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High-order Non-reflecting Boundary Conditions for Dispersive Waves in
Polar Coordinates Using Spectral Elements

Joseph M. Lindquista, Beny Netaa, Francis X. Giraldoa

aDepartment of Applied Mathematics, Naval Postgraduate School, 833 Dyer Road, Monterey, CA 93943

Abstract

High-order non-reflecting boundary conditions are introduced to create a finite computational space and
for the solution of dispersive waves using a spectral element formulation with high-order time integration.
Numerical examples are used to demonstrate the synergy of using high-order spatial, time, and boundary
discretization. We show that by balancing all numerical errors involved, high-order accuracy can be achieved
for unbounded domain problems in polar coordinate systems.

Keywords: Klein-Gordon equation; polar coordinates; advection; dispersion; high-order; non-reflecting
boundary condition; spectral elements;

1. Introduction

The numerical solution of a wave propagation problem in a very large or unbounded domain provides a
challenging computational difficulty – namely, solving the problem on a finite computational domain while
maintaining the true essence of the solution. One of the modern techniques that has garnered a significant
amount of attention in handling this challenge is the absorbing or non-reflecting boundary condition (NRBC)
method. In using this method, the original infinite domain is truncated by an artificial boundary B, resulting
in a finite computational domain Ω and the residual domain D.

When truncating the domain, the modeler must devise boundary conditions for the truncated domain.
Of course, by imposing a boundary where one does not physically exist, the problem is changed – and unless
chosen carefully, would certainly be expected to pollute the solution as the problem evolves and impinges
on the boundary. For this reason, much effort has and continues to be exerted on finding stable, efficient,
accurate and practical means of reducing this reflection through so-called NRBCs [1].

Several high-order NRBCs have been devised to reduce spurious reflections that would pollute the so-
lution. Beginning in the late 1980’s, the well-known Engquist-Majda [2] and Bayliss-Turkel conditions [3]
gave way to Collino’s [4] low derivative, auxiliary variable formulation for the 2D scalar wave equation. This
sparked a flurry of activity in an effort to find quality, high-order NRBCs that were easily implementable.
See [5]-[6] for reviews on the subject. See also Higdon’s papers [7]-[8], Givoli-Neta [9], [10] and Neta et al
[11].

The Givoli-Neta (G-N) auxiliary formulation of the Higdon NRBC was implemented on a reduced form
of the linearized shallow water equations (SWE) under non-zero advection. This formulation has been
previously demonstrated in a finite difference formulation to arbitrarily high NRBC order [12], however,
accuracy gains realized by increasing the NRBC ceased after order 2. The formulation used by Lindquist et
al [13] remedied this limitation by using a high-order treatment of space (SE) and time (Runge-Kutta) to
show the benefits of using the high-order boundary (G-N) scheme. Specifically, the interior and boundary
formulations are discretized using high-order basis functions in a stable, equal-order interpolation scheme
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for all the variables (this does not violate the inf-sup condition). High-order time integration is performed as
well in an effort to balance all of the errors involved with the numerical solution. The computational effort
associated with the high-order boundary scheme can be shown to grow only linearly with the order [14].

It should be noted that the only other spectral element, high-order boundary approach are Kucherov
and Givoli [15] and Lindquist et al. [16] and [13]. Kucherov and Givoli demonstrate exponential error
convergence of the classical wave equation on a semi-infinite channel when solved using spectral elements
and high order boundary treatment (using the H-W boundary scheme). They further show how the spectral
element formulation allows the NRBC to realize its true potential, prior masked by low order numerical
schemes. They note that, “Although it is generally felt that there is no need to treat the time domain
‘spectrally’ like the spatial domain, [they] feel that a consistently high-order treatment requires that the
entire approximation be spectral, i.e. the convergence of all three types of error – the spatial and temporal
discretization errors and the ABC error–be exponential.” [15]

Subsequent spectral element and boundary work by the current authors [16] using the G-N formulation
of the dispersive wave equation on a semi-infinite channel showed similar results to those presented by
Kucherov and Givoli and how a high-order treatment of the time domain (up to order 10) produces additional
improvements. These improvements, however, have their limits thus confirming the hypothesis of Kucherov
and Givoli. The key difference in that work is that we extend the high order space, boundary and time
integration results previously demonstrated in a non-zero advection setting to one where the wave medium
is not at rest.

In the case of cylindrical or spherical coordinate systems, one cannot use the auxiliary functions suggested
for the cartesian coordinate system. The reason is that only in the latter the coefficients are constant. To
overcome this, van Joolen at al [17] extended the Hagstrom-Hariharan (HH) conditions to dispersive media.
Here we show how to implement this idea. The following is the outline of the rest of this paper. In Section
2, the problem under investigation is stated. In Section 3, an overview of the auxiliary formulation is
presented. In Section 4, a SE semi-discrete formulation that incorporates the NRBC with any desired order
is constructed. In Section 5 the time-integrator used to march the equations in time is discussed. The
performance of the method is demonstrated in Section 6 via numerical examples.

2. Statement of the Problem

To motivate the problem under consideration, consider the SWE:

∂tu+ u∂xu+ v∂yu− fv = −g ∂xh,

∂tv + u∂xv + v∂yv + fu = −g ∂yh, (1)

∂th+ ∂x(Hu) + ∂y(Hv) = 0.

We use the following shorthand for partial derivatives

∂i
a =

∂i

∂ai
.

The shallow water model in its current form is non-linear. We have three state variables: u(x, y, t) and
v(x, y, t) are the unknown velocities in the x and y directions and h(x, y, t) is the water depth above a
reference value. Further, H is the water depth as shown in Figure 1 such that H = hB +h, f is the Coriolis
parameter, and g is the gravity acceleration.

Now, suppose that the bottom topography is flat such that hB is constant and u and v can be described
by a constant mean term and a small O(δ) deviation from that value, i.e.

u = U + u∗ v = V + v∗.

To be clear, U and V are the mean velocities with respect to the coordinate axes. Using these substitutions
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and neglecting any O(δ2) terms results in the linearized form of the SWE:

∂tu
∗ + U∂xu

∗ + V ∂yu
∗ − f(V + v∗) = −g ∂xh,

∂tv
∗ + U∂xv

∗ + V ∂yv
∗ + f(U + u∗) = −g ∂yh, (2)

∂th+ U∂xh+ V ∂yh+ hB (∂xu
∗ + ∂yv

∗) = 0.

van Joolen shows in [18], how, using the operator:

D

Dt
=

∂

∂t
+ U

∂

∂x
+ V

∂

∂y

the SWE can be reduced to a single variable Klein Gordon equation (KGE) equivalent for the wave per-
turbation h under non-zero, constant advection velocities U and V . Once h has been found, the unknown
velocities can be computed in a similar manner (see Pedlosky [19] for details). The current paper seeks to
numerically solve this two-dimensional advective, dispersive wave equation:

∂2
t h+

(
U2 − C2

0

)
∂2
xh+

(
V 2 − C2

0

)
∂2
yh+ 2U∂2

xth+ 2V ∂2
yth+ 2UV ∂2

xyh+ f2h = 0 (3)

where C2
0 = gH, using continuous Galerkin methods.

While the assumptions for this reduced form of the SWE may undermine the predictive capability of the
already simplified equations of fluid motion, the advective KGE serves as an important test-bed to extend
and improve non-reflecting boundary conditions for wave propagation in a non-static environment. When
shown to improve performance in test cases as those presented here, these conditions will then be extended
to the full linearized SWE system and further to include non-linear effects.

3. Hagstrom and Hariharan auxiliary variable formulation

The boundary condition devised by Hagstrom and Hariharan provides a systematic approach for con-
structing boundary conditions for the standard two-dimensional wave equation. The condition is based on
the asymptotic series representation (which does not converge at any fixed radius) for an outgoing solution
of the wave equation (in polar coordinates)

1

c20

∂2h

∂t2
=

∂2h

∂r2
+

1

r

∂h

∂r
+

1

r2
∂2h

∂θ2
. (4)

Since the boundary condition is asymptotic by nature, valid for large radial distances – this implies that
larger radial distances should provide better NRBC convergence. Thompson et al. make the observation
that “. . . for practical problems, truncating the asymptotic expansion after [J ] terms provides solutions
with errors well below that of the discretization error” [20]. Here, we seek to significantly reduce the
discretization error by employing spectral elements to find the true error convergence properties of the
NRBC. In developing the boundary condition, Hagstrom and Hariharan construct a sequence of operators
that approximately annihilate the residual of the preceding element in the sequence, viewed as a function
on the artificial boundary. The sequence begins with a first-order Bayliss-Turkel operator discussed in [3].
The boundary condition takes the form:

∂h

∂r
= ϕ1 −

1

c0

∂h

∂t
− 1

2r
h, (5)

ϕj+1 =
1

c0

∂ϕj

∂t
+

j

r
ϕj −

(j − 1
2 )

2

4r2
ϕj−1 −

1

4r2
∂2ϕj−1

∂θ2
, j = 1, . . . , J − 1 (6)

where
ϕ0 ≡ 2h and ϕJ ≡ 0.

At first glance, this boundary formulation suggests that we should develop a “new” spectral element
formulation for the wave equation cast in polar coordinates. If we did this, however, we would then require
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a polar grid that would introduce additional complications such as the method of dealing with the degenerate
quadrilaterals that inevitably occur at the center of the grid. Of course there are ways to overcome these
obstacles, but it would be much more convenient to cast the problem in the same framework already
developed. In other words, we seek to implement this boundary condition (presented in polar form) in our
unstructured quadrilateral formulation of the wave equation (in Cartesian form).

4. Spectral Element Method

The spectral element (SE) method is a generalized high-order finite element method where the integration
and interpolation points are selected carefully in order to yield accurate but efficient solutions. For this
problem, we will discuss two formulations - one for the interior and one for implementing the boundary
conditions.

4.1. Interior Formulation

First, consider the two-dimensional wave equation (same formulation as presented in (3) with U = V = 0)

∂2h

∂t2
− c20∇2h+ f2h = 0. (7)

Multiplying by the test functions Ψi and integrating over the circular domain yields the weak integral form∫
Ω

Ψi
∂2h

∂t2
dΩ− c20

∫
Ω

Ψi∇2h dΩ+

∫
Ω

Ψif
2h dΩ = 0.

Transferring the second order spatial derivatives from h to the basis functions via integration by parts and
applying the divergence theorem to recast one surface integral term as a boundary integral gives us∫

Ω

Ψi
∂2h

∂t2
dΩ− c20

∫
Γ

Ψin⃗ · ∇h dΩ+ c20

∫
Ω

∇Ψi · ∇h dΩ+

∫
Ω

Ψif
2h dΩ = 0. (8)

Of note now is that the boundary condition (5) contains a radial derivatives of h that on the circle is
precisely the normal derivative n⃗ · ∇h. This allows direct implementation of the boundary condition into
(8) as follows:∫

Ω

Ψi
∂2h

∂t2
dΩ− c20

∫
Γ

Ψi

(
ϕ1 −

1

c0

∂h

∂t
− 1

2r
h

)
dΩ+ c20

∫
Ω

∇Ψi · ∇h dΩ+

∫
Ω

Ψif
2h dΩ = 0. (9)

Here, since on the boundary the radius is fixed, the 1
2r term may be treated as a constant.

A similar weak form is constructed for the boundary formulation by multiplying (6) by the test functions
ζi and integrating over Γ yielding (after by integration by parts):

1

c0

∫
Γ

ζi
∂ϕj

∂t
dΓ +

j

r

∫
Γ

ζiϕj dΓ−
(
j − 1

2

)2
4r2

∫
Γ

ζiϕj−1 dΓ

− 1

4r2
ζi
∂ϕj−1

∂θ

∣∣∣end
start

+
1

4r2

∫
Γ

∂ζi
∂θ

∂ϕj−1

∂θ
dΓ =

∫
Γ

ζiϕj+1 dΓ.

(10)

We now use the fact that the boundary is continuous and closed to surmise that the endpoint evaluation
term vanishes. The formal problem statement is then: Find h ∈ V and ϕj ∈ VΓ where j = 1, . . . J − 1, such
that Equations (9) and (10) are satisfied ∀ Ψi ∈ V and ζi ∈ VΓ.
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4.2. Galerkin Expansion

We now turn our attention to the spatial discretization. First, we expand the solution variables h and
ϕj using the same basis functions used in the weak form as follows:

hN =

Np∑
k=1

Ψkh
k, ϕjN =

Nb∑
k=1

τkϕ
k
j , j = 1, 2, . . . , J − 1. (11)

Here, Np refers to the number of points that Ω is discretized into and Nb refers to the number of points
that ΓE is discretized into. Next, we substitute this basis function expansion directly into the weak form,
resulting in the following matrix form of this problem:

ḧ = Aḣ+ Bh+ Cϕ1. (12)

If we examine the boundary auxiliary variable formulation (10) we see that the selection of appropriate
Cj values for the auxiliary variables has not yet been addressed.
It should be noted that van Joolen et al. [21] show that any choice of Cj is guaranteed to reduce spurious
reflection as the order of the NRBC (J) increases. While we omit the details here, the core of this argument
is the computation of a so-called reflection coefficient that is a product of J factors, each of which are less
than one. The reflection caused by the artificial boundary must decrease as the order of the NRBC increases.
They note, “Of course, a good choice for the Cj would lead to better accuracy with a lower order J , but
even if the ‘wrong’ Cj ’s are taken . . . one is still guaranteed to reduce the spurious reflection as the order J
increases.”[21, page 1045]

If we now collect the terms on the left and right, we get the matrix form of the problem:

EΦ̇ = FΦ+ h. (13)

4.3. Time Integration

The formulation outlined in (12) and (13) constitute a system of coupled ODEs that must be solved
to yield a solution for h(x, y, t). Since the goal of this analysis is to uncover the “true” gains made by
high-order boundary treatment, it is possible that any high-order treatment of the boundary and spatial
discretization without considering a high-order treatment of the temporal component could mask gains made
by a high-order boundary treatment. For this purpose, our approach uses standard kth order Runge-Kutta
(RK) methods (up to order 10) to integrate the system in time.

The set-up of this scheme is a standard one, namely, the second order system is expanded to a larger
system of first order ODEs, then solved appropriately using the associated RK tableau. For most cases in
this analysis (unless otherwise stated) time integration is performed using a 4th order RK scheme using a
time-step chosen to ensure a Courant number of 0.25, where the Courant number is defined:

Courant number =
C0△t√

(△x)
2
+ (△y)

2

Here, △x and △y are chosen as the minimum distance between any two points in the x− or y− directions
respectively. Additionally, This choice is made since the interpolation points are not uniformly distributed
when using spectral elements.

4.4. Results for the HH Formulation

A series of experiments was conducted to determine the effect of the HH boundary condition for various
SE and NRBC orders. Since the formulation is designed for circular boundaries, we consider only circular
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boundaries with unstructured grids. In each case, we choose the number of elements to yield approxi-
mately 3, 000 global points. We take a smooth, two-dimensional “oval-shaped” initial condition with shape
parameters σx = 1

2 , σy = 1
3 , further rotated by an angle of θ = π

6 . The initial condition used here is:

h(x, y, 0) = e−(ax
2+2bxy+cy2), ḣ(x, y, 0) = 0. (14)

Here, the parameters a, b, and c are defined as follows:

a =
cos2 θ

2σ2
x

+
sin2 θ

2σ2
y

b = − sin 2θ

4σ2
x

+
sin 2θ

4σ2
y

c =
sin2 θ

2σ2
x

+
cos2 θ

2σ2
y

. (15)

Again, the solution is compared to one computed on a larger domain allowing the wave to propagate out of
the NRBC domain but not yet impinge on the non-physical boundary used to compute the solution on the
larger domain. Qualitative results are shown in Figure 4.7 and quantitative L2

Ω errors are shown for various
NRBC orders for SE orders up to 6 in Table 2. No further improvement was observed for SE orders above
order 6.

4.5. Adjustments to HH to Include Mild Dispersion

The unstructured grid (see e.g. Figure 3 from [22]) representation of the HH formulation has been
demonstrated to significantly reduce reflection caused by the boundary for the standard wave equation. The
question now arises, can this formulation be extended to include dispersive effects such as Coriolis? In [17],
van Joolen et al. presented a method to extend the HH formulation for the standard wave equation under
mild dispersion. While this formulation was well grounded mathematically it was never implemented. A
brief synopsis of their derivation follows with results presented for mild dispersion where f2 = 0.1.

We first consider the KGE without advection (in polar coordinates as in the HH derivation):

1

c20

∂2h

∂t2
=

∂2h

∂r2
+

1

r

∂h

∂r
+

1

r2
∂2h

∂θ2
− f2

c20
h. (16)

As has been previously discussed, in the geophysical context, the dispersion parameter is typically small.
We assume here that

f

c0K
≪ 1, (17)

where K is a typical wave number appearing in the solution. Now, apply the Fourier transform to (4) and
(16) in time to yield:

ω2

c20
ĥ+

∂2ĥ

∂r2
+

1

r

∂ĥ

∂r
+

1

r2
∂2ĥ

∂θ2
= 0 Wave(

ω2

c20
− f2

c20

)
ĥ+

∂2ĥ

∂r2
+

1

r

∂ĥ

∂r
+

1

r2
∂2ĥ

∂θ2
= 0 Klein-Gordon

where ω is the frequency and ĥ is the frequency domain representation of h. In both cases, we obtain the
Helmholtz equation:

K̄2ĥ+
∂2ĥ

∂r2
+

1

r

∂ĥ

∂r
+

1

r2
∂2ĥ

∂θ2
= 0.

In the non-dispersive case, K̄ = ω
c0

≡ K and K̄ =
√
K2 − f2

c20
in the dispersive case. In order to facilitate

the conversion back to the time domain, we now consider a Taylor series approximation to the square root
term found in the dispersive case, i.e.,

√
1− x = 1− 1

2
x+O(x2).

6



Provided that x is small, we can truncate the O(x2) terms. In our case, from (17) we can reasonably make
this assumption yielding for the dispersive case:

K̄

K
=

√
1− f2

c20K
2
≈ 1− f2

2c20K
2
⇒ K̄ ≈ K − f2

2c20K
.

We now see that in the frequency domain, an equation valid in the non-dispersive case is valid in the
dispersive case if we make the replacement:

K →

√
K2 − f2

c20
≈ K − f2

2c20K
. (18)

We now turn our attention to the boundary condition (5) and (6) that we Fourier transform in time to yield:

−iKĥ+
∂ĥ

∂r
+

1

2r
ĥ = ϕ̂1 (19)

−iKϕ̂j +
j

r
ϕ̂j −

(
j − 1

2

)2
4r2

ϕ̂j−1 −
1

4r2
∂2ϕ̂j−1

∂θ2
= ϕ̂j+1, j = 1, . . . , J − 1. (20)

Making the substitution (18), we obtain the dispersive version of the HH formulation in the frequency
domain, i.e.,

−iKĥ+
if2

2c20K
ĥ+

∂ĥ

∂r
+

1

2r
ĥ = ϕ̂1

−iKϕ̂j +
if2

2c20K
ϕ̂j +

j

r
ϕ̂j −

(
j − 1

2

)2
4r2

ϕ̂j−1 −
1

4r2
∂2ϕ̂j−1

∂θ2
= ϕ̂j+1, j = 1, . . . , J − 1.

Transforming these equations back into the time domain results in the final HH boundary formulation
for the KGE:

1

c0

∂h

∂t
+

f2

2c0

∫ t

0

h(τ) dτ︸ ︷︷ ︸
m(t)

+
∂h

∂r
+

1

2r
h = ϕ1 (21)

1

c0

∂ϕj

∂t
+

f2

2c0

∫ t

0

ϕj(τ) dτ︸ ︷︷ ︸
n(t)

+
j

r
ϕj −

(
j − 1

2

)2
4r2

ϕj−1 −
1

4r2
∂2ϕj−1

∂θ2
= ϕj+1 (22)

where
j = 1, . . . , J − 1, ϕ0 ≡ 2h and ϕJ ≡ 0.

It should be noted that van Joolen et al. [17] show how m(t) and n(t) can be calculated in each time-step to
keep the boundary condition local in time without having to store and operate on the history of the solution.
For this analysis, a simple trapezoidal approximation was used to approximate the integral.

The weak form of the formulation is now constructed. We consider the KGE in its general form:

∂2h

∂t2
− c20∇2h+ f2h = 0.

Multiplying by the test functions Ψi and integrating over the circular domain yields the weak integral form∫
Ω

Ψi
∂2h

∂t2
dΩ− c20

∫
Ω

Ψi∇2h dΩ+ f2

∫
Ω

Ψih dΩ = 0.
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Transferring the second order spatial derivatives from h to the basis functions via integration by parts and
applying the divergence theorem to recast one surface integral term as a boundary integral gives us∫

Ω

Ψi
∂2h

∂t2
dΩ− c20

∫
Γ

Ψin⃗ · ∇h dΩ+ c20

∫
Ω

∇Ψi · ∇h dΩ+ f2

∫
Ω

Ψih dΩ = 0. (23)

Of note now is that the boundary condition (21) contains a radial derivatives of h that on the circle is
precisely the normal derivative n⃗ · ∇h. This allows direct implementation of the boundary condition into
(23) as follows: ∫

Ω

Ψi
∂2h

∂t2
dΩ− c20

∫
Γ

Ψi

(
ϕ1 −

1

c0

∂h

∂t
− 1

2r
h− f2

2c0
m(t)

)
dΩ

+c20

∫
Ω

∇Ψi · ∇h dΩ+ f2

∫
Ω

Ψih dΩ = 0.

(24)

Here, since on the boundary the radius is fixed, the 1
2r term may be treated as a constant.

A similar weak form is constructed for the boundary formulation by multiplying (22) by the test functions
ζi and integrating over Γ yielding (after integration by parts):

1

c0

∫
Γ

ζi
∂ϕj

∂t
dΓ +

f2

2c0

∫
Γ

ζi n(t) dΓ +
j

r

∫
Γ

ζiϕj dΓ−
(
j − 1

2

)2
4r2

∫
Γ

ζiϕj−1 dΓ

− 1

4r2
ζi
∂ϕj−1

∂θ

∣∣∣end
start

+
1

4r2

∫
Γ

∂ζi
∂θ

∂ϕj−1

∂θ
dΓ =

∫
Γ

ζiϕj+1 dΓ.

(25)

We now use the fact that the boundary is continuous and closed to surmise that the endpoint evaluation
term vanishes. The formal problem statement is then: Find h ∈ V and ϕj ∈ VΓ where j = 1, . . . J − 1, such
that Equations (24) and (25) are satisfied ∀ Ψi ∈ V and ζi ∈ VΓ.

4.6. Results for HH with Dispersion

A series of experiments was conducted to determine the effect of the HH boundary condition extended to
include mild dispersion for various SE and NRBC orders. The set-up is identical to the experiments without
dispersion, except the dispersion parameter is set to f2 = 0.1. Qualitative results are shown in Figure 4.7
and quantitative L2

Ω errors are shown for various NRBC orders for SE orders up to 6 in Table 1. As in the
non-dispersive case, no improvement was observed for SE orders above order 6.

4.7. Effects of Time Integration Technique

At the outset of this work, it was believed that at some point the improvements realized by improving
the spatial discretization and NRBC would eventually be limited by the time integration scheme [23]. To
this end, the order of the time integration scheme (RK2 -RK10) was varied to examine the effects of time
integration on the accuracy of the solution. As has already been presented, gains made by increasing the
order of the NRBC halt for lower order (second order) spectral elements after J = 5. Even for high order
(order 8 and 16) spectral elements, the gains made by increasing the order of the NRBC are limited at some
point using RK4. In [16] the authors showed that high-order time integration allowed boundary gains to
improve solution quality for the KGE under zero advection.

For this experiment, consider the KGE on a semi-infinite domain with h = 0 on ΓW . To ensure that
any boundary or time effects are not masked by the interior discretization, we consider 8th order spectral
elements discretized into 9,409 global points. The Gaussian initial condition is used and is evaluated until
t = 3. The reference solution in this case was computed as described previously, except that time integration
was performed with a 10th order Runge-Kutta scheme (RK10) using a time-step chosen to ensure a Courant
number of 0.1. Further, to exaggerate the issue of advection and dispersion, we consider the case where
U = 0.75 and f2 = 1.
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As can be observed in Figure 5, gains made by improving the time integration matter only if combined
with high-order treatment of the boundary. Conversely – gains using high-order treatment of the boundary
can only be realized if there is a sufficiently high-order treatment of the time integration. While this analysis
conducted time integration using up to RK10 (18 stages), RK4 or RK5 appears to be sufficient in exploiting
gains when using high-order (up to J = 15) boundary treatment. It should be noted that these results (error
on the order of 10−9) cannot be observed unless high-order treatment of the interior also accompanies the
high-order treatment of the boundary and time. Several experiments were conducted which varied the order
of the interior, boundary and time integration. The clear result was that without high-order treatment of
all components in concert, convergence to the reference solution is stalled.

While these results are for a specific problem (KGE with advection), we believe that the principle of a
balanced approach to all components (interior, boundary and time) is a sound, extensible procedure for
any problem. If high-order treatment of any of the three components is missing, the high-order treatment
of the other components is essentially wasted; the results reported here confirm this.
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Figure 1: The shallow water model with irregular bottom topography. (Adapted from [19, page 58]).
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(d) NRBC J = 4 (t = 1)
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(e) NRBC J = 4 (t = 2)
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(f) NRBC J = 4 (t = 3)

Figure 2: Open Domain, 4th order spectral elements (J = 4) using oblique Gaussian initial condition shown for t = 1, 2, 3. Top
Plots: Contour plots of reference solution solved on extended domain. Superimposed black circle indicates NRBC domain.
Bottom Plots: Contour plots of various NRBC boundary configurations using J = 4.
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Figure 3: Sample mesh generated using Automesh-2D. Geometry for the letters graciously provided by [22].
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(a) Ref. Solution (t = 1)
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(b) Ref. Solution (t = 2)
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(c) Ref. Solution (t = 3)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

 

 

−0.1 −0.05 0 0.05 0.1

(d) NRBC J = 4 (t = 1)
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(e) NRBC J = 4 (t = 2)
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(f) NRBC J = 4 (t = 3)

Figure 4: Open Domain, 4th order spectral elements (J = 4) using oblique Gaussian initial condition shown for t = 1, 2, 3
under dispersion f2 = 0.1. Top Plots: Contour plots of reference solution solved on extended domain. Superimposed black
circle indicates NRBC domain. Bottom Plots: Contour plots of various NRBC boundary configurations using J = 4.

14

Figure(s)



2 3 4 5 6 7 8 9 10
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

RK Order

N
or

m
al

iz
ed

 L2 Ω
 E

rr
or

 

 

J=1
J=5
J=10
J=15

Figure 5: Semi-infinite channel L2
Ω error versus RK time integration order using various order NRBCs. Domain is discretized

into 9,409 points for 8th order spectral elements with advection velocities U = 0.75, V = 0.0 and dispersion parameter f2 = 1.
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Table 1: L2
Ω Error as a function of NRBC Order for Hagstrom Hariharan NRBC formulation using various spectral element

orders on the circular NRBC domain. Oblique Gaussian initial condition is used with dispersion parameter set to f2 = 0.1.

NRBC Order L2
Ω Error L2

Ω Error L2
Ω Error L2

Ω Error
Linear Elements Order 2 Elements Order 4 Elements Order 6 Elements

J = 1 0.07290 0.03555 0.03369 0.03293
J = 2 0.02684 0.00371 0.00283 0.00248
J = 3 0.01869 0.00258 0.00192 0.00204
J = 4 0.01759 0.00243 0.00186 0.00157
J = 5 0.01744 0.00240 0.00181 0.00154
J = 10 0.01742 0.00240 0.00180 0.00153
J = 20 0.01742 0.00240 0.00180 0.00153
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Table 2: L2
Ω Error as a function of NRBC Order for Hagstrom Hariharan NRBC formulation using various spectral element

orders on the circular NRBC domain. Oblique Gaussian initial condition is used.

NRBC Order L2
Ω Error L2

Ω Error L2
Ω Error L2

Ω Error
Linear Elements Order 2 Elements Order 4 Elements Order 6 Elements

J = 1 0.09310 0.04772 0.04555 0.04485
J = 2 0.03381 0.00465 0.00355 0.00315
J = 3 0.02355 0.00324 0.00243 0.00259
J = 4 0.02217 0.00305 0.00236 0.00201
J = 5 0.02198 0.00302 0.00230 0.00196
J = 10 0.02195 0.00302 0.00228 0.00196
J = 20 0.02195 0.00302 0.00228 0.00196
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