
Message Passing for Distributed QoS-Security Tradeoffs ∗

Hala Mostafa
Raytheon BBN Tecchnologies

Cambridge, MA 02138
hmostafa@bbn.com

Partha Pal
Raytheon BBN Tecchnologies

Cambridge, MA 02138
ppal@bbn.com

Patrick Hurley
Air Force Research Laboratory

Rome, NY 13441
Patrick.Hurley@rl.af.mil

ABSTRACT
Information Assurance (IA) is of growing concern to the field
of distributed systems. However, IA cannot be considered in
isolation, as it interacts with Quality of Service (QoS); in the
presence of limited resources, the security mechanisms em-
ployed for IA (e.g., firewalls, antivirus, encryption) usually
adversely affect QoS levels delivered by a system. The sys-
tem therefore needs to make a tradeoff between IA and QoS.
This tradeoff is complicated by the fact that users’ relative
preferences over QoS/IA aspects change based on the situ-
ation, the interests of different users conflict, and tradeoff
decisions made at one node in the distributed system typi-
cally affect other nodes as well. We address the problem of
distributed computation of tradeoff among various aspects
of QoS and IA in a way that maximizes the satisfaction of
all stakeholders. Specifically, we want the nodes in the sys-
tem to make coordinated decisions as to what local actions
to take to optimize QoS/IA levels delivered by the system.
Our first contribution is formulating this problem as a Dis-
tributed Constraint Optimization Problem (DCOP). This
entails quantifying various aspects of the system in order
to be able to compare options in the course of optimiza-
tion, as well as encoding the effects of various decisions on
the quantities we want to optimize. The DCOPs we obtain
have cost functions with many local configurations that re-
sult in the same cost. In addition, the corresponding factor
graphs contain many cycles. To deal with these issues, our
second contribution is a value propagation phase that helps
nodes reach a consistent set of decisions even in cyclic factor
graphs with non-unique local minimizers. We present exper-
imental results comparing the performance of the max-sum
algorithm with and without value propagation against other
algorithms implemented in the Frodo [6] framework applied
to two different kinds of problems.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence:]: Distributed AI

General Terms
Algorithms, Performance, Security

∗The views expressed are those of the authors and do not
reflect the official policy or position of the Department of
Defense or the U.S. Government. Approved for Public Re-
lease; Distribution Unlimited: 88ABW-2012-1017, 29 Feb
12.

Keywords
DCOP, max-sum, value propagation, QoS

1. INTRODUCTION
Multiple security mechanisms are increasingly being used

to defend modern distributed information systems (e.g., fire-
walls, antivirus scanners, access control, encryption) against
malicious cyber attacks. Information Assurance (IA) is con-
cerned with ensuring that the security mechanisms are ef-
fective, and the system can be entrusted with critical infor-
mation processing tasks. Traditionally, IA has taken an all-
or-nothing approach where the entire system is deemed se-
cure or insecure, mostly depending on the user’s perception.
More recently, however, runtime assessment of IA has been
advocated, where variation of the system’s level of assurance
due to attack-induced failures, environmental threats (e.g.,
release of a new virus), and user-made changes are taken
into consideration [8].

Security mechanisms use the same system resources (e.g.,
CPU, memory, network bandwidth) that are needed by the
information system they aim to defend. As a result, IA and
QoS interfere, often adversely. For example, increasing the
strength of the encryption consumes more CPU resources
and increases the round trip response time for service re-
quest and response. In mission-critical applications of dis-
tributed information systems (e.g., network centric warfare,
telemedecine, internet voice/video applications), degraded
QoS may mean loss of service, with impacts ranging from
loss of revenue to loss of life.

This contention over resources necessitates a tradeoff be-
tween the IA and QoS levels delivered by a system. There
are three complicating factors in this tradeoff. The first is
that that there are typically multiple users (stakeholders) of
the system. These stakeholders can have conflicting require-
ments and preferences. Left to themselves, the competing
and conflicting requirements of different stakeholders, even
when they are participating in the same mission, can result
in degraded performance where less important requirements
are met at the cost of more important ones. The second fac-
tor is that an individual user’s relative preferences for QoS
over IA are not static, but depend on the situation. For
example, an intelligence analyst may prefer to have high
definition video, but if there is an external threat, he can
make do with standard definition if it is over an encrypted
channel. There will also be situations where one aspect of
QoS (or IA) is preferred over another. For example, a black
and white video with low frame drop rate may be preferable
to a color video with dropped frames. The third compli-

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 2012 2. REPORT TYPE

3. DATES COVERED
 00-00-2012 to 00-00-2012

4. TITLE AND SUBTITLE
Message Passing For Distributed QoS-Security Tradeoffs

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory,Rome,NY,13441

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
To be presented at theWorkshop on Optimisation in Multi-Agent Systems (OptMAS) held in conjunction
with the Eleventh International Conference on Autonomous and Multi-Agent Systems (AAMAS), Valencia,
Spain, June 4-8, 2012

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

11

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

cating factor is that tradeoff decisions made at one node in
the distributed system can affect QoS and IA levels at other
nodes. For example, the decision to use a low bandwidth en-
crypted channel may affect the bandwidth available to other
services communicating over this channel.

In the QIAAMU project [8, 5], we are developing algo-
rithms and supporting infrastructure to enable user-specific
requirement-based runtime management of QoS and IA in a
unified way. Our Continuous Mission-oriented Assessment
(CMA) approach relies on existing security and system man-
agement infrastructure to collect measurements and obser-
vations to assess whether the delivered levels of QoS and
IA meet the user’s requirements. Complementing the as-
sessment, runtime management of QoS and IA also needs to
take or suggest remedial actions when there are not enough
resources to meet all QoS and IA requirements of all users.
We address the problem of distributed tradeoffs in this con-
text. More specifically, we calculate tradeoffs between var-
ious aspects of QoS and IA in a way that maximizes the
satisfaction of all stakeholders. For each node in the dis-
tributed system, the decision problem we consider is: what
local actions to take to optimize QoS/IA levels delivered by
the system as a whole.

We make two main contributions in this paper. First,
we formulate the decision making problem as a Distributed
Constraint Optimization Problem (DCOP). To do this, we
first have to quantify various aspects of the system in order
to be able to compare options in the course of optimization.
We also need to somehow encode the effects of the various
decisions on the quantities we want to optimize, a procedure
that is more complex than what is generally reported in
DCOP literature.

Our second contribution is modifying and extending the
max-sum algorithm to handle the special characteristics of
the DCOPs resulting from QoS and IA tradeoff scenarios.
Our DCOPs have the following characteristics: 1) the cor-
responding factor graphs contain many cycles of various
lengths, 2) some nodes have large degrees, 3) multiple con-
figurations of variables maximize any given function, po-
tentially resulting in locally optimal, but globally inconsis-
tent choices. We incorporate a value propagation phase that
helps nodes reach a consistent set of decisions in spite of the
cyclic nature of the graph and the non-uniqueness of deci-
sions that optimize the QoS/IA levels at any one node.

The rest of the paper is organized as follows: Section 2
gives a background on the runtime assessment and manage-
ment framework that we will refer to in this paper as the
QIAAMU framework (or QIAAMU for short). Section 3
briefly reviews DCOPs and the max-sum algorithm, while
Section 4 details how we formulated the distributed trade-
off problem as a DCOP. We present our modifications to
max-sum and our value propagation phase in Section 5. We
present the results of our max-sum variants and the com-
parison to other DCOP algorithms in Section 6. Finally, we
conclude and highlight directions for future work.

2. THE QIAAMU FRAMEWORK
The level of IA has traditionally been estimated by offline

analyses, testing, modeling and experimentation. At run-
time, arguably the time when it is most critical to be assured
about the system, IA takes an all-or-nothing approach and
is mostly dependent on the user’s perception (i.e., either the
user continues to believe the offline assessment or not).The

network is a shared resource whose load and failures are
mostly unpredictable, and assumptions made offline about
the operating condition of the system may often be invalid in
the deployment environment. Consequently, there is a need
for continuous re-assessment of QoS/IA levels delivered by a
system. In the QIAAMU project [8] we are developing algo-
rithms and supporting infrastructure to enable user-specific
requirement-based runtime management of QoS and IA. We
have described our metrics and assessment framework in pre-
vious papers. In this paper, we focus on the decision making
involved in the runtime management of QoS and IA.

Figure 1 depicts fragments of an example distributed sys-
tem in which QoS and IA interfere. There are 2 MRAPs
(Mine Resistant Ambush Protected vehicles) sweeping the
route between a FOB (Forward Operating Base) to the COP
(Combat Outpost). The MRAPs communicate with head-
quarters (HQ) through a satellite link (SAT) or through the
FOB that communicates with HQ over the Internet. The
former is more secure, but the latter has higher bandwidth.
The MRAPs, FOB and COP employ a number of security
mechanisms. We use this scenario to explain the following
components of the QIAAMU framework:

• Nodes: Nodes refer to the computing and commu-
nication nodes in the distributed system. The frame-
work uses a subset of nodes in the system as decision-
making nodes/agents. The nodes in Figure 1 make up
the set of decision-making nodes involved in the mis-
sion of the MRAPs, FOB and the COP. Each decision-
making node is responsible for managing the IA and
QoS requirements of one or more stakeholders using
the actuation mechanisms that are under its local con-
trol.

• Stakeholders: The stakeholders are cooperating users
of the system, supporting a common mission objective
in different roles. For example, each MRAP has a war
fighter and HQ has a commander and a system admin-
istrator.

• Attributes: An attribute is an aspect of system per-
formance that is of interest to some stakeholder. Some
attributes pertain only to IA (e.g., Confidentiality and
Integrity), some only to QoS (e.g., Timeliness and Fi-
delity), and others can be used to express both QoS
and IA (e.g., Availability).

• Requirements: A stakeholder can specify a require-
ment for a particular attribute of a particular asset.
An asset can be a database, a service or a communi-
cation channel. As we detail later, requirements are
expressed in terms of levels. For example, a user can
require that the Confidentiality of the HQ database
be high and its Availability be medium. Because re-
sources are bounded and not every attribute will at-
tain its highest level, the system gives the stakeholders
a means of expressing their satisfaction with less-than-
perfect levels (e.g., by stating that the requirement for
an attribute is Low).

• Preferences: These can be used to specify a stake-
holder’s relative interests in different attributes of dif-
ferent assets. For example, the system administra-
tor may care about the Integrity of the headquarters
database, while the war fighter cares about the Time-
liness of a particular service.

Figure 1: The MRAP scenario

• Actuators: The actuators are used to effect changes
in the system. An actuator can pertain to the use or
configuration of some security mechanism (e.g. set-
ting a firewall policy or using an antivirus), or some
QoS decision (e.g. communicate over a high bandwidth
channel rather than SAT).

• System/environment conditions: The results of
applying an actuator can be affected by system and en-
vironment conditions at the time of application. For
example, if there is no virus threat (an environment
condition), there may be no benefit in additional virus
checking mechanisms in terms of whether a stakeholder’s
IA-related requirements are met. Similarly, if a node
has been up for a long time (a system condition), re-
booting the node may have a positive effect on its
health. Any decisions about actuators must therefore
be made in the context of current conditions.

The specific problem we address in the overall runtime
QoS and IA management framework is this: given a set of
system/environment conditions, how should each node con-
figure its actuators such that the satisfaction of all stakehold-
ers across all nodes is maximized, weighted by their relative
importance?

3. BACKGROUND: DCOP AND MAX-SUM
In a Distributed Constraint Optimization Problem (DCOP),

we have a set of n variables x = {x1, x2, ..xn} and a corre-
sponding set of finite domains {D1, D2, ..., Dn}. There is a
set of m constraint functions (constraints) where each func-
tion involves a subset of variables (its scope) and maps each
configuration of these variables to a cost. A local assignment
for function fi is an assignment of values to variables in its
scope. A global assignment is an assignment to all variables
in x. Because we formulated our problem as a minimization
problem, the goal is to find a global assignment that min-
imizes the global objective function, usually a summation
of the constraint functions. Formally, the goal is to find a
global assignment x∗ such that

x∗ = arg min
x

m∑
i=1

fi(xi)

where each fi is a constraint function and xi are the val-
ues of variables in its scope. There may be more than one
assignment that minimizes the global objective function.

3.1 The max-sum algorithm
The max-sum algorithm is a message-passing algorithm

that has been widely used to solve DCOPs [3]. It is a mem-
ber of a family of algorithms relying on the Generalized Dis-
tributive Law. Max-sum operates on a factor graph repre-
sentation of the DCOP where there is a function node for
each constraint function and a variable node for each vari-
able. There is an edge between a variable xi and a function
fj if the former is in the scope of the latter. Nodes in the
factor graph exchange two kinds of messages:

• Message from a variable to a function

qi→j = αi,j +
∑

k∈Mi\j

rk→i(xi)

where Mi is the set of functions that are neighbors of
variable xi in the factor graph, and αi,j is a normaliz-
ing constant that prevents the values in messages from
increasing indefinitely in a cyclic factor graph.

• Message from a function to a variable

rj→i = min
xj\i

fj(xj) +
∑

k∈Nj\i

qk→j(xk)


where Nj is the set of variables that are neighbors of
functions fj in the factor graph.

If the factor graph is a tree, max-sum is guaranteed to
converge on the optimal value assignment. Moreover, it can
find this assignment in only two sweeps of the tree. The first
sweep proceeds from the leaves of the tree upward, with each
node getting messages of one of the types listed above and
sending messages of the other type. In the second sweep,
each variable node xi locally determines its optimal value
by calculating the following function from the messages it
received:

zi(xi) =
∑

j∈Mi

rj→i(xi) (1)

and setting itself to the value that minimizes this function.
One of the attractions of max-sum is that the size of the

messages is typically small; message size scales with the size
of the domains, as opposed to some algorithms where mes-
sage size is exponential. However, max-sum is not guar-
anteed to converge in cyclic graphs, and when it does, the
solution it finds is not guaranteed to be optimal. Neverthe-
less, empirical results show that it performs well on cyclic
graphs.

3.2 Other algorithms
As we show in Section 4, our DCOPs have factor graphs

that contain cycles, and their constraint functions are such
that variables have non-unique minimizers (the minimum of
Eq 1 is attained at more than one value). The basic max-sum
algorithm has no special provisions for either of these two
issues, so the values chosen according to Eq 1 may give rise to
an inconsistent global solution. In the following paragraphs,

we mention some algorithms or variants of max-sum that
are concerned with these issues.

The issue of graphs with cycles is addressed by Distributed
Pseudotree Optimization Procedure (DPOP) [10], which is
a follow up for an older algorithm, DTREE [9], that is only
correct for trees. In a tree, the utility reported by a node
to its parent only depends on the subtree rooted at that
node. In a graph with cycles, this is no longer the case.
In the pseudotree created from the graph, this utility may
depend on one or more variables above the parent that are
connected to the sender by back edges. The UTIL messages
exchanged in DTREE are therefore not adequate, since they
only report the optimal utility for the subtree for each value
of the parent. DPOP’s UTIL messages report utility for
each value combination of all parents of a node; the parent
through a tree path as well as parents on back edges. Non-
leaf nodes then proceed to combine and pass along UTIL
messages up the tree. Value propagation is largely similar
to that of DTREE.
DPOP is optimal, even on general graphs. Unfortunately,
although the number of messages exchanged by DPOP is lin-
ear in the size of the tree, the size of a UTIL message can be
exponential in the induced width of the pseudotree. There
have been several variants of DPOP that try to address the
message size issue [11].

Another approach to dealing with cycles is to remove
them. Bounded max-sum [2] is an algorithm that removes
cycles by eliminating dependencies between functions and
variables which have the least impact on the solution quality
and subsequently uses max-sum on the resulting spanning
tree. The result is a bounded approximation of the optimal
solution of the original problem. However, when constraints
are not binary (involve more than two variables), the algo-
rithm’s choice of which dependencies to eliminate may not
be the one that minimizes the impact on solution quality. As
we state in Section 4, the constraint functions in our DCOPs
have a large arity, so it is not clear that this approach will
work well in our domain.

Our value propagation phase is somewhat similar to value
propagation in Max-Sum-AD [13]. In that work, the cycles
in the factor graph are addressed by assuming an order over
the nodes and allowing message to flow in only one direction
according to the order. After convergence in one direction,
the algorithm proceeds in the opposite direction. Breaking
ties and dealing with inconsistent assignments is addressed
using a value propagation phase. Experimental results are
only reported for binary constraint functions. We plan to
compare the two approaches to value propagation on prob-
lems with functions of large arity.

The work on Multi-Objective DCOPs [4] also deals with
cyclic graphs with non-unique minimizers. In this case,
the non-uniqueness is due to the presence of multiple ob-
jective functions, which means that there may be multi-
ple Pareto optimal assignments that do not dominate each
other. The cycles are addressed by bounded max-sum. The
non-uniqueness is addressed by a value propagation phase
executed on the cycle-free factor graph computed by the
bounding approach.

In summary, cyclic graphs can be dealt with by having
a sophisticated utility propagation phase and a relatively
simple value propagation phase (DPOP), or having a simple
utility propagation phase but a sophisticated pre-processing
of the graph into a tree (bounded max-sum). As we detail in

Section 5, our approach is to do neither pre-processing nor
sophisticated utility propagation, but to have a sophisticated
value propagation phase. We believe that the advantage of
this approach is that our value propagation phase does not
necessarily have to follow max-sum; it can be affixed to any
approach that leaves each variable with a reduced domain
of candidate values.

4. FORMULATING THE DISTRIBUTED
TRADEOFF PROBLEM

In this section, we detail the steps we took to obtain a
DCOP formulation of the problem of IA-QoS tradeoff in
a distributed system. The solution to the DCOP specifies
how each node should configure its associated actuators such
that the satisfaction of all stakeholders across all nodes is
minimized, weighted by their relative importance.

4.1 Quantization and quantification
In order to be able to compare the desirability of differ-

ent sets of QoS/IA attribute levels, we need to express how
important each attribute is to each stakeholder, and how
important each stakeholder is to the overall mission of the
system. We therefore associate with every stakeholder s in
the set of stakeholders S a weight ws indicating the relative
importance of this stakeholder. Similarly, we expresses the
relative preference of stakeholder s to a particular attribute
of a particular asset as ps,a where a refers to the attribute-
asset pair (e.g. psysadmin,Avail−HQDB).
Note that these values are typically going to be specific to
a mission mode; a particular time interval within a mission.
We therefore assume there is an implicit subscript M that
indicates which set of values is currently being used. In the
rest of the paper, we address decision making for a given
mission mode, i.e., under a given set of parameters.

We also express attribute levels (both delivered and re-
quired) in terms of quantized and ordered levels. This quan-
tization facilitates knowledge elicitation from the stakehold-
ers and its representation in our formulation. The require-
ment level desired by stakeholder s for attribute-asset pair
a is denoted by qs,a.

Because environment/system conditions modulate the ef-
fects of actuators on attributes, we denote the level of attribute-
asset pair a that results from setting the actuators as dic-
tated in the value assignment x under environment/system
conditions e by ve

a(x).

4.2 Deterministic cause-effect networks
In order to be able to compare the desirability of different

actuator configurations, we need to elicit from the domain
expert how QoS/IA attributes depend on the actuators set-
tings and environment/system conditions, i.e., we need to
elicit the various vea(x) functions. However, it is usually te-
dious and/or difficult for a user to specify each function as a
flat table detailing how, for example, each configuration of
firewall policies and choice of communication channel affects
the Availability of HQ. It may be much easier to specify how
this attribute depends on throughput and reachability and
how these depend on the actuators.

We therefore use a representation of the set of functions
vea(x) that is similar to Bayesian networks but with deter-
ministic, rather than probabilistic, relations. Our cause-
effect networks are directed graphs with nodes representing

variables and edges represent cause-effect relations. Each
non-root node has a table, which we call the Conditional
Value Table (CVT), a deterministic version of conditional
probability tables, that specifies how its value depends on
the values of its parents.

Figure 2 shows part of the cause-effect network for the
MRAP scenario. It shows how decisions made by MRAP1
and HQ affect the Availability and Confidentiality of HQ.
The agents in this example are MRAP1 and HQ. Nodes
with dark borders represent environment/system conditions
(e.g. the current bandwidth of the link on eth0 interface).
Other top-level nodes represent actuators; the encryption
key length and firewall policies used by MRAP1 and HQ,
the interface MRAP1 uses (eth0 to FOB or eth1 to SAT).
Intermediate nodes represent intermediate calculated values
(e.g. throughput of the MRAP1-HQ connection). Finally,
leaves represent attribute-asset pairs (e.g., Confidentiality of
HQ).

This representation has the advantages of making explicit
the structure of causes and effects among the various vari-
ables of interest. Not only is it efficient in terms of space, it is
also helpful in terms of knowledge elicitation. Directly spec-
ifying how each actuator configuration affects the attributes
of interest is analogous to writing out the joint probability
table rather than representing it using a Bayesian Network.

Figure 2: Part of the MRAP cause-effect network

4.3 DCOP formulation
We formulate the problem of finding the configuration of

actuators that minimizes the satisfaction of all stakehold-
ers as a DCOP. 1 The variables are the actuators in the
system, and each variable’s domain is the set of values the
corresponding actuator can take. For example, if there are

1Our problem, and DCOPs in general, have some similarities
to Collaborative Design Networks (CDNs) [12], but CDNs
are probabilistic. Solution approaches proposed for CDNs
bear strong similarity to max-sum and assume agents are
arranged in a hypertree.

3 Ethernet interfaces for a node to choose from, the domain
of the corresponding variable contains these 3 options.

The goal is to find a global assignment that minimizes
the difference between the required and delivered levels of
attributes for all stakeholders weighted appropriately. The
objective function is the penalty incurred when these two
levels do not match and can be formulated as:

min
x

∑
s∈S

ws

∑
a∈A

[ps,a ∗max(0, qs,a − vea(x))]

The second max operator expresses the fact that we do not
care that the delivered level exceeds the required level; the
best case is when these two levels match and the penalty is
0.

The above objective function can be factored into a sum
over cost functions (the DCOP constraints), each one of
which is associated with an attribute-asset pair. The cost
function of pair a is therefore

fa(x) =
∑
s∈S

ws ∗ ps,a ∗max(0, qs,a − vea(x))

Figure 3 shows the factor graph for the partial cause-effect
network in Figure 2. As we mentioned earlier, the graphs
we tend to obtain have many cycles of various length and
typically have some function nodes with a large number of
neighbors. In addition, the CVTs in the cause-effect network
result in HQ Availability, for example, having the same value
for multiple assignments of MRAP1’s interface and firewall
policy and HQ’s firewall policy.

As the e in the above formula suggests, the cost func-
tion is calculated in the context of a given set of environ-
ment/system conditions. Different sets of conditions give
DCOPs that are structurally the same, but differ in their
cost functions, since they differ in the functions vea(x).

As can be seen, our cost functions are more complex than
typical functions (e.g., in graph coloring). A cost function
of a given attribute-asset pair is actually a cause-effect net-
work where values of the root nodes (actuators) are plugged
in and propagate through the network to yield a value for
the attribute-asset pair. In the course of solving the DCOP,
each function will typically be minimized many times un-
der different assignments of the variables in its scope. This
results in a large number of evaluations which, because of
the complexity of our functions, can become an expensive
process. To reduce this cost, we avoid re-evaluating a func-
tion from scratch; we only propagate values from the root
variables that changed since the last evaluation and only
re-evaluate the descendants of these roots.

5. VALUE PROPAGATION AND
OTHER EXTENSIONS

Initially, we used the max-sum algorithm as described by
Farinelli et. al [3] to solve our DCOP. Our choice was moti-
vated by initial attempts at using DPOP, which proved too
slow and often failed to solve our instances because it ran
out of memory space. With max-sum, we soon realized that
the combination of a cyclic graph and non-unique locally
optimal assignments resulted in the agents reaching local
assignments that sometimes have low global quality. The
reason is that the local assignments are part of different
optimal global assignments and are inconsistent with each
other.

Figure 3: Part of the MRAP factor graph. Ovals
represent variables (actuators) and rectangles rep-
resent functions (attributes).

An acyclic graph with non-uniqueness can be handled by
a simple value propagation phase that proceeds from the
node designated as the root variable to the leaves (as sug-
gested in [1]). After calculating its optimal value, the root
node passes this value down. A function that gets a value
from its parent calculates (or retrieves a cached copy of) the
corresponding optimal values of its children and propagates
them. A variable that gets a value from its parent passes it
on to its children.

The above procedure cannot be directly applied to graphs
containing cycles, since there is no longer a notion of parents
and children. Even if we enforce a topological order on the
nodes, a variable can potentially have multiple parents, in
which case it is not clear what value it should take. Another
problem we faced is that max-sum sometimes oscillates and
fails to converge.

We experimented with adding small random noise to the
values in the utility messages to break ties among the non-
unique locally optimal partial configurations. We observed
that even though ties were indeed broken, they were broken
by each node locally, which still didn’t address the problem
of inconsistent assignments which resulted in solutions with
poor global quality.

To overcome the above problems, we modified the max-
sum algorithm and extended it with a value propagation
phase. In this phase, utilities from the max-sum utility
propagation phase are used to narrow down the domains
of variables. Functions then optimize in the context of these
reduced domains and suggest values to their neighbors. Be-
cause the graph is cyclic, a variable can receive multiple
suggestions, so it needs to decide which suggestion to adopt.
This is done using a heuristic measure of function impor-
tance. If a variable ignores a function’s suggestion, the
later re-minimizes in order to obtain consistent values for
the other variables in its scope.

The following sections detail this procedure.

5.1 Value propagation
We observed that upon the termination of the utility prop-

agation phase, it is sometimes the case that a variable has
many values minimizing the function zi in Eq 1. However,
if each variable just goes ahead and chooses one of these
values, the result is a globally inconsistent solution. We
therefore need a value propagation phase whose goal is to
assign values in a consistent manner.

The value propagation (VP) phase starts as follows:

1. Each variable narrows down its domain. It performs
the minimization in Eq. 1 and retains only the mini-
mizing value(s). If there is a single minimizing value,
it is sent to neighboring functions in a VP message. If
there are multiple values (but not the entire domain),
we call this set of values candidates.

2. If no variable has a single minimizing value, each vari-
able that has candidates sends VP messages to its
neighbors with null in the sender field to signify that
this variable is not suggesting any values, but just
wants neighboring functions to do their minimizations
using the variable’s reduced domain.

3. If no variable has candidates, the top function is se-
lected (more on that later) and sent an empty VP
message.

In the following, we detail how each kind of node processes
a batch of received VP messages.

5.1.1 Function processing of VP messages
A simple way of processing VP messages is for a function

fi to calculate an assignment of the variables in its scope
x∗i that minimizes its cost, with the minimization taking
place over the reduced, rather than the entire, domains of
variables. Each reduced domain can be a single value or a
set of candidates. The function would then send out VP
messages to its neighbors telling them to assign themselves
according to the values in x∗i .

The problem with the above scheme is that in the pres-
ence of cycles, a variable may receive multiple conflicting
assignments from its neighbors. We therefore consider a VP
message from a function to a variable to be a suggestion
rather than an enforcement; we allow a variable to renege
on a suggested value, which it does by sending a VP mes-
sage back to the function with the alternative value it has
taken on. The steps in processing a batch of VP messages
are show in Algorithm 1.

Because a function can receive multiple batches of VP
messages, it can end up calculating x∗i multiple times. How-
ever, some of these minimizations may be unnecessary if the
messages will not change the function’s opinion of what the
values of its neighbors should be. They can be avoided if,
during the VP phase, a function keeps track of the optimal
assignment (curOptimal) from the most recent minimiza-
tion. The minimization only needs to be redone if 1) the
sender variable is telling the function it has candidates, by
setting the sender field to null (Line 4) , or 2) one of the
messages conflicts with the values in curOptimal.

If a minimization is needed, it is followed by the function
suggesting a value to each neighbor not in senders. If a
variable was merely declaring that it has candidates, it will
not be in senders (because the sender field in its message
was null) and so will receive the suggestion. A neighbor that
did send a message does not need to receive a suggestion
because the fact that it did so means that it is reneging on

a previous value; i.e., it already reduced its domain to one
value, which is what the function used in the minimization.

Algorithm 1 Function.processVP(in: msgs)

1: changed = false
2: for all msg ∈ msgs do
3: senders.add(msg.sender)
4: if msg.sender = null then
5: changed = true;
6: else if curOptimal[msg.sender] 6= msg.value then
7: changed = true;
8: cachedDomains[msg.sender] = msg.values
9: if ! changed then

10: return
11: curOptimal = getMinAssignment(cachedDomains)
12: for all neighbor do
13: if neighbor /∈ senders then
14: neighbor.processVP(curOptimal[neighbor])

Another aspect of how functions process VP messages is
the caching of the domains of certain neighboring variables,
the reason for which will become clear after the operation of
variable nodes is explained.

5.1.2 Variable processing of VP messages
Because a variable that adopts a value may later need to

renege on its decision, we make each variable keep a list,
funsWhoAssigned, of the functions that assigned it to its
current value so that it can notify them if it reneges. Al-
gorithm 2 shows how a variable processes VP messages. It
starts by determining topMsg, the message whose sender has
top priority (details below). If this sender has higher prior-
ity than any function in funsWhoAssigned, the variable
adopts the value in topMsg, and if it is different from the
current one, the list is cleared. The variable then sends VP
messages with its value to any neighbor whom it did not
receive a message from in this round (thus propagating the
value to it) or who sent a message that conflicts with the
new value (thus reneging on the value suggested in the mes-
sage). The list funsWhoAssigned is re-built in the process,
in case the variable needs to renege in the future.

Algorithm 2 Variable.processVP(in: msgs)

1: topMsg = msg whose sender is top priority
2: topFun = topMsg.sender
3: if topFun.priority ≥ maxPriority(funsWhoAssigned)

then
4: if currentV alue 6= topMsg.value then
5: funsWhoAssigned.clear()
6: currentV alue = topMsg.value
7: for all neighbor do
8: if neighbor ∈ senders and

neighbor.msg.value = currentV alue then
9: funsWhoAssigned.add(neighbor)

10: else
11: neighbor.processVP(currentV alue)

Caching domains
A function node keeps track of cached variable domains in
cachedDomains, which is updated on Line 8 in Algorithm
1. Also, in getMinAssignment, if the function encounters a

variable for which is it does not have a cached domain, it
queries the variable for its domain, uses it for minimization,
and updates cachedDomains. In the following, we give an
example of why we need caching.

Consider a situation where f1 is connected to v1 and v2
which are connected to other functions as well. Each variable
has a candidate set {a, b, c}. Suppose that f1 sent value a to
v1 and b to v2, but that v1 reneged on its value (because it
received a suggestion from a function with higher priority)
and sent back a VP message to f1 with its new value. If f1
re-minimizes, it will do so with the domain of v2 restricted
to b, since v2 got f1’s message and adopted the value in it.
What f1 wants to use is not the new domain of v2, but a
cached version of it, if available, that potentially has a wider
set of choices rather than just b. f1’s cached version of v2’s
domain is {a, b, c}, which indeed allows it to explore all these
options while re-minimizing.

Note that if v2 had taken on a value suggested by a func-
tion with higher priority than f1, it would have sent a VP
messages to f1 and in processing it, f1 would have refreshed
its cache to reflect that and used the new value in re-minimizing.
So overall, caching results in the desirable behavior whereby
f1’s re-minimization is done in the context of values chosen
by higher priority functions, if they exist, or a broader set
of options, if they do not.

5.2 Function importance and cycle detection
In the previous sub-section, we mentioned the top func-

tion on 2 occasions: 1) we wanted to send an empty VP
message to the top function to get the VP phase started in
the absence of any candidates and 2) when a variable was
deciding which suggested value to take on when it receives
multiple VP messages. There should therefore be a way of
comparing the relative importance of function nodes.

Initially, we determined importance based on the number
of neighbors a function has (its degree), with the rationale
that it is easier for a function with a smaller scope to opti-
mize in the context of values suggested by a function with
a larger scope, rather than the other way around. However,
we realized that regardless of scope size, it is a function’s
contribution to the overall solution cost that matters. We
therefore assigned weights to function as follows

w(fa) =
∑
s∈S

ws ∗ ps,a

In our experiments, we only report the second approach,
since it performed consistently better than the degree-based
one.

Cycle detection
In terms of when messages are processed, we implemented
a schedule where at the beginning of each round, an agent
processes all the messages that were sent to it in the previous
round in a batch. This is in contrast to an agent process-
ing each incoming message individually and sending a set of
outgoing messages in response.

In our implementation of max-sum, a node in the factor
graph ignores a message from a sender if it is the same as
the last message from this sender. In addition, each variable
node keeps a history of states. A state is the set of most
recent messages, one from each neighbor, and is updated
after each batch of messages is processed. A node uses its
history to detect cycles; situations where it is going through
the same set of states again, in which case the node ignores

incoming messages and therefore produces no outgoing mes-
sages. The algorithm converges if no nodes have outgoing
messages.

We terminate the utility propagation phase upon conver-
gence or reaching a pre-set number of iterations. We found
that cycle detection can slightly reduce run-time and the
number of iterations. Predictably, it has no effect on solu-
tion quality. Therefore, in all the results we report for our
implementation, cycle detection is on.

6. EXPERIMENTAL RESULTS
We conducted experiments to compare the following algo-

rithms and variants:

• No max-sum, only the VP phase: NoMS-VP. We were
seeing some cases where variables end up without any
candidates after the utility propagation phase, so we
wanted to verify that for most cases, there is value in
doing max-sum.

• Max-sum without value propagation, MS-NoVP

• Max-sum with value propagation: MS-VP

• Frodo’s implementation of max-sum: F-MS

• Frodo’s implementation of DPOP: F-DPOP. We in-
clude this complete algorithm [10] to provide us with
benchmark solution quality.

Frodo [6] is an open source framework for distributed con-
straint optimization that has implementations of several DCOP
algorithms. For all algorithms, the times we report are run-
ning times on a single machine where agents process their
messages in sequence.

6.1 MRAP scenario instances
We hand-crafted 6 cause-effect networks to depict 6 sce-

narios based on the MRAP mission and the underlying dis-
tributed system. Each of these DCOPs represents the trade-
off problem the runtime management framework may face
during a mission. Out of each cause-effect network, we gen-
erated a family of DCOPs by setting different values for the
environment/system conditions and using different prefer-
ences of stakeholders over attributes. The DCOPs from a
given scenario have the same factor graph, but differ in the
constraint functions because the CVTs in the cause-effect
networks are different (remember that environment/system
conditions modulate the effects of actions). Each scenario
resulted in a few hundred, to a few thousand, DCOPs.

Figure 4 shows the factor graph of one of the larger DCOP
families. Four decision makers (MRAP1, HQ, COB, FOB)
decide on issues like firewall policy (FW), communication
protocol, encryption key length, process and user manage-
ment (single/multiple user/process allowed at a time) and
ethernet interface. The figure illustrates a recurring feature
in DCOPs from QIAAMU scenarios, namely functions with
large arities. For example, the function “HQ Avail & Conf”,
which assesses the availability and confidentiality of head-
quarters, has 7 variables in its scope. We merged nodes that
have the same set of neighbors. This has the advantage of
reducing the number of cycles, without incurring the usual
penalty associated with merging (an increase in a node’s de-
gree) because merged nodes have the same neighbors. For

Table 1: Time (in sec) and solution cost on MRAP
scenarios

Scen 1 Scen 2 Scen 3
|V|=13 |F|=7 |V|=13 |F|=9 |V|=8 |F|=5
Time Cost Time Cost Time Cost

F-DPOP 174 141 176 174 131 343
F-MS 258 184 268 225 166 395

NoMS-VP 6 182 6 254 3.2 398
MS-NoVP 46 145 47 178 15.5 355

MS-VP 49 141 49 174 18.2 349

Table 2: Time (in sec) and solution cost on MRAP
scenarios (cont.)

Scen 4 Scen 5 Scen 6
|V|=11 |F|=6 |V|=10 |F|=5 |V|=15 |F|=12
Time Cost Time Cost Time Cost

F-DPOP 48 23 47 42 842 124
F-MS 70 33 57 54 1194 152

NoMS-VP 2.1 30 1.7 48.6 25.3 180
MS-NoVP 9.4 23 11 42.9 204 126

MS-VP 9.8 22.7 12 42.6 212 124

variables, the result is a variable whose domain is the Carte-
sian product of its constituents, and for functions, the result
is a function whose value is the sum of its constituents.

Tables 1 and 2 show the times and solution costs (lower
is better) produced by the various algorithms.2 We found
Frodo’s timing results surprising; DPOP takes less time than
max-sum and Frodo’s max-sum takes much longer than our
implementation of max-sum. The first observation is proba-
bly due to DPOP exchanging far fewer messages compared
to max-sum, which is the strong point of DPOP. At the
same time, the weakness of DPOP (the computational ef-
fort in calculating UTIL messages) is not manifested enough
to make it slower than Frodo’s implementation of max-sum,
which takes a long time to converge. The second observation
can be due to the elaborate class hierarchy that allows code
reuse among the several algorithms implemented in Frodo.
In fact, for the smaller networks, Frodo’s DPOP took longer
than a brute force centralized solver we implemented. As
for the quality obtained by our max-sum implementation
(without VP) compared to the Frodo implementation, it is
not clear to us why ours is better.

As can be seen from the results, max-sum with value prop-
agation gets solution quality comparable to (and sometimes
the same as) DPOP’s optimal quality at a small fraction of
the run time. And while there are cases where the benefit
of the VP phase is small, it is clearly not computationally
expensive.

6.2 Randomly-generated instances
Hand-generating mission scenarios (something one has to

do when a real system model and stakeholder requirements
are fed into the runtime management framework) is a time
consuming and tedious process, and the instances we man-
ually generate can only get so big. We therefore resorted to
randomly generating problem instances for extensive testing

2Longer time is reported for a smaller scenario like Scen 3
because this scenario generated more DCOP instances.

Figure 4: Factor graph of Scenario 6. Ovals represent variables and boxes represent functions.

of our algorithm.
Initially, we used Frodo’s random binary-constrained Max-

DisCSP instances, but these lacked an important character-
istic that we have in distributed QoS/IA management sce-
narios, which is the presence of some functions with a large
scope. We therefore developed our own generator and had
it output the instances in XCSP format so we can still run
Frodo algorithms on them. The instances we generate have
loops, functions with large scopes and non-unique local min-
imizing assignments.

We generated 82 instances with 23 variables and 25 func-
tions, and 82 instances with 30 variables and 25 functions.
Function scopes range in size from 2 to 6. The results of
running the various algorithms are shown in Table 3. We
also compare to Frodo’s implementation of MGM [7], a sim-
ple algorithm that should work fairly well if the instances
are not too difficult, in a bid to verify that the random in-
stances are non-trivial. For DPOP, the number in brackets
is the number of instances it failed to solve. All other al-
gorithms were able to solve all instances. The average was
taken over the instances an algorithm could solve.

The larger size of these random instances compared to
the MRAP scenarios instances exacerbated the main prob-
lem with DPOP, namely the computation and space require-
ments a node needs to manipulate large incoming UTIL mes-
sages, which result from the large number of neighbors a
variable has. As a result, DPOP was only able to solve a
little over half the instances in the larger set. Suspecting
that the message size is the problem, we tried running MB-
DPOP [11], but it still could not solve the instances that
DPOP failed on.

The fact that MGM does not perform very well on these
random instance assures us that they are non-trivial. As
with the MRAP-based instances, having a VP phase achieves
quality close to DPOP’s, but an order of magnitude faster.
The most interesting result is the last row in the table which
shows that running max-sum’s utility propagation phase is
completely useless for these instances. The cost functions
are such that at the end of max-sum, the messages a variable
has received do not favor any value over another. The qual-
ity of the obtained solution is solely the result of the value
propagation phase which, when run without utility propa-
gation, is one more order of magnitude faster than DPOP.
We also experimented with larger instances (not shown in
Table 3) with 40 variables and 160 functions. The trends
were the same: DPOP was unable to solve any of the 10
instances we generated, MS-VP was 1 order of magnitude
faster than MGM and 2 orders faster than Frodo’s max-sum.
MGM produced solutions with more than twice the cost of
MS-VP.

So overall, the results from the MRAP scenarios and the
random instances show that if used after a utility propaga-
tion phase that successfully reduces variable domains and
provides each node with a good idea of the effects of its
choices, our value propagation can still slightly improve so-
lution quality, without adverse effects on solution time. And
if run after an unsuccessful utility propagation phase that
leaves nodes unable to favor any subset of values over oth-
ers, VP can still overcome this and reach solution quality
comparable to that of DPOP.

7. CONCLUSION AND FUTURE WORK

Table 3: Average time (in msec) and solution cost
on random instances

|V|=23 |F|=18 |V|=30 |F|=25
Avg T Avg Cost Avg T Avg Cost

F-DPOP 367(3) 7.4(3) 1300(37) 12.1(37)
F-MS 163 107 230 191
MGM 88 38.9 118 67.1

MS-NoVP 20 44.8 23 88.7
MS-VP 20 11.8 25 20.8

NoMS-VP 4 11.8 4 20.8

Distributed systems are increasingly catering to missions
that require higher and stricter QoS and IA requirements,
two forces that are often competing for available resources.
As a result of this tension, a system typically needs to con-
sider tradeoffs between the various aspects of QoS and IA.
For a distributed system, this decision making process needs
to be undertaken in a distributed manner by the nodes in
the system. However, the tradeoff decisions made by one
node can affect QoS/IA levels delivered by another node.

In this paper, we addressed the problem of making trade-
offs in a way that maximizes the satisfaction of all users.
First, we modeled the impact of the various actuator config-
urations available to a node on the QoS and IA attributes,
then used this model to formulate the problem as a DCOP.
We used the max-sum to solve our DCOPs and proposed
a value propagation phase that helps the different nodes
reach a globally consistent solution in spite of the cyclic
nature of the graph and presence of non-unique local max-
imizers. Comparisons to plain max-sum, as well as other
algorithms, showed that value propagation achieves solution
quality comparable to optimal. More importantly, max-sum
and value propagation can handle larger instances that are
unsolvable using an optimal algorithm like DPOP.

The DCOP we obtain encodes the decision variables and
their effects in the context of a given set of environment/system
conditions. Whenever the latter change (sufficiently), the
constraint functions in the DCOP are adjusted to reflect
this change and the new DCOP is solved. One consequence
of this approach is that from one invocation of the decision
making process to the next, a stakeholder may experience
a marked difference in the level of one or more QoS/IA at-
tributes. In future work, we will try to introduce a bias
towards solutions that do not cause a large change in the
users’ experience of the system.

Another future direction is avoiding starting the max-sum
algorithm from scratch when solving the DCOP obtained
from new conditions. Intuitively, some messages from the
previous run of max-sum should still be useful.

Finally, the results we obtain are only as good as the mod-
els we have. Our approach involves weights over stakehold-
ers, preferences over attributes and a model of cause and
effect. We are looking for ways to facilitate the elicitation
of this knowledge from stakeholders and domain experts.

8. ACKNOWLEDGEMENT
This work has been supported by AFRL under contract

No. FA8750-08-C-0196.

9. REFERENCES

[1] C. M. Bishop. Pattern recognition and machine
learning. Springer, 1st edition, 2006.

[2] A. Farinelli, A. Rogers, and N. Jennings. Bounded
approximate decentralised coordination using the
max-sum algorithm. In Proceedings of the IJCAI-09
Workshop on Distributed Constraint Reasoning, pages
46–59, July 2009.

[3] A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings.
Decentralised coordination of low-power embedded
devices using the max-sum algorithm. In Proceedings
of the 7th International Joint Conference on
Autonomous Agents and Multiagent Systems, pages
639–646, 2008.

[4] F. M. D. Fave, R. Stranders, A. Rogers, and
N. Jennings. Bounded decentralised coordination over
multiple objectives. In Proceedings of The Tenth
International Conference on Autonomous Agents and
Multiagent Systems, pages 371–378, May 2011.

[5] P. Hurley, P. Pal, M. T. Creti, and A. Fedyk.
Continuous mission-oriented assessment (CMA) of
assurance. In Proceedings of The 5th Worksop on
Recent Advances in Intrusion Tolerant Systems at the
41st International Conference on Dependable Systems
and Network, Hong Kong, China, June 2011.

[6] T. Léauté, B. Ottens, and R. Szymanek. FRODO 2.0:
An open-source framework for distributed constraint
optimization. In Proceedings of the IJCAI’09
Distributed Constraint Reasoning Workshop, pages
160–164, California, USA, July 2009.

[7] R. T. Maheswaran, J. P. Pearce, and M. Tambe.
Distributed algorithms for DCOP: A graphical game
based approach. In Proceedings of the ISCA
Seventeenth International Conference on Parallel and
Distributed Computing Systems, pages 432–439,
California, USA, Sept 2004.

[8] P. Pal and P. Hurley. Assessing and managing quality
of information assurance. In Proceedings of the NATO
IST Symposium on Cyber Security and Information
Assurance, Antalya, Turkey, April 2010.

[9] A. Petcu and B. Faltings. A distributed, complete
method for multi-agent constraint optimization. In
Proceedings of the CP 2004 Fifth International
Workshop on Distributed Constraint Reasoning,
September 2004.

[10] A. Petcu and B. Faltings. DPOP: A scalable method
for multiagent constraint optimization. In Proceedings
of the 19th International Joint Conference on
Artificial Intelligence,, pages 266–271, 2005.

[11] A. Petcu and B. Faltings. MB-DPOP: A new
memory-bounded algorithm for distributed
optimization. In In Proceedings of the 20th
International Joint Conference on Artificial
Intelligence, pages 1452–1457, 2007.

[12] Y. Xiang, J. Chen, and W. S. Havens. Optimal design
in collaborative design network. In Proceedings of the
Fourth International Joint Conference on Autonomous
Agents and Multiagent Systems, pages 241–248, 2005.

[13] R. Zivan and H. Peled. Max/min-sum distributed
constraint optimization through value propagation on
an alternating dag. In Proceedings of The Eleventh
International Conference on Autonomous Agents and
Multiagent Systems, Valencia, Spain, June 2012.

