PID controller 

has the most difficulty compensating for this disturbance.  It can be seen that the ASV’s 

speed oscillates about the reference command with a frequency close to that of the 

disturbance but with peak errors greater than that of the peak disturbance value.  The 

MRAC oscillates as well.  However, with the exception of a spike at approximately 

58 seconds, it achieves a smaller peak error value than the PID controller.  It is believed 

that the spike exhibited by MRAC is due to inaccuracies in the model behavior and not 

due to the controller itself.  The L1 controller shows some oscillations as well, but the 

frequency is not matching that of the disturbance; the controller efficiently rejects the 

disturbance.  This is due to the controller attempting to adapt to an ever changing 

condition.  The peak error exhibited by the L1 controlled system is significantly smaller 

than those achieved by the PID and MRAC controlled systems. 
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Figure 27.   System Response: 3 m/s Reference Command, Oscillatory Disturbance 

 

Figure 28 shows the control signals of the developed algorithms in the scenario 

above.  The aggressive control signals illustrate the nature of the adaptive controllers in 

the presence of variable disturbances.  The command signals of the MRAC and L1 

controllers are similar, with slightly less overall oscillations in the L1 command.  This 

result is significant because the performance of the L1 based system was better than that 

of the MRAC based system while the control effort that was required was less. 
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Figure 28.   Controller Response: 3 m/s Reference Command, Oscillatory Disturbance 

2. Planing Regime Results 

Figure 29 shows the system responses when given reference commands of 12 m/s 

without a disturbance present.  Both the PID and the L1 controlled systems exhibit 

overshoots while the MRAC controlled system does not.  The L1 controlled system has 

the shortest rise time and rapidly settles with very small amplitude and low frequency 

oscillations about the reference command.  The MRAC controlled system has a slightly 

longer rise time than the L1 controlled system and has a similar settling and oscillation 

pattern.  The PID controlled system performed the worst, having the longest settling time 

and higher amplitude oscillations. 
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Figure 29.   System Response: 12 m/s Reference Command, No Disturbance 

Figure 30 shows the command signals of the controllers in the scenario above.  

This figure once again shows that the L1 controller can achieve similar, if not better, 

results as the MRAC with a less taxing control effort.  Again, there are small amplitude 

oscillations throughout the L1 control signal but the adaptation loop operates much 

quicker than the throttle control loop.  Therefore, the control signal received by the 

throttle controller will be much smoother and only take the overall shape of command 

signal. 

Figure 31 shows the system responses when given reference commands of 12 m/s 

without a constant disturbance present as with the displacement regime simulation.  The 

results show that the adaptive controllers, particularly the L1, are capable of providing a 

much better response than its linear counterpart.  It is worth noting that the injection of 

the headwind disturbance prevented the overshoot of the L1 and PID controlled systems.  

This occurred because the disturbance brought the simulation close to the operational 

limits of the plant model, requiring nearly maximum control effort to reach the desired 

speed. 
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Figure 32 is the command signal for the simulation above.  This plot confirms that 

a near maximum control effort was required to reach the desired speed.  This figure also 

shows that the L1 controlled system allows a more steady control effort. 

 
Figure 30.   Controller Response: 12 m/s Reference Command, No Disturbance 

 
Figure 31.   System Response: 12 m/s Reference Command, Constant Disturbance 
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Figure 32.   Controller Response: 12 m/s Reference Command, Constant Disturbance 

Figures 33 and 34 show system responses and command signals for a simulation 

with a 12 m/s reference command and the same oscillatory disturbance as in earlier 

simulations.  These figures show that the adaptive controllers performed better than the 

linear controller.  As before, the L1 controller performs as well as the MRAC but with a 

less erratic control signal. 
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Figure 33.   System Response: 12 m/s Reference Command, Oscillatory Disturbance 

 

 
Figure 34.   Controller Response: 12 m/s Reference Command, Oscillatory 

Disturbance 
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3. Transition Regime Results 

Operating within the transition regime has been one of the goals of the controller 

design process.  This regime has received the most interest because it is difficult for the 

operator to manually control the throttle to maintain a speed that lies within this regime.  

Figures 35 through 40 show the system performance and controller commands when the 

reference command is within the transition regime and the system is exposed to identical 

disturbances described in the previous simulations. 

While previous simulations illustrated the benefit of using an adaptive controller 

over a standard, linear controller, there was no overwhelming advantage in implementing 

the L1 controller over the MRAC.  In the simulations in which the reference command 

was within the transition regime, however, the advantages of L1 become obvious. 

 

 
Figure 35.   System Response: 6 m/s Reference Command, No Disturbance 
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Figure 36.   Controller Response: 6 m/s Reference Command, No Disturbance 

 
Figure 37.   System Response: 6 m/s Reference Command, Constant Disturbance 
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Figure 38.   Controller Response: 6 m/s Reference Command, Constant Disturbance 

 
Figure 39.   System Response: 6 m/s Reference Command, Oscillatory Disturbance 
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Figure 40.   Controller Response: 6 m/s Reference Command, Constant Disturbance 

It can be seen that the PID controller cannot maintain ASV speed anywhere near 

the reference command.  It exhibits large oscillations about the reference command and 

has a very sluggish control effort.  The MRAC controlled system also displays 

oscillations between the planing and displacement regimes, but the amplitude of these 

oscillations is much smaller.  This improvement in performance came at the cost of a 

very aggressive control effort.  The control effort of the MRAC has a very high frequency 

combined with a relatively large variation between control commands.  This rapid, 

extreme cycling of the equipment can possibly lead to equipment failure in the future. 

The L1 controlled system, on the other hand, had impressive results.  When 

operating in an environment with no disturbances or a constant disturbance, the L1 

controlled system was able to maintain speeds extremely close to the reference command 

with minimal extreme oscillations in the control signal.  When exposed to an oscillatory 

disturbance, the L1 controlled system had oscillations about the reference command but 

the error between the ASV speed and the reference command was relatively small and 

more controlled than the MRAC and PID controlled systems.  The oscillations in the L1 
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controller commands were much lower in frequency than those of the MRAC controlled 

system and would thereby be less detrimental to the equipment. 

C. SEA TRIAL RESULTS 

Sea trials of the MRAC and PID controller were conducted on Monterey Bay.  

The weather conditions varied throughout the trial with scattered rain showers and ocean 

swells ranging from two to ten feet.  The disturbances exhibited on SeaFox varied in 

direction and had magnitudes ranging from 0.5 to 2 m/s.  These conditions made it 

extremely difficult when attempting to tune the controllers at sea therefore the results 

discussed below represent the performance of the controllers with little or no parameter 

differences than that in the simulation environment.  In both cases, the reference 

commands of 3 m/s, 6 m/s and 12 m/s were used to allow for comparison between the 

simulation and sea trial results. 

Sea trials were only conducted using the PID control and MRAC.  At the time of 

the trials the L1 controller had not been transitioned from Simulink to the ASV. 

1. PID Results 

Figures 41 and 42 show the system response and controller command with the 

PID controller implemented onboard SeaFox.  The highlighted region represents the 

transition regime bounded above and below by the planing regime and the displacement 

regime respectively.  The PID controller performed very well at maintaining a speed at 3 

m/s.  There was less than 1 m/s error between actual speed and the reference speed at 

steady state, very little variation in controller commands.   

With a reference command of 12 m/s, there were large oscillations is the vessel 

speed with a maximum error of approximately 4 m/s.  These oscillations were 

accompanied by larger oscillations in the controller command as compared to sea trial 

results at 3 m/s.  The oscillations in speed response and controller command were due 

largely to the roughness of the seas since any disturbance in the ocean surface is 

amplified through the vehicle dynamics when operating in planing mode.   



 49 

When issued a reference command of 6 m/s, a speed within the transition regime, 

the PID controller was unable to accurately maintain vessel speed.  There were very large 

oscillations with peak error values at approximately 7.5 m/s.  As expected, the control 

commands also had very high frequency oscillations as the controller attempted to 

maintain the reference speed.  As with the planing speeds, rough seas played a major 

factor in the controller performance. 

 
Figure 41.   System Response: PID Controller Sea Trials 
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Figure 42.   Controller Command: PID Controller Sea Trials 

2. MRAC Results 

Figures 43 and 44 show the system response and controller command with the 

MRAC controller implemented onboard SeaFox.  Surprisingly the sea trial results using 

the MRAC did not differ much from the PID results.  The MRAC also performed very 

well with a reference speed of 3 m/s.  Again, there was less than 1 m/s error between 

actual speed and the reference speed at steady state, with very little variation in controller 

commands.   

With a reference command of 12 m/s, there were still large oscillations in the 

vessel speed with a maximum error of approximately 4.5 m/s.  The control command 

signal had a significantly higher frequency than that of the PID controller with the same 

reference command.  The seas remained a problem during this set of sea trials and the 

aggressiveness of the MRAC appeared to have compounded the issue.  

When issued a reference command of 6 m/s, the MRAC was also unable to 

accurately maintain the vessel speed.  The speed oscillated about the reference command 

at a slightly higher frequency and with peak error values at approximately 9 m/s.  Control 

commands had even higher frequency oscillations than in the case of the PID controller.   
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Figure 43.   System Response: MRAC Sea Trials 

 
Figure 44.   Controller Command: MRAC Sea Trials 
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V. CONCLUSIONS 

A. CHAPTER OVERVIEW 

This chapter concludes the project with a set of summaries including an analysis 

of the SeaFox system identification and model construction process, control system 

design, and the simulation and sea trial results.  This chapter also discusses possible 

avenues of future study.   

B. ANALYSIS 

1. System Identification and Modeling 

As expected, a significant amount of time and effort went into the development of 

the SeaFox mathematical model.  By using two independent methods for determining the 

plant parameters in the different regimes, a functional mathematical representation of 

SeaFox operational characteristics was developed.  As it was later illustrated by the 

experimental results, the controllers developed were functional and effective in realistic 

operational conditions.  Thus, the underlying model has been validated to be a close 

representation of the actual plant characteristics.  This, in turn, allows for future control 

development based on this mathematical model. 

2. Simulation Results 

Development of the PID, MRAC, and L1 controllers was done in a Simulink 

design environment.  The overall result of the controller development and simulation 

process was that the L1 controller was the most versatile controller of the three.  The L1 

controller had better performance over all of the simulation scenarios with a significantly 

less demanding control effort. 

The PID controller has extremely limited functionality due to its linear nature and 

difficulty tracking reference commands in the presence of disturbances or when the 

reference command is not within one of the linear regimes.  Even though the control 

effort of the PID controller was well controlled, its relatively poor performance prohibits 

its use in a realistic environment.  
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The MRAC performed significantly better than the PID controller in simulation 

but in most cases this came at the cost of a very aggressive control signal.  In the 

presence of disturbances characterized by high frequency oscillations and large changes 

in amplitude, the possibility of damaging mechanical equipment becomes extremely 

relevant.   

3. Sea Trial Results 

Sea trials were only conducted on the PID controller and the MRAC.  

Implementation of the L1 controller had not been completed prior to getting underway 

for the trials.  The sea trial results show very little difference in the performance of the 

PID controller and MRAC.  As previously stated, very little tuning was able to be 

accomplished during the trial due to environmental conditions.   

Both controllers performed well when operating in the displacement regime but 

suffered in the transition and planing regimes.  This was because the ASV was unable to 

maintain a steady interaction with the ocean surface therefore making it difficult for the 

controllers to successfully track the reference commands.  It is believed that under better 

circumstances and the opportunity to properly tune the controllers, better performance 

can be achieved. 

C. CONCLUSION 

This thesis achieved a number of objectives. First, it developed a mathematical 

model of the SeaFox vessel suitable for the control system design. Second, the 

comparative analysis of one classical LTI and two nonlinear adaptive controllers was 

performed to better illustrate the limitations of the control architectures and to suggest the 

one that is the most suitable for realistic operational conditions. It is concluded that the 

performance of adaptive controllers is significantly greater when compared to the linear 

controller.  The ability to implement adaptive controllers in conjunction with the existing 

waypoint guidance system greatly enhances SeaFox’s ability to follow projected paths at 

the desired speed regardless of the environmental disturbances.   



 55 

D. FUTURE WORK 

In the future, it will be beneficial to tune all of the controllers in a benign 

environment.  This will allow designers to have a better understanding of controller 

nominal response due to the control parameter changes and not due to environmental 

disturbances.  This would provide the best baseline set of controller parameters for future 

comparison. 

Once proper tuning of the controllers is complete, it would be beneficial to 

validate the controllers’ ability to maintain reference speeds while conducting turning 

maneuvers.  In theory, the adaptive controllers should see the change in the vehicle 

dynamics as a disturbance and adjust accordingly.  The ability to follow nonlinear 

trajectories with aggressive speed profiles is essential for riverine operations.   

In future work, it would also be beneficial to understand the impact of adaptive 

controller commands onto longevity of the system components and first of all the 

propulsion system. There is always a tradeoff between improved operational performance 

and the impact that a new control strategy has on various system components. 

Finally, validation of the theory that the adaptive controllers can adjust for various 

mission load outs should be conducted.  This is important because of the wide range of 

possible future applications of SeaFox.  Completion of this future work will make SeaFox 

a more versatile autonomous asset to the Navy, capable of autonomous maneuvering in a 

realistic operational environment. 
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APPENDIX A. 

A. SYSTEM IDENTIFICATION TOOLBOX RESULTS 

Initial 
Throttle 

Final 
Throttle K ωn ζ % Fit 

0 25 0.064523 0.662603 1.9781 94.85 
0 30 0.071154 0.651042 1.3108 90.76 
0 40 0.065331 0.581734 0.91836 97.91 
0 50 0.062034 1.073295 1.0511 93.94 
0 50 0.062804 1.050277 0.96667 98.14 

10 40 0.066267 0.983768 1.3294 95.2 
20 40 0.070007 1.215451 1.5251 96.6 
25 50 0.063904 1.492359 1.276 90.56 
30 40 0.068798 0.669478 1.3065 90.85 
40 50 0.064376 0.826993 1.6583 90.67 

Average:  
 

0.0720571 0.893308 1.378866 
 Table 1.   Results of the System Identification for Acceleration in the Displacement Regime 

Initial 
Throttle 

Final 
Throttle K ωn ζ % Fit 

75 99 0.14212 0.214767 0.57839 97.89 
80 90 0.15716 0.090152 0.76858 97.23 

Average: 
 

0.14964 0.15246 0.673485 
 Table 2.   Results of the System Identification for Acceleration in the Planing Regime 
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Initial 
Throttle 

Final 
Throttle K ωn ζ % Fit 

30 20 0.066815 0.045089 3 85.6 
40 30 0.079491 1.031002 2.1271 58.31 
50 25 0.048953 0.047339 3 77.55 
50 40 0.06901 0.601685 2.8717 48.73 
50 40 0.067376 0.84317 1.2081 60.28 
55 30 0.080818 0.849185 2.5824 68.85 
60 30 0.076025 0.235627 0.42368 42.48 

Average: 
 

0.069784 0.521871 2.173283 
 Table 3.   Results of the System Identification for Deceleration in the Displacement Regime 

Initial 
Throttle 

Final 
Throttle K ωn ζ % Fit 

65 60 0.14309 0.217207 2.3809 98.65 
70 60 0.49366 0.005413 3 85.11 
99 75 0.15252 0.273448 1.1316 98.45 

Average: 
 

0.26309 0.165356 2.170833 
 Table 4.   Results of the System Identification for Deceleration in the Planing Regime 

B. FMINSEARCH PARAMETER RESULTS 

 
Initial Throttle Final Throttle K ωn ζ 

0 25 0.064349 0.30746 1.1116 
0 30 0.070446 0.34291 0.87998 
0 40 0.064948 0.31865 0.73792 
0 50 0.061896 0.43526 0.77691 
0 50 0.060893 0.43797 0.66332 

10 40 0.066097 0.41283 0.82922 
20 40 0.069881 0.48293 0.89175 
25 50 0.063266 0.5232 0.77615 
30 40 0.068397 0.84575 1.6396 
40 50 0.06437 0.47089 1.1316 

Average: 
 

0.065454 0.457785 0.943805 

Table 5.   fminsearch Parameter Results for Acceleration in the Displacement Regime 
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Initial Throttle Final Throttle K ωn ζ 

75 99 0.14407 0.25979 0.89739 
80 90 0.15999 0.34856 1.2724 

Average:   0.15203 0.304175 1.084895 

Table 6.   fminsearch Parameter Results for Acceleration in the Planing Regime 

Initial Throttle Final Throttle K ωn ζ 

30 20 0.0784 0.3795 1.181 
40 30 0.0794 0.2236 0.8998 
50 25 0.088822 0.50283 1.1633 
50 40 0.069206 0.34116 1.0039 
50 40 0.067427 0.37681 0.87435 
55 30 0.080929 0.6396 1.8154 
60 30 0.078098 0.34823 1.123 

Average: 
 

0.077469 0.401676 1.151536 

Table 7.   fminsearch Parameter Results for Deceleration in the Displacement Regime 

Initial Throttle Final Throttle K ωn ζ 
65 60 0.14283 0.1908 2.16 
70 60 0.14439 0.68793 6.3085 
99 75 0.15095 0.2258 1.0899 

Average: 
 

0.146057 0.368177 3.186133 

Table 8.   fminsearch Parameter Results for Deceleration in the Planing Regime 
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APPENDIX B 

 

Figure 45.   Model Comparison with Actual Data for a 0% to 50% Throttle Change 

 
Figure 46.   Model Comparison with Actual Data for a 75% to 99% Throttle Change 
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Figure 47.   Model Comparison with Actual Data for a 30% to 0% Throttle Change 

 
Figure 48.   Model Comparison with Actual Data for a 99% to 75% Throttle Change 
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APPENDIX C. 

A. EMBEDDED MATLAB FUNCTION: MAIN.M 

x0=[1;1;1]; 
 
options=optimset('TolFun', 1e-2, 'TolX', 1e-4, 'Display', 'iter'); 
  
[x,fval]=fminsearch(@Simulation,x0) 

 

B. EMBEDDED MATLAB FUNCTION: SIMULATION.M 

function f = Simulation(x0) 
 
Variable1=x0(1); 
Variable2=x0(2); 
Variable3=x0(3); 
  
opt = simset('SrcWorkspace', 'Current'); 
sim('Model_Name', [0 run_time], opt); 
f=sum(simout1(:,1).^2); 
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APPENDIX D. 

A. PID CONTROLLER PARAMETERS 

Region Kp Ki Kd N 

Low Speed (<10 m/s) 1.0003 1.011 1.0425 1.000 
High Speed (≥10 m/s) 1.3451 0.98348 1.0177 1.000 

 

Table 9.   Parameters of the PID Controller 

B. COMPOSITE MRAC CONTROLLER PARAMETERS 

Region γ  xγ  rγ  uγ  pa  

Low Speed (<10 m/s) 10 0.01 0.05 0.5 -0.6 
High Speed (≥10 m/s) 10 0.01 0.05 0.5 -1.6 

 

Table 10.   Parameters of the Composite MRAC Controller 

C. L1 CONTROLLER PARAMETERS 

Γ  10000 

k 600 

D(s) 2

1
40 0.001s s+ +

 

ω̂  bound radius 0.225 
ω̂  center of bound 0.2125 

θ̂  bound radius 0.225 

θ̂  center of bound 0 

σ̂  bound radius 0.225 
σ̂  center of bound 0 

Table 11.   Parameters of the L1 Controller 
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