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Isogeometric Divergence-conforming B-splines
for the Unsteady Navier-Stokes Equations

John A. Evans a,* and Thomas J.R. Hughes a

a Institute for Computational Engineering and Sciences, The University of Texas at Austin,
∗ Corresponding author. E-mail address: evans@ices.utexas.edu

Abstract

Divergence-conforming B-splines are developed for application to the incompressible
Navier-Stokes equations on geometrically mapped domains. These enable smooth,
pointwise divergence-free solutions and thus satisfy mass conservation in the strongest
possible sense. Semi-discrete methods based on divergence-conforming B-splines are
shown to conserve linear and angular momentum and satisfy balance laws for energy,
vorticity, enstrophy, and helicity. These are geometric structure-preserving quantities
and numerical simulations that are sensitive to them are shown to be qualitatively
correct and quantitatively accurate. The methods developed are anticipated to open
new doors to the practical calculation of complex flows and to studies of their physical
behavior.

Keywords: Incompressible Navier-Stokes equations, B-splines, Isogeometric analysis,
Divergence-conforming discretizations, Structure-preserving discretizations

1 Introduction

The unsteady incompressible Navier-Stokes equations are infused with vast geometric
structure, evidenced by a wide array of balance laws for momentum, angular momen-
tum, energy, vorticity, enstrophy, and helicity. These balance laws are considered
to be of prime importance in the evolution of laminar and turbulent flow struc-
tures [38, 39, 40, 41], and they are even believed to play a role in the regularity of
Navier-Stokes solutions [8, 32]. The key to unlocking much of the geometric structure
of Navier-Stokes flow is precisely its volume-preserving nature, yet most numerical
methods only satisfy the incompressibility constraint in an approximate sense. Conse-
quently, such methods do not obey many fundamental laws of physics. In particular,
semi-discretizatations which conserve momentum are typically guaranteed to balance
energy if and only if the incompressibility constraint is satisfied pointwise. This is
especially concerning as energy plays a fundamental role in numerical stability [35].
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In this paper, we present new divegence-conforming B-spline semi-discretizations
for the unsteady Navier-Stokes problem. These semi-discretizations are motivated by
the theory of isogeometric discrete differential forms [12, 13] and extend the steady
Navier-Stokes discretizations presented in [23] to unsteady Navier-Stokes flows. As
incompressibility is satisfied pointwise, these semi-discretizations replicate the geo-
metric structure of the unsteady Navier-Stokes equations and admit discrete balance
laws for momentum, angular momentum, energy, vorticity, enstrophy, and helicity. In
this sense, our semi-discretization scheme may be thought of as a structure-preserving
or mimetic discretization procedure for the unsteady Navier-Stokes equations. We im-
pose no-penetration boundary conditions strongly and no-slip boundary conditions
weakly using Nitsche’s method. This enables our method to handle boundary layers
without resorting to stretched meshes [6, 7]. This also allows our discretization proce-
dure to naturally default to a conforming approximation of Euler flow in the limit of
vanishing viscosity and to possess both energy and helicity as inviscid invariants. The
proposed semi-discretizations are extended to general mapped geometries of scientific
and engineering interest using divergence- and integral-preserving transformations
for velocity and pressure fields respectively. In addition to all the features mentioned
above, a recent paper of Guermond [24] suggests that our semi-discretizations con-
verge to physically relevant weak solutions satisfying a local (in space-time) energy
balance. It is not known at this time whether or not such a convergence property
holds for spectral semi-discretizations.

The use of B-splines in the numerical anlysis of unsteady Navier-Stokes flow has
already been conducted with much success. The novelty of the method presented here
is simply the use of tensor-product B-splines that are capable of exactly satisfying the
incompressibility constraint. In the Direct Numerical Simulation (DNS) community,
a common method of choice in simulating wall-bounded flows is the use of Fourier
spectral discretizations in periodic directions and B-splines in wall-normal directions
[33, 34, 37]. In this setting, B-splines are often preferred over polynomial-based spec-
tral discretizations due to their high resolving power, easy implementation of bound-
ary conditions, and ability to employ stretched grids. Recently, Bazilevs et al. studied
the turbulence problem in a series of papers using NURBS-based isogeometric analy-
sis in conjunction with a Variational Multiscale (VMS) methodology. In these papers,
it was found that the increased continuity of splines led to enhanced numerical results
[1, 3, 4, 6, 7]. It is believed that much of this success can be attributed to the spectral-
like properties of B-splines. In Figure 1, we have plotted the phase errors associated
with one-dimensional k-method NURBS (which in this setting reduce to B-splines
of maximal continuity) and C0 finite element discretizations of the first-order wave
equation. Note that the phase error associated with the quadratic NURBS solution is
much smaller than that associated with the quadratic finite element solution. Indeed,
it can be shown that the phase error for Cp−1 NURBS solutions scales like O(h2p+2)
while the phase error for C0 finite element solutions scales like O(h2p) (see Chapter 9
of [15]). Recently, the theory of Kolmogorov n-widths has been utilized to shed more
light on the approximation properties of B-splines [20]. In this study, it was revealed
that B-splines are much more accurate on a per degree-of-freedom basis than stan-
dard finite elements and possess similar approximation properties to that of a spectral
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Figure 1: The first-order wave equation. Phase errors versus non-dimensional wave
numbers. Comparison of linear and quadratic finite elements, C1 quadratic NURBS,
and C2 cubic NURBS.

basis. We believe that by combining the spectral-like properties of B-splines with the
preservation of the geometric structure of the unsteady Navier-Stokes equations, our
semi-discretization procedure may become a useful tool for both engineering analysis
and the mathematical study of the unsteady Navier-Stokes equations.

An outline of this paper is as follows. In the following section, we present some
basic notation. In Section 3, we recall the unsteady Navier-Stokes problem subject
to homogeneous Dirichlet boundary conditions. In Section 4, we briefly review B-
splines, the basic building blocks of our new discretization technique, and in Section
5, we define the B-spline spaces which we will utilize to discretize velocity and pres-
sure fields. In Section 6, we present our semi-discrete variational formulation for the
steady Navier-Stokes problem, prove well-posedness and a discrete energy inequal-
ity, and present an a priori error estimate. In Section 7, we derive various balance
laws for our semi-discretizations, including balance of linear and angular momentum,
energy, vorticity, enstrophy, and helicity. In Section 8, we present numerical results
illustrating the advantages of our semi-discretization procedure on three benchmark
problems: two-dimensional Taylor-Green vortex flow, alternating cylindrical Couette
flow, and three-dimensional Taylor-Green vortex flow. Each of these problems is sen-
sitive to preservation of conserved quantities and the growth and decay of functionals
associated with geometrical structure of the flow. In Section 9, we draw conclusions.
Before proceeding, it should be mentioned that we do not consider any artificial
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diffusion mechanisms or subgrid turbulence models in this paper. As such, the semi-
discretizations presented here should only be utilized if the flow field is sufficiently
resolved by the spatial mesh. That being said, standard Large Eddy Simulation mod-
els can be utilized in conjunction with the proposed semi-discretizations to capture
fine-scale turbulent effects on coarse meshes.

2 Notation

We begin this paper with some basic notation. For d a positive integer representing
dimension, let D ⊂ Rd denote an arbitrary bounded Lipschitz domain with boundary
∂D. As usual, let L2(D) denote the space of square integrable functions on D and de-

fine L2(D) = (L2(D))
d
. We denote L2

0(D) ⊂ L2(D) as the space of square-integrable
functions with zero average on D. We will also utilize the more general Lebesgue
spaces Lp(D) where 1 ≤ p ≤ ∞. Let Hk(D) denote the space of functions in L2(D)

whose kth-order derivatives belong to L2(D) and define Hk(D) =
(
Hk(D)

)d
. We

identify with Hk(D) the standard Sobolev norm

‖v‖Hk(D) =

∑
|α|<k

‖Dαv‖2
L2(D)

1/2

where α = (α1, α2, . . . , αd) is a multi-index of non-negative integers, |α| = α1 + α2 +
. . .+ αd, and

Dα =
∂|α|

∂xα1
1 ∂x

α2
2 . . . ∂xαd

d

.

We denote the Sobolev semi-norms as |·|Hk(D), and we adopt the convention H0(D) =
L2(D). Throughout, Sobolev spaces of fractional order are defined using function
space interpolation (see, e.g., Chapter 1 of [48]). We define H1

0 (D) ⊂ H1(D) to be
the subspace of functions with homogeneous boundary conditions and define H1

0(D)
to be the vectorial counterpart of H1

0 (D). We define H(div;D) to be the Sobolev
space of all functions in L2(D) whose divergence belongs to L2(D). This space is
equipped with the norm

‖v‖H(div;D) =
(
‖v‖2

L2(D) + ‖divv‖2
L2(D)

)1/2

.

We also define

H0(div;D) = {v ∈ H(div;D) : v · n = 0 on ∂D}

where n denotes the outward pointing unit normal. Finally, for X a real Banach
space and S a positive real number, we define Lq(0, S;X) as the space consisting of
all strongly measurable functions φ : (0, S)→ X with

‖φ‖Lq(0,S;X) :=

(∫ S

0

‖φ(t)‖qXdt
)1/q

<∞ (1)
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for 1 ≤ q <∞ and

‖φ‖L∞(0,S;X) := ess sup0<t<S‖φ(t)‖X <∞, (2)

and C0([0, S];X) as the space of all continuous functions φ : [0, S]→ X.

3 The Unsteady Navier-Stokes Problem

In this section, we recall the unsteady Navier-Stokes problem subject to homogeneous
Dirichlet boundary conditions. For d a positive integer, let Ω denote a Lipschitz
bounded open set of Rd. Throughout this paper, d will be either 2 or 3. The problem
of interest is as follows.

(S)



Given ν ∈ R+, f : Ω × (0,∞) → Rd, and u0 : Ω → Rd, find u :
Ω̄× [0,∞)→ Rd and p : Ω× (0,∞)→ R such that

∂u

∂t
+∇ · (u⊗ u) + gradp−∇ · (2ν∇su) = f (3)

divu = 0 (4)

in Ω× (0,∞) and

u = 0 on ∂Ω× (0,∞) (5)

u(·, 0) = u0(·) in Ω. (6)

Above, u denotes the flow velocity of a fluid moving through the domain Ω, p denotes
the pressure acting on the fluid divided by the fluid density, ν denotes the kinematic
viscosity of the fluid, f denotes a body force acting on the fluid divided by the density,
and ∇su denotes the symmetrized gradient of the velocity field defined by

∇su =
1

2

(
∇u + (∇u)T

)
.

An appropriate definition of weak solution is not entirely obvious in the context
of unsteady Navier-Stokes flows, especially for domains in R3. The most basic type
of weak solution is a so-called Leray-Hopf solution. Given a fixed end-time T > 0, let
us assume that f ∈ L∞(0, T ; L2(Ω)) and

u0 ∈ {u ∈ H0(div; Ω) : divu = 0} .

A Leray-Hopf solution over the time interval (0, T ) is then defined as a vector function
u ∈ L∞(0, T ; L2(Ω)) ∩ L2(0, T ; H1

0(Ω)) satisfying u(·, 0) = u0, divu = 0 in the sense
of distributions, the energy inequality

‖u(t)‖2
L2(Ω) +

∫ t

0

4ν‖∇su(s)‖2
(L2(Ω))d×dds ≤ ‖u(0)‖2

L2(Ω) +

∫ t

0

2 (f(s),u(s))L2(Ω) ds (7)
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for almost every t ∈ (0, T ), and∫ T

0

∫
Ω

(u · ∂tv + (u⊗ u) : ∇v + u · ∇ · (2ν∇sv) + f · v) dxdt+

∫
Ω

u0 · vdx = 0 (8)

for all smooth test functions v ∈ (C∞0 ((0, T )×Ω))d such that divv = 0. In 1934, Leray
obtained the first three-dimensional existence results for the Navier-Stokes equations
by carefully constructing a Leray-Hopf weak solution for the Navier-Stokes problem
posed on all of R3 [36], and seventeen years later, Hopf extended this existence re-
sult to the Dirichlet problem by constructing a Leray-Hopf solution as the limit of
a sequence of Galerkin approximations [30]. While the question of existence was
answered many decades ago for Leray-Hopf solutions, the question of uniqueness re-
mains unanswered for domains in R3. This is primarily due to an intimate relationship
between uniqueness and regularity [18]. A priori estimates have not yet been able to
preclude the occurrence of so-called vorticity bursts reaching scales smaller than the
Kolmogorov scale due to the presence of enstrophy production. In his seminal 1977
paper, Scheffer introduced a systematic means of addressing the regularity question
by studying the Hausdorff measure of the singular set of weak solutions [45]. If one
can prove the measure of this set is zero, one will then have answered the Navier-
Stokes smoothness question in the affirmative. To systematically study the Hausdorff
measure, Scheffer introduced so-called suitable weak solutions which satisfy a local
space-time energy balance. Specifically, suitable weak solutions satisfy the inequality

∂t

(
1

2
|u|2
)

+∇ ·
((

1

2
|u|2 + p

)
u

)
− ν∇2

(
1

2
|u|2
)

+ ν|∇u|2 − f · u ≤ 0 (9)

in a distributional sense. Such a local balance can be interpreted as an “entropy
condition” for incompressible flows. Suitable weak solutions are known to always
exist, and they may be obtained via a regularization of the Navier-Stokes equations
and passing to the limit. With the notion of a suitable weak solution, Scheffer was
able to derive a bound from above of some Hausdorff measure of the singular set.
This bound was then improved upon in the famous 1982 paper of Caffarelli, Kohn,
and Nirenberg where it is proven that the one-dimensional Hausdorff measure of the
set of singularities for a suitable weak solution is zero [14]. That is, if singularities
exist, they cannot lie along a line in space-time. This is widely considered to be the
best general result in the direction of the Navier-Stokes Millenium Prize Problem.

All of the above machinery is not necessary in the derivation of a semi-discrete
variational formulation. As we will show later in this paper, we are able to obtain
a well-posed semi-discrete problem via a simple Galerkin methodology. That being
said, a recent paper of Guermond suggests that our semi-discrete formulation con-
verges to a suitable weak solution [24]. It should be noted that it is not known
whether or not such a convergence property holds for spectral discretizations which
are the standard in direct numerical simulation of turbulent flows. It is possible that
spectral discretizations may not converge to suitable weak solutions as they do not
induce enough numerical diffusion to counteract the Gibbs-Wilbraham phenomenon,
preventing a local energy balance from holding in the limit [25].
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4 B-splines and Geometrical Mappings

In this section, we briefly introduce B-splines, the primary ingredient in our discretiza-
tion technique for the unsteady Navier-Stokes equations. We also introduce mappings
which will allow us to extend our discretization technique to general geometries of
engineering interest. For an overview of B-splines, their properties, and robust algo-
rithms for evaluating their values and derivatives, see de Boor [17] and Schumaker
[46]. For the application of B-splines to finite element analysis, see Höllig [29] and
Cottrell, Hughes, and Bazilevs [15].

4.1 Univariate B-splines

For two positive integers k and n, representing degree and dimensionality respectively,
let us introduce the ordered knot vector

Ξ := {0 = ξ1, ξ2, . . . , ξn+k+1 = 1} (10)

where
ξ1 ≤ ξ2 ≤ . . . ξn+k+1.

Given Ξ and k, univariate B-spline basis functions are constructed recursively starting
with piecewise constants (k = 0):

B0
i (ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise.
(11)

For k = 1, 2, 3, . . ., they are defined by the Cox-de Boor recursion formula:

Bk
i (ξ) =

ξ − ξi
ξi+k − ξi

Bk−1
i (ξ) +

ξi+k+1 − ξ
ξi+k+1 − ξi+1

Bk−1
i+1 (ξ). (12)

When ξi+k − ξi = 0, ξ−ξi
ξi+k−ξi

is taken to be zero, and similarly, when ξi+k+1− ξi+1 = 0,
ξi+k+1−ξ

ξi+k+1−ξi+1
is taken to be zero. B-spline basis functions are piecewise polynomials of

degree k, form a partition of unity, have local support, and are non-negative. We
refer to linear combinations of B-spline basis functions as B-splines or simply splines.

Let us now introduce the vector ζ = {ζ1, . . . , ζm} of knots without repetitions and
a corresponding vector {r1, . . . , rm} of knot multiplicities. That is, ri is defined to be
the multiplicity of the knot ζi in Ξ. We assume that ri ≤ k+1. Let us further assume
throughout that r1 = rm = k + 1, i.e., that Ξ is an open knot vector. This allows
us to easily prescribe Dirichlet boundary conditions. At the point ζi, B-spline basis
functions have αj := k− rj continuous derivatives. We define the regularity vector α
by α := {α1, . . . , αm}. By construction, α1 = αm = −1. In what follows, we utilize
the notation

|α| = min{αi : 2 ≤ i ≤ m− 1} (13)

and α− 1 := {−1, α2 − 1, . . . , αm−1 − 1,−1} when αi ≥ 0 for 2 ≤ i ≤ m− 1.
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We denote the space of B-splines spanned by the basis functions Bk
i as

Skα := span
{
Bk
i

}n
i=1

. (14)

When k ≥ 1 and αi ≥ 0 for 2 ≤ i ≤ m − 1, the derivatives of functions in Skα are
splines as well. In fact, we have the stronger relationship{

d

dx
v : v ∈ Skα

}
≡ Sk−1

α−1 . (15)

One of the most important properties of univariate B-splines is refinement and, per-
haps more importantly, nestedness of refinement. Knot insertion and degree elevation
algorithms are described in detail in Chapter 2 of [15].

4.2 Multivariate B-splines

The definition of multivariate B-splines follows easily through a tensor-product con-
struction. For d again a positive integer, let us consider the unit cube Ω̂ = (0, 1)d ⊂
Rd, which we will henceforth refer to as the parametric domain. Mimicking the one-
dimensional case, given integers kl and nl for l = 1, . . . , d, let us introduce open
knot vectors Ξl = {ξ1,l, . . . , ξnl+kl+1,l} and the associated vectors ζl = {ζ1,l, . . . , ζml,l},
{r1,l, . . . , rml,l}, and αl = {α1,l, . . . , αml,l}. There is a parametric Cartesian meshMh

associated with these knot vectors partitioning the parametric domain into rectangu-
lar parallelepipeds. Visually,

Mh = {Q = ⊗l=1,...,d (ζil,l, ζil+1,l) , 1 ≤ il ≤ ml − 1} . (16)

For each element Q ∈ Mh we associate a parametric mesh size hQ = diam(Q). We
also define a shape regularity constant λ which satisfies the inequality

λ−1 ≤ hQ,min

hQ
≤ λ, ∀Q ∈Mh, (17)

where hQ,min denotes the length of the smallest edge of Q. A sequence of parametric
meshes that satisfy the above inequality for an identical shape regularity constant is
said to be quasi-uniform.

We associate with each knot vector Ξl (l = 1, . . . , d) univariate B-spline basis
functions Bkl

il,l
of degree kl for il = 1, . . . , nl. On the mesh Mh, we define the tensor-

product B-spline basis functions as

Bk1,...,kd
i1,...,id

:= Bk1
i1,1
⊗ . . .⊗Bkd

id,d
, i1 = 1, . . . , n1, . . . id = 1, . . . , nd. (18)

We then accordingly define the tensor-product B-spline space as

Sk1,...,kdα1,...,αd
≡ Sk1,...,kdα1,...,αd

(Mh) := span
{
Bk1,...,kd
i1,...,id

}n1,...,nd

i1=1,...,id=1
. (19)
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Like their univariate counterparts, multivariate B-spline basis functions are piece-
wise polynomial, form a partition of unity, have local support, and are non-negative.
Defining the regularity constant

α := min
l=1,...,d

min
2≤il≤ml−1

{αil,l} (20)

we see that our B-splines are Cα-continuous throughout the domain Ω̂. Refinement of
multivariate B-spline bases is obtained by applying knot insertion and degree elevation
in tensor-product fashion. In the remainder of this paper, we consider a family of
nested meshes {Mh}h≤h0 and associated B-spline spaces

{
Sk1,...,kdα1,...,αd

(Mh)
}
h≤h0

that

have been obtained by successive applications of knot refinement. Furthermore, we
assume throughout that the mesh family {Mh}h≤h0 is quasi-uniform.

Note that each element Q = ⊗l=1,...,d (ζil,l, ζil+1,l) has the equivalent representation
Q = ⊗l=1,...,d (ξjl,l, ξjl+1,l) for some index jl. With this in mind, we associate with each
element a support extension Q̃, defined as

Q̃ := ⊗l=1,...,d (ξjl−kl,l, ξjl+kl+1,l) . (21)

The support extension is the interior of the set formed by the union of the supports
of all B-spline basis functions whose support intersects Q. Note that each element
belongs to the support extension of at most Πl=1,...,d(2kl + 1) elements.

4.3 Piecewise Smooth Functions, Geometrical Mappings, and
Physical Mesh Entities

On the parametric meshMh, we define the space of piecewise smooth functions with
interelement regularity given by the vectors α1, . . . ,αd as

C∞α1,...,αd
= C∞α1,...,αd

(Mh) . (22)

Precisely, a function in C∞α1,...,αd
is a function whose restriction to an element Q ∈Mh

admits a C∞ extension in the closure of that element and which has αil,l contin-
uous derivatives with respect to the lth coordinate along the internal mesh faces
{(x1, . . . , xd) : xl = ζil,l, ζjl′ ,l′ < xl′ < ζjl′+1,l

′ , l′ 6= l} for all il = 2, . . . ,ml − 1 and
jl′ = 1, . . . ,ml′ − 1. Note immediately that any function lying in the B-spline space
Sk1,...,kdα1,...,αd

also lies in C∞α1,...,αd
.

Unless specified otherwise, we assume throughout the rest of the paper that the
physical domain Ω ⊂ Rd can be exactly parametrized by a geometrical mapping

F : Ω̂ → Ω belonging to
(
C∞α1,...,αd

)d
with piecewise smooth inverse. We further

assume that the physical domain Ω is simply connected with connected boundary
∂Ω and the geometrical mapping is independent of the mesh family index h. The
geometrical mapping F naturally induces a mesh

Kh = {K : K = F(Q), Q ∈Mh} (23)

on the physical domain Ω. We define for each element K ∈ Kh a physical mesh size

hK = ‖DF‖L∞(Q)hQ (24)

9



where Q is the pre-image of K, and we also define the support extension K̃ = F(Q̃).
We define for a given mesh the global mesh size

h = max {hK , K ∈ Kh} .

Note that as the parametric mesh family {Mh}h≤h0 is quasi-uniform and the geomet-
rical mapping F is independent of the mesh family index h, the physical mesh family
{Kh}h≤h0 is also quasi-uniform. We refer to the physical domain Ω and its pre-image

Ω̂ interchangeably as the patch. It should be noted that, in general, the domain Ω
cannot be represented using just a single patch. Instead, multiple patches must be
employed. For the sake of brevity, the multi-patch setting will not be covered in this
paper. The interested reader is referred to [19, 22, 23]

We define on the parametric mesh a set of mesh faces F̂h = {F̂} where F̂ is a face
of one or more elements in Mh. We define the physical set of mesh faces as

Fh = {F = F(F̂ ) : F̂ ∈ F̂h}

and we define the boundary mesh to be

Γh = {F ∈ Fh : F ⊂ ∂Ω} .

By construction,
∂Ω = ∪F∈Γh

F .

Note that for each face F ∈ Γh there is a unique K ∈ Kh such that F is a “face” of
K (in the sense that F is the image of a face of Q, the pre-image of K). We hence
define for such a face the mesh size

hF := hK .

One may also define hF to be the wall-normal mesh-size as is done in [6].

5 Discretization of Velocity and Pressure Fields

In this section, we define the B-spline spaces which we will utilize to discretize the
velocity and pressure fields appearing in the unsteady Navier-Stokes problem. These
spaces are motivated by the recent theory of isogeometric discrete differential forms
[12, 13] and may be interpreted as smooth generalizations of Raviart-Thomas elements
[44]. For a more in-depth discussion of the discrete velocity and pressure spaces used
in this paper, see Section 5 of [22].

5.1 Discrete Spaces on the Parametric Domain

Using the notation of the previous section and assuming that

α := min{|αl| : l = 1, . . . , d} ≥ 1,
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we define the following two spaces:

V̂h :=

{
Sk1,k2−1
α1,α2−1 × S

k1−1,k2
α1−1,α2

if d = 2,

Sk1,k2−1,k3−1
α1,α2−1,α3−1 × S

k1−1,k2,k3−1
α1−1,α2,α3−1 × S

k1−1,k2−1,k3
α1−1,α2−1,α3

if d = 3,

Q̂h :=

{
Sk1−1,k2−1
α1−1,α2−1 if d = 2,

Sk1−1,k2−1,k3−1
α1−1,α2−1,α3−1 if d = 3.

The spaces V̂h and Q̂h are precisely the spaces of discrete two-forms and three-forms
that were introduced in [12], and they were first applied to the discretization of

Stokes flow in [11]. The space V̂h comprises our set of discrete velocity fields while Q̂h
comprises our set of discrete pressure fields. Note that as α ≥ 1, our discrete velocity
fields are H1-conforming. If we allow α = 0, our spaces collapse to standard Raviart-
Thomas mixed finite elements [44]. In order to deal with no-penetration boundary
conditions, we make use of the following constrained discrete spaces:

V̂0,h :=
{
v̂h ∈ V̂h : v̂h · n̂ = 0 on ∂Ω̂

}
,

Q̂0,h :=

{
q̂h ∈ Qh :

∫
Ω̂

q̂hdx̂ = 0

}
.

Above, n̂ denotes the outward-facing normal to ∂Ω̂. As specified in the introduction,
we choose to enforce no-slip boundary conditions weakly using Nitsche’s method [42].

Due to the special relationship given by (15), the spaces V̂0,h and Q̂0,h along with the
parametric divergence operator form the bounded discrete cochain complex

V̂0,h
d̂iv−−−→ Q̂0,h

where d̂iv is the divergence operator on the unit cube Ω̂.

5.2 Discrete Spaces on the Physical Domain

To define our discrete velocity and pressure spaces on the physical domain, we intro-
duce the following pullback operators:

ιu(v) := det (DF) (DF)−1 (v ◦ F) , v ∈ H0(div; Ω) (25)

ιp(q) := det (DF) (q ◦ F) , q ∈ L2
0(Ω) (26)

where DF is the Jacobian matrix of the parametric mapping F. With these operators
defined, we have the following commuting diagram:

H0(d̂iv; Ω̂)
d̂iv−−−→ L2

0(Ω̂)

ιu

x ιp

x
H0(div; Ω)

div−−−→ L2
0(Ω).

(27)
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This motivates the use of the following discrete velocity and pressure spaces in the
physical domain:

V0,h :=
{
v ∈ H0(div; Ω) : ιu(v) ∈ V̂0,h

}
,

Q0,h :=
{
q ∈ L2

0(Ω) : ιp(q) ∈ Q̂0,h

}
.

In [12], it was shown that there exist projection operators Π0
Vh : H0(div; Ω) → V0,h

and Π0
Qh

: L2(Ω)→ Q0,h such that the following proposition holds.

Proposition 5.1. The following diagram commutes:

H0(div; Ω)
div−−−→ L2

0(Ω)

Π0
Vh

y Π0
Qh

y
V0,h

div−−−→ Q0,h.

(28)

Furthermore, there exists a positive constant Cu independent of h such that

‖Π0
Vhv‖H1(Ω) ≤ Cu‖v‖H1(Ω), ∀v ∈ H0(div; Ω) ∩ H1(Ω) . (29)

We immediately have an inf-sup condition for our discrete velocity/pressure pair
as a consequence of the above proposition. A complete proof of the inf-sup condition
may be found in [22].

Proposition 5.2. There exists a positive constant β̊ independent of h such that:

inf
qh∈Q0,h

qh 6=0

sup
vh∈V0,h

(divvh, qh)L2(Ω)

‖vh‖H1(Ω)‖qh‖L2(Ω)

≥ β̊. (30)

We also have the following result.

Proposition 5.3. If vh ∈ V0,h satisfies

(divvh, qh)L2(Ω) = 0, ∀qh ∈ Q0,h, (31)

then divvh ≡ 0.

Proof. The proof holds trivially as div maps V0,h onto Q0,h.

Hence, by choosing V0,h andQ0,h as discrete velocity and pressure spaces, we arrive
at an inf-sup stable discretization that automatically returns velocity fields that are
pointwise divergence-free.

12



5.3 Approximation Results and Trace Inequalities

Let us define
k′ = min

l=1,...,d
|kl − 1| . (32)

Note that the discrete velocity and pressure spaces V0,h and Q0,h consist of mapped
piecewise polynomials which are complete up to degree k′. The following result details
the local approximation properties of our discrete spaces. Its proof may be found in
[12].

Proposition 5.4. Let K ∈ Kh and K̃ denote the support extension of K. For
0 ≤ j ≤ s ≤ k′ + 1, we have

|v− Π0
Vhv|Hj(K) ≤ Chs−jK ‖v‖Hs(K̃), ∀v ∈ Hs(K̃) ∩ H0(div; Ω) (33)

|q − Π0
Qh
q|Hj(K) ≤ Chs−jK ‖q‖Hs(K̃), ∀q ∈ Hs(K̃) ∩ L2

0(Ω) (34)

where C denotes a positive constant, possibly different at each appearance, independent
of h.

Hence, our discrete spaces deliver optimal rates of convergence from an approxi-
mation point of view. We will also need the following trace estimate in what follows.
Its proof can be found in [19].

Proposition 5.5. Let K ∈ Kh. Then we have

‖ (∇svh)n‖(L2(∂K))d ≤ Ctraceh
−1
K ‖vh‖H1(K), ∀vh ∈ V0,h (35)

where Ctrace denotes a positive constant independent of h.

In [21], it was shown that Proposition 5.5 holds for B-splines and parametric finite
elements with Ctrace ∼ (k′)2. However, our numerical experience has indicated that
a corresponding global trace inequality holds with Ctrace ∼ k′ if B-splines of maximal
continuity are utilized.

6 The Semi-Discrete Problem

In this section, we approximate the unsteady Navier-Stokes problem using the discrete
velocity and pressure spaces introduced in the previous section. We prove the resulting
semi-discretization scheme is well-posed and satisfies a discrete energy balance law,
and we briefly discuss a priori error estimates.

6.1 Semi-Discrete Variational Formulation

We begin this section by presenting a semi-discrete variational formulation for the
unsteady Navier-Stokes equations subject to homogeneous Dirichlet boundary condi-
tions. Since members of V0,h do not satisfy homogeneous tangential Dirichlet bound-
ary conditions, we employ Nitsche’s method to weakly enforce no-slip boundary con-
ditions. To this effect, we define the following bilinear form for Cpen ≥ 1 a chosen
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positive penalty constant independent of mesh size:

kh(w,v) = k(w,v)−
∑
F∈Γh

∫
F

2ν

(
((∇sv)n) ·w + ((∇sw)n) · v− Cpen

hF
w · v

)
ds

(36)
where

k(w,v) = (2ν∇sw,∇sv)(L2(Ω))d×d , ∀w,v ∈ H1(Ω) . (37)

Let us also define our discrete space-time velocity space as

VhT :=
{
vh ∈ C0((0, T );V0,h) : ∂tvh ∈ L2((0, T );V0,h)

}
(38)

and our discrete space-time pressure space as

QhT := L2((0, T );Q0,h). (39)

It remains to specify our discrete initial condition. In what follows, we choose
u0,h = Π0

Vhu0. Note that, by construction, divu0,h = 0. We can alternatively specify

our initial condition through H1-projection into the B-spline space of divergence-free
fields. This amounts to solving a steady Stokes problem as a pre-processing step.
Employing the terminology defined above, our semi-discrete formulation reads as fol-
lows.

(G)



Find uh ∈ VhT and ph ∈ QhT such that uh(0) = u0,h and, for almost
every t ∈ (0, T ),

(∂tuh(t),vh)L2(Ω) + kh(uh(t),vh)

+c(uh(t),uh(t);vh)− b(ph(t),vh) + b(qh,uh(t)) = (f(t),vh)L2(Ω)

(40)

for all vh ∈ V0,h and qh ∈ Q0,h where

b(q,v) = (q, divv)L2(Ω) , ∀q ∈ L2(Ω),v ∈ H1(Ω) , (41)

c(w,x;v) = − (w ⊗ x,∇v)(L2(Ω))d×d , ∀w,x,v ∈ H1(Ω) . (42)

We immediately remark that the semi-discrete problem we have obtained is a set
of coupled first-order nonlinear ordinary differential equations. As such, we can use
standard approaches from the theory of ordinary differential equations to obtain exis-
tence, uniqueness, and regularity results. We may also use standard time-integration
schemes to obtain a fully-discrete formulation.

We have the following lemma detailing the consistency of our numerical method
for sufficiently regular exact solutions.

Lemma 6.1. Suppose that a Leray-Hopf solution (u, p) of the homogeneous unsteady
Navier-Stokes problem satisfies the regularity conditions

∂tu ∈ L2(0, T ;L2(Ω)), u ∈ L2(0, T ;H3/2+ε(Ω))
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where ε > 0. Then, for almost every t ∈ (0, T ):

(∂tu(t),vh)L2(Ω) + kh(u(t),vh) + c(u(t),u(t);vh)

−b(p(t),vh) + b(qh,u(t)) = (f(t),vh)L2(Ω)

(43)

for all vh ∈ V0,h and qh ∈ Q0,h.

Proof. We trivially have, for almost every t ∈ (0, T ),

b(qh,u(t)) = 0, ∀qh ∈ Q0,h. (44)

Now let vh ∈ V0,h. By the Sobolev trace theorem, our smoothness assumption for u
guarantees that (∇su)n is well-defined along ∂Ω and belongs to L2(0, T ; (L2(∂Ω))d).
Hence, we can utilize integration by parts and the fact that u(t) satisfies homoge-
neous Dirichlet boundary conditions and vh satisfies homogeneous normal Dirichlet
boundary conditions to write, for almost every t ∈ (0, T ),

(∂tu(t),vh)L2(Ω) + kh(u(t),vh) + c(u(t),u(t);vh)− b(p(t),vh)

=

∫
Ω

(∂tu(t)−∇ · (2ν∇su(t)) +∇ · (u⊗ u) +∇p(t)) · vh

= (f(t),vh)L2(Ω) .

This completes the proof of the lemma.

We also have the following lemma which is a direct consequence of Proposition
5.3.

Lemma 6.2 (Conservation of mass). Suppose (uh, ph) ∈ VhT × QhT is a solution to
(G). Then ∫ T

0

‖divuh(t)‖2
L2(Ω)dt = 0. (45)

That is, divuh = 0 as a distribution.

Weak imposition of no-slip boundary conditions allows our methodology to au-
tomatically default to a compatible semi-discretization of Euler flow in the setting
of vanishing viscosity. Moreover, for large Reynolds number flows, there is a sharp
boundary layer in the vicinity of walls. Utilzing Nitsche’s method allows us to ac-
count for these layers in a stable and consistent manner without having to directly
resolve them [5, 6, 7]. In fact, Nitsche’s method can be interpreted as a variationally
consistent wall model. To better see this, let us formally rewrite our semi-discrete
variational equations as

(∂tuh(t),vh)L2(Ω) +

∫
Ω

T(t) : ∇svhdx−
∑
F∈Γh

∫
F

Q(t) · vhds

+c(uh(t),uh(t);vh)− b(ph(t),vh) + b(qh,uh(t)) = (f(t),vh)L2(Ω) (46)
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where T is a symmetric tensor satisfying∫
Ω

T(t) : Wdx =

∫
Ω

2ν∇suh(t) : Wdx−
∑
F∈Γh

∫
F

2νuh(t) · (Wn) ds

=

∫
Ω

2νuh(t) · divWdx (in the sense of distributions) (47)

for symmetric tensors W with well-defined normal trace and Q is a vector satisfying

Q(t) = 2ν

(
(∇suh(t))n−

Cpen
h

uh(t)

)
. (48)

Above, T is a weakly defined viscous stress tensor and Q is the resultant viscous
boundary traction vector. The tangential component of Q, given by

Qtang = Q− (Q · n)n, (49)

is the effective wall shear stress vector. As the semi-discrete velocity field satisfies the
no-penetration boundary condition strongly, the vector Q is equal to the semi-discrete
shear stress 2ν (∇suh)n plus an additional wall shear stress term Q+ in the direction
tangent to the wall. Specifically, we have

Q+ = −u∗2 uh
‖uh‖

(50)

where

u∗2 =
2νCpen‖uh‖

h
. (51)

For under-resolved flow simulations, the magnitude of (∇suh)n in the direction tan-
gent to the wall is relatively small and, as such, the tangential component of Q is
dominated by Q+. In this sense, Q+ becomes a model for the wall shear stress. As
the mesh is refined and the flow is resolved, Q+ → 0. The above interpretation
allows us to design physically motivated penalty values for Nitsche’s penalty param-
eter. Notably, u∗ may be interpreted as the friction velocity. By specifying the value
of u∗ using Spalding’s law of the wall [47], we recover a standard wall model for
under-resolved flow simulations. For more on this approach, see Section 3 of [6]. It
is important to note, however, that the numerically inspired version, (50), produced
results of the same quality as the u∗ given by Spalding’s physically inspired law of
the wall.

Remark 6.1. If we wish to impose non-homogeneous tangential Dirichlet (e.g., pre-
scribed slip) boundary conditions, we must add the following expression to the right
hand side of our semi-discrete formulation:

fN(vh) =
∑
F∈Γh

∫
F

2ν

(
− ((∇svh)n) · uBC(t) +

Cpen
hF

uBC(t) · vh
)
ds (52)

where uBC is a prescribed vector function defined on ∂Ω with prescribed boundary
values. If we also wish to impose non-homogeneous normal Dirichlet (e.g., prescribed
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penetration) boundary conditions, we must impose these strongly and add the following
expression to the left hand side of our semi-discrete formulation:

cUW (uh(t),vh) =
∑
F∈Γh

∫
F

(uBC(t) · n)+ uh(t) · vhds (53)

and the following expression to the right hand side of our semi-discrete formulation:

fUW (vh) = −
∑
F∈Γh

∫
F

(uBC(t) · n)− uBC(t) · vhds (54)

where

(uBC(t) · n)+ =

{
uBC(t) · n if uBC(t) · n > 0

0 otherwise

and

(uBC(t) · n)− =

{
uBC(t) · n if uBC(t) · n ≤ 0

0 otherwise.

These additional terms correspond to upwinding.

6.2 Energy Balance

Our semi-discrete formulation satisfies a discrete energy balance law if we assume that
the constant in Nitsche’s method is chosen large enough. First, in light of Proposition
5.5, we assume that

Cpen ≥ 4hKC
2
PoinCKorn

‖ (∇svh)n‖2
(L2(∂K))d

‖vh‖2
H1(K)

, ∀K ∈ Kh, vh ∈ V0,h (55)

where CPoin is the positive constant appearing in Poincaré’s inequality:

‖v‖H1(Ω) ≤ CPoin|v|H1(Ω), ∀v ∈ H1(Ω) ∩ H0(div; Ω)

and CKorn is the positive constant associated with the following Korn’s inequality
[10]:

|w|2H1(Ω) ≤ CKorn

(
‖∇sw‖2

(L2(Ω))d×d + |∂Ω|−1/(d−1)‖w‖2
(L2(∂Ω))d

)
, ∀w ∈ H1(Ω) .

Second, we assume that
Cpen ≥ 4h0|∂Ω|−1/(d−1) (56)

where h0 is the mesh size of the coarsest mesh K0 and |∂Ω| denotes the length of ∂Ω
for d = 2 and the area of ∂Ω for d = 3. Assumptions (55) and (56) ensure that the
bilinear form kh(·, ·) is coercive (see [22, 23] for details).

Lemma 6.3 (Global balance law for energy). Suppose (uh, ph) ∈ VhT×QhT is a solution
to (G). Furthermore, assume (55) and (56) are satisfied. Then

1

2

d

dt
‖uh(t)‖2

L2(Ω) = −kh(uh(t),uh(t)) + (f(t),uh(t))L2(Ω) ≤ (f(t),uh(t))L2(Ω) (57)

for almost every t ∈ (0, T ).
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Proof. Insert (vh, qh) = (uh(t), 0) into (40) for almost every t ∈ (0, T ) and use the
fact that divuh = 0 as a distribution to obtain the expression

(∂tuh(t),uh(t))L2(Ω) + kh(uh(t),uh(t)) + c(uh(t),uh(t);uh(t)) = (f(t),uh(t))L2(Ω) .

An immediate application of the product rule yields

1

2

d

dt
‖uh(t)‖2

L2(Ω) + kh(uh(t),uh(t)) + c(uh(t),uh(t);uh(t)) = (f(t),uh(t))L2(Ω) .

To proceed, we write

c(uh(t),uh(t);uh(t)) = −
∫

Ω

(uh(t)⊗ uh(t)) : ∇uh(t)dx.

Since divuh = 0, we have

c(uh(t),uh(t);uh(t)) = −1

2

∫
Ω

div
(
uh(t)|uh(t)|2

)
dx,

and by the divergence theorem,

c(uh(t),uh(t);uh(t)) = 0.

To complete the proof, note that kh(·, ·) is coercive due to Corollary 6.2 of [23].

The above energy balance law is analogous to the balance law satisfied by Leray-
Hopf weak solutions. However, while we have an equality in our discrete balance
law, the balance law for Leray-Hopf weak solutions is characterized by an inequality.
This inequality is an artifact of regularization and passing to the limit. Note that
when the applied forcing term is conservative (i.e., f = ∇q for some scalar potential
q : Ω→ R), we have

1

2

d

dt
‖uh(t)‖2

L2(Ω) ≤ 0

for almost every t ∈ (0, T ). Hence, our formulation properly dissipates energy in the
presence of conservative forces. Furthermore, when the viscosity is taken to vanish,
we obtain

1

2

d

dt
‖uh(t)‖2

L2(Ω) = 0.

Thus, just as in the infinite-dimensional setting, energy is an inviscid invariant for our
semi-discrete formulation. Consequently, our formulation exhibits time-reversibility.

6.3 Global Existence and Uniqueness

Using standard approaches from the theory of ordinary differential equations, we
obtain the following theorem.

Theorem 6.1. Assume (55) and (56) are satisfied. Then Problem (G) has a unique
solution (uh, ph) ∈ VhT ×QhT . Moreover,

‖uh‖L∞(0,T ;L2(Ω)) ≤ eT
(
‖u0,h‖L2(Ω) + ‖f‖L2(0,T ;L2(Ω))

)
. (58)
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Proof. We begin by establishing existence and uniqueness for the semi-discrete veloc-
ity solution. To do so, we restrict ourselves to the divergence-free space

V̊hT :=
{
vh ∈ VhT : divvh = 0

}
.

Each function vh ∈ V̊hT can be written uniquely as

vh(t) =
m∑
i=1

ei(t)wi

where {wi}mi=1 is a basis for the space

V̊0,h := {wh ∈ V0,h : divwh = 0} .

Representing our desired solution as

uh(t) =
m∑
i=1

di(t)wi,

the semi-discrete problem in the kernel becomes a nonlinear system of first-order or-
dinary differential equations for the coefficients di(t) subject to appropriately defined
initial conditions. The energy estimate in Lemma 6.3 can then be used in conjunction
with Gronwall’s inequality to show that there exists a unique absolutely continuous
function d(t) = (d1(t), . . . , dm(t)) such that the initial conditions are satisfied and the
nonlinear system of first-order ordinary differential equations is satisfied for almost
every time t ∈ (0, T ). Hence, a solution uh ∈ V̊hT exists and is unique. Existence and
uniqueness of ph ∈ QhT is an immediate consequence of the inf-sup condition for the
bilinear form b(·, ·). To obtain the L2 stability estimate, we write using Lemma 6.3

d

dt
‖uh(t)‖2

L2(Ω) ≤ 2 (f(t),uh(t))L2(Ω) ≤ ‖f(t)‖
2
L2(Ω) + ‖uh(t)‖2

L2(Ω)

for almost every t ∈ (0, T ). The desired estimate is then an immediate result of the
differential form of Gronwall’s inequality.

Note that the above theorem gives existence and uniqueness results for any end-
time T . Hence, we have global-in-time existence and uniqueness for our semi-discrete
problem. Moreover, our method is well-posed in the sense that it returns semi-discrete
solutions which depend continuously on the given data. This gives our methodology
firm mathematical grounding.

6.4 A Priori Error Estimates

If one assumes that a Leray-Hopf solution to the unsteady Navier-Stokes equations
is sufficiently smooth, one can use standard functional analysis techniques to prove
our semi-discrete velocity solution converges at optimal order (with respect to the
mesh size) to the Leray-Hopf velocity solution. The main idea is due to Heywood and
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Rannacher [26] and involves splitting the velocity error into two components: an error
contribution associated with the semi-discrete solution of a linearized unsteady Stokes
problem and a remainder term comprising the difference between the semi-discrete
Stokes solution and the semi-discrete Navier-Stokes solution. The resulting analysis
is lengthy, tedious, and tangential, and, as such, we have elected not to include it
here. The final a priori estimate is reported in the theorem below, and the interested
reader is directed to Chapter 9 of [19].

Theorem 6.2. Assume that (55) and (56) are satisfied and that the domain Ω satisfies
the elliptic regularity condition. Let u denote a Leray-Hopf solution of the unsteady
Navier-Stokes equations and (uh, ph) denote the unique weak solution of (G). If the
regularity conditions

u ∈ L∞(0, T ; Hj+1(Ω)), ∂tu ∈ L2(0, T ; Hj+1(Ω))

hold for j ≥ 1, then we have

‖u− uh‖2
L∞(0,T ;L2(Ω)) ≤

CNS (1 +QT exp {βT})h2(s+1)
(
‖u‖2

L∞(0,T ;Hs+1(Ω)) + (2ν)−1‖∂tu‖2
L2(0,T ;Hs+1(Ω))

)
(59)

where s = min {k′, j}, Q and β are positive constants independent of h and T that
scale asymptotically with ν−1 and depend on the supremum of u over Ω× [0, T ), and
CNS is a positive constant independent of h, ν, and T that scales asymptotically with
Cpen.

Note that while the above theorem gives an optimal L2 error bound for the velocity
field in terms of the mesh size h, the bound grows exponentially in time. In general,
such a dependence is unavoidable. However, if we assume an exact solution is stable
in the sense that perturbations decay exponentially in time, we can use standard
techniques to prove error estimates which are uniform in time [27]. Furthermore, it is
known that solutions of the unsteady Navier-Stokes problem may experience blow up
at the initial time unless certain compatibility conditions relating the initial condition
and applied forcing are satisfied. The inherent smoothing properties of unsteady
Navier-Stokes flow may be exploited in order to derive optimal error estimates away
from the initial time for higher-order spatial discretizations [28]. Finally, an additional
analysis can be conducted to obtain error estimates which are suboptimal, by one
order, for the semi-discrete pressure field. Our numerical experience has suggested
that the semi-discrete pressure field converges at optimal order in contrast with these
estimates.

7 Balance Laws

In this section, we present a collection of balance laws for our semi-discretization
scheme. These balance laws supplement the discrete energy balance law derived in
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Subsection 6.2 and give our semi-discrete formulation geometric structure. Before
proceeding further, we pose our semi-discrete problem in a slightly different form.
This form will more directly reveal the conservation structure of our chosen semi-
discretization. Let us introduce the following discrete trace space:

Vtrace,h :=
{
q ∈ L2(∂Ω) : q = vh · n,vh ∈ Vh

}
. (60)

Note that, in the above expression, Vh denotes the space of discrete velocity fields
which are free of Dirichlet boundary conditions. Vtrace,h represents the natural trace
space associated with Vh, and it is a Hilbert space when endowed with the standard
L2 inner-product over ∂Ω. Introducing the space-time trace space

Vhtrace,T := L2(0, T ;Vtrace,h), (61)

let us consider the following semi-discrete problem.

(A)



Find uh ∈ VhT , ph ∈ QhT , and ptrace,h ∈ Vhtrace,T such that uh(0) = u0,h

and, for almost every t ∈ (0, T ),

(∂tuh(t),vh)L2(Ω) + kh(uh(t),vh) + c(uh(t),uh(t);vh)

−b(ph(t),vh) + (ptrace,h(t),vh · n)L2(∂Ω) + b(qh,uh(t)) = (f(t),vh)L2(Ω)

(62)

for all vh ∈ Vh and qh ∈ Q0,h.

Here, we have introduced the auxiliary field ptrace,h and released the no-penetration
boundary condition on the discrete test space for the momentum equations. Note that
the solution of Problem (G) is also a solution to Problem (A) (modulo the auxiliary
field ptrace,h) since

(ptrace,h(t),vh · n)L2(∂Ω) = 0, ∀vh ∈ V0,h.

Furthermore, the auxiliary field ptrace,h is unique due to the obvious inf-sup condition

inf
qh∈Vtrace,h

qh 6=0

sup
vh∈Vh

(qh,vh · n)L2(∂Ω) = ‖qh‖2
L2(∂Ω).

By employing integration by parts, we observe the auxiliary field ptrace,h approximates
the trace of the pressure field. Hence, ptrace,hn gives the semi-discrete normal traction
on ∂Ω due to pressure forces.

7.1 Conservation Properties on Rectilinear Domains

Suppose that Ω is a rectilinear domain that has been mapped from parametric space
using an affine transformation. Then, the unit vectors ei ∈ Rd necessarily belong
to the discrete space Vh. If we select vh = ei and qh = ph(t) in (62) and sum over
i = 1, . . . , d, we obtain the following discrete balance law for linear momentum.
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Global conservation of linear momentum on rectilinear domains. For recti-
linear domains, the semi-discrete velocity field uh satisfies

d

dt

∫
Ω

uh(t)dx =

∫
∂Ω

(−ptrace,h(t)n + Q(t)) ds +

∫
Ω

f(t)dx (63)

for almost all t ∈ (0, T ) where

Q(t) = 2ν

(
(∇suh(t))n−

Cpen
hF

uh(t)

)
for a given mesh face F ∈ Γh.

By interpreting Nitsche’s method as a variational wall model as was discussed in
Subsection 6.1, we see that the above balance law dictates that linear momentum en-
ters or leaves the system either through body forces or surface traction forces. Hence,
our semi-discrete formulation properly mimics the continuous problem. We can derive
similar balance laws when non-homogeneous Dirichlet, traction, or periodic bound-
ary conditions are specified instead of homogeneous Dirichlet boundary conditions.
Additionally, we can derive momentum balance laws over subdomains by introducing
auxiliary flux spaces on subdomain boundaries. For more on this procedure, see [31].

7.2 Conservation Properties on Cylindrical Domains

When the domain Ω is not rectilinear, our semi-discrete formulation is no longer
guaranteed to globally conserve linear momentum. This is because the Piola trans-
formation does not, in general, map constant vector fields in parametric space to
constant vector fields in physical space. However, the special structure of the Pi-
ola transformation allows our formulation to admit more natural momentum balance
laws for general parametric domains. In this subsection, we demonstrate that if Ω is
a cylindrical domain defined via a polar mapping, our formulation globally conserves
axial angular momentum and axial linear momentum.

To proceed, let us introduce the mapping

F(ξ1, ξ2, ξ3) =

 ((rout − rin)ξ2 + rin) sin(2πξ1)
((rout − rin)ξ2 + rin) cos(2πξ1)

Hξ3

 ,∀(ξ1, ξ2, ξ3) ∈ (0, 1)3

from the parametric domain Ω̂ = (0, 1)3 to a physical domain Ω set between two con-
centric cylinders. The radius of the inner cylinder is taken to be rin, the radius of the
outer cylinder is taken to be rout, and the heights of the cylinders are taken to be H.
Periodicity is applied in the ξ1 direction. We have the following relationship between
our parametric coordinate system and the cylindrical coordinate system (θ, r, z):

θ = 2πξ1

r = (rout − rin)ξ2 + rin

z = Hξ3.
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Without loss of generality, let us assume that rin = 1, rout = 2, and H = 1. The
semi-discrete velocity functions vh ∈ Vh have the representation

vh(x(ξ)) :=
1

det (DF(ξ))
DF(ξ) v̂h(ξ)

where v̂h ∈ V̂h. A direct computation shows

vh(x(ξ)) :=

 cos(θ) sin(θ)
2πr

0

− sin(θ) cos(θ)
2πr

0
0 0 1

2πr

 v̂h(ξ).

Now, since the space V̂h contains all vector-valued functions which are linear polyno-
mials in ξ1, ξ2, and ξ3 (since k′ ≥ 1), we have thus proven the vector-valued functions

s =

 cos(θ) sin(θ)
2πr

0

− sin(θ) cos(θ)
2πr

0
0 0 1

2πr

 r
0
0

 =

 r cos(θ)
−r sin(θ)

0

 =

 y
−x
0


and

z =

 cos(θ) sin(θ)
2πr

0

− sin(θ) cos(θ)
2πr

0
0 0 1

2πr

 0
0

2πr

 =

 0
0
1


are members of Vh. Let us now select vh = s and qh = ph(t) in (62). Since

∇s =

 0 1 0
−1 0 0
0 0 0


is an anti-symmetric matrix, we have∫

Ω

(2ν (∇suh(t)) : (∇ss)− (uh(t)⊗ uh(t)) : ∇s) dx

−
∫
∂Ω

2ν ((∇ss)n) · uh(t)ds = 0

for almost every t ∈ (0, T ). Therefore,

d

dt

∫
Ω

uh(t) · sdx =

∫
∂Ω

(
−ptrace,h(t)n + 2ν

(
(∇suh(t))n−

Cpen
hF

uh(t)

))
· sds

+

∫
Ω

f(t) · sdx.

Furthermore, we have that

w · s = (w× r)z , ∀w ∈ R3
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where (·)z denotes the z-component of a vector and

r =

 r sin(θ)
r cos(θ)

0

 .
Hence, we have proven the following balance law for axial angular momentum.

Global conservation of axial angular momentum on cylindrical domains.
For cylindrical domains, the semi-discrete velocity field uh satisfies

d

dt

∫
Ω

(uh(t)× r)z dx =

∫
∂Ω

((−ptrace,h(t)n + Q(t))× r)z ds

+

∫
Ω

(f(t)× r)z dx (64)

for almost all t ∈ (0, T ) where

r =

 r sin(θ)
r cos(θ)

0


and

Q(t) = 2ν

(
(∇suh(t))n−

Cpen
hF

uh(t)

)
for a given mesh face F ∈ Γh.

The above balance law dictates that axial angular momentum enters or leaves
the semi-discrete system either through applied moments or torques. This balance
law mimics the corresponding continuous balance law for axial angular momentum.
We would like to mention that derivation of this balance law was contingent upon
employing the symmetrized gradient for the viscous stress term instead of the full
gradient.

Selecting vh = z and qh = ph(t) in (62) yields the following balance law for axial
linear momentum. It states that axial momentum enters or leaves the system either
through axial body forces or axial traction forces.

Global conservation of axial linear momentum on cylindrical domains. For
cylindrical domains, the semi-discrete velocity field uh satisfies

d

dt

∫
Ω

(uh(t))z dx =

∫
∂Ω

((−ptrace,h(t)n + Q(t)))z ds

+

∫
Ω

(f(t))z dx (65)

for almost all t ∈ (0, T ) where

Q(t) = 2ν

(
(∇suh(t))n−

Cpen
hF

uh(t)

)
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for a given mesh face F ∈ Γh.

As a final note, we would like to state that if we had utilized a NURBS mapping
to represent the physical domain Ω, we would have arrived at a global conservation
statement for axial angular momentum but not for axial linear momentum. Hence, we
believe polar mappings hold a distinct advantage over NURBS mappings when solv-
ing problems harboring important symmetry and conservation properties. This being
said, we would like to mention that one recovers both linear and angular momentum
balance laws when employing NURBS-based isogeometric analysis in conjunction with
a residual-based Variational Multiscale method [3]. Such a discretization, however,
does not exactly replicate the incompressibility constraint and alternatively attempts
to model the effects of fine-scale solution features (including, in this case, compress-
ibility) on the resolved components of the flow.

7.3 Vorticity, Enstrophy, and Helicity

We continue this section by deriving discrete balance laws for vorticity, enstrophy,
and helicity when the applied forcing term is conservative (i.e., when the forcing is
derived through a potential). In order to do so, we must properly define vorticity
at the semi-discrete level (see, for example, [43]). We restrict our discussion to the
three-dimensional setting for the remainder of this section. Recall that the vorticity
field

ω = curlu

satisfies the partial differential equations

∂ω

∂t
+∇ · (u⊗ ω − ω ⊗ u) = ∇ · (2ν∇sω) (66)

and
divω = 0 (67)

when the applied forcing term is conservative. Furthermore, since u = 0 on ∂Ω,

ω · n = 0. (68)

In light of these identities, conservation statements, and boundary conditions, we
define semi-discrete vorticity as the solution of the following problem: find ωh ∈
V̊hT =

{
vh ∈ VhT : divvh = 0

}
such that ωh(0) = ω0,h and

(∂tωh(t),vh)L2(Ω) + kh(ωh(t),vh) + c(uh(t),ωh(t);vh)− c(ωh(t),uh(t);vh)

=
∑
F∈Γh

∫
F

2ν

(
− ((∇svh)n) · curluh(t) +

Cpen
hF

curluh(t) · vh
)
ds (69)

for almost every t ∈ (0, T ) and for all vh ∈ V̊0,h where ω0,h ∈ V̊0,h is a suitably defined
initial condition. Note that we have strongly enforced normal boundary conditions for
the semi-discrete vorticity field and weakly enforced tangential boundary conditions
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using Nitsche’s method. It should be further noted that the semi-discrete problem
given by (69) may not have a global-in-time solution. This is due to the presence
of vortex stretching. However, Picard’s existence theorem can be used to show the
problem has a unique local-in-time solution. Hence, let us assume for the remainder
of this discussion that the end-time T has been sufficiently chosen such that the semi-
discrete vorticity equation has a unique solution. Beyond such T , the semi-discrete
vorticity may, in theory, experience blow-up. Such a hypothetical blow-up lies at the
heart of the Navier-Stokes Millenium Problem.

We now present a discrete balance law for vorticity which holds for periodic do-
mains. It is a simple consequence of choosing vh = ei in (69) where ei is a unit
vector. Analogous balance laws can be proven for rectilinear domains subject to no-
penetration and no-slip boundary conditions.

Global balance law for vorticity. Suppose Ω is the three-dimensional torus. For
conservative applied forces, the semi-discrete vorticity field ωh satisfies

d

dt

∫
Ω

ωh(t)dx = 0 (70)

for almost all t ∈ (0, T ).

We next derive a discrete balance law for enstrophy. To begin, we insert vh =
ωh(t) into (69) for almost every t ∈ (0, T ):

(∂tωh(t),ωh(t))L2(Ω) + kh(ωh(t),ωh(t)) + c(uh(t),ωh(t);ωh(t))− c(ωh(t),uh(t);ωh(t))

=
∑
F∈Γh

∫
F

2ν

(
− ((∇sωh(t))n) · curluh(t) +

Cpen
hF

curluh(t) · ωh(t)
)
ds.

A straight-forward calculation invoking the divergence theorem and taking advantage
of the fact that the semi-discrete velocity field is divergence-free yields

c(uh(t),ωh(t);ωh(t)) = 0. (71)

The product rule gives

(∂tωh(t),ωh(t))L2(Ω) =
d

dt

∫
Ω

γh(t)dx

where γh(t) = 1
2
|ωh(t)|2 is the semi-discrete enstrophy density of the fluid. To handle

the term corresponding to vortex stretching, we employ integration by parts and the
fact that divωh = 0 to write

c(ωh(t),uh(t);ωh(t)) = −
∫

Ω

ωh(t)
T∇u(t)ωh(t)dx.

A direct calculation then gives

ωh(t)
T∇u(t)ωh(t) = ωh(t)

TD(uh(t))ωh(t)
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where D(uh(t)) = ∇suh(t) is the semi-discrete rate of strain tensor. Thus, we have
arrived at the following balance law.

Global balance law for enstropy. For conservative applied forces, the semi-
discrete vorticity field ωh satisfies

d

dt

∫
Ω

γh(t)dx =−
∫

Ω

2ν|∇sωh(t)|2dx +

∫
Ω

ωh(t)
TD(uh(t))ωh(t)dx

+

∫
∂Ω

2ν ((∇sωh(t))n) · ωh(t)ds

+
∑
F∈Γh

∫
F

2ν

(
(∇sωh(t))n−

Cpen
hF

ωh(t)

)
· (ωh(t)− curluh(t)) ds

(72)

for almost all t ∈ (0, T ).

The first and second lines of (72) contain enstrophy production terms associated
with the domain interior and boundary respectively while the third line of (72) con-
tains supplemental production terms associated with weak enforcement of boundary
conditions. When the boundary condition

ωh = curluh

is met exactly, the third line of (72) vanishes and we recover the same entropy balance
law as satisfied by the exact vorticity field. Note that since the divergence of uh is
precisely zero, D(uh(t)) has the same indefinite structure as its continuous counter-
part. That is, it has three real eigenvalues which sum to zero. Consequently, we have
appropriately captured the vortex stretching term with our semi-discrete formulation.
The same cannot be said for semi-discretizations which satisfy the incompressibility
constraint only approximately, even if the momentum and vorticity equations are
written in skew-symmetric form.

We finish here by deriving a discrete balance law for helicity. First insert (vh, qh) =
(ωh(t), ph(t)) into (40) and vh = uh(t) into (69) for almost every t ∈ (0, T ). Adding
the two resulting expressions and taking into consideration the fact that f is conser-
vative, we obtain

(∂tuh(t),ωh(t))L2(Ω) + kh(uh(t),ωh(t)) + c(uh(t),uh(t);ωh(t))

+(∂tωh(t),uh(t))L2(Ω) + kh(ωh(t),uh(t)) + c(uh(t),ωh(t);uh(t))− c(ωh(t),uh(t);uh(t))

=
∑
F∈Γh

∫
F

2ν

(
− ((∇suh(t))n) · curluh(t) +

Cpen
hF

curluh(t) · uh(t)
)
ds.

By the product rule, we have

(∂tuh(t),ωh(t))L2(Ω) + (∂tωh(t),uh(t))L2(Ω) =
d

dt

∫
Ω

%h(t)dx
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where %h(t) = ωh(t) ·uh(t) is the semi-discrete helical density of the flow. Integration
by parts and the fact that our semi-discrete velocity field is divergence-free give

c(uh(t),uh(t);ωh(t)) = −c(uh(t),ωh(t);uh(t)).

Finally, a straight-forward calculation invoking the divergence theorem and taking
advantage of the fact that the semi-discrete vorticity field is divergence-free yields

c(ωh(t),uh(t);uh(t)) = 0.

Collecting our equations, we acquire the following balance law for helicity.

Global balance law for helicity. For conservative applied forces, the semi-discrete
solution satisfies

d

dt

∫
Ω

%h(t)dx =−
∫

Ω

4ν (∇sωh(t)) : (∇suh(t)) dx

+

∫
∂Ω

2ν ((∇suh(t))n) · ωh(t)ds

+

∫
∂Ω

2ν ((∇sωh(t))n) · uh(t)ds

+
∑
F∈Γh

∫
F

2ν

(
(∇sωh(t))n−

Cpen
hF

ωh(t)

)
· uh(t)ds

+
∑
F∈Γh

∫
F

2ν

(
(∇suh(t))n−

Cpen
hF

uh(t)

)
· (ωh(t)− curluh(t)) ds

(73)

for almost all t ∈ (0, T ).

The first line of (73) contains helicity production terms associated with the domain
interior, the second and third lines of (73) contain production terms associated with
the domain boundary, and the fourth and fifth lines of (72) contain supplemental
production terms associated with weak enforcement of boundary conditions. When
the boundary conditions

uh = 0

and
ωh = curluh

are met exactly, the fourth and fifth lines of (73) vanish and we recover the same
helicity balance law as satisfied by the exact vorticity field.

Note that in the limit of vanishing viscosity our global helicity balance reduces to

d

dt

∫
Ω

%h(t)dx = 0.

Thus, just as in the infinite-dimensional setting, helicity is an inviscid invariant for
our semi-discrete formulation. We believe this is a very important property given the
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pivotal role helicity plays in flow structure development. As a final remark, we would
like to mention all of the discrete balance laws presented here generalize to other sets
of boundary conditions including non-homogeneous Dirichlet boundary conditions,
prescribed traction boundary conditions, and periodic boundary conditions.

8 Numerical Experiments

In this section, we numerically test our semi-discretization scheme using three selected
benchmark problems: two-dimensional Taylor-Green vortex flow, alternating cylin-
drical Couette flow, and three-dimensional Taylor-Green vortex flow. Throughout,
we choose Nitsche’s penalty constant as

Cpen = 5(k′ + 1)

which we have found to be sufficiently large in order to ensure numerical stability.
Additionally, we employ uniform parametric meshes and B-spline spaces of maximal
continuity.

8.1 Two-Dimensional Taylor-Green Vortex Flow

As a first numerical experiment, we consider two-dimensional Taylor-Green vortex
flow. Two-dimensional Taylor-Green vortex flow is a simple periodic (in space) vor-
tical flow subject to the initial condition

u0(x, y) =

[
sin(x) cos(y)
− cos(x) sin(y)

]
.

The exact solution for this flow exponentially decays in time and satisfies the rela-
tionships

u(x, y, t) =

[
sin(x) cos(y)
− cos(x) sin(y)

]
exp(−2νt),

p(x, y, t) =
1

4
(cos(2x) + cos(2y)) exp(−4νt).

It is easily seen that the nonlinear convection term is exactly balanced by the pressure
term and thus does not interfere with the evolution of the velocity flow field. Hence, a
question of practical interest is whether or not the nonlinear convection term interferes
with the evolution of the velocity field at the discrete level.

We have simulated two-dimensional Taylor-Green vortex flow using divergence-
conforming B-spline discretizations of varying mesh size and polynomial degree. We
restricted our computations to the domain Ω = (0, π)2 by employing symmetry con-
ditions along ∂Ω. A linear parametric mapping was utilized to describe the physical
domain. The Crank-Nicolson method [16] was employed to discretize in time, and
the time-step size was chosen to be

∆t = min

{
h

k′+1
2 ,

h2

4ν

}
,

29



Table 1: Two-dimensional Taylor-Green vortex flow: Convergence rates at t = 15 for

Re = 100. Time-step size chosen as ∆t = min
{
h

k′+1
2 , h

2

4ν

}
.

Polynomial degree k′ = 1

h 1/8 1/16 1/32 1/64
|u− uh|H1(Ω) 1.87e-1 9.34e-2 4.67e-2 2.34e-2

order - 1.00 1.00 1.00
‖u− uh‖L2(Ω) 1.02e-2 2.51e-3 6.24e-4 1.56e-4

order - 2.02 2.01 2.00
‖p− ph‖L2(Ω) 1.09e-2 2.57e-3 6.32e-4 1.59e-4

order - 2.08 2.02 1.99

Polynomial degree k′ = 2

h 1/8 1/16 1/32 1/64
|u− uh|H1(Ω) 9.64e-3 2.38e-3 5.92e-4 1.48e-4

order - 2.02 2.01 2.00
‖u− uh‖L2(Ω) 5.96e-4 7.24e-5 8.98e-6 1.12e-6

order - 3.04 3.01 3.00
‖p− ph‖L2(Ω) 1.39e-3 1.56e-4 1.90e-5 2.36e-1

order - 3.16 3.04 3.01

Polynomial degree k′ = 3

h 1/8 1/16 1/32
|u− uh|H1(Ω) 5.39e-4 6.88e-5 8.76e-6

order - 3.00 2.97
‖u− uh‖L2(Ω) 3.42e-5 2.15e-6 1.36e-7

order - 3.99 3.98
‖p− ph‖L2(Ω) 1.69e-4 9.44e-6 5.77e-7

order - 4.16 4.03
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Figure 2: Two-dimensional Taylor-Green vortex flow: L2 error of velocity field versus
time at Re = 10, 20, 40, 80, 160, 320, 640, 1280,∞ for a k′ = 1 discretization with

16× 16 elements. Time-step size chosen as ∆t = min
{
h, h

2

4ν

}
.

sufficiently small to ensure temporal discretization errors are of the same order as
spatial discretization errors. It should be mentioned the use of the Crank-Nicolson
method results in fully discrete schemes which automatically inherit the conservation
structure of the corresponding semi-discrete schemes. The initial condition was chosen
using L2-projection into the discrete space of divergence-free velocity fields. Conver-
gence rates obtained at time t = 15 for a flow of Reynold’s number Re = 1

ν
= 100 are

provided in Table 1. Note from the L2- the H1-norms of the velocity error and the
L2-norm of the pressure error optimally converge in h. To analyze the behavior of
our method in time, we have plotted the L2-norm of the velocity error versus time for
a chosen spatial discretization and for a wide variety of Reynold’s numbers in Figure
2. Note from the figure that our numerical error is bounded in time. Moreover, the
numerical error decays roughly at the same rate as the exact solution. Indeed, we
are able to reproduce a time-indepedent solution when Re = ∞. This indicates the
nonlinear convection term has not interfered with the flow evolution of our discrete
velocity solution.

To contrast our methodology with standard mixed flow discretizations, we re-
peated the above computations for a conservative Taylor-Hood finite element approx-
imation. Again, the Crank-Nicolson method was employed to discretize in time. We
found that the results obtained using this flow technology were unstable in general.
To illustrate this, we have plotted in Figure 3 the L2-norm of the velocity error ver-
sus time for a Q2/Q1 Taylor-Hood discretization at Re = ∞ on a mesh with 8 × 8
elements. Note the exponential blow-up of the error in time. This blow-up is a direct
result of unphysical energy growth stemming from the nonlinear convection term. In-
deed, we have been unable to stably compute the discrete flow solution beyond a time
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Figure 3: Two-dimensional Taylor-Green vortex flow: Blow-up of the L2 velocity
error for the conservative Q2/Q1 Taylor-Hood discretization at Re = ∞ on a mesh
with 8× 8 elements. Time-step size chosen as ∆t = h

40
.

of t = 5. These results are a testament to the benefits of employing a conservative
discretization which exactly preserves the divergence-free constraint.

8.2 Alternating Cylindrical Couette Flow

As a second numerical experiment, we consider the flow of a constant-property New-
tonian fluid lying between a fixed inner cylinder and an oscillating outer cylinder.
This flow scenario is referred to as alternating cylindrical Couette flow. The problem
setup is illustrated in Figure 4. No external forcing is applied. The fluid is assumed
to be at rest at time t = 0. Then, the outer cylinder begins to oscillate with angular
velocity equal to Uθ = U sin (ωt), inducing the fluid to slip along with the outer cylin-
der. As time evolves, the flow field throughout the region between the two cylinders
approaches a periodic (in time) steady state. The flow velocity associated with this
steady state can be explicitly derived (see, for example, [49]) and is equivalent to

u =

[
uθ(r, t) sin(θ)
uθ(r, t) cos(θ)

]
with

uθ(r, t) = UImag

(
I0(γr)K0(γrin)− I0(γrin)K0(γr)

I0(γrout)K0(γrin)− I0(γrin)K0(γrout)
exp {iωt}

)
where (r, θ) are polar coordinates with respect to the center of the cylinders, γ =√
iων, and I0 and K0 are modified Bessel functions of the first and second kind,

32



r
out 

r
in 

U
 

Figure 4: Alternating cylindrical Couette flow: Problem setup.

respectively. Unfortunately, no closed-form solution exists for the pressure field. The
Reynold’s number for this flow is taken to be

Re =
2Urin
ν

.

In what follows, we assume rin = 1, rout = 2, and U = 1.
In Figure 5, we have plotted at time instances t = 40.0, 40.2, 40.4, 40.6, 40.8,

41.0 the exact angular velocity field associated with a Re = 200 flow subject to
an oscillation frequency of ω = 5. At these particular time instances, the flow has
already reached the steady periodic state. Note from the figure that there is a small
boundary layer attached to the outer cylinder. Further note that there is substantial
flow reversal in a region away from the outer cylinder.

We believe alternating cylindrical Couette flow is an interesting and challenging
numerical test problem for a number of reasons. First of all, the problem exhibits
important symmetries that ideally should be preserved in a numerical simulation. As
a consequence of these symmetries, the nonlinear advection term is exactly balanced
by the pressure term. Second, the problem is characterized by strong shifts in angular
momentum in time. Consequently, a methodology which admits angular momentum
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Figure 5: Alternating Couette flow: Plot of the angular velocity field at Re = 200 for
t = 40.0, 40.2, 40.4, 40.6, 40.8, 41.0.
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Table 2: Alternating cylindrical Couette flow: Convergence rates at t = 40 for Re =

200 and ω = 5. Time-step size chosen as ∆t = h
k′+1

2 .

Polynomial degree k′ = 1

h/h0 1/8 1/16 1/32 1/64
|u− uh|H1(Ω) 2.99e0 1.79e0 1.05e0 5.51e-1

order - 0.74 0.77 0.93
‖u− uh‖L2(Ω) 9.35e-2 2.95e-2 8.86e-3 2.40e-3

order - 1.66 1.74 1.88
‖ur − (ur)h‖L2(Ω) 0 0 0 0

Polynomial degree k′ = 2

h/h0 1/8 1/16 1/32 1/64
|u− uh|H1(Ω) 2.24e0 8.72e-1 2.14e-1 5.15e-2

order - 1.36 2.03 2.06
‖u− uh‖L2(Ω) 3.23e-2 7.00e-3 9.56e-4 1.26e-4

order - 2.21 2.87 2.92
‖ur − (ur)h‖L2(Ω) 0 0 0 0

Polynomial degree k′ = 3

h/h0 1/8 1/16 1/32
|u− uh|H1(Ω) 1.51e0 1.84e-1 2.32e-1

order - 3.04 2.99
‖u− uh‖L2(Ω) 2.13e-2 1.27e-3 7.94e-5

order - 4.07 4.00
‖ur − (ur)h‖L2(Ω) 0 0 0
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Figure 6: Alternating cylindrical Couette flow: L2 error of velocity field versus time
at Re = 200 for a k′ = 1 discretization with 128× 32 elements in the θ, r directions.
The oscillation frequency for this simulation was chosen as ω = 5, and the time-step
size was chosen as ∆t = h.

balance is preferred. Finally, the problem is characterized by the presence of boundary
layers and flow reversal. Many flow technologies exhibit spurious oscillations when
applied to problems harboring such features.

We have numerically simulated alternating cylindrical Couette flow using divergence-
conforming B-spline discretizations of varying mesh size and polynomial degree. We
utilized a polar mapping to represent the annular domain, and Nitsche’s method was
invoked to enforce the slip condition along the cylinder surfaces. The resulting semi-
discretizations satisfy an angular momentum balance law as discussed in Subsection
7.2. As in the last verification test, the Crank-Nicolson method was employed to
discretize in time, and the time-step size was chosen to be

∆t = h
k′+1

2 ,

sufficiently small to ensure temporal discretization errors are of the same order as
spatial errors. Convergence rates obtained at t = 40 for a Re = 200 flow subject to
an oscillation frequency of ω = 5 are provided in Table 2. Note from the table that the
L2- and H1-norms of the velocity error approach optimal convergence rates in h and
that we have obtained axisymmetric velocity fields with zero radial component. To
analyze the behavior of our method in time, we have plotted in Figure 6 the L2-norm
of the velocity error versus time for a chosen spatial discretization. Note from the
figure that our numerical error is bounded and periodic in time. This indicates that
our numerical solution, like the exact solution, has reached a periodic steady-state.
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8.3 Three-Dimensional Taylor-Green Vortex Flow

As a third and final numerical experiment, we consider three-dimensional Taylor-
Green vortex flow. Three-dimensional Taylor-Green vortex flow is one of the simplest
systems in which one can study enstrophy production and the turbulence resulting
from vortex stretching. The initial conditions for this flow are

u0(x, y, z) =

 sin(x) cos(y) cos(z)
− cos(x) sin(y) cos(z)

0

 .
The flow is periodic in all three spatial directions in the domain Ω = (0, 2π)3 and
exhibits a 64-fold symmetry which can be exploited in numerical simulation [9]. The
Reynolds number for this flow is commonly taken to be

Re =
1

ν
.

In Figure 7, we have reproduced time history plots of the dissipation rate

ε =
1

|Ω|

∫
Ω

2ν|∇su|2dx =
1

|Ω|

∫
Ω

ν|∇u|2dx =
1

|Ω|

∫
Ω

ν|curlu|2dx

that were obtained by Brachet et al. in [9] via Fourier-based Direct Numerical Sim-
ulation (DNS) with 2563 resolved modes. Note that the flow exhibits significant
enstrophy production throughout the initial stages of flow evolution regardless of
Reynold’s number. At Re = 100, the time corresponding to the maximum dissipa-
tion rate is approximately t ≈ 4.75. As the Reynolds number is increased, the time
corresponding to the maximum dissipation rate gradually increases until it settles
around a value of t ≈ 9.

To simulate three-dimensional Taylor-Green vortex flow, we have utilized divergence-
free B-spline discretizations of varying mesh size and polynomial degrees k′ = 1, 2, 3.
We have exploited symmetry conditions in order to solve the unsteady Navier-Stokes
equations on the restricted domain (0, π)2 and hence reduce the dimensionality of our
discrete system by a factor of 8. A linear parametric mapping was utilized to describe
the physical domain. The Crank-Nicolson method was employed to discretize viscous
terms while the Adams-Bashforth multi-step method [2] was employed to discretize
the nonlinear convective terms. This time discretization procedure allowed us to avoid
the solution of a nonlinear algebraic problem at each time-step at the cost of losing
some of the conservation structure of the semi-discrete method. A time-step size of
∆t = 0.05h was employed in all of our simulations. The initial condition was selected
using L2-projection into the discrete space of divergence-free velocity fields.

In Figure 8, we have depicted an enstrophy isosurface associated with the initial
condition, and in Figure 9, we have depicted an enstrophy isosurface that was obtained
at time t = 6 via a third-order B-spline simulation of Re = 200 flow on a spatial mesh
comprised of 32 × 32 elements. This time roughly corresponds to the moment of
maximum dissipation rate. Note from the figures that while the initial solution is
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Figure 7: 3-D Taylor-Green vortex flow: Time history plots of the dissipation rate for
various Reynold’s numbers. Image reproduced from Brachet et al. [9] with permission
from Cambridge University Press.
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(a)

(b)

Figure 8: 3-D Taylor-Green vortex flow: Visualization of enstrophy isosurface colored
by vertical vorticity at t = 0 for Re = 200. (a) 3-D View, (b) Overhead view.
Visualization is restricted to the domain (0, π)3.
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(a)

(b)

Figure 9: 3-D Taylor-Green vortex flow: Visualization of enstrophy isosurface colored
by vertical vorticity at t = 6 for Re = 200. (a) 3-D View, (b) Overhead view.
Visualization is restricted to the domain (0, π)3.

40



0 2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Time

D
iss

ip
at

io
n 

Ra
te

h = 1/16
h = 1/32
h = 1/64

(a)

0 2 4 6 8 10
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Time

D
iss

ip
at

io
n 

Ra
te

k′ = 1
k′ = 2
k′ = 3

(b)

Figure 10: 3-D Taylor-Green vortex flow: Convergence of dissipation rate time histo-
ries for Re = 200. (a) Convergence of k′ = 1 discretizations under mesh refinement,
(b) Convergence of h = 1/32 discretizations under degree elevation.
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comprised of a single vortex on the restricted domain (0, π)3, vortex stretching has
separated the initial vortex into many vortical structures by time t = 6. Further note
the vast amount of symmetry exhibited by the vortical structures. We found that
this symmetry was preserved in all of our numerical experiments. In Figure 10(a), we
have depicted the Re = 200 dissipation rate time histories associated with a sequence
of refined k′ = 1 discretizations. The dissipation rate time history on the finest mesh
is virtually indistinguishable from the corresponding DNS time history depicted in
Figure 7. The other dissipation rate time histories quickly converge in h. It should be
noted that we have been able to stably compute arbitrary Reynold’s number flow on
the coarse mesh (h = 1/16), though the results were wildly inaccurate at long times
due to a fine-scale pile-up of energy resulting from a lack of resolution. In Figure
10(b), we have depicted the Re = 200 dissipation rate time histories associated with
h = 1/32 discretizations of varying polynomial degree. Note that the dissipation rate
time histories quickly converge in k′. Furthermore, the k′ = 3 dissipation rate time
history nearly matches the corresponding DNS time history illustrated in Figure 7,
though the k′ = 1, h = 1/64 results are in slightly better agreement.

9 Conclusions

In this paper we have described the use of divergence-conforming B-spline discretiza-
tions for unsteady Navier-Stokes flows. These functions enable smooth, pointwise
divergence-free solutions to be computed on geometrically mapped meshes. Conse-
quently, conservation of mass is satisfied exactly, both globally and locally. Our semi-
discrete variational equations are written in conservation form and thus preserve other
important conservation and balance laws. This is in fact a consequence of the point-
wise exactness of mass conservation. We note that heretofore no numerical method
for the Navier-Stokes equations has been able to achieve similar attributes. Our fo-
cus in the work herein has been on Galerkin discretizations with weakly-enforced
no-slip boundary conditions. To be more precise, we satisfy no-penetration boundary
conditions strongly and the tangential boundary condition weakly. As we have docu-
mented in previous works, this treatment of the no-slip boundary condition is always
at least as accurate as strong enforcement and, in the case of under-resolved bound-
ary layer phenomena, often procedures remarkably accurate results. Furthermore,
this approach provides a natural pathway to the computation of Euler flows as the
kinematic viscosity takes on the limiting value of zero. In the computational setting,
no changes to the degree-of-freedom structures need to be made when calculating
Navier-Stokes and Euler flows, which proves very convenient.

The semi-discrete equations are shown to conserve linear and angular momen-
tum, and discrete balance laws for vorticity, enstrophy, and helicity are also derived.
The geometrical structure of solutions of the Navier-Stokes and Euler equations are
intimately linked to the preservation of the these conservation and balance laws.
To illustrate the behavior of the methods on solutions in which geometrical struc-
ture is sensitive to the evolution of such quantities, we performed numerical calcula-
tions of two-dimensional Taylor-Green vortical flow, alternating cylindrical Couette
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flow, and three-dimensional Taylor-Green vortical flow. In each case the structure-
preserving behavior and quantitative accuracy are clearly evident, even on relatively
coarse meshes. In addition to the computational verifications of the methodology,
there are important theoretical implications: this is potentially the first instance of
a structure-preserving methodology that might be used for DNS calculations on geo-
metrically interesting domains. As such, it provides a numerical conduit for exploring
fundamental flow physics on geometries never before explored.

This is a first but important step in a new area of computational fluid dynam-
ics. To go further, much basic research needs to be pursued. To develop LES-level
methods, stabilized and variational multiscale generalizations need to be developed,
preserving the conservation/balance law structure, but extending it to arbitrarily high
Reynolds numbers on mesh sizes that are approachable with contemporary computer
hardware. In addition, the methods need to be made applicable to unstructured
meshes with T-junctions (i.e., “T-meshes”) and “extraordinary points”. We hope to
play a significant role in these important pursuits.
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bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind.
Abhandlungen aus dem Mathematischen Seminar der Universit at Hamburg,
36:9–15, 1971.

[43] M Olshanskii and L G Rebholz. Note on helicity balance of the Galerkin method
for the 3D Navier-Stokes equations. Computer Methods in Applied Mechanics
and Engineering, 199:1032–1035, 2010.

[44] P A Raviart and J M Thomas. A mixed finite element method for second order
elliptic problems. Lecture Notes in Mathematics, 606:292–315, 1977.

[45] V Scheffer. Hausdorff measure and the Navier-Stokes equations. Communications
in Mathematical Physics, 55:97–112, 1977.

[46] L L Schumaker. Spline functions: Basic theory. Cambridge Mathematical Li-
brary, Cambridge University Press, 2007.

46



[47] D B Spalding. A single formula for the law of the wall. Journal of Applied
Mechanics, 28:444–458, 1961.

[48] H Triebel. Interpolation Theory, Function Spaces, Differential Operators, Second
Edition. Johann Ambrosius Barth, 1995.

[49] D Vieru, W Akhtar, C Fetecau, and C Fetecau. Starting solutions for the oscil-
lating motion of a Maxwell fluid in cylindrical domains. Meccanica, 42:573–583,
2007.

47


