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1.0 SUMMARY 
 
It is well known that there is significant overhead in existing methods for executing a parallel or 
distributed discrete event simulation (PDES). This overhead is due to two different requirements, 
namely the overhead for time synchronization and the overhead for message passing. In this 
context, time synchronization refers to the requirement for any conservative parallel discrete 
simulation to continually be aware of and compute the lower bound on timestamp (LBTS), which 
is the global minimum of the timestamp for all unprocessed messages in the simulation.  
Traditional methods for computing the LBTS value require O(N log N) message exchanges 
between processors, where N is the number of processors executing the PDES. Message passing 
is required by PDES applications due to the fact that an event generated by processor A might in 
fact affect simulated objects modeled on a different processor B. Anytime this occurs, the 
contents of the event must be serialized and copied, usually across address space boundaries. 
 
With the present and future proliferation of multi-core architecture computing devices, we expect 
that parallel programming and PDES in particular, will become more prevalent. In research 
presented here, we explored ways to dramatically reduce the overhead described above for PDES 
applications by designing and testing specialized hardware that could be incorporated into multi-
core architecture designs. Once this hardware is incorporated into multi-core architectures, the 
overhead and message passing will be reduced to near zero, independent of the number of cores 
in the architecture. 

2.0 INTRODUCTION 
 
In prior work over the past two years, we have designed and evaluated on a small scale a novel 
hardware-supported time-synchronization unit we call the Global Synchronization Unit (GSU).  
This novel device allows individual cores in a multi-core environment to determine a global 
minimum timestamp, and account for transient messages in just a few clock ticks. We have 
demonstrated the viability and effectiveness of the approach using instruction-level simulation 
tools on up to eight cores. In the work reported here, we extended that prior work on the GSU 
and evaluated it on up to 32 cores. Secondly, we designed a second set of specialized devices 
that allow zero-copy message passing (ZCM) between logical processes (cores) in a shared 
memory distributed simulation.  It is well known that message passing overhead can be the most 
significant bottleneck in shared memory distributed simulations. Our ZCM approach allows the 
various CPUs in a multi-core architecture to send and receive messages without interlocks and 
without expensive message copying operations.  Our design uses a shared memory region and a 
series of circular mailbox queues (in hardware), along with specialized hardware to allocate and 
free messages in the shared memory region. 

3.0 METHODS, ASSUMPTIONS, AND PROCEDURES 

3.1 Overview of the Global Synchronization Unit 
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As mentioned previously, a conservative PDES application requires frequent computation of the 
LBTS value. Current implementations accomplish this computation by exchanging messages 
between simulator instances, which can result in excessive overhead as the number of processors 
grows. Another approach, discussed by Carothers [1], uses specialized interconnect hardware in 
high-end supercomputers to gather this global consensus information. Our approach differs from 
that work since we target low-end commodity multi-core chips, rather than multi-million dollar 
supercomputing platforms. 
 
In prior work, we have designed and demonstrated the efficiency of our GSU. The GSU consists 
of several register files, each with N values, where N is the number of CPUs in the multi-core 
architecture. One register file is called the Minimum Outstanding Event (MOE) register. At any 
point in time, each CPU executing a PDES will insure that the timestamp of the smallest 
unprocessed event in its local event queue is written in its corresponding entry in the MOE. 
Then, computing the minimum value is just a set of N − 1 comparators in log N ranks to find the 
minimum value. However, this simple approach does not take into account the possibility of 
transient messages between any two CPUs in the PDES. To account for this, the design includes 
two additional register files (also N deep). The Minimum Outstanding Message (MOM) register 
file contains the timestamp of the smallest transient message destined for each process, and the 
Transient Message Count (TMC) register file contains the count of transient messages. Our 
design includes specialized atomic access instructions to insure that race conditions are properly 
handled. With these two additional register files, the overall minimum value (the actual LBTS) is 
then just the lesser of the two minima in the MOE and MOM. We have shown that this design 
correctly reports the true LBTS value, that this results in a near zero overhead lookup of LBTS 
and the resulting PDES applications exhibit significant speedup. Details of this design and 
performance analysis can be found in [2]. 

3.2 Overview of Hardware-Supported Zero-Copy Message Passing 
 
Another source of significant overhead in a typical PDES application is in the message passing 
between the processes.  Even in a tightly coupled, shared memory environment, inter-process 
messages must be copied to a shared memory region. After the message is copied, the message 
recipient must be somehow informed that the message exists and where it is located in the shared 
memory region. 
 
We designed an approach that allows interlock-free and ZCM in a multi-core parallel 
application. The design uses new atomic instructions to read and write a circular message queue 
at each CPU, and hardware-supported shared memory management. Rather than allocating 
memory from a process-private heap and copying messages to a shared memory region, our 
approach manages the shared memory heap directly, allowing processors to directly allocate, 
free, and pass offset pointers to the shared memory region.  Hardware usage count registers 
automatically manage the memory in the shared heap, allowing efficient ZCM between 
processes. 
 
Using this approach, to send a message between processors, a process simply requests an atomic 
allocation of consecutive memory locations in the shared memory region. It then uses another 
atomic instruction (“send message”) to write the offset of the allocated memory (relative to the 
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start of the shared memory heap) into a hardware circular queue mailbox at the receiving 
processor. Our design allows for the case where the receiving mailbox is full, and will allow the 
sender to specify a number of clock cycles to wait for space, after which the instruction returns a 
failure flag. In this case, the sender simply re-tries sending the message immediately, or at a later 
time. 
 

3.3 Software-Supported Zero-Copy Message Passing 
 
The work reported above in the design of a hardware-supported ZCM approach led us to realize 
that we could achieve almost as good performance with a software-only approach to ZCM. 
Utilizing the well-known shared memory allocation methods found in all Linux platforms, and 
coupling that with well-known reference counted smart pointers, we could design a working 
version of the zero-copy approach without any specialized hardware. Since this work consumed 
the majority of our efforts during the period of performance, we give a very detailed discussion 
of the approach and the results of our extensive performance analysis experiments below. 

3.3.1 Introduction 
 
The increasing demand for longer and more detailed simulations of complex systems has led to a 
rise in parallel discrete event simulation (PDES). Parallelization allows these applications to take 
advantage of the current architectural trend of stamping multiple CPUs (cores) on to a single die. 
With two to six cores per chip now commonplace and with eight to sixteen cores per chip 
planned in the near future, simulations of large complex systems can occur on multiple CPUs in 
a tightly coupled environment. 
 
There are two main methods available to take advantage of the multiple cores on today’s CPUs. 
The first is the thread model in which each logical process (LP) runs on its own thread within 
one operating system process. With multithreaded applications, data can easily be passed 
between concurrently running threads using simple C type pointers. This allows the threads to 
communicate using messages of any size at the cost of passing a 32- or 64-bit pointer. 
 
The alternative is the multi-process model where each logical process runs in its own individual 
operating system process. With multi-process applications, the process of passing messages 
becomes more complicated. The operating system runs each individual process in its own virtual 
address space, and any pointers created in a process will reference a virtual address, not a 
physical address. Since the mappings between virtual and physical addresses might be different 
for each process, pointers created by one process and passed to another might refer to a 
completely different physical location in memory for the receiver. Therefore, standard C type 
pointers cannot be used as a means to pass messages between individual processes. 
 
Both the multi-threaded and multi-process distributed simulation approaches are commonly 
used. In general, a distributed simulation using multiple threads will need all event handlers and 
the event scheduling engine to be aware of the need for multiple-access interlocking to prevent 
simultaneous updates and potential deadlocks. In contrast, when distributing the simulation in 
separate address spaces, only those portions of the simulation that send events and the portion 
that advances simulation time needs to be aware of the distributed execution. Further, if the 
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original simulation package was not designed with distributed execution in mind, the multi-
process approach is, in general, considerably easier to implement. ns-2 is an example of 
simulation environment that was not designed originally to execute in a distributed fashion, but 
was later adapted to execute with multiple processes and disjointed address spaces. 
 
A common API to use when working with multi-process simulations is the well-known Message 
Passing Interface (MPI). However, a significant overhead for MPI based applications is in 
message passing between the disjointed address spaces. Even in a tightly coupled, shared 
memory environment, the messages must be copied into a shared memory region.  The copying 
of the entire message must be done because simple, C type pointers use virtual addresses which 
have no meaning once the pointer is passed to another process.  Thus a common approach is to 
first serialize the message and its data and perform a memory copy of the serialized message to a 
shared memory location, where it then can be retrieved and de-serialized by the receiving 
process. While this technique works and is in common use, a large processing cost can be 
incurred due to the amount of data being copied between processes. In the cases where these 
messages are large and must be passed frequently, this becomes a significant limiting factor in 
overall application performance. 
 
An alternative approach is to use shared memory and smart pointers. With this method, data that 
needs to be shared with other processes can be created in a shared memory region that is 
accessible by every process.  Then when a message needs to be passed, the owner can pass to the 
receiver a specialized smart pointer. These smart pointers allow the processes to pass only 
metadata for messages being exchanged, rather than the complete message. The receiving 
process can then access the original copy of the data stored in the shared memory using the smart 
pointer and normal dereferencing semantics.  This greatly reduces the amount of data that needs 
to be passed between applications. This technique is referred to as zero-copy message passing. 
 
We are not the first to develop a zero-copy approach. Boost Interprocess offers a smart pointer 
design that allows shared memory usage. Also provided by Boost is a general purpose, shared 
memory allocator. However, as we will show, the implementation provided by Boost does not 
perform well in memory intensive applications, like distributed simulators, and also does not 
scale well to a larger number of LPs. In contrast, our implementation of zero-copy is designed to 
function on a large number of LPs in a memory demanding environment. Along with the other 
benefits of zero-copy, our design supports Global Virtual Time (GVT) and will not re-assign any 
freed memory area until the GVT equals or exceeds the Simulation Time when the final 
reference has freed the region. Thus, this technique can be adapted to work with optimistic 
synchronization algorithms with rollbacks. Using this new approach, performance of PDES 
applications on multi-core architectures is greatly improved, allowing for longer and more 
detailed simulations. 

3.3.2 Background and Motivation 
 
In this section we provide background material on message passing and time synchronization 
algorithms. In general, zero-copy message passing offers many benefits over standard shared 
memory message passing. Thus, to fully appreciate these benefits, understanding of the 
mechanics of message passing is necessary. Next, we provide a brief background on time 
synchronization algorithms. Our zero-copy implementation works with the two major 
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classifications of time synchronization algorithms and both will be discussed, so a brief 
background is provided for reference. 

Traditional Message Passing 
 
Commonly, messages have been passed between individual processes by copying the entire 
content of the message to a shared memory region accessible by both the sender and the receiver.  
However, the data to be transferred must first be formatted in a way that allows it to be 
meaningful to a receiver. This formatting, called serialization or marshalling, generally copies 
each individual data item for all messages (and dereferencing pointers as needed) to a sequential 
array of bytes, which are then copied to the shared memory region. In some cases, it is possible 
to marshall the data directly to the shared memory region, eliminating one of the memory copies 
needed. However this is rarely a trivial process because complex data objects generally make 
extensive use of pointers. The data referenced from these pointers must also be copied into the 
buffer because, as mentioned previously, the pointer will no longer be valid once the data is 
transferred to a different process. Thus the serialization process, in most cases, involves 
numerous and often recursive memory copies. 
 
Once the data to be sent has been serialized, it can then be transferred to the receiver.  However, 
before the receiver can make use of what it has received, it must first deserialize or unmarshall, 
the data. This is basically a reversal of the serialization process and therefore frequently requires 
multiple memory allocations to restructure complex objects back into their original form. 
 
This process is depicted in Figure 1. While this procedure works as intended, the time to 
complete this marshalling and copying process is non-negligible and increases linearly with the 
size and complexity of the message. 
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Figure 1 – The transfer of a complex object between logical 
processes using a memory copy. (a) The complex object is 
serialized. (b) The serialized data is first copied to shared memory 
and then copied into the memory space of LP B. (c) The data is 
finally deserialized and the object is ready to be used. 

 

3.3.3 Introduction to Zero-Copy Message Passing 
 
Zero-copy message passing improves the performance of parallel simulations in a multi-process 
environment utilizing two main components: shared memory and smart pointers. First, rather 
than copying the data to shared memory, the data is created in shared memory, which can be 
accessed directly by the receiving process. As standard C type pointers cannot be utilized in this 
type of environment, zero-copy utilizes a smart pointer which is aware of the shared memory 
nature of the underlying data, and which has normal pointer semantics for dereferencing the 
pointer to access individual data items. Using the smart pointer eliminates the need for 
performing an expensive memory copy. Furthermore, the smart pointer can be equipped with 
reference counting semantics, which results in the underlying shared memory area being freed 
when all smart pointers pointing to the same area have gone out of scope.  In this section we will 
describe our implementation of zero-copy and compare it to the implementation found in the 
Boost Interprocess C++ Library. 
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Boost Interprocess C++ Library 
 
Boost provides an extensive library for working with shared memory [3]. These classes can 
greatly simplify the task of working with shared memory. Here we will discuss the Boost offset 
pointer and the Boost managed memory segment classes, which when used together, can form a 
zero-copy implementation. 
 
In Boost, the smart pointer that works with shared memory is the offset pointer. The offset 
pointer stores the distance from the offset pointer’s address to the object the pointer refers to. 
This allows objects created in shared memory to refer to each other regardless of which base 
address the shared memory segment is mapped to in the process’s address space.  To the 
programmer, the pointer functions equivalently to a normal pointer and can be coupled with a 
reference counting pointer to supply automatic garbage collection.  The problem with this design 
is that for it to work correctly, all of the objects have to be stored in the same shared memory 
segment. There is no guarantee that the difference in base addresses of two shared memory 
segments mapped into the address space of a process will be the same between processes. 
Therefore, in most cases, only one shared memory segment can be used for all LPs. 
 
A pool of shared memory is obtained in Boost using managed memory segments. Once a pool is 
available, objects can be created using the segment’s allocator.  The segments provide an 
allocate() method that takes as a parameter a byte size and returns a void pointer to a chunk of 
memory that size if it is available in the segment. The segments also provide a templated 
construct()  method which will create an instance of the object specified in shared memory and 
return a pointer to it. Managed memory segments in Boost also allow the programmer to create 
named shared memory objects. A string name can be given to any object created in shared 
memory.  This name can then be used by any process that connects to the memory segment to 
find the object in shared memory. While the Boost shared memory segment offers many useful 
features, it is unable to perform satisfactorily in a memory intensive environment, as we will 
show. In addition, as mentioned above, due to how Boost’s smart pointer interacts with memory 
segments, only one such segment can typically be used in an application.  This has two major 
consequences. First, access to critical sections of code in the segment’s allocator can become a 
major bottleneck as the number of LPs increase. Second, if the memory in the one shared 
memory segment is exhausted, the application has no choice but to terminate since shared 
memory segments are not dynamically expandable. 

Shared Heap 
 
In our zero-copy message passing design, when a new message is created (presumably to later be 
passed to another process) a special constructor method, called Create, is used rather than the 
normal C++ new operator. The Create method is functionally equivalent to new, excepting 
that the memory is allocated from a pre-existing shared memory we call the shared heap, rather 
than from the normal memory heap used by new. Each shared heap is made up of a group of 
heap items. It is in these heap items that the data to be shared is stored.  The heap items are 
indexed according to the offset from the start of the heap. A UML diagram of a heap item is 
shown in Figure 2. The Create method returns a special templated pointer object called a 
BPtr which refers to an individual heap item. 
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Figure 2 – UML model of HeapItem 
 
The heap item is made up of multiple items. It stores the number for the logical process it 
belongs to as well as its index number in the shared heap. The data field is where the actual data 
for the heap item is stored. The reference count specifies the number of smart pointers that are 
currently referencing the data in the heap item. This is used to determine when the heap item is 
no longer in use and can be recycled.  This number is atomically incremented and atomically 
decremented whenever the heap item is copied or when it goes out of scope. Finally each heap 
item contains a time to zero timestamp. 
 
The time to zero timestamp is used for simulators which use an optimistic time synchronization 
algorithm. As discussed previously, there are situations when optimistic simulators need to 
rollback due to the generation of a causality error. During this rollback, it may be necessary for 
the simulator to reacquire dynamically created objects that had previously been freed. This is 
true regardless of if the simulator is reverting to a previous saved state or performing reverse 
computation. In order to assist in this process, a heap item will not be immediately available for 
reuse once its reference count goes to zero. Instead the heap item will store the current 
simulation time for its LP in the time to zero field and will go into a dormant state, preserving 
itself and the data it contains. The heap item will stay in this state until the GVT of the system is 
greater than its stored time to zero timestamp.  Only after this happens will the heap item be 
made available for reuse. Because of this, it is necessary for the simulation to provide the shared 
heaps updated values for the GVT whenever they are calculated. 
 
For simulators that use a conservative time synchronization algorithm, the time to zero 
timestamp is not used. It could either be removed or the GVT for all the heaps in the system 
could be set to infinity at startup. Either way, heap items that have their reference count go to 
zero will immediately be available for reuse. Since the concept of rollback does not exist in 
conservative time synchronization, there is no need to postpone garbage collection. 
 
In our zero-copy implementation, the heap items are preallocated. The sizes for the heap items 
and the number to create can be configured by the user prior to runtime.  For example, the user 
could setup heap items for small blocks (50 bytes), medium blocks (500 bytes), and large blocks 
(5,000 bytes). When an object is created, the heap will return the smallest size that the instance 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED



 

 9 

of the object will fit into. By preallocating the blocks, we can provide extremely efficient 
allocation and deallocation routines since the blocks are of a fixed size and are stored 
sequentially in memory. When a shared memory pool is requested from the Linux kernel, the 
exact size must be specified and once it is allocated, it cannot be modified.  Therefore we feel it 
makes sense to split the pool into blocks immediately especially since the user of the simulator 
should have a general idea of the sizes of objects he/she needs to create prior to runtime. 
 
Every logical process in the simulation has its own shared heap, which is initialized at 
initialization time. The heaps are created in shared memory and the permissions are set so every 
LP can access every other LP’s shared heap as well as its own. 
 

 
 

Figure 3 – Layout of Shared Heaps 
 
Once all of the logical processes finish creating their own shared heaps, all logical processes 
attach to all other shared heaps. Each LP stores pointers to each of these heaps in a global 
variable called HeapCluster.  A diagram of this is shown in Figure 3.  Here two LPs have 
finished setting up their individual shared heaps and have stored pointers to both shared heaps in 
their HeapCluster, which is a global array of pointers to the heap object for all logical processes. 
In our implementation, each process maintains the array of virtual memory pointers to all shared 
memory regions in the order of the logical process number of the creating LP. This is shown in 
figure 4. 
 
It should be noted that while both LPs have pointers to the same shared heap, the actual virtual 
address of the shared heap will typically be different. When a process attaches to a shared 
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memory segment, the shared memory is mapped into the process’s virtual address space and 
there is no guarantee that it will map to the same location for each process that attaches to it.  
This is why we cannot simply pass normal C/C++ pointers to data items in the shared memory 
across logical process address spaces. 
 

 
 

Figure 4 – Ordering of pointers in HeapCluster 

 
 

Figure 5 – UML model of BPtr 

Smart Pointers 
 
Similar to the Boost implementation, to reference heap items our ZCM technique utilizes smart 
pointers.  These smart pointers are necessary because, as discussed previously, standard C type 
pointers contain a virtual address which may be meaningless when passed between process 
boundaries. The smart pointers used in the zero-copy approach get around this limitation by 
passing the metadata necessary for the receiving process to obtain the data that it was intended 
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to receive. The smart pointer created for the ZCM technique is called BPtr and its UML diagram 
is shown in Figure 5. 
 
The smart pointer is made up of three data items. The integer lp stores the heap number of the 
shared heap which contains the actual data being referenced.  The offset stores the integer 
index of the heap item in the data owner’s shared heap. The smart pointer also contains a heap 
item pointer (heapItem) to the heap item referenced by the heap number and offset stored in 
the smart pointer. This heap item pointer is updated automatically by the smart pointer whenever 
the smart pointer is copied so it always points to the correct heap item, even when the pointer is 
passed across process boundaries. 
 
The main difference between our pointer and the Boost offset pointer is that our pointer stores 
the heap number along with the offset. This offers two major advantages. First it allows our 
pointers to point to objects in separate shared memory segments. This eliminates many of the 
concurrency issues experienced with the Boost managed memory segment allocator.  The 
second advantage is that new heaps can be created during runtime if shared memory resources 
are exhausted. A request is made to the kernel for more shared memory and once it is received 
the heap structure can be setup and be given a unique heap number.  At that point the only thing 
left to be done is to notify all of the processes to connect to the new heap and add it into their 
heap cluster. 
 
When a copy of the smart pointer is made, only the heap number and offset data items are 
copied. Then the GetPointer function is called, which gets the heap item pointer. It does this 
by indexing the HeapCluster array using the LP to acquire a reference to the correct heap 
and then using the offset to address it to the correct heap item. Another feature of the smart 
pointer class is that it automatically handles the reference counting for the heap item. The 
assignment operator and copy constructor have been overloaded to atomically increase the 
reference count of the appropriate heap item when a new reference to the heap item is made. 
Similarly, the virtual destructor for any BPtr object will decrement the reference count 
appropriately. 
 
To facilitate the creation of smart pointers, we created a templated Create method. This 
Create method first finds a heap item in the heap that is not being used and then uses an in-
place new to create an instance of the templated class in the heap location.  The smart pointer 
then stores the LP number of the current process and also the offset to the heap item used. 
Finally the smart pointer increments the reference counts for the heap item that it is referencing. 
The Create method can also be overloaded with any argument of any type, which is used to 
determine which constructor for the underlying data item is to be called to initialize the new 
object1. 
 
Once created, the smart pointer behaves syntactically the same as any other pointer. When the 
smart pointer is dereferenced, it uses the stored LP to connect to the shared heap of the process 
that created the data and then uses the stored offset to obtain the heap item.  The appropriate 
                                                           
1 We are grateful to the ns-3 development team for the development of their Ptr object, which is the basis for much 
of our BPtr implementation. 
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operators have been overloaded in the smart pointer definition to allow access to all class 
member functions and data in the referenced class. 
 
Listing 1 shows an example of creating a Packet object using the smart pointer class. Figure 6 
shows a message being passed using a smart pointer.  Note that the actual object referenced by 
the pointer is neither moved nor copied. 
 
Listing 1 – Smart Pointer Example 
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Figure 6 - The transfer of a complex object 
between logical processes using zero-copy.   (a) 
The object is created in LP A’s shared heap and is 
accessed by LP A via the smart pointer. (b) The 
smart pointer is copied to shared memory and then 
to copied into the memory space of LP B. (c) Using 
the smart pointer, LB B can directly access the 
object  in LP A’s shared heap.  The object itself is 
never moved or copied. 

 

4.0 RESULTS AND DISCUSSION 

4.1 SimpleSim 
 
SimpleSim is a very simple distributed discrete event simulator.  The simulator enforces 
causality using a conservative LBTS algorithm that exchanges timestamp and message count 
information between LPs in a common shared memory region. The LBTS was calculated using 
a software rendition of the GSU [2]. Each LP starts off with one event inserted into its event 
queue. The timestamp for the first event is chosen randomly within the first five simulation 
seconds. 
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When handling an event, SimpleSim always creates one new message and sends it to an LP 
chosen randomly from a uniform distribution.  It then examines the size of its event queue. If the 
size is less than a predefined constant value, it creates another message which is also sent to a 
randomly chosen LP. It is possible that the LP can choose itself. Since the size of the event lists 
for the LPs will grow at approximately the same rate due to the random nature in which the 
recipients are selected, this prevents unbounded growth in the total number of events for any 
individual LP. 
 
Included in the message sent to the recipient are a timestamp, a unique ID, and a pointer to an 
arbitrarily sized chunk of data, which represents the data to be passed to the receiving LP. The 
timestamps for the new events are chosen from a uniform distribution of 1 to 5 seconds in the 
future. Added to the timestamp is a predefined constant lookahead value. The unique ID was 
used mainly for testing purposes. 
 
When SimpleSim receives a new message, it removes the message from the queue and 
schedules a new event in its event list for the timestamp specified in the message. The individual 
simulators continue to process and create events until a predefined stop time is reached. 
 
Three versions of SimpleSim were created. The first version is an MPI implementation that 
copies the entire contents of the message to the receiving process.  The other two versions both 
use a zero-copy technique. The second version uses the Boost Interprocess library and the third 
version uses our zero-copy implementation. 
 
We created this simulation because it allowed us to easily vary the size of data being passed 
between processes. In most cases, the message being passed to the receiving process is a 
complex object with multiple nested pointers.  However in this simulation, the message that is 
being transferred is uninitialized memory. Thus, there is no serialization step prior to the 
memory being copied.  This also means that there is no deserialization step. Thus any speedup 
observed is due only to the lack of a bulk memory copy. 
 
For the first experiment with SimpleSim, the number of LPs was held constant at eight and the 
size of the message was scaled from 500 to 50,000 bytes. The simulator was set to run for 
25,000 simulator seconds. The maximum event list size where LPs stopped sending a second 
message was set to 5,000 and the lookahead value was set to 5 seconds. All simulation 
configurations were run ten times and the average result was recorded. Figure 7 shows the run 
time of the three approaches for a variety of message sizes. As expected, for the two zero-copy 
approaches, the execution time is nearly constant regardless of data size. Again this is because 
the data is not being copied along with the message but instead is being referenced directly from 
the shared heap where it was created. By comparison, the execution time of the MPI full copy 
approach is growing approximately linearly with the size of the data being sent. The results also 
show that our approach outperforms MPI full copy when the message is larger than 
approximately 3,000 bytes and outperforms Boost’s implementation by almost ten times. 
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Figure 7 - The runtime of SimpleSim with 8 logical processes, 
varying message size using MPI, Boost Interprocess and our custom 
zero-copy approach. 
 

 
 
Figure 8 - The runtime of SimpleSim with a message size of 7000 
bytes, varying the number of logical processes using MPI, Boost 
Interprocess and our custom zero-copy approach.  Data collected for 
2, 4 and 8 LPs. 

 
For the second experiment with SimpleSim, we wanted to examine how each simulator instance 
scaled as the number of LPs participating in the experiment was increased. The size of the data 
being transferred was fixed to 7,000 bytes. Again the simulator was set to run for 25,000 
seconds of simulator time and the maximum event list and lookahead values were set at 5,000 
and 5 respectively. Figure 8 show the results of our experiment.  The data clearly shows that the 
Boost implementation scaled much more poorly than either of the other two. This is presumably 
because, as discussed previously, the Boost implementation is limited to only one shared 
memory segment. However, even when the Boost version is performing at its peak our 
implementation outperforms it by almost six times. 
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4.2 GTNetS 
 
The Georgia Tech Network Simulator (GTNetS) is a full-featured network simulator for 
modeling large-scale topologies. GTNetS offers packet level tracing and models packets with 
protocol data units (PDUs) that are added and removed as the packet moves up and down the 
protocol stack. Similar to SimpleSim, GTNetS also uses conservative time synchronization.  We 
chose to test our zero-copy approach on GTNetS because the messages passed between 
processes in GTNetS are complex packet objects that contain multiple PDU objects that must be 
serialized prior to transfer. 
 
For our GTNetS experiments we created a star topology for each LP. The hub for each of the 
stars was then connected to form a clique.  Each star was given N-1 nodes where N was the 
number of LPs participating in the simulation.  Each node of a star was configured to send UDP 
traffic to a node in a different LP. Therefore each LP was sending UDP traffic to every other LP 
using one of its nodes. Each node was also given a UDP sink to receive data being sent to it. 
Each UDP packet sent was configured to hold 1,024 bytes of data and each sender was 
configured with an On/Off Application to use approximately 20% of the available bandwidth. 
Senders were configured to start at a random time within the first half second of simulation and 
the simulation was configured to run for 5,000 simulation seconds. All simulation 
configurations were run ten times and the average value was recorded. 
 
Figure 9 shows the results of this experiment.  Again, the Boost version of the simulator scaled 
worse than the other two versions. Our version of zero-copy outperforms the MPI full copy 
version even though the message size is less than 1,100 bytes. This is due to the fact that the 
MPI version has to serialize/deserialize the complex packet hierarchy before and after 
transferring it. This demonstrates that the effectiveness of our approach improves as the 
complexity of the objects being transferred increase. 
 

 
 

Figure 9 - The runtime of GTNetS varying the number of logical 
processes using  MPI, Boost Interprocess and our custom zero-copy 
approach. Data collected for 2, 4 and 8 LPs. 
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5.0 CONCLUSIONS 
 
We have presented overviews of two significant prior works, specifically the design and 
evaluation of the Global Synchronization Unit and the Hardware-supported  message passing 
approach that demonstrate the ability of closely coupled multi-core  systems to improve overall 
performance of parallel discrete event simulations. This prior work led us to research a software-
only design for zero-copy message passing between separate processes cooperating to execute a 
distributed discrete event simulation. 
 
Our experimental results show that our new approach to zero-copy message passing can 
considerably reduce the overall execution time of a distributed simulation when the size and 
number of inter-process events is significant.  The software-only approach can be implemented 
immediately on any multi-process distributed simulation in a tightly-coupled multiprocessor 
(multi-core) computing environment. 
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LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 
 
CPU  central processing unit 
GSU  Global Synchronization Unit 
GTNetS Georgia Tech Network Simulator 
GVT  global virtual time 
LBTS  lower bound on timestamp 
LP  logical process 
MOE  minimum outstanding event 
MOM  minimum outstanding message 
MPI  Message Passing Interface 
PDES  parallel discrete event simulation 
PDU  protocol data unit 
TMC  transient message count 
UDP  User Datagram Protocol 
UML  Unified Modeling Language 
ZCM  zero-copy message passing 
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