

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

HARDWARE SUPPORTED MULTI-CORE COMMUNICATIONS FOR
EFFICIENT PARALLEL DISCRETE EVENT SIMULATION

GEORGIA INSTITUTE OF TECHNOLOGY

APRIL 2012

FINALTECHNICAL REPORT

 ROME, NY 13441 UNITED STATES AIR FORCE  AIR FORCE MATERIEL COMMAND

AFRL-RI-RS-TR-2012-139

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or
permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB Public
Affairs Office and is available to the general public, including foreign nationals. Copies may be
obtained from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2012-139 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/
RYAN S. LULEY PAUL ANTONIK, Technical Advisor
Work Unit Manager Computing & Communications Division

Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

APR 2012
2. REPORT TYPE

Final Technical Report
3. DATES COVERED (From - To)

NOV 2010 – NOV 2011
4. TITLE AND SUBTITLE

HARDWARE SUPPORTED MULTI-CORE
COMMUNICATIONS FOR EFFICIENT PARALLEL
DISCRETE EVENT SIMULATION

5a. CONTRACT NUMBER
FA8750-11-2-0011

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
63788F

6. AUTHOR(S)

George Riley, Elizabeth Lynch and Brian Swenson

5d. PROJECT NUMBER
T3PD

5e. TASK NUMBER
GT

5f. WORK UNIT NUMBER
EC

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Georgia Institute of Technology, Department of Electrical and Computer Engineering
801 Atlantic Drive
Atlanta, GA 30325-0760

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITB
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 AFRL/RI

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2012-139

12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. PA# 88ABW-2012-2468
Date Cleared: 25 APR 2012
13. SUPPLEMENTARY NOTES

14. ABSTRACT

With the present and future proliferation of Multi-Core architecture computing devices, we expect that parallel programming and
parallel discrete event simulation in particular, will become more prevalent. In research presented here, we explored ways to reduce
dramatically the overhead described above for PDES applications by designing and testing specialized hardware that will be
incorporated into multi-core architecture designs. Once this hardware is incorporated into multi-core architectures, the overhead and
message passing will be reduced to near zero, independent of the number of cores in the architecture.

15. SUBJECT TERMS

Distributed simulation, time synchronization, multi-core architectures, PDES, parallel computing

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

24

19a. NAME OF RESPONSIBLE PERSON
RYAN S. LULEY

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

 i

TABLE OF CONTENTS

LIST OF FIGURES ... ii

1.0 SUMMARY ... 1

2.0 INTRODUCTION .. 1

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES ... 1

3.1 Overview of the Global Synchronization Unit ... 1

3.2 Overview of Hardware-Supported Zero-Copy Message Passing 2

3.3 Software-Supported Zero-Copy Message Passing ... 3

3.3.1 Introduction .. 3

3.3.2 Background and Motivation ... 4

3.3.3 Introduction to Zero-Copy Message Passing ... 6

4.0 RESULTS AND DISCUSSION .. 13

4.1 SimpleSim .. 13

4.2 GTNetS ... 16

5.0 CONCLUSIONS .. 17

6.0 REFERENCES ... 18

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS .. 19

 ii

LIST OF FIGURES

Figure 1 – The transfer of a complex object between logical processes using a memory copy 6
Figure 2 – UML model of HeapItem .. 8
Figure 3 – Layout of Shared Heaps .. 9
Figure 4 – Ordering of pointers in HeapCluster ... 10
Figure 5 – UML model of BPtr .. 10
Figure 6 - The transfer of a complex object between logical processes using Zero-Copy 13
Figure 7 - The runtime of SimpleSim with 8 logical processes, varying message size using MPI,
Boost Interprocess and our custom Zero-Copy approach. .. 15
Figure 8 - The runtime of SimpleSim with a message size of 7000 bytes, varying the number of
logical processes using MPI, Boost Interprocess and our custom Zero-Copy approach. Data
collected for 2, 4 and 8 LPs. .. 15
Figure 9 - The runtime of GTNetS varying the number of logical processes using MPI, Boost
Interprocess and our custom Zero-Copy approach. Data collected for 2, 4 and 8 LPs. 16

 1

1.0 SUMMARY

It is well known that there is significant overhead in existing methods for executing a parallel or
distributed discrete event simulation (PDES). This overhead is due to two different requirements,
namely the overhead for time synchronization and the overhead for message passing. In this
context, time synchronization refers to the requirement for any conservative parallel discrete
simulation to continually be aware of and compute the lower bound on timestamp (LBTS), which
is the global minimum of the timestamp for all unprocessed messages in the simulation.
Traditional methods for computing the LBTS value require O(N log N) message exchanges
between processors, where N is the number of processors executing the PDES. Message passing
is required by PDES applications due to the fact that an event generated by processor A might in
fact affect simulated objects modeled on a different processor B. Anytime this occurs, the
contents of the event must be serialized and copied, usually across address space boundaries.

With the present and future proliferation of multi-core architecture computing devices, we expect
that parallel programming and PDES in particular, will become more prevalent. In research
presented here, we explored ways to dramatically reduce the overhead described above for PDES
applications by designing and testing specialized hardware that could be incorporated into multi-
core architecture designs. Once this hardware is incorporated into multi-core architectures, the
overhead and message passing will be reduced to near zero, independent of the number of cores
in the architecture.

2.0 INTRODUCTION

In prior work over the past two years, we have designed and evaluated on a small scale a novel
hardware-supported time-synchronization unit we call the Global Synchronization Unit (GSU).
This novel device allows individual cores in a multi-core environment to determine a global
minimum timestamp, and account for transient messages in just a few clock ticks. We have
demonstrated the viability and effectiveness of the approach using instruction-level simulation
tools on up to eight cores. In the work reported here, we extended that prior work on the GSU
and evaluated it on up to 32 cores. Secondly, we designed a second set of specialized devices
that allow zero-copy message passing (ZCM) between logical processes (cores) in a shared
memory distributed simulation. It is well known that message passing overhead can be the most
significant bottleneck in shared memory distributed simulations. Our ZCM approach allows the
various CPUs in a multi-core architecture to send and receive messages without interlocks and
without expensive message copying operations. Our design uses a shared memory region and a
series of circular mailbox queues (in hardware), along with specialized hardware to allocate and
free messages in the shared memory region.

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES

3.1 Overview of the Global Synchronization Unit

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

 2

As mentioned previously, a conservative PDES application requires frequent computation of the
LBTS value. Current implementations accomplish this computation by exchanging messages
between simulator instances, which can result in excessive overhead as the number of processors
grows. Another approach, discussed by Carothers [1], uses specialized interconnect hardware in
high-end supercomputers to gather this global consensus information. Our approach differs from
that work since we target low-end commodity multi-core chips, rather than multi-million dollar
supercomputing platforms.

In prior work, we have designed and demonstrated the efficiency of our GSU. The GSU consists
of several register files, each with N values, where N is the number of CPUs in the multi-core
architecture. One register file is called the Minimum Outstanding Event (MOE) register. At any
point in time, each CPU executing a PDES will insure that the timestamp of the smallest
unprocessed event in its local event queue is written in its corresponding entry in the MOE.
Then, computing the minimum value is just a set of N − 1 comparators in log N ranks to find the
minimum value. However, this simple approach does not take into account the possibility of
transient messages between any two CPUs in the PDES. To account for this, the design includes
two additional register files (also N deep). The Minimum Outstanding Message (MOM) register
file contains the timestamp of the smallest transient message destined for each process, and the
Transient Message Count (TMC) register file contains the count of transient messages. Our
design includes specialized atomic access instructions to insure that race conditions are properly
handled. With these two additional register files, the overall minimum value (the actual LBTS) is
then just the lesser of the two minima in the MOE and MOM. We have shown that this design
correctly reports the true LBTS value, that this results in a near zero overhead lookup of LBTS
and the resulting PDES applications exhibit significant speedup. Details of this design and
performance analysis can be found in [2].

3.2 Overview of Hardware-Supported Zero-Copy Message Passing

Another source of significant overhead in a typical PDES application is in the message passing
between the processes. Even in a tightly coupled, shared memory environment, inter-process
messages must be copied to a shared memory region. After the message is copied, the message
recipient must be somehow informed that the message exists and where it is located in the shared
memory region.

We designed an approach that allows interlock-free and ZCM in a multi-core parallel
application. The design uses new atomic instructions to read and write a circular message queue
at each CPU, and hardware-supported shared memory management. Rather than allocating
memory from a process-private heap and copying messages to a shared memory region, our
approach manages the shared memory heap directly, allowing processors to directly allocate,
free, and pass offset pointers to the shared memory region. Hardware usage count registers
automatically manage the memory in the shared heap, allowing efficient ZCM between
processes.

Using this approach, to send a message between processors, a process simply requests an atomic
allocation of consecutive memory locations in the shared memory region. It then uses another
atomic instruction (“send message”) to write the offset of the allocated memory (relative to the

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

 3

start of the shared memory heap) into a hardware circular queue mailbox at the receiving
processor. Our design allows for the case where the receiving mailbox is full, and will allow the
sender to specify a number of clock cycles to wait for space, after which the instruction returns a
failure flag. In this case, the sender simply re-tries sending the message immediately, or at a later
time.

3.3 Software-Supported Zero-Copy Message Passing

The work reported above in the design of a hardware-supported ZCM approach led us to realize
that we could achieve almost as good performance with a software-only approach to ZCM.
Utilizing the well-known shared memory allocation methods found in all Linux platforms, and
coupling that with well-known reference counted smart pointers, we could design a working
version of the zero-copy approach without any specialized hardware. Since this work consumed
the majority of our efforts during the period of performance, we give a very detailed discussion
of the approach and the results of our extensive performance analysis experiments below.

3.3.1 Introduction

The increasing demand for longer and more detailed simulations of complex systems has led to a
rise in parallel discrete event simulation (PDES). Parallelization allows these applications to take
advantage of the current architectural trend of stamping multiple CPUs (cores) on to a single die.
With two to six cores per chip now commonplace and with eight to sixteen cores per chip
planned in the near future, simulations of large complex systems can occur on multiple CPUs in
a tightly coupled environment.

There are two main methods available to take advantage of the multiple cores on today’s CPUs.
The first is the thread model in which each logical process (LP) runs on its own thread within
one operating system process. With multithreaded applications, data can easily be passed
between concurrently running threads using simple C type pointers. This allows the threads to
communicate using messages of any size at the cost of passing a 32- or 64-bit pointer.

The alternative is the multi-process model where each logical process runs in its own individual
operating system process. With multi-process applications, the process of passing messages
becomes more complicated. The operating system runs each individual process in its own virtual
address space, and any pointers created in a process will reference a virtual address, not a
physical address. Since the mappings between virtual and physical addresses might be different
for each process, pointers created by one process and passed to another might refer to a
completely different physical location in memory for the receiver. Therefore, standard C type
pointers cannot be used as a means to pass messages between individual processes.

Both the multi-threaded and multi-process distributed simulation approaches are commonly
used. In general, a distributed simulation using multiple threads will need all event handlers and
the event scheduling engine to be aware of the need for multiple-access interlocking to prevent
simultaneous updates and potential deadlocks. In contrast, when distributing the simulation in
separate address spaces, only those portions of the simulation that send events and the portion
that advances simulation time needs to be aware of the distributed execution. Further, if the

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

 4

original simulation package was not designed with distributed execution in mind, the multi-
process approach is, in general, considerably easier to implement. ns-2 is an example of
simulation environment that was not designed originally to execute in a distributed fashion, but
was later adapted to execute with multiple processes and disjointed address spaces.

A common API to use when working with multi-process simulations is the well-known Message
Passing Interface (MPI). However, a significant overhead for MPI based applications is in
message passing between the disjointed address spaces. Even in a tightly coupled, shared
memory environment, the messages must be copied into a shared memory region. The copying
of the entire message must be done because simple, C type pointers use virtual addresses which
have no meaning once the pointer is passed to another process. Thus a common approach is to
first serialize the message and its data and perform a memory copy of the serialized message to a
shared memory location, where it then can be retrieved and de-serialized by the receiving
process. While this technique works and is in common use, a large processing cost can be
incurred due to the amount of data being copied between processes. In the cases where these
messages are large and must be passed frequently, this becomes a significant limiting factor in
overall application performance.

An alternative approach is to use shared memory and smart pointers. With this method, data that
needs to be shared with other processes can be created in a shared memory region that is
accessible by every process. Then when a message needs to be passed, the owner can pass to the
receiver a specialized smart pointer. These smart pointers allow the processes to pass only
metadata for messages being exchanged, rather than the complete message. The receiving
process can then access the original copy of the data stored in the shared memory using the smart
pointer and normal dereferencing semantics. This greatly reduces the amount of data that needs
to be passed between applications. This technique is referred to as zero-copy message passing.

We are not the first to develop a zero-copy approach. Boost Interprocess offers a smart pointer
design that allows shared memory usage. Also provided by Boost is a general purpose, shared
memory allocator. However, as we will show, the implementation provided by Boost does not
perform well in memory intensive applications, like distributed simulators, and also does not
scale well to a larger number of LPs. In contrast, our implementation of zero-copy is designed to
function on a large number of LPs in a memory demanding environment. Along with the other
benefits of zero-copy, our design supports Global Virtual Time (GVT) and will not re-assign any
freed memory area until the GVT equals or exceeds the Simulation Time when the final
reference has freed the region. Thus, this technique can be adapted to work with optimistic
synchronization algorithms with rollbacks. Using this new approach, performance of PDES
applications on multi-core architectures is greatly improved, allowing for longer and more
detailed simulations.

3.3.2 Background and Motivation

In this section we provide background material on message passing and time synchronization
algorithms. In general, zero-copy message passing offers many benefits over standard shared
memory message passing. Thus, to fully appreciate these benefits, understanding of the
mechanics of message passing is necessary. Next, we provide a brief background on time
synchronization algorithms. Our zero-copy implementation works with the two major

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

 5

classifications of time synchronization algorithms and both will be discussed, so a brief
background is provided for reference.

Traditional Message Passing

Commonly, messages have been passed between individual processes by copying the entire
content of the message to a shared memory region accessible by both the sender and the receiver.
However, the data to be transferred must first be formatted in a way that allows it to be
meaningful to a receiver. This formatting, called serialization or marshalling, generally copies
each individual data item for all messages (and dereferencing pointers as needed) to a sequential
array of bytes, which are then copied to the shared memory region. In some cases, it is possible
to marshall the data directly to the shared memory region, eliminating one of the memory copies
needed. However this is rarely a trivial process because complex data objects generally make
extensive use of pointers. The data referenced from these pointers must also be copied into the
buffer because, as mentioned previously, the pointer will no longer be valid once the data is
transferred to a different process. Thus the serialization process, in most cases, involves
numerous and often recursive memory copies.

Once the data to be sent has been serialized, it can then be transferred to the receiver. However,
before the receiver can make use of what it has received, it must first deserialize or unmarshall,
the data. This is basically a reversal of the serialization process and therefore frequently requires
multiple memory allocations to restructure complex objects back into their original form.

This process is depicted in Figure 1. While this procedure works as intended, the time to
complete this marshalling and copying process is non-negligible and increases linearly with the
size and complexity of the message.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

 6

Figure 1 – The transfer of a complex object between logical
processes using a memory copy. (a) The complex object is
serialized. (b) The serialized data is first copied to shared memory
and then copied into the memory space of LP B. (c) The data is
finally deserialized and the object is ready to be used.

3.3.3 Introduction to Zero-Copy Message Passing

Zero-copy message passing improves the performance of parallel simulations in a multi-process
environment utilizing two main components: shared memory and smart pointers. First, rather
than copying the data to shared memory, the data is created in shared memory, which can be
accessed directly by the receiving process. As standard C type pointers cannot be utilized in this
type of environment, zero-copy utilizes a smart pointer which is aware of the shared memory
nature of the underlying data, and which has normal pointer semantics for dereferencing the
pointer to access individual data items. Using the smart pointer eliminates the need for
performing an expensive memory copy. Furthermore, the smart pointer can be equipped with
reference counting semantics, which results in the underlying shared memory area being freed
when all smart pointers pointing to the same area have gone out of scope. In this section we will
describe our implementation of zero-copy and compare it to the implementation found in the
Boost Interprocess C++ Library.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

 7

Boost Interprocess C++ Library

Boost provides an extensive library for working with shared memory [3]. These classes can
greatly simplify the task of working with shared memory. Here we will discuss the Boost offset
pointer and the Boost managed memory segment classes, which when used together, can form a
zero-copy implementation.

In Boost, the smart pointer that works with shared memory is the offset pointer. The offset
pointer stores the distance from the offset pointer’s address to the object the pointer refers to.
This allows objects created in shared memory to refer to each other regardless of which base
address the shared memory segment is mapped to in the process’s address space. To the
programmer, the pointer functions equivalently to a normal pointer and can be coupled with a
reference counting pointer to supply automatic garbage collection. The problem with this design
is that for it to work correctly, all of the objects have to be stored in the same shared memory
segment. There is no guarantee that the difference in base addresses of two shared memory
segments mapped into the address space of a process will be the same between processes.
Therefore, in most cases, only one shared memory segment can be used for all LPs.

A pool of shared memory is obtained in Boost using managed memory segments. Once a pool is
available, objects can be created using the segment’s allocator. The segments provide an
allocate() method that takes as a parameter a byte size and returns a void pointer to a chunk of
memory that size if it is available in the segment. The segments also provide a templated
construct() method which will create an instance of the object specified in shared memory and
return a pointer to it. Managed memory segments in Boost also allow the programmer to create
named shared memory objects. A string name can be given to any object created in shared
memory. This name can then be used by any process that connects to the memory segment to
find the object in shared memory. While the Boost shared memory segment offers many useful
features, it is unable to perform satisfactorily in a memory intensive environment, as we will
show. In addition, as mentioned above, due to how Boost’s smart pointer interacts with memory
segments, only one such segment can typically be used in an application. This has two major
consequences. First, access to critical sections of code in the segment’s allocator can become a
major bottleneck as the number of LPs increase. Second, if the memory in the one shared
memory segment is exhausted, the application has no choice but to terminate since shared
memory segments are not dynamically expandable.

Shared Heap

In our zero-copy message passing design, when a new message is created (presumably to later be
passed to another process) a special constructor method, called Create, is used rather than the
normal C++ new operator. The Create method is functionally equivalent to new, excepting
that the memory is allocated from a pre-existing shared memory we call the shared heap, rather
than from the normal memory heap used by new. Each shared heap is made up of a group of
heap items. It is in these heap items that the data to be shared is stored. The heap items are
indexed according to the offset from the start of the heap. A UML diagram of a heap item is
shown in Figure 2. The Create method returns a special templated pointer object called a
BPtr which refers to an individual heap item.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

 8

Figure 2 – UML model of HeapItem

The heap item is made up of multiple items. It stores the number for the logical process it
belongs to as well as its index number in the shared heap. The data field is where the actual data
for the heap item is stored. The reference count specifies the number of smart pointers that are
currently referencing the data in the heap item. This is used to determine when the heap item is
no longer in use and can be recycled. This number is atomically incremented and atomically
decremented whenever the heap item is copied or when it goes out of scope. Finally each heap
item contains a time to zero timestamp.

The time to zero timestamp is used for simulators which use an optimistic time synchronization
algorithm. As discussed previously, there are situations when optimistic simulators need to
rollback due to the generation of a causality error. During this rollback, it may be necessary for
the simulator to reacquire dynamically created objects that had previously been freed. This is
true regardless of if the simulator is reverting to a previous saved state or performing reverse
computation. In order to assist in this process, a heap item will not be immediately available for
reuse once its reference count goes to zero. Instead the heap item will store the current
simulation time for its LP in the time to zero field and will go into a dormant state, preserving
itself and the data it contains. The heap item will stay in this state until the GVT of the system is
greater than its stored time to zero timestamp. Only after this happens will the heap item be
made available for reuse. Because of this, it is necessary for the simulation to provide the shared
heaps updated values for the GVT whenever they are calculated.

For simulators that use a conservative time synchronization algorithm, the time to zero
timestamp is not used. It could either be removed or the GVT for all the heaps in the system
could be set to infinity at startup. Either way, heap items that have their reference count go to
zero will immediately be available for reuse. Since the concept of rollback does not exist in
conservative time synchronization, there is no need to postpone garbage collection.

In our zero-copy implementation, the heap items are preallocated. The sizes for the heap items
and the number to create can be configured by the user prior to runtime. For example, the user
could setup heap items for small blocks (50 bytes), medium blocks (500 bytes), and large blocks
(5,000 bytes). When an object is created, the heap will return the smallest size that the instance

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

 9

of the object will fit into. By preallocating the blocks, we can provide extremely efficient
allocation and deallocation routines since the blocks are of a fixed size and are stored
sequentially in memory. When a shared memory pool is requested from the Linux kernel, the
exact size must be specified and once it is allocated, it cannot be modified. Therefore we feel it
makes sense to split the pool into blocks immediately especially since the user of the simulator
should have a general idea of the sizes of objects he/she needs to create prior to runtime.

Every logical process in the simulation has its own shared heap, which is initialized at
initialization time. The heaps are created in shared memory and the permissions are set so every
LP can access every other LP’s shared heap as well as its own.

Figure 3 – Layout of Shared Heaps

Once all of the logical processes finish creating their own shared heaps, all logical processes
attach to all other shared heaps. Each LP stores pointers to each of these heaps in a global
variable called HeapCluster. A diagram of this is shown in Figure 3. Here two LPs have
finished setting up their individual shared heaps and have stored pointers to both shared heaps in
their HeapCluster, which is a global array of pointers to the heap object for all logical processes.
In our implementation, each process maintains the array of virtual memory pointers to all shared
memory regions in the order of the logical process number of the creating LP. This is shown in
figure 4.

It should be noted that while both LPs have pointers to the same shared heap, the actual virtual
address of the shared heap will typically be different. When a process attaches to a shared

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

 10

memory segment, the shared memory is mapped into the process’s virtual address space and
there is no guarantee that it will map to the same location for each process that attaches to it.
This is why we cannot simply pass normal C/C++ pointers to data items in the shared memory
across logical process address spaces.

Figure 4 – Ordering of pointers in HeapCluster

Figure 5 – UML model of BPtr

Smart Pointers

Similar to the Boost implementation, to reference heap items our ZCM technique utilizes smart
pointers. These smart pointers are necessary because, as discussed previously, standard C type
pointers contain a virtual address which may be meaningless when passed between process
boundaries. The smart pointers used in the zero-copy approach get around this limitation by
passing the metadata necessary for the receiving process to obtain the data that it was intended

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

 11

to receive. The smart pointer created for the ZCM technique is called BPtr and its UML diagram
is shown in Figure 5.

The smart pointer is made up of three data items. The integer lp stores the heap number of the
shared heap which contains the actual data being referenced. The offset stores the integer
index of the heap item in the data owner’s shared heap. The smart pointer also contains a heap
item pointer (heapItem) to the heap item referenced by the heap number and offset stored in
the smart pointer. This heap item pointer is updated automatically by the smart pointer whenever
the smart pointer is copied so it always points to the correct heap item, even when the pointer is
passed across process boundaries.

The main difference between our pointer and the Boost offset pointer is that our pointer stores
the heap number along with the offset. This offers two major advantages. First it allows our
pointers to point to objects in separate shared memory segments. This eliminates many of the
concurrency issues experienced with the Boost managed memory segment allocator. The
second advantage is that new heaps can be created during runtime if shared memory resources
are exhausted. A request is made to the kernel for more shared memory and once it is received
the heap structure can be setup and be given a unique heap number. At that point the only thing
left to be done is to notify all of the processes to connect to the new heap and add it into their
heap cluster.

When a copy of the smart pointer is made, only the heap number and offset data items are
copied. Then the GetPointer function is called, which gets the heap item pointer. It does this
by indexing the HeapCluster array using the LP to acquire a reference to the correct heap
and then using the offset to address it to the correct heap item. Another feature of the smart
pointer class is that it automatically handles the reference counting for the heap item. The
assignment operator and copy constructor have been overloaded to atomically increase the
reference count of the appropriate heap item when a new reference to the heap item is made.
Similarly, the virtual destructor for any BPtr object will decrement the reference count
appropriately.

To facilitate the creation of smart pointers, we created a templated Create method. This
Create method first finds a heap item in the heap that is not being used and then uses an in-
place new to create an instance of the templated class in the heap location. The smart pointer
then stores the LP number of the current process and also the offset to the heap item used.
Finally the smart pointer increments the reference counts for the heap item that it is referencing.
The Create method can also be overloaded with any argument of any type, which is used to
determine which constructor for the underlying data item is to be called to initialize the new
object1.

Once created, the smart pointer behaves syntactically the same as any other pointer. When the
smart pointer is dereferenced, it uses the stored LP to connect to the shared heap of the process
that created the data and then uses the stored offset to obtain the heap item. The appropriate

1 We are grateful to the ns-3 development team for the development of their Ptr object, which is the basis for much
of our BPtr implementation.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

 12

operators have been overloaded in the smart pointer definition to allow access to all class
member functions and data in the referenced class.

Listing 1 shows an example of creating a Packet object using the smart pointer class. Figure 6
shows a message being passed using a smart pointer. Note that the actual object referenced by
the pointer is neither moved nor copied.

Listing 1 – Smart Pointer Example

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

 13

Figure 6 - The transfer of a complex object
between logical processes using zero-copy. (a)
The object is created in LP A’s shared heap and is
accessed by LP A via the smart pointer. (b) The
smart pointer is copied to shared memory and then
to copied into the memory space of LP B. (c) Using
the smart pointer, LB B can directly access the
object in LP A’s shared heap. The object itself is
never moved or copied.

4.0 RESULTS AND DISCUSSION

4.1 SimpleSim

SimpleSim is a very simple distributed discrete event simulator. The simulator enforces
causality using a conservative LBTS algorithm that exchanges timestamp and message count
information between LPs in a common shared memory region. The LBTS was calculated using
a software rendition of the GSU [2]. Each LP starts off with one event inserted into its event
queue. The timestamp for the first event is chosen randomly within the first five simulation
seconds.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

 14

When handling an event, SimpleSim always creates one new message and sends it to an LP
chosen randomly from a uniform distribution. It then examines the size of its event queue. If the
size is less than a predefined constant value, it creates another message which is also sent to a
randomly chosen LP. It is possible that the LP can choose itself. Since the size of the event lists
for the LPs will grow at approximately the same rate due to the random nature in which the
recipients are selected, this prevents unbounded growth in the total number of events for any
individual LP.

Included in the message sent to the recipient are a timestamp, a unique ID, and a pointer to an
arbitrarily sized chunk of data, which represents the data to be passed to the receiving LP. The
timestamps for the new events are chosen from a uniform distribution of 1 to 5 seconds in the
future. Added to the timestamp is a predefined constant lookahead value. The unique ID was
used mainly for testing purposes.

When SimpleSim receives a new message, it removes the message from the queue and
schedules a new event in its event list for the timestamp specified in the message. The individual
simulators continue to process and create events until a predefined stop time is reached.

Three versions of SimpleSim were created. The first version is an MPI implementation that
copies the entire contents of the message to the receiving process. The other two versions both
use a zero-copy technique. The second version uses the Boost Interprocess library and the third
version uses our zero-copy implementation.

We created this simulation because it allowed us to easily vary the size of data being passed
between processes. In most cases, the message being passed to the receiving process is a
complex object with multiple nested pointers. However in this simulation, the message that is
being transferred is uninitialized memory. Thus, there is no serialization step prior to the
memory being copied. This also means that there is no deserialization step. Thus any speedup
observed is due only to the lack of a bulk memory copy.

For the first experiment with SimpleSim, the number of LPs was held constant at eight and the
size of the message was scaled from 500 to 50,000 bytes. The simulator was set to run for
25,000 simulator seconds. The maximum event list size where LPs stopped sending a second
message was set to 5,000 and the lookahead value was set to 5 seconds. All simulation
configurations were run ten times and the average result was recorded. Figure 7 shows the run
time of the three approaches for a variety of message sizes. As expected, for the two zero-copy
approaches, the execution time is nearly constant regardless of data size. Again this is because
the data is not being copied along with the message but instead is being referenced directly from
the shared heap where it was created. By comparison, the execution time of the MPI full copy
approach is growing approximately linearly with the size of the data being sent. The results also
show that our approach outperforms MPI full copy when the message is larger than
approximately 3,000 bytes and outperforms Boost’s implementation by almost ten times.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

 15

Figure 7 - The runtime of SimpleSim with 8 logical processes,
varying message size using MPI, Boost Interprocess and our custom
zero-copy approach.

Figure 8 - The runtime of SimpleSim with a message size of 7000
bytes, varying the number of logical processes using MPI, Boost
Interprocess and our custom zero-copy approach. Data collected for
2, 4 and 8 LPs.

For the second experiment with SimpleSim, we wanted to examine how each simulator instance
scaled as the number of LPs participating in the experiment was increased. The size of the data
being transferred was fixed to 7,000 bytes. Again the simulator was set to run for 25,000
seconds of simulator time and the maximum event list and lookahead values were set at 5,000
and 5 respectively. Figure 8 show the results of our experiment. The data clearly shows that the
Boost implementation scaled much more poorly than either of the other two. This is presumably
because, as discussed previously, the Boost implementation is limited to only one shared
memory segment. However, even when the Boost version is performing at its peak our
implementation outperforms it by almost six times.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

 16

4.2 GTNetS

The Georgia Tech Network Simulator (GTNetS) is a full-featured network simulator for
modeling large-scale topologies. GTNetS offers packet level tracing and models packets with
protocol data units (PDUs) that are added and removed as the packet moves up and down the
protocol stack. Similar to SimpleSim, GTNetS also uses conservative time synchronization. We
chose to test our zero-copy approach on GTNetS because the messages passed between
processes in GTNetS are complex packet objects that contain multiple PDU objects that must be
serialized prior to transfer.

For our GTNetS experiments we created a star topology for each LP. The hub for each of the
stars was then connected to form a clique. Each star was given N-1 nodes where N was the
number of LPs participating in the simulation. Each node of a star was configured to send UDP
traffic to a node in a different LP. Therefore each LP was sending UDP traffic to every other LP
using one of its nodes. Each node was also given a UDP sink to receive data being sent to it.
Each UDP packet sent was configured to hold 1,024 bytes of data and each sender was
configured with an On/Off Application to use approximately 20% of the available bandwidth.
Senders were configured to start at a random time within the first half second of simulation and
the simulation was configured to run for 5,000 simulation seconds. All simulation
configurations were run ten times and the average value was recorded.

Figure 9 shows the results of this experiment. Again, the Boost version of the simulator scaled
worse than the other two versions. Our version of zero-copy outperforms the MPI full copy
version even though the message size is less than 1,100 bytes. This is due to the fact that the
MPI version has to serialize/deserialize the complex packet hierarchy before and after
transferring it. This demonstrates that the effectiveness of our approach improves as the
complexity of the objects being transferred increase.

Figure 9 - The runtime of GTNetS varying the number of logical
processes using MPI, Boost Interprocess and our custom zero-copy
approach. Data collected for 2, 4 and 8 LPs.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

 17

5.0 CONCLUSIONS

We have presented overviews of two significant prior works, specifically the design and
evaluation of the Global Synchronization Unit and the Hardware-supported message passing
approach that demonstrate the ability of closely coupled multi-core systems to improve overall
performance of parallel discrete event simulations. This prior work led us to research a software-
only design for zero-copy message passing between separate processes cooperating to execute a
distributed discrete event simulation.

Our experimental results show that our new approach to zero-copy message passing can
considerably reduce the overall execution time of a distributed simulation when the size and
number of inter-process events is significant. The software-only approach can be implemented
immediately on any multi-process distributed simulation in a tightly-coupled multiprocessor
(multi-core) computing environment.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

 18

6.0 REFERENCES

[1] C. Carothers, D. Bauer, and A. Holder, “Scalable time warp on blue gene supercomputers,”
Proceedings of the 2009 ACM/IEEE/SCS 23rd Workshop on Principles of Advanced and
Distributed Simulation, PADS ’09, (Washington, DC, USA), pp. 35-44, IEEE Computer
Society, 2009.

[2] E. W. Lynch and G. F. Riley, “Hardware supported time synchronization in multi-core
architectures,” Proceedings of the 2009 ACM/IEEE/SCS 23rd Workshop on Principles of
Advanced and Distributed Simulation, PADS ’09, (Washington, DC, USA), pp. 88-94, IEEE
Computer Society, 2009.

[3] Boost C++ Libraries, http://www.boost.org.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

http://www.boost.org/

 19

LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

CPU central processing unit
GSU Global Synchronization Unit
GTNetS Georgia Tech Network Simulator
GVT global virtual time
LBTS lower bound on timestamp
LP logical process
MOE minimum outstanding event
MOM minimum outstanding message
MPI Message Passing Interface
PDES parallel discrete event simulation
PDU protocol data unit
TMC transient message count
UDP User Datagram Protocol
UML Unified Modeling Language
ZCM zero-copy message passing

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

	Final Technical Report - FA8750-11-2-0011 rsl (2).pdf
	LIST OF FIGURES
	1.0 SUMMARY
	2.0 INTRODUCTION
	3.0 METHODS, ASSUMPTIONS, AND PROCEDURES
	3.1 Overview of the Global Synchronization Unit
	3.2 Overview of Hardware-Supported Zero-Copy Message Passing
	3.3 Software-Supported Zero-Copy Message Passing
	3.3.1 Introduction
	3.3.2 Background and Motivation
	Traditional Message Passing

	3.3.3 Introduction to Zero-Copy Message Passing
	Boost Interprocess C++ Library
	Shared Heap
	Smart Pointers

	4.0 RESULTS AND DISCUSSION
	4.1 SimpleSim
	4.2 GTNetS

	5.0 CONCLUSIONS
	6.0 REFERENCES
	LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

