
 
 

 
 
  AFRL-RX-WP-TR-2012-0280 

 
UNDERSTANDING AND EXPLOITING THE EFFECTS 
OF LOADING ON ULTRASONIC SENSING SYSTEMS 
FOR STRUCTURAL HEALTH MONITORING 
 
Jennifer E. Michaels, Thomas E. Michaels, Sang Jun Lee, Xin Chen, Navneet Gandhi, and 
Fan Shi 
 

Georgia Institute of Technology 
 
 
 
 
 
 
FEBRUARY 2012 
Final Report 
 
 
 
 

 
Approved for public release; distribution unlimited.  

See additional restrictions described on inside pages 

 
 
 
 
 
 

AIR FORCE RESEARCH LABORATORY 
MATERIALS AND MANUFACTURING DIRECTORATE 

WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7750 
AIR FORCE MATERIEL COMMAND 

UNITED STATES AIR FORCE 
 
 



 

 

 

NOTICE AND SIGNATURE PAGE 
 

 

 

Using Government drawings, specifications, or other data included in this document for any purpose 

other than Government procurement does not in any way obligate the U.S. Government. The fact that 

the Government formulated or supplied the drawings, specifications, or other data does not license the 

holder or any other person or corporation;  or convey any rights or permission to manufacture, use, or 

sell any patented invention that may relate to them.  

 

Qualified requestors may obtain copies of this report from the Defense Technical Information Center 

(DTIC) (http://www.dtic.mil).  

 

 

AFRL-RX-WP-TR-2012-0280 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION 

IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT. 

 

 

 

 

 

 

 

 _______//SIGNED//___________________ _____________//SIGNED//______________ 

CHARLES F. BUYNAK, Project Engineer           STEPHAN M. RUSS, Branch Chief  

Nondestructive Evaluation Branch            Nondestructive Evaluation Branch 

Metals, Ceramics & NDE Division             Metals, Ceramics & NDE Division 

 

 

 

 

 

 

 

 

 

 

This report is published in the interest of scientific and technical information exchange, and its 

publication does not constitute the Government’s approval or disapproval of its ideas or findings. 

 

  



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data 
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of 
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a 
collection of information if it does not display a currently valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1.  REPORT DATE  (DD-MM-YY) 2.  REPORT TYPE 3.  DATES COVERED (From - To) 
February 2012 Final 8 January 2009 – 31 January 2012 

4.  TITLE AND SUBTITLE 

UNDERSTANDING AND EXPLOITING THE EFFECTS OF LOADING ON 
ULTRASONIC SENSING SYSTEMS FOR STRUCTURAL HEALTH 
MONITORING 

5a.  CONTRACT NUMBER 
FA8650-09-C-5206 

5b.  GRANT NUMBER  
5c.  PROGRAM ELEMENT NUMBER 

62102F 
6.  AUTHOR(S) 

Jennifer E. Michaels, Thomas E. Michaels, Sang Jun Lee, Xin Chen, Navneet 
Gandhi, and Fan Shi 

5d.  PROJECT NUMBER 
4349 

5e.  TASK NUMBER 
41 

5f.  WORK UNIT NUMBER 

LP106300 
7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8.  PERFORMING ORGANIZATION 

     REPORT NUMBER 
Georgia Institute of Technology 
505 10th NW 
Atlanta, GA 30332-0001 

 

 

9.   SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

Air Force Research Laboratory 
10.  SPONSORING/MONITORING  
        AGENCY ACRONYM(S) 

Materials and Manufacturing Directorate 
Wright-Patterson Air Force Base, OH 45433-7750 
Air Force Materiel Command 
United States Air Force 

AFRL/RXLP 
11.  SPONSORING/MONITORING  
        AGENCY REPORT NUMBER(S) 
 AFRL-RX-WP-TR-2012-0280 

12.  DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited. 

13.  SUPPLEMENTARY NOTES 
The U.S. Government is joint author of this work and has the right to use, modify, reproduce, release, perform, display, 
or disclose the work.  PA Case Number and clearance date: 88ABW-2012-2391, 23 Apr 2012.  This document contains 
color.   

14.  ABSTRACT 
This project has investigated the effects of applied loads on the propagation of ultrasonic Lamb waves and the impact of 
such loads on in situ structural health monitoring (SHM) systems.  The specific SHM method considered was that of a 
spatially distributed array of piezoelectric disc transducers, which are capable of monitoring a large area by sending and 
receiving guided waves between all transducer pairs.  Primary accomplishments include development of the theory of 
acoustoelastic Lamb wave propagation, in situ estimation of applied loads using a sparse array of guided wave sensors, 
investigation of the effects of applied loads on baseline comparison approaches to detection and localization of damage, 
and development of the load-differential imaging method to image fatigue cracks without requiring damage-free baseline 
measurements.  Load-differential imaging maps changes in ultrasonic signals caused by a small increase in applied load 
to an image, which enables detecting and locating fatigue cracks that open under load and thus distinguishing them from 
other load-dependent effects.  This method was successfully demonstrated in the laboratory during fatigue tests on a 
variety of aluminum plate-like specimens with varying degrees of geometrical complexity. 

15.  SUBJECT TERMS    
Structural Health Monitoring, Nonlinear Ultrasonics, Guided Waves, Spatially Distributed Arrays, Acoustoelastic Lamb 

 16.  SECURITY CLASSIFICATION OF: 17. LIMITATION  
OF 
ABSTRACT: 

SAR 

  NUMBER OF 
PAGES 

80 

19a.  NAME OF RESPONSIBLE PERSON (Monitor) 
a.  REPORT 
Unclassified 

b. ABSTRACT 
Unclassified 

c. THIS PAGE 
Unclassified 

        Charles Buynak 
19b.  TELEPHONE NUMBER (Include Area Code) 

N/A 

 
 

Standard Form 298 (Rev. 8-98)         
Prescribed by ANSI Std. Z39-18 

 



i 
Approved for public release; distribution unlimited. 

Table of Contents 
Section Page 

List of Figures  ............................................................................................................................... iii 

List of Tables  ............................................................................................................................... vii 

Foreword  ..................................................................................................................................... viii 

 

1. INTRODUCTION ..................................................................................................................1 
 

2. BACKGROUND ....................................................................................................................2 
 

3. DESCRIPTION OF EXPERIMENTS  ...................................................................................4 

3.1 Plate #1...........................................................................................................................4 

3.2 Plate #2...........................................................................................................................5 

3.3 Plate #3...........................................................................................................................5 

3.4 Plate #4...........................................................................................................................7 

3.5 Plate #5...........................................................................................................................8 

3.6 Plate #6...........................................................................................................................9 

3.7 Plate #7.........................................................................................................................11 

3.8 Plate #8.........................................................................................................................12 

 
4. THEORY OF ACOUSTOELASTIC LAMB WAVES ........................................................14 

4.1 Review of Bulk Wave Acoustoelasticity .....................................................................14 

4.2 Theory of  Lamb Wave Acoustoelasticity ...................................................................16 

4.3 Selected Analytical Results  .........................................................................................20 

4.4 Experimental Results  ..................................................................................................23 

4.5 Selection Summary: Lamb Wave Acoustoelasticity....................................................25 

 
5. INVERSION OF ACOUSTOELASTIC LAMB WAVE DATA  ........................................26 

5.1 Theory  .........................................................................................................................26 

5.2 Numerical Verification  ...............................................................................................29 

5.3 Experiments and Results for Biaxial Load Estimation  ...............................................31 

5.3.1 Calibration and error analysis  .........................................................................31 

5.3.2 Plate #5 results  ................................................................................................34 

5.3.3 Plate #6 results  ................................................................................................36 



ii 
Approved for public release; distribution unlimited. 

Table of Contents (Continued) 
Section Page 

5.4 Combined Estimation of Loads and Temperature .......................................................36 

5.4.1 Temperature change and 2D isotropic load  ....................................................37 

5.4.2 Combined temperature change and uniaxial load  ...........................................38 

5.5 Section Summary: Inversion of Lamb Wave Acoustoelastic Data  .............................38 
 

6. LOAD-DIFFERENTIAL METHODS .................................................................................40 

6.1 Experiments  ................................................................................................................40 

6.2 Analysis Methodology  ................................................................................................40 

6.3 Imaging with Damage-Free Reference Signals  ...........................................................41 

6.4 Load Differential Imaging  ...........................................................................................44 

6.4.1 Pair-wise load-differential signals  ...................................................................44 

6.4.2 Load-differential images  .................................................................................45 

6.4.3 Composite load-differential images  ................................................................47 

6.5 Load Differential Imaging of Additional Specimens  ..................................................48 

6.5.1 Plate #3 – Transducer problems  ......................................................................48 

6.5.2 Plate #4 – No cracks  ........................................................................................51 

6.5.3 Plate #5 – Added doubler and fasteners  ..........................................................52 

6.5.4 Plate #6 – Multiple holes and crack initiation sites .........................................55 

6.5.5 Plate #7 – Added doubler and fasteners  ..........................................................58 

6.5.6 Plate #8 – Added doubler and fasteners plus transducer problems  .................60 

6.6 Section Summary: Load-Differential Imaging  ............................................................62 

 
7. CONCLUDING REMARKS ................................................................................................63 
 
Acknowledgements  .......................................................................................................................64 
 
References  .....................................................................................................................................64 
 
Project Publications and Presentations  .........................................................................................67 

 
  



iii 
Approved for public release; distribution unlimited. 

List of Figures  
 Page 

Figure 3.1 (a) Sketch of Plate #1 geometry including mounted transducers.  
(b) Sketch of transducers mounted on Plate #2 and nine selected 
propagation paths.  ...................................................................................................5 

Figure 3.2 Sketch of the transducer pattern for Plate #3.  .........................................................6 

Figure 3.3 Plate #4 mounted in the testing machine.  ...............................................................7 
Figure 3.4 Plate #5 with attached transducers (numbered 1 through 6) mounted in 

the MTS machine (left), and photographs of fatigue cracks 
corresponding to data sets 7, 10 and 14 (right).  ......................................................8 

Figure 3.5 Plate #6 with attached transducers mounted in the MTS machine prior to 
fatiguing (left), showing close-ups of holes (center), and with foam box 
mounted (right).  The holes on the transducer side (front of plate) are 
numbered 1 to 4 from left to right.  ........................................................................10 

Figure 3.6 Plate #7 with bonded doubler and drilled through-hole.  .......................................11 
Figure 3.7 Plate #8 with bonded doubler, central drilled through-hole, and side 

through-holes with bolts installed.  ........................................................................12 
Figure 4.1 Deformation of a body from its natural (undeformed) state ξ to an initial 

state of static deformation X to a final state of wave motion x.  ...........................14 
Figure 4.2 Geometry for Lamb wave propagation in a pre-stressed plate.  Stresses 

are applied along the principal directions in the primed coordinate 
system, and Lamb waves propagate along the x1 axis.  .........................................17 

Figure 4.3 Dispersion curves for waves propagating in aluminum at an angle of 45° 
to an applied uniaxial applied stress of 100 MPa.  (a) Symmetric modes, 
and (b) anti-symmetric modes.  .............................................................................21 

Figure 4.4 Change of phase velocity for the S0 mode at 250 kHz for various loads 
and angles. .............................................................................................................21 

Figure 4.5 Change of phase velocity for the S0 mode for propagation along the 
loading direction.  ..................................................................................................21 

Figure 4.6 Changes in phase velocity versus frequency for waves propagating in 
aluminum at various angles to a 100 MPa uniaxial load applied at 0°.  
(a) S0, (b) S1, (c) A0, and (d) A1 mode.  .................................................................22 

Figure 4.7 Splitting of the S0 and SH0 modes for propagation at 45° to the loading 
direction.  ...............................................................................................................23 

Figure 4.8 Change in phase velocity for the A0 mode in steel for propagation at an 
angle to an applied uniaxial load.  .........................................................................23 

 



iv 
Approved for public release; distribution unlimited. 

List of Figures (Continued) 
 Page 

Figure 4.9 Comparison of theory and experiment for propagation in aluminum for a 
uniaxial load at 90°.  (a) Changes in phase velocity versus load for 
waves propagating at an angle of 90°, and (b) changes in phase velocity 
versus propagation angle for an applied load of 57.5 MPa. ..................................24 

Figure 4.10 Comparison of theory and experiment for an applied uniaxial load of 
57.5 MPa at 90° using modified TOECs (l = -181 GPa, m = -289 GPa, 
and n = -336 GPa).  ................................................................................................24 

Figure 5.1 Geometry for guided wave propagation in a pre-stressed aluminum 
plate.  ......................................................................................................................26 

Figure 5.2 (a) Dispersion curves for the S0 mode at different propagation angles 
when σ11 = 30 MPa and σ22 = 80 MPa.  (b) Changes of phase velocity for 
the S0 mode at 400 kHz as a function of propagation angle when σ11 = 30 
MPa and σ22 = 80 MPa.  .........................................................................................27 

Figure 5.3 Phase velocity changes for the S0 mode at 400 kHz versus propagation 
angle.  (a) σ11 = 50 MPa, σ22 = 100 MPa, and α = 30 degrees.  (b) σ11 = 
10 MPa, σ22 = 40 MPa, and α = 90 degrees.  .........................................................30 

Figure 5.4 Drawing of the specimen and transducer geometry for (a) Plate #5 and 
(b) Plate #6 (not to scale).  .....................................................................................31 

Figure 5.5 (a) First arrivals of transducer pair #2−5, data set #1 (no holes, no 
cracks), Plate #5, for the 11 uniaxial loading conditions.  (b) Zero 
crossing times with respect to loads for transducer pair #2−5, data set #1 
(line connects first and last points).  ......................................................................32 

Figure 5.6 Experimental data and sinusoidal fit of phase velocity changes versus 
angle for data set 1 of Plate #5.  .............................................................................32 

Figure 5.7 (a) First arrivals of transducer pair #2−5, data set #9, Plate #5, for the 11 
uniaxial loading conditions.  (b) Zero crossing times with respect to 
loads for transducer pair #2−5, data set #9 (line connects first and last 
points).  ..................................................................................................................33 

Figure 5.8 Experimental data and sinusoidal fit of phase velocity changes for data 
set #9 of Plate #5.  (a) σ11 = 0 MPa, σ22 = 46 MPa, (b) σ11 = 0 MPa, σ22 = 
92 MPa.  .................................................................................................................34 

Figure 5.9 Estimated stresses and orientation angles for all data sets of Plate #5.  
(a) σ11 = 0 MPa, σ22 = 46 MPa, α = 0 degrees.  (b) σ11 = 0 MPa, σ22 = 92 
MPa, α = 0 degrees.  ..............................................................................................35 

Figure 5.10 Estimated stresses and orientation angles for all data sets of Plate #6.  
(a) σ11 = 0 MPa, σ22 = 46 MPa, α = 0 degrees.  (b) σ11 = 0 MPa, σ22 = 92 
MPa, α = 0 degrees.  ..............................................................................................36 

 



v 
Approved for public release; distribution unlimited. 

List of Figures (Continued) 
 Page 

Figure 5.11 (a) Phase velocity changes after subtraction of baseline dispersion 
curves for the first four modes.  Solid lines: σ11 = σ22 = 115 MPa; Dashed 
lines: ΔT = 35 °C.  (b) Zoomed in phase velocity changes of the S0 mode 
below 600 kHz.  .....................................................................................................37 

Figure 5.12 Phase velocity changes for the S0 mode at 400 kHz under temperature 
variations for a uniaxial load of σ22 = 92 MPa.  (a) α = 0°, and  
(b) α = 60°.  ............................................................................................................38 

Figure 6.1 Images from Plate #5 generated between data set 1 (baseline signals) 
and data set 2 (current signals, after hole drilled) at matched loads.  
(a) 0 MPa (0% load), (b) 57.5 MPa (50% load), and (c) 115 MPa (100% 
load).  All three images are shown on the same 10 dB color scale. ......................41 

Figure 6.2 Images from Plate #5 generated between data set 1 (baseline signals) 
and data set 2 (current signals, after hole drilled) at mismatched loads.  
Each image is shown on a 10 dB color scale normalized to its maximum 
amplitude. (a) 0/23 MPa (0/20% load), (b) 0/69 MPa (0/60% load), and 
(c) 0/115 MPa (0/100% load).  ..............................................................................42 

Figure 6.3 Images from Plate #5 generated between data set 3 (baseline signals) 
and data set 7 (current signals, 5.4 mm long fatigue crack) at matched 
loads.  (a) 0 MPa (0% load), (b) 57.5 MPa (50% load), and (c) 115 MPa 
(100% load). All three images are shown on the same 10 dB color scale 
(-58 dB to -48 dB).  ................................................................................................42 

Figure 6.4 Images from Plate #5 generated between data set 3 (baseline signals) 
and data set 7 (current signals, 5.4 mm long fatigue crack) at 
mismatched loads.  Each image is shown on a 10 dB color scale 
normalized to its maximum amplitude.  (a) 23/0 MPa (20/0% load), 
(b) 69/0 MPa (60/0% load), and (c) 115/0 MPa (100/0% load).  ..........................43 

Figure 6.5 Images from Plate #5 generated between data set 3 (baseline signals) 
and data set 7 (current signals, 5.4 mm long fatigue crack) at 
mismatched loads. Each image is shown on a 10 dB color scale 
normalized to its maximum amplitude.  (a) 0/115 MPa (0/100% load), 
(b) 46/115 MPa (40/100% load), and (c) 92/115 MPa (80/100% load).  ..............43 

Figure 6.6 Signals recorded from data set 10 of Plate #5 at 11 loads ranging from 0 
to 115 MPa (0 to 100%).  Transducer pair 2-5 (top), and transducer pair 
1-3 (bottom).  .........................................................................................................44 

Figure 6.7 Differential signals from data set 10 of Plate #5 at ten differential loads 
(0-to-10%, 10-to-20%,  …  90-100%).  (a) Transducer pair 2-5, and (b) 
transducer pair 1-3.  ...............................................................................................45 

 
 



vi 
Approved for public release; distribution unlimited. 

List of Figures (Continued) 
 Page 

Figure 6.8 Load-differential images of the first 14 data sets from Plate #5 plotted on 
a fixed 30 dB scale normalized to the overall peak amplitude (-21 to 
+9 dB).  ..................................................................................................................46 

Figure 6.9 Load-differential images generated from data set 12 of Plate #5. (a) 
23/34.5 MPa (20/30%), (b) 34.5/46 MPa (30/40%), and (c) 69/80.5 MPa 
(60/70%).  All three images are shown on the same 10 dB color scale.  ...............47 

Figure 6.10 Composite load-differential images from all 14 data sets of Plate #5.  All 
images are shown on the same 20 dB color scale (-18 dB to +2 dB).  ...................... 47 

Figure 6.11 Load-differential images of the first ten data sets from Plate #3 plotted 
on a fixed 30 dB scale (-21 to +9 dB).  ..................................................................48 

Figure 6.12 Load-differential images of the final seven data sets from Plate #3 
plotted on a fixed 30 dB scale (-21 to +9 dB).  ......................................................49 

Figure 6.13 Load-differential images of the final seven data sets from Plate #3 with 
transducer pair 5-6 removed and plotted on a fixed 20 dB scale (-11 to 
+9 dB).  ..................................................................................................................50 

Figure 6.14 Composite load-differential images from all 17 data sets of Plate #3.  All 
images are shown on the same 20 dB color scale (-18 dB to +2 dB).  ...................... 50 

Figure 6.15 Load-differential images of all 11 data sets from Plate #4 plotted on a 
fixed 30 dB scale (-21 to +9 dB).  ..........................................................................51 

Figure 6.16 Composite load-differential images from all 11 data sets of Plate #4.  All 
images are shown on the same 20 dB color scale (-18 dB to +2 dB).  ...................... 52 

Figure 6.17 Load-differential images of data sets 14-24 from Plate #5 plotted on a 
fixed 30 dB scale (-21 to +9 dB).  ..........................................................................53 

Figure 6.18 Load-differential images of data sets 25-35 from Plate #5 plotted on a 
fixed 30 dB scale (-21 to +9 dB).  ..........................................................................54 

Figure 6.19 Composite load-differential images from all 35 data sets of Plate #5.  All 
images are shown on the same 20 dB color scale (-18 dB to +2 dB).  ...................... 55 

Figure 6.20 Load-differential images of data sets 3-16 from Plate #6 plotted on a 
fixed 30 dB scale (-21 to +9 dB).  ..........................................................................56 

Figure 6.21 Load-differential images of data sets 16 and 18-24 from Plate #6 plotted 
on a fixed 30 dB scale (-21 to +9 dB).  ..................................................................57 

Figure 6.22 Composite load-differential images from all 23 data sets of Plate #6 (1-16 
and 18-24).  All images are shown on the same 20 dB color scale (-18 dB 
to +2 dB).  ................................................................................................................... 58 

Figure 6.23 Load-differential images of all 12 data sets from Plate #7 plotted on a 
fixed 30 dB scale (-21 to +9 dB).  ..........................................................................59 



vii 
Approved for public release; distribution unlimited. 

List of Figures (Continued) 
 Page 

Figure 6.24 Composite load-differential images from all 12 data sets of Plate #7.  All 
images are shown on the same 20 dB color scale (-18 dB to +2 dB).  ...................... 60 

Figure 6.25 Load-differential images of all 13 data sets from Plate #8 plotted on a 
fixed 30 dB scale (-21 to +9 dB).  ..........................................................................61 

Figure 6.26 Composite load-differential images from all 13 data sets of Plate #8.  All 
images are shown on the same 20 dB color scale (-18 dB to +2 dB).  ...................... 62 

 

 

List of Tables  
 Page 

Table 3.1 Summary of specimens tested.  ................................................................................4 
Table 3.2 Nominal transducer coordinates.  ............................................................................6 
Table 3.3 Data sets recorded for Plate #3.  ..............................................................................7 
Table 3.4 Data sets recorded for Plate #4.  ..............................................................................8 
Table 3.5 Summary of fatiguing schedule and data acquired for Plate #5.  ............................9 
Table 3.6 Additional data acquired for Plate #5.  ....................................................................9 
Table 3.7 Summary of fatiguing schedule and data acquired for Plate #6.  ..........................10 
Table 3.8 Summary of fatiguing schedule and data acquired for Plate #7.  ..........................12 
Table 3.9 Summary of fatiguing schedule and data acquired for Plate #8.  ..........................13 
Table 4.1 Material constants for 6061-T6 aluminum [24,37] and Hecla 37 steel.  ...............20 
Table 5.1 Density and elastic constants of aluminum used for simulations.  ........................30 
Table 5.2 Recovered temperatures and stresses for an applied uniaxial load of 92 

MPa at 60°.  ...........................................................................................................39 

 
  



viii 
Approved for public release; distribution unlimited. 

Foreword 

The project reported herein was conducted in the QUEST Laboratory in the School of Electrical 
and Computer Engineering at the Georgia Institute of Technology during the time period 07-
January-2009 through 31-January-2012.  The work was conducted under Air Force Contract 
FA8650-09-C-5206, with Air Force technical management provided by Mr. Charles Buynak, 
AFRL/RXLP.  Georgia Tech program management was provided by Professor Jennifer 
Michaels, who also served as Principal Investigator.  Key project contributors were Professor 
Thomas E. Michaels, co-Principal Investigator, and Dr. Sang Jun Lee, Postdoctoral Associate, 
who were involved in all aspects of the project.  Mr. Navneet Gandhi, Graduate Research 
Assistant, developed the theory of acoustoelastic Lamb wave propagation, Mr. Fan Shi, Graduate 
Research Assistant, was responsible for inverting acoustoelastic data to obtain applied loads, and 
Mr. Xin Chen, Graduate Research Assistant, was instrumental in running the experiments and 
performing the load-differential analysis.  All Georgia Tech participants gratefully acknowledge 
the valuable discussions with and input received from Dr. Eric Lindgren, AFRL/RXLP, during 
the course of this project. 
 
  



1 
Approved for public release; distribution unlimited. 

1. Introduction 
Structural health monitoring (SHM), also referred to as in situ nondestructive evaluation 

(NDE), seeks to apply NDE methods to autonomously assess a structure for damage using 
permanently mounted sensors.  One method that is receiving widespread attention for SHM is 
guided elastic waves, which are being investigated for large area monitoring of plate and shell-
like components using spatially distributed arrays of sensors.  Although prior work on flat plates 
has demonstrated reasonable sensitivity to artificial defects under laboratory conditions, there are 
significant issues with signal complexity and sensitivity to changing environmental (boundary) 
conditions.  Signal complexity results from waves interacting with fastener holes, ribs, stiffeners, 
thickness changes, etc., making signal interpretation difficult.  Baseline subtraction is generally 
effective in the laboratory where it can be assumed that residual signals result from damage, 
facilitating detection and localization.  However, it is well known that even small temperature 
changes (~1 °C) significantly affect the subtraction results.  Compensation methods have enabled 
detection and localization of reasonably small artificial defects (~5-10 mm) in flat plates via 
baseline subtraction, but it is unrealistic to think that they will work in a complex aircraft 
environment and for other types of changing conditions. 

Besides temperature, flight-induced loads are the environmental effect that is most likely to 
have a significant adverse effect on guided wave signals.  In an undamaged structure, loads cause 
anisotropic dimensional and wave speed changes, and can also cause boundary conditions of 
built-up structures to change.  In a damaged structure, load changes can cause cracks to open and 
close, and poor bonds to make and break contact; there may be other less obvious effects that 
occur prior to formation of macro-cracks.  The goal of the program reported here was to first 
understand and then exploit the effects of applied loads on guided wave structural health 
monitoring.  The emphasis was on metallic structures, although the methods developed should be 
generally applicable to composites.   
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2. Background 
Guided waves in plates, which are known as Lamb waves, are of considerable practical 

interest for both nondestructive evaluation and structural health monitoring because of their 
ability to propagate relatively long distances while still maintaining sensitivity to damage [1,2].  
Because of the long propagation distances, particularly as compared to most bulk wave NDE 
methods, Lamb waves are particularly sensitive to changes in the propagation environment, such 
as temperature, stress and surface conditions [3,4].  

Different sensor array geometries have been proposed to implement guided wave NDE and 
SHM systems.  Zhao et al. [5] compared circular, rectangular and parallel linear arrays for Lamb 
wave tomography.  Yu and Giurgiutiu [6] constructed five different 2-D compact phased arrays 
and applied beamforming to compare the damage detection capabilities of the five geometries.  
One limitation of the above tomographic and compact array approaches is the requirement of a 
relatively large number of transducers.  A sparse (i.e., spatially distributed) array geometry was 
initially proposed by Wang et al. [7] and later used by others [8,9] to achieve detection and 
localization of discrete damage using fewer transducers than are typically required for the 
tomographic and compact array approaches.  Another advantage of the sparse array geometry is 
that forward scattered as well as backscattered signals are incorporated into imaging algorithms, 
which enables the approach to take advantage of the increased sensitivity of forward scattered 
waves to damage as compared to backscattered waves [10]. 

The idea of baseline comparison plays a key role in many SHM methods.  Ideally, by 
subtracting baseline signals recorded from the damage-free structure from current test signals, a 
residual signal, which is assumed to arise from damage, is obtained.  A variety of signal 
processing algorithms can be applied to these residual signals for damage detection, localization 
and characterization.  However, such a process is strongly affected by mismatched 
environmental and operational conditions.  Lu and Michaels [11] and Konstantinidis et al. [12] 
both addressed the temperature mismatch problem by optimal baseline selection, where a 
number of baselines were recorded at different temperatures and the optimal baseline that 
minimized the residual signal was selected.  The signal stretch method, which was introduced in 
[11] and since used by others [3,13], adjusts the optimal baseline by stretching to better match it 
to the current test signals. 

Another environmental condition, surface wetting, has not been as fully investigated as 
temperature.  Takatsubo et al. [14] considered the effect of droplets of water on an SHM system 
consisting of two transducers monitoring fatigue crack growth.  In [4], different features were 
extracted from diffuse ultrasonic wave signals and evaluated for damage detection in the 
presence of surface wetting.  All chosen features were shown to have some capability of 
discriminating surface wetting from damage.  Li et al. [15] recently studied the effects that 
surface wetting can have on guided waves, and results indicate that even small amounts of 
surface wetting can adversely affect the performance of guided wave SHM systems. 

The theory to explain the dependence of wave speed on stress, or acoustoelasticity, was 
developed by Hughes and Kelly by applying the Murnaghan theory of finite deformation to 
propagation of bulk elastic waves in an initially isotropic solid subjected to a static 
predeformation [16].  They specifically considered the cases of hydrostatic pressure and uniaxial 
compressive stresses and derived expressions for changes in shear and longitudinal wave speeds 
as a function of applied stress for known material properties.  Their work was extended to 
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materials of arbitrary symmetry by Toupin and Bernstein [17].  The comprehensive article in 
[18] provides a thorough treatment of acoustoelasticity with an emphasis on stress measurements 
via shear wave birefringence. 

Acoustoelastic Rayleigh waves have also been quite thoroughly investigated, e.g., [19,20], 
but there are significantly fewer published works on other types of acoustoelastic guided waves.  
Husson [21] considered acoustoelastic Lamb waves from a theoretical point of view and, among 
other things, predicted a strong frequency dependence of the acoustoelastic constants.  Qu and 
Liu [22] generated dispersion curves for waves propagating in a stressed aluminum plate, but did 
not investigate dependence on the direction of propagation.  Rizzo and Lanza di Scalea [23] 
measured changes in wave speed with tensile loads for guided waves in bars, and found a strong 
frequency dependence of the acoustoelastic constants.  Lematre et al. [24] developed theory for 
Lamb wave propagation in stressed piezoelectric plate structures but showed only numerical 
results for propagation along the direction of the applied uniaxial load.  The semi-analytical 
finite element method has been applied to acoustoelastic wave propagation in bar-like structures 
(i.e., rails) [25]. 

Fatigue cracks are one of the most common defect types in metallic plate structures and 
frequently initiate from fastener holes.  It is well known that closed cracks are hard to detect with 
conventional ultrasonic testing methods because ultrasound can propagate through a tightly 
closed crack [26,27];  applied loads can open such cracks and make them easier to detect.  
Research on load modulation of ultrasound with fatigue cracks can be traced back to 1970s and 
has been the subject of a number of investigations.  Frandsen et al. [26] used acoustic techniques 
to qualitatively measure the area over which closure occurred.  Kim et al. [28] investigated 
closed fatigue cracks using surface acoustic waves and suggested that modulation of loading 
about a low mean static load was able to enhance the detection of small closed cracks.  Mi et al. 
[29] used the bulk wave energy transmitted through the region of a fastener hole to dynamically 
monitor the initiation and growth of fatigue cracks.  Connolly and Rokhlin [30] analyzed the 
backscattered ultrasonic response to fatigue cracking as a function of transit time, fatigue life, 
and applied load to visualize and identify specific echoes scattered from geometrical features of 
the specimen and crack.  Ohara et al. [31] recently introduced a nonlinear ultrasonic imaging 
method whereby a phased array was used to create linear and subharmonic images.  Images 
obtained at different applied loads were subtracted to better visualize fatigue cracks.  

This report is organized as follows.  Section 3 summarizes experiments performed, Section 
4 develops the theory for acoustoelastic Lamb waves, Section 5 considers inversion of load-
dependent Lamb wave behavior, and Section 6 presents key results from the project in terms of 
fatigue crack detection and localization under variable loading conditions.  Concluding remarks 
are made in Section 7, including recommendations for future work.  Note that a list of all 
publications to date resulting from this project follows the references. 
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3. Description of Experiments 
A total of eight aluminum plate specimens were tested under load as a part of this project.  

Although each experiment was different, there are several common factors between all 
experiments.  The material was 6061-T6 AL, the specimen size was nominally 12" × 24" (305 
mm × 610 mm) to accommodate the testing machine grips, the thickness was either 0.25" or 
0.125" (6.35 mm or 3.175 mm), and the transducers were constructed from 7 mm diameter PZT 
discs operating in radial mode with a resonant frequency of 300 kHz (Steimer & Martins, Part 
Number SMD07T05R411, www.steminc.com).  Information about each plate specimen is 
summarized in Table 3.1 and additional details are provided in the following sections.  

Table 3.1.  Summary of specimens tested. 

Plate 
No. Thickness Fatigued? Comments 

1 0.25” No Data recorded as a function of load and temperature using 150 and 
600 kHz excitations (data not reported here). 

2 0.25” No Data recorded as a function of load and temperature using 150, 250, 
400 and 600 kHz excitations. 

3 0.125” Yes 
Plate tested twice but with two different sets of sensors.  Data 
recorded with glued-on mass prior to fatiguing.  First plate to be 
tested with chirp excitations. 

4 0.125” Yes Plate tested with a short stiffener section. Some fatiguing but with no 
change in bonding.  Artificial disbonds were then introduced. 

5 0.125” Yes Cracks grown from initial drilled hole.  Stiffener added and more 
data recorded. 

6 0.125” Yes Cracks grown from four initial drilled holes.  Data also recorded at 
different temperatures. 

7 0.125” Yes 
Plate with initial drilled hole and bonded doubler.  Partway through it 
was noticed that the doubler had become unbonded, at which time it 
was bolted in place. 

8 0.125” Yes Plate with initial drilled hole and bonded/bolted doubler.  Data 
recorded with various combinations of bolts present and tightness.  

 

3.1 Plate #1 
The purpose of the plate #1 test was to obtain data for guided waves of different modes and 

frequencies propagating at different angles and under different uniaxial loads.  The goal was to 
understand the effects of applied loads on guided wave propagation in a homogeneous, isotropic 
plate.  Eight transducers were mounted on a 6061-T6 aluminum plate of dimensions 12" × 24" × 
0.25" (305 mm × 610 mm × 6.35 mm).    The transducers were arranged at 45° increments on a 
218 mm diameter circle centered on the plate; see Figure 3.1(a) for a diagram of the plate 
geometry and transducer locations. 

The transmitters were excited using five-cycle, Hann-windowed tone bursts centered at 
both 150 kHz and 600 kHz.  Data were recorded for each frequency at loads of 0 to 46 MPa at 
steps of 9.2 MPa, for a total of 12 signals recorded from each transducer pair.  Results indicated 
that additional angles of propagation would be useful, which motivated the design of Plate #2.  
No data from this plate is reported here. 
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3.2 Plate #2 
The purpose of the plate #2 test was also to obtain data for guided waves of different 

modes and frequencies propagating at different angles and under different uniaxial loads.  The 
plate dimensions were the same as for plate #1, and a total of 12 transducers were mounted at 
unequal increments on a 218 mm diameter circle centered on the plate.  Data were recorded from 
nine of the 45 possible transmit-receive pairs as shown in Figure 3.1(b) at eleven uniaxial loads 
(0 MPa to 57.5 MPa in steps of 5.75 MPa).  Excitations were five-cycle Hann-windowed 
sinusoids centered at four distinct frequencies to produce an unambiguous first arrival of a 
specific Lamb wave mode: 150 kHz (S0 mode), 250 kHz (S0 mode), 400 kHz (A1 mode), and 600 
kHz (S1 mode).  There were a total of 44 signals recorded from each transducer pair (11 loads 
and four frequencies). 

 

      

Figure 3.1.  (a) Sketch of Plate #1 geometry including mounted transducers.  (b) Sketch of 
transducers mounted on Plate #2 and nine selected propagation paths. 

 

3.3 Plate #3 
This 6061-T6 aluminum plate of dimensions 12" × 24" × 0.125" (305 mm × 610 mm × 

3.175 mm) was instrumented with six bonded PZT discs arranged in a near-circular but 
asymmetrical pattern as shown in Figure 3.2.  The nominal transducer locations, which are listed 
in Table 3.2, were selected to avoid symmetries and in particular to ensure that there were no 
redundant transducer-to-transducer distances.  This characteristic ensures unique transducer-to-
transducer path lengths, which is useful for in situ group velocity calibration.  These nominal 
transducer locations were used for all subsequent plates (#4-#8), which were of the same 
dimensions and material as Plate #3. 

This plate was initially tested in several ways to develop the procedures that were used for 
all subsequent tests.  Data were recorded with and without glued-on masses prior to fatiguing, 
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and the plate was fatigued until the maximum final crack length was about 1” (25 mm).  
Chirp-based testing was developed and implemented to permit efficient recording of multi-
frequency data, and equivalent tone burst responses were obtained via post-processing [32].  This 
development was critical to avoid excessive plastic deformation that would have otherwise been 
caused by having to keep a static load applied to the specimen while all frequencies were used to 
excite the transducer pairs.   

The protocol for fatiguing and recording data for this and all subsequent plates is described 
as follows.  The plate was fatigued with a 3 Hz sinusoidal tension-tension load ranging from 16.5 
to 165 MPa.  Fatiguing was periodically paused and ultrasonic data were recorded as a function 
of applied static tensile load from 0 to 115 MPa in steps of 11.5 MPa, which corresponds to 0% 
to 100% load with a 10% load step (11 loading conditions for each data set).  A National 
Instrument PXIe-5122 waveform generator was used to generate a linear chirp excitation from 
50 to 500 kHz with a duration of 0.2 ms and an amplitude of ±10 volts.  A Panametrics 5072PR 
pulser-receiver was used to amplify the received signals, and a custom multiplexer switched 
between the 15 unique transmit-receive pairs.  The received signals were then digitized by a 
National Instrument PXI-5412 14-bit digitizer at a sampling frequency of 20 MHz.  For each 
acquisition, 20 waveforms were averaged to improve the signal-to-noise ratio.  Received signals 
were filtered to yield the equivalent narrow-band tone burst response as described in [32].  A 3-
cycle or 5-cycle Hann-windowed tone burst centered at 100 kHz was selected because of the 
purity of the A0 mode at this frequency and its sensitivity to through-thickness cracks. 

Table 3.3 summarizes all data sets recorded from Plate #3.  Note that the initial set of six 
transducers consisted of bare PZT discs.  During the first ten data sets, several soldered wires 
broke even though all wiring was strain-relieved.  There was a gap between data sets 11 and 12, 
during which various backing compounds were investigated to provide more protection for the 
wiring without interfering with signal quality.  A micro-bubble-filled epoxy mixture captured 
within a plastic sleeve was used for the second part of the Plate #3 test as well as for all 
subsequent tests. 

 
 

Table 3.2.  Nominal transducer coordinates. 

Transducer 
Number x (mm) y (mm) 

1 58.1 108.0 
2 152.5 43.5 
3 246.9 88.0 
4 236.9 217.0 
5 152.5 261.5 
6 63.1 197.0 

 

 
 
 

Figure 3.2.  Sketch of the transducer 
pattern for Plate #3. 
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Table 3.3.  Data sets recorded for Plate #3. 

Data Set Cycles Notes / Max Crack Length 
2 0 5.1 mm hole drilled 
3 0 Starter notch cut 
4 1,000 No visible cracks 
5 3,000 0.05” (1.3 mm) 
6 4,000 0.1” (2.5 mm) 
7 5,060 0.105” (2.7 mm) 
8 6,060 0.11” (2.8 mm) 
9 7,060 0.15” (3.8 mm) 

10 9,060 0.21” (5.3 mm) 
11 11,060 0.29” (7.4 mm) 

All transducers removed and replaced after data set 11 
12 12,166 Fine load increments 
13 12,166 0.344” (8.7 mm) 
14 14,166 0.462” (11.7 mm) 
15 15,166 0.544” (13.8 mm) 
16 16,166 0.670” (17.0 mm) 
17 16,667 0.772” (19.6 mm) 
18 17,167 0.864” (22.0 mm) 
19 17,667 1.004” (25.5 mm) 

 
 
 
3.4 Plate #4 

Plate #4 was instrumented with six transducers 
using two-component epoxy, and each transducer 
was further backed with a bubble-filled epoxy 
protection layer.  A short “T” stiffener section was 
bonded to the plate with epoxy.  Figure 3.3 shows a 
photograph of the plate mounted in the testing 
machine, and Table 3.4 summarizes the data 
recorded.  The original goal was to fatigue the plate 
until the stiffener section disbonded, but after 1000 
cycles with no change, it was decided to introduce 
artificial disbonds.  Two methods were used:  the 
first was to bond the stiffener with an initial disbond 
by inserting a piece of Teflon tape that was later 
removed, and the second was to use a knife to 
remove some of the bonding material. 

 

 

Figure 3.3.  Plate #4 mounted in the 
testing machine. 
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Table 3.4.  Data sets recorded for Plate #4. 

Data Set Description 
1 Pristine plate 
2 Fully bonded stiffener section 
3 After 1000 fatigue cycles 
4 Pristine plate (stiffener removed) 
5 Partially disbonded stiffener (tape inserted) 
6 Fully bonded stiffener (disbond filled) 
7 Pristine plate (stiffener removed) 
8 Partially disbonded stiffener (tape inserted) 
9 Partially disbonded stiffener (tape inserted) 
10 Fully bonded stiffener (disbond filled) 
11 Partially disbonded stiffener (with knife_ 

 

 
3.5 Plate #5 

Plate #5, which is actually the same physical plate as Plate #4, can be seen in Figure 3.4 
with the six attached transducers.  Prior to fatiguing the specimen, a set of reference signals was 
recorded from the pristine sample.  A through-hole measuring 5.1 mm in diameter was then 
drilled in the center of the plate, and a small starter notch was introduced on the left side of the 
hole as a site for crack initiation.  Fatiguing continued until the largest crack was about 25 mm in 
length, and a total of 14 data sets were recorded.  Fatigue cycles and observations of the cracks 
are summarized in Table 3.5, and photographs of the cracks are shown in Figure 3.4. 

 

 

Figure 3.4.  Plate #5 with attached transducers (numbered 1 through 6) mounted in the MTS 
machine (left), and photographs of fatigue cracks corresponding to data sets 7, 10 and 14 (right). 

1

2

3

45

6
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Table 3.5.  Summary of fatiguing schedule and data acquired for Plate #5. 

Data 
Set 

Fatigue 
Cycles 

Notes / Crack Lengths at Surface (mm) 
Left Front Left Back Right Front Right Back 

1 0 Baseline, no hole, no notch 
2 0 5.1 mm diameter hole drilled 
3 0 Starter notch cut (left, front of hole) 
4 5,000 No visible cracks 
5 8,000 1.7 1.2 ---- ---- 
6 10,000 3.6 2.7 ---- ---- 
7 12,500 5.4 4.9 ---- ---- 
8 15,500 7.6 7.5 ---- ---- 
9 17,000 9.9 9.8 ---- ---- 

10 18,500 13.5 13.3 4.7 4.7 
11 19,500 16.8 16.4 8.4 8.1 
12 20,000 19.5 19.7 11.5 10.7 
13 20,400 22.7 22.6 15.6 15.6 
14 20,600 25.2 25.2 18.7 18.5 

(Orientation relative to side with transducers) 
 
 

After completion of fatiguing as summarized in the table above, Plate #5 was modified by 
gluing on a doubler, drilling holes, and adding/tightening/loosening bolts as per Table 3.6. 

Table 3.6.  Additional data acquired for Plate #5.  

 
 
3.6 Plate #6 

A photograph of Plate #6 is shown in Figure 3.5, where a row of four holes can be seen 
within the transducer polygon.  This plate was fatigued until the largest crack was about 0.5” 
long, and observations are reported as per Table 3.7.  Upon termination of fatiguing, the plate 

Data Set(s) Description of Additional Plate Modifications 
15-18 New baselines 
19-21 Added glued on doubler 
22-24 Center hole drilled through the doubler aligned with the plate center hole 
25-27 Tightened bolt through the center hole 
28-30 Loosened bolt through the center hole 

31 Two side holes drilled, tightened bolts in all three holes 
32 Tightened bolts in hole 1 and hole 2, no bolt in center hole 
33 Loosened bolt in hole 1, tightened bolt in hole 2, no bolt in center hole 
34 No bolt in hole 1 and hole 2, tightened bolt in center hole 
35 No bolt in all three holes 
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was insulated within a foam box with a heating pad to enable recording of load-dependent data at 
different temperatures.  Recorded temperatures for an additional seven data sets are also found in 
Table 3.7. 

 
 

 

 

Figure 3.5.  Plate #6 with attached transducers mounted in the MTS machine prior to fatiguing 
(left),  showing close-ups of holes (center), and with foam box mounted (right).  The holes on the 
transducer side (front of plate) are numbered 1 to 4 from left to right. 

 
 
 

Table 3.7.  Summary of fatiguing schedule and data acquired for Plate #6. 

Data  
Set Cycles 

Notes / Crack Lengths at Surface (mm) 

Hole 2 
Front 
Left 

Hole 2 
Front 
Right 

Hole 3 
Front 
Left 

Hole 3 
Front 
Right 

Hole 2 
Back 
Left 

Hole 2 
Back 
Right 

Hole 3 
Back 
Left 

Hole 3 
  Back 
Right 
Down 

Hole 3 
Back 
Right 

Up 

Hole 4 
Back 
Right 

1 0 Baseline (no notch) 

2 0 Baseline (no notch) – One bad pair 

3 0 Baseline (no notch) 
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4 0 Baseline (no notch) 

5 0 Two starter notches 

6 2,000 ---- ---- ---- ---- ---- 0.74 ---- ---- ----- ---- 
7 2,500 ---- ---- ---- ---- ----- 1.32 0.58 ---- ---- ---- 
8 3,000 1.65 ---- ---- ---- ---- 1.83 1.07 ---- ---- ---- 

9 3,500 2.03 ---- ---- 1.50 ---- 2.01 1.52 ---- ---- ---- 

10 5,500 3.95 ---- ---- 3.25 ---- 4.32 3.24 ---- ---- ---- 

11 6,500 4.58 1.57 ---- 4.29 1.27 4.90 4.11 ---- ---- ---- 

12 7,000 5.22 2.92 ---- 4.64 2.68 5.41 4.79 1.44 ---- ---- 

13 7,500 6.26 3.76 1.57 5.46 3.38 6.34 5.41 1.60 ---- ---- 

14 8,500 7.98 5.44 2.26 7.07 5.36 8.43 6.49 1.91 2.29 ---- 

15 9,500 10.07 7.96 3.09 8.78 7.84 10.52 8.78 1.77 4.70 1.08 

16 10,400 12.95 10.67 6.93 11.89 10.41 12.95 11.02 1.93 7.18 2.30 

17 10,400 Data recorded at finer loading steps (2%) 

18 10,400 Temperature ~ 18.6°C 

19 10,400 Temperature ~ 21.3°C 

20 10,400 Temperature ~ 18.8°C 

21 10,400 Temperature ~ 20.1°C 

22 10,400 Temperature ~ 20.8°C 

23 10,400 Temperature ~ 20.8°C 

24 10,400 Temperature ~ 20.8°C 
(Orientation relative to side with transducers) 

 
 

3.7 Plate #7 
Plate #7 consisted of an initial drilled through-hole and an epoxy-bonded doubler as shown 

in Figure 3.6.  It was fatigued until the largest crack was about 0.6” (15 mm) in length.  Shortly 
before the test was terminated it was noticed that the doubler had become partially unbonded, at 
which point it was secured with bolts about 1” from each end.  Observations and data acquired 
are summarized in Table 3.8. 
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Figure 3.6.  Plate #7 with bonded doubler and drilled through-hole. 
Table 3.8.  Summary of fatiguing schedule and data acquired for Plate #7. 

(Orientation relative to side with transducers) 
 
 

3.8 Plate #8 
Plate #8 was similar to Plate #7 except the doubler was initially bolted to the plate on either 

end as shown in Figure 3.7.  Observations and data acquired are summarized in Table 3.9.  Note 
that transducers #1 and #6 were removed and replaced after acquisition of data set 5, and also 
that all bolts were removed after data set 5. 

Data 
Set 

Fatigue 
Cycles 

Crack Lengths (mm) 
Data Description 

Left Right 
1 0 --- --- Baseline with the doubler and center hole 
2 0 --- --- Starter notch cut (left, front of hole) 

2A 0 --- --- Data recorded at finer loading steps (2%) 

3 5,000 1.5 --- Initial crack observed at the left side of center 
hole 

4 6,500 2.6 ---  
5 9,000 4.8 --- Possible transducer bonding issues at high loads 
6 11,000 6.8 0.9  
7 13,000 9.1 2.7 Noticed disbond at the right edge of the doubler 
8 14,000 11.5 4.6  
9 14,000 11.5 4.6 Secured doubler with bolts 1” from each end 

10 14,000 11.5 4.6  
11 15,000 14.02 6.71 Continued fatiguing 
12 15,700 15.46 8.50  
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Figure 3.7.  Plate #8 with bonded doubler, central drilled through-hole, and side through-holes 
with bolts installed. 

Table 3.9.  Summary of fatiguing schedule and data acquired for Plate #8. 

(Orientation relative to side with transducers) 

  

Data 
Set 

Fatigue 
Cycles 

Crack Lengths (mm) 
Data Description 

Left Right 

1 0 --- --- Baseline with tightened bolts through side hole1 
and 2, no bolt through center hole 

2 0 --- --- One partial notch only on the plate 
3 3000 --- --- 

 4 3000 --- --- 
5 3000 --- --- 

6 3000 --- --- Transducers #1 and #6 replaced; all bolts 
removed. 

7 5000 1.07 --- Initial crack appears 
8 7000 2.67 ---  
 9 10,000 5.03 ---  
10 11,000 5.94 1.12 Second crack appears 
11 13,000 7.94 2.16  
12 14,000 9.88 3.73  
13 15,000 11.73 5.61 Fatigue test ends 
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4. Theory of Acoustoelastic Lamb Waves 
In this section the theory of acoustoelastic Lamb wave propagation in a homogeneous and 

initially isotropic plate is developed for an applied homogeneous biaxial stress by combining the 
theories of bulk wave acoustoelasticity and anisotropic guided wave propagation.  The resulting 
analytical equations are solved numerically to show the anisotropic changes in dispersion for 
various applied stresses, and these changes are validated via experiments using an aluminum 
plate. 

4.1 Review of Bulk Wave Acoustoelasticity 
The theory of bulk wave acoustoelasticity is first reviewed following the development of 

Pao and Gamer [33].  Referring to Figure 4.1, a body is deformed from its unstressed, or natural, 
state, to a statically deformed, or initial, state; the final state is that of wave motion superposed 
on the initial state.  Coordinates ξ refer to a material point in the natural state, coordinates X refer 
to a material point in the initial state, and coordinates x to a material point in the final state.  
Deformations between the various states; i.e., natural to initial, natural to final, and initial to 
final, are given by ui, uf, and u, respectively: 

i

f

f i

( ) ,
( , ) ,

( , ) ( , ) ( ).
t

t t

= −

= −

= − = −

u ξ X ξ
u ξ x ξ

u ξ x X u ξ u ξ  

(4.1) 

To describe wave propagation in a stressed medium, the equation for u, the incremental 
deformation between the initial and final states in a pre-stressed medium must be obtained. 

 

 
 
Figure 4.1.  Deformation of a body from its natural (undeformed) state ξ to an initial state of static 
deformation X to a final state of wave motion x. 

 

ξ

x

X

u

ui
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Keeping the same convention as is used in [33], Greek subscripts indicate that the 
quantities are expressed in terms of the natural, or unstressed coordinates.  Lagrangian strain 
tensors in the initial and final states are, 

ii i i
i

ff f f
f

1 ,
2

1 .
2

uu u uE

uu u uE

βα λ λ
αβ

β α α β

βα λ λ
αβ

β α α β

ξ ξ ξ ξ

ξ ξ ξ ξ

 ∂∂ ∂ ∂
= + +  ∂ ∂ ∂ ∂ 

 ∂∂ ∂ ∂
= + +  ∂ ∂ ∂ ∂   

(4.2) 

Note that summation over repeated indices is implied here and in subsequent equations.  If the 
wave motion is small compared to the initial predeformation, the incremental strain tensor 
between the initial and final states is given approximately by, 

i i
f i 1 .

2
uu u u u uE E E βα λ λ λ λ

αβ αβ αβ
β α α β β αξ ξ ξ ξ ξ ξ

 ∂∂ ∂ ∂ ∂ ∂
= − = + + +  ∂ ∂ ∂ ∂ ∂ ∂   

(4.3) 

If it is assumed that the material is hyperelastic, the Lagrangian strain tensor can be related to the 
second Piola-Kirchoff stress tensor via a constitutive equation; here only the second and third 
order elastic constants are retained: 

1i i i i
2

1f f f f
2

,

.

T C E C E E

T C E C E E
αβ αβγδ γδ αβγδεη γδ εη

αβ αβγδ γδ αβγδεη γδ εη

= +

= +  
(4.4) 

Incremental stresses and strains between the initial and final states are related by subtracting the 
above equations and discarding higher order terms,  

iT C E C e eαβ αβγδ γδ αβγδεη γδ εη= +  (4.5) 

The infinitesimal initial and incremental strain tensors are, 

i i
i 1 1,    

2 2
u uu ue eγ ηδ ε

γδ εη
δ γ η εξ ξ ξ ξ

   ∂ ∂∂ ∂
= + = +      ∂ ∂ ∂ ∂     

(4.6) 

Equation (4.5) is thus the incremental constitutive equation. 

 Consider the equation of equilibrium for the static predeformation and the equation of 
motion for the final state, 

i f 2 f
i i f f 0

20,   u u uT T T T
t

α α α
βα βγ βα βγ

β γ β γ

ρ
ξ ξ ξ ξ

   ∂ ∂ ∂ ∂ ∂
+ = + =   ∂ ∂ ∂ ∂ ∂        

(4.7) 
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where ρ0 is the density in the natural state.  The equation of motion for the incremental 
displacement is obtained by subtracting these two equations and neglecting one higher order 
term [33].  The resulting equation of motion for the incremental displacement is, 

i 2
i 0

2

u u uT T T
t

α α α
αβ βγ βγ

β γ γ

ρ
ξ ξ ξ

 ∂ ∂ ∂ ∂
+ + = ∂ ∂ ∂ ∂    

(4.8) 

Further simplification is possible by assuming that both the material and the static 
predeformation are homogeneous, and then substituting Eq. (4.5), the incremental constitutive 
equation, into Eq. (4.8).  The resulting equation of motion for the incremental displacement is, 

2 2
0

2

u uA
t

γ α
αβγδ

β δ

ρ
ξ ξ
∂ ∂

=
∂ ∂ ∂  

(4.9) 

where 
i i

i iu uA C C e C C C eγ α
αβγδ αβγδ βδεη εη αγ αβλδ λβγδ αβγδεη εη

λ λ

δ
ξ ξ
∂ ∂

= + + + +
∂ ∂  

(3.10) 

Equation (4.9) appears almost identical to the usual elastic wave equation, but it should be noted 
that A does not have the same symmetries as the stiffness tensor C.  The only symmetry is Aijkl = 
Aklij; in general, Aijkl ≠ Ajikl ≠ Aijlk. 

4.2 Theory of Lamb Wave Acoustoelasticity 
Development of the theory for propagation of Lamb waves in pre-stressed plates requires 

combining the equation of motion and constitutive equation developed for bulk waves in the 
previous section with the theory for Lamb wave propagation in an anisotropic plate. The 
equations derived in the process closely match those of Nayfeh and Chimenti [34] for anisotropic 
Lamb waves. 

The geometry and coordinate system used in this paper are illustrated in Figure 4.2.  
Referring to the figure, the initial stresses are specified in the primed coordinate system, and a 
Lamb wave propagating along any arbitrary angle φ from the 1x′  direction is considered.  The 
unprimed coordinate system is rotated through the same angle φ to form the primed coordinate 
system, and analysis is performed in the unprimed system to simplify the mathematics.  For an 
applied biaxial stress along the 1x′  and 2x′  directions, the initial stress tensor can be written as, 

11

22

0 0
' 0 0

0 0 0

σ
σ

 
 =  
  

T

 

(4.11) 

It is expressed in the unprimed system via a rotational transformation, 

i i
ij im jn mnT Tβ β ′=

 
(4.12) 
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Figure 4.2.  Geometry for Lamb wave propagation in a pre-stressed plate.  Stresses are applied 
along the principal directions in the primed coordinate system, and Lamb waves propagate along 
the x1 axis. 

 

where βij is the cosine of the angle between the ix  and the jx′  axes.  For convenience, in this and 
subsequent equations, lower case Roman subscripts are used instead of Greek subscripts to 
represent quantities in the natural coordinate system.  In particular, all quantities are expressed in 
terms of the natural coordinates; for example, xj is used instead of ξj. 

Assuming that the initial strains are small, the constitutive equation relating initial stresses 
and strains given in Eq. (4.4) can be simplified to, 

i i
ij ijkl klT C e=  (4.13) 

For a given applied stress field, the strains in the unprimed system can be calculated by inverting 
this equation.  From this point forward, all quantities are expressed in the unprimed system. 

The A tensor as given by Eq. (4.10) can be simplified further by noting that the 
displacement derivatives can be expressed in terms of strains because for the stresses given in 
Eq. (4.11), the rotation terms are zero for all angles φ.  Thus,  

i
ij
jk

k

u
e

x
∂

=
∂  

(4.14) 

and 

i i i i
ijkl ijkl jlmn mn ik ijml km mjkl im ijklmn mnA C C e C e C e C eδ= + + + +  (4.15) 

The incremental stress-strain relation of Eq. (4.5) can similarly be simplified to 

x1'

x2'

x1

x2

φ
x1

x3

d
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i i,    k
ij ijkl ijkl ijkl ijml km ijklmn mn

l

uT B B C C e C e
x

∂
= = + +

∂  
(4.16) 

Acoustoelastic Lamb wave propagation for a homogeneous and biaxial stress field requires 
solving the wave equation for the incremental displacements as given by Eq. (4.9) subject to 
stress-free boundary conditions at 3 2x d= ±  with the tensor A given by Eq. (4.15) and the 
stresses given by Eq. (4.16).  This problem differs from Lamb wave propagation in anisotropic 
media in two regards:  (1) as previously noted, the tensor A does not have the same symmetries 
as the stiffness tensor C, and (2) the boundary conditions at the plate surfaces are now written in 
terms of the incremental displacements. 

Following [34], the approach to solving this problem is to assume solutions of the form, 

1 3( )i x x ct
j ju U e ξ α+ −=  (4.17) 

where ξ is the wavenumber in the x1 direction, c is the phase velocity along the x1 axis and α is 
the ratio of x3 to x1 wavenumbers.  For a specific value of c, these solutions correspond to 
up-going and down-going bulk waves in the 1 3x x−  plane of the plate, which are then summed 
together to form the Lamb wave.  This approach is sometimes referred to as the partial wave 
technique [35]. 

Substitution of Eq. (4.17) into Eq. (4.9) yields a form of the Christoffel equations,  

( ) 0,mn nK Uα =  (4.18) 

where the parameters Kmn are given by, 

2 0 2
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,
( ),
( ).

K K A A
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α
α
α

= = − −
= = − +
= = − +

 (4.19) 

It can be seen that Kmn=Knm. For existence of non-trivial solutions for the displacement 
amplitudes Un, the determinant of the K matrix must go to zero, which produces a 6th order 
equation in α with six solutions αq, q = 1…6. The coefficients of the odd powers of α are all 
zero, resulting in a cubic equation in α2 given by  

6 4 2
6 4 2 0   0,P P P Pα α α+ + + =  (4.20) 

where the coefficients can be found in [36].  For a specific value of the Lamb wave phase 
velocity c, solving this cubic equation yields six values of α, which correspond to three up-going 
bulk waves and three down-going bulk waves. 

The next step is to satisfy the stress-free boundary conditions on the plate surfaces as per 
Eq. (4.16).  The approach taken here is similar to that taken in [34], and consists of constructing 
displacement ratios of U2 and U3 to U1 for each of the six values of α, 
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2 3

1 1

,   ,   1,2 6.q q
q q

q q

U U
V W q

U U
= = =   (3.21) 

Equation (4.18) enables each ratio to be expressed as a function of the Kmn and the corresponding 
αq.  The total displacement field of the Lamb wave is the sum of the displacements of the six 
partial waves, 

{ } 1 3
6

( )
1 2 3 1

1
{ , , } 1, , .qi x x ct

q q q
q

u u u V W U e ξ α+ −

=

=∑
 

(4.22) 

Similarly, an expression for the stresses can be derived by substituting Eq. (4.22) into Eq. (4.16).  
The three stress components in the x3 direction are then written as a sum of stresses due to the six 
individual bulk waves, 

{ } 1 3
6

( )
33 13 23 1 2 3 1

1

{ , , } , , qi x x ct
q q q q

q
T T T i D D D U e ξ αξ + −

=

= ∑
 

(4.23) 

where the parameters Dmq are given by, 
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,
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q q q q
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(4.24) 

Applying the stress-free boundary conditions at the surface of the plate requires setting T13, T23 
and T33 to zero at 3 2x d= ± , and yields six equations in terms of the six displacement 
amplitudes, U1q, of the six partial waves, q = 1,2…6.  The determinant of coefficients must go to 
zero to obtain nontrivial solutions for these six displacement amplitudes.  This determinant is, 

11 1 12 2 13 3 14 4 15 5 16 6

21 1 22 2 23 3 24 4 25 5 26 6

31 1 32 2 33 3 34 4 35 5 36 6

11 1 12 2 13 3 14 4 15 5 16 6
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E

=


 

(4.25) 

where /2qi d
qE e ξα=  and /2qi d

qE e ξα−= .  After several number of row and column operations, 
Eq. (4.25) decouples into two equations,  

11 1 1 13 3 3 15 5 5( , ) cot( ) cot( ) cot( ) 0,sf c D G D G D Gω γα γα γα= + + =  (4.26) 
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11 1 1 13 3 3 15 5 5( , ) tan( ) tan( ) tan( ) 0.af c D G D G D Gω γα γα γα= + + =  (4.27) 

The first equation corresponds to the symmetric modes and the second one corresponds to the 
antisymmetric modes.  In both equations 2 (2 )d d cγ ξ ω= = , where ω is the angular frequency.  
The parameters Gm are given as 

1 23 35 33 25 3 31 25 21 35 5 21 33 31 23,  ,  G D D D D G D D D D G D D D D= − = − = −  (4.28) 

Solving Eqs. (4.26) and (4.27) yields the dispersion curves relating phase velocity and angular 
frequency for the symmetric and antisymmetric Lamb wave modes, respectively.  Solving these 
equations is not trivial; a description of the numerical method is given in [36]. 

4.3 Selected Analytical Results 
This section presents dispersion curves generated by solving Eqs. (4.26) and (4.27) 

numerically for specific materials.  The first material considered is 6061-T6 aluminum, which 
was selected to match subsequent experiments.  Material constants used are listed in Table 4.1, 
and the third order elastic constants were taken from [37].  It should be noted that although third 
order elastic constants are available in the literature for several aluminum alloys [37,38,39], their 
values are quite variable.  It is not clear whether the variability is caused by differences in 
experimental methods or actual material variations.  The second material considered was steel 
because of its widespread use.  Unfortunately third order elastic constants for steel are not widely 
reported; the ones used here are also summarized in Table 4.1 and are for Hecla 37 steel [39]. 

 
Table 4.1.  Material constants for 6061-T6 aluminum [24,37] and Hecla 37 steel [39]. 

Parameter Value 
6061-T6 AL 

Value 
Hecla 37 Steel Units 

λ 54.308 111 GPa 
µ 27.174 821 GPa 
l -281.5 -461 GPa 
m -339.0 -636 GPa 
n -416.0 -708 GPa 
ρ0 2704 7823 kg/m3 

 
 

Figures 4.3(a) and 4.3(b) present the family of symmetric and antisymmetric dispersion 
curves for aluminum under a uniaxial stress of 11σ = 100 MPa and for waves propagating at an 
angle of 45° to the stress direction; note that the SH0 mode is not shown.  To illustrate the 
variation of the function values as they go to zero, log | ( , ) |sf cω  and log | ( , ) |af cω  have been 
plotted in the background for both plots.  These dispersion curves appear virtually identical to the 
ones obtained using the Rayleigh-Lamb equations for the no-load case since the velocity changes 
due to the applied stress are not noticeable at this scale.  These and all subsequent curves refer to 
phase velocities computed in the natural, or undeformed, coordinate system, which is consistent 
with the derivations of Section 4.2. 
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 (a) (b) 
 

Figure 4.3.  Dispersion curves for waves propagating in aluminum at an angle of 45° to an 
applied uniaxial applied stress of 100 MPa.  (a) Symmetric modes, and (b) anti-symmetric modes. 

 
 

Figure 4.4 presents the variation of phase velocity of the S0 mode at 250 kHz with angle for 
a range of biaxial stresses and for a plate thickness of 6.35 mm.  Note that the load is applied 
along the y axis so that waves propagating along the direction of applied load are at 90°.  An 
interesting prediction made by this plot is that the angle at which the phase velocity change is 
zero (about 27°) is independent of stress.  It can also be seen that at a specific angle, the change 
of phase velocity is linear with load. 

Figure 4.5 compares phase velocity changes as a function of frequency for the S0 mode at 
varying uniaxial stresses 11σ  for waves propagating along the loading direction.  This plot shows 
large changes in phase velocity for lower frequencies that reduce and flatten in the high 
frequency region.  It is evident that the change of phase velocity is linear with load at a specific 
frequency. 

 
Figure 4.4.  Change of phase velocity for the S0 
mode at 250 kHz for various loads and angles. 

 
Figure 4.5.  Change of phase velocity for the S0 
mode for propagation along the loading direction. 
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 (a) (b) 
 

 
 (c) (d) 

Figure 4.6.  Changes in phase velocity versus frequency for waves propagating in aluminum at 
various angles to a 100 MPa uniaxial load applied at 0°.  (a) S0, (b) S1, (c) A0, and (d) A1 mode. 

 
 

Figures 4.6(a) through 4.6(d) compare the phase velocity change with frequency at 
different angles for the S0, S1, A0 and A1 Lamb wave modes, respectively.  The plot for A0 is 
particular interesting in that it predicts isotropic phase velocities for the A0 mode for the 
frequency-thickness product of approximately 187 MHz-mm, although at this frequency the 
velocity change from the unstressed condition is non-zero.  This phenomenon should not be 
confused as isotropic wave propagation since the group velocity at this frequency is certainly 
angle dependent. 

Figure 4.7 is a plot of the S0 and SH0 modes for an applied uniaxial stress of 100 MPa and 
propagation at 45° to the loading direction.  The S0 and SH0 modes split and form two new 
continuous modes at their original point of intersection (from the unstressed case) when a stress 
is applied.  Because of symmetry, this splitting does not occur at either 0° or 90°, and is similar 
to that which also occurs for anisotropic materials [40,41].  Other symmetric and antisymmetric 
modes similarly interact with higher order SH modes.   In the earlier plots, this splitting was not 
shown to facilitate comparison of the perturbed modes to those of the unstressed material. 
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Figure 4.8 shows the A0 mode for steel under a uniaxial stress of 11σ =  200 MPa.  Steel 
also shows the isotropic phase velocities at lower frequencies for the A0 mode at a frequency-
thickness product of approximately 0.35 MHz-mm.  Additional results for steel are not shown 
because they are qualitatively the same as for aluminum. 

4.4 Experimental Results 
Data were analyzed from Plate #2, which were obtained as described in Section 3.2.  The 

following three frequencies were utilized to produce an unambiguous first arrival of the indicated 
Lamb wave mode: 250 kHz (S0 mode), 400 kHz (A1 mode), and 600 kHz (S1 mode).  Signals 
were recorded from 9 of the 45 possible transmit-receive pairs as shown in Figure 3.1(b) at 
eleven uniaxial loads (0 MPa to 57.5 MPa in steps of 5.75 MPa). 

Time shifts were measured by identifying a zero crossing in the center of each direct arrival 
echoes, and then tracking that zero crossing as a function of applied uniaxial load.  For a 
particular time shift, the corresponding change in phase velocity can be calculated as,  

2

.p
p

c t
c

d
∆

∆ = −  (4.29) 

Although there is also a change of distance, it does not appear in Eq. (4.29) because all 
computations are in the natural, or undeformed, coordinate system. 

Figure 4.9(a) shows the linear variation of the changes in phase velocity with stress for 
propagation of the three Lamb wave modes along the direction of applied stress (the y axis).  The 
results are further corroborated by experimental measurements using transducer #1 as a 
transmitter and transducer #6 as a receiver, which show similar linear changes in phase velocity.  
Figure 4.9(b) shows the variation of phase velocity with angle for the case of uniaxial stress of 

22σ = 57.5 MPa.  The experimental values were obtained by fitting a line to the time shift versus 
load curve, and then calculating the time shift at 57.5 MPa from the linear fit.  Both theoretical 
and experimental data closely follow a sinusoidal profile.  The systematic differences between 
theory and experiment are probably due to the well-known difficulties in accurately obtaining 

 
Figure 4.7.  Splitting of the S0 and SH0 modes 
for propagation at 45° to the loading direction. 

 
Figure 4.8.  Change in phase velocity for the A0 
mode in steel propagating at an angle to an 
applied uniaxial load. 
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third order elastic constants.  The linear dependence of phase velocity changes with load and 
sinusoidal dependence with angle of propagation are expected since that is the case for bulk 
waves, but validation of both characteristics is reassuring. 

Figure 4.10, which is analogous to Figure 4.9(b), shows the variation of phase velocity with 
angle but with the theoretical curves calculated using different (but plausible) values for the 
TOECs.  For these values, selected as l = -181 MPa, m = -289 MPa, and n = -336 MPa, the S0 
and A1 theoretical curves are in excellent agreement with the experimental data, and the S1 curve 
is in reasonable agreement.  This significant improvement not only supports the speculation that 
the deviation between theory and experiment is largely explained by errors in TOECs, it also 
suggests that guided wave measurements could be used to estimate TOECs.  

 

 
 (a) (b) 
 

Figure 4.9.  Comparison of theory and experiment for propagation in aluminum for a uniaxial 
load at 90°.  (a) Changes in phase velocity versus load for waves propagating at an angle of 90°, 
and (b) changes in phase velocity versus propagation angle for an applied load of 57.5 MPa. 

 

 

Figure 4.10.  Comparison of theory and experiment for an applied uniaxial load of 57.5 MPa at 
90° using modified TOECs (l = -181 GPa, m = -289 GPa, and n = -336 GPa). 
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4.5 Section Summary: Lamb Wave Acoustoelasticity 
Described here is the theory for acoustoelastic Lamb wave propagation, and both numerical 

and experimental results are shown for the multiple Lamb wave modes.  Unlike bulk waves, the 
acoustoelastic behavior is frequency dependent.  Experimental results that measure changes in 
phase velocity as a function of both load and propagation angle agree reasonably well with 
theory.  Both numerical and experimental data show the expected linear dependence of phase 
velocity changes with load and sinusoidal dependence with angle of propagation, all at a single 
frequency.  However, systematic differences between theory and experiment indicate that 
additional measurements should be performed to independently measure third order elastic 
constants for the specific material under consideration. 

The robustness of the Lamb wave results as a function of propagation angle suggest that 
Lamb wave measurements may provide an alternative means of measuring third order elastic 
constants.  This would be challenging because unlike bulk wave measurements, there is no 
analytical expression relating third order elastic constants to measured time shifts, much less a 
closed form solution for the inverse problem.  Thus, any means of using Lamb wave data to 
obtain third order elastic constants would have to be numerical in nature with the resulting issues 
of existence and uniqueness. 

Additional experiments are also needed to verify some of the interesting theoretical 
predictions, particularly those shown in Figure 4.4(c) regarding isotropic phase velocities 
changes in the low frequency region for the A0 mode.  Future theoretical work should consider 
extension of this theory to materials of higher symmetry, which is believed to be straightforward 
but tedious.  In terms of numerical work, there are certain regions in the anti-symmetric spectrum 
that may indicate the presence of roots (SH0 like solutions), although they do not correspond to 
any mode for the unstressed case.  Most likely these are false roots are caused by imperfections 
in the numerical method, but they need further investigation. 
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5. Inversion of Acoustoelastic Lamb Wave Data 
This section considers the inversion of acoustoelastic Lamb wave data, primarily to 

estimate biaxial stresses.  Previously published methods using Lamb waves to monitor stress 
levels consider only guided waves propagating parallel or perpendicular to the direction of an 
applied, uniaxial stress.  However, for operation under realistic conditions, near-homogeneous 
stresses in plate-like structures are in general biaxial with unknown principal directions.  Degtyar 
and Rokhlin [42] developed an analogous approach to simultaneously calculate stresses by 
inverting the angle dependence of phase velocities as measured with bulk waves.   

Also considered in this section is the capability of simultaneously estimating temperature 
changes and applied loads.  Two specific cases are considered:  (1) discriminating a 2D isotropic 
stress change from a temperature change, and (2) simultaneously estimating a temperature 
change and a uniaxial load. 

5.1 Theory 
The primary effect of an applied load on guided wave propagation is a time shift ∆t of a 

received guided wave signal, which is caused by both changes in phase velocity and dimensions 
of the plate.  As is well-known for bulk wave acoustoelasticity [18], analysis can take place in 
either a natural coordinate system, where all spatial variables are measured relative to the 
unstressed material, or an initial coordinate system, where variables are relative to the stressed 
specimen.  Here the natural system is convenient to use because the transducers are permanently 
affixed to the plate and in the natural system, the separation distance does not change.  Thus, the 
change in phase velocity ∆cp in this natural system can be calculated from the measured time 
shift ∆t as per Eq. (4.29).  This equation is used to extract phase velocity changes from 
experimentally measured time shifts ∆t.  

To describe guided wave propagation in an aluminum plate of thickness h with biaxial 
applied stresses in the plane of the plate, a coordinate system is introduced as defined in Fig. 5.1.  
The unknown biaxial stresses σ11 and σ22 are assumed to be applied along the x1 and x2 axes of the 
rectilinear coordinate system xi, from which a measurement coordinate system, indicated by xiʹ, 
is rotated by an angle α.  It is further assumed that ultrasonic guided waves are propagating along 
a direction in the x1-x2 plane that makes an angle θ with respect to the x1 axis and θʹ with respect 
to the x1ʹ axis. 

 

 
Figure 5.1.  Geometry for guided wave propagation in a pre-stressed aluminum plate.  
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 (a) (b) 

 
Figure 5.2.  (a) Dispersion curves for the S0 mode at different propagation angles when σ11 = 30 
MPa and σ22 = 80 MPa.  (b) Changes of phase velocity for the S0 mode at 400 kHz as a function 
of propagation angle when σ11 = 30 MPa and σ22 = 80 MPa. 

 
 

As described in Section 4, theory has been developed as part of this project to calculate 
dispersion curves for Lamb wave propagation in pre-stressed plates with biaxial applied loads.  
Using software developed by Gandhi [36], dispersion curves for different propagating angles are 
plotted in Fig. 5.2(a) over a narrow frequency range for the S0 fundamental guided wave mode, 
which illustrates the anisotropic effect caused by an applied anisotropic load.  Fig. 5.2(b) shows 
changes of phase velocity with respect to propagation angle for this same mode and a frequency 
of 400 kHz.  It can be seen that there is a sinusoidal relation between angle of propagation and 
change in phase velocity ∆cp. 

Based on this sinusoidal dependence, equations that describe the relation between phase 
velocity change and propagation angle for uniaxial applied stresses at 0° and 90° have the 
following forms: 

22

2 2
11 1 20

( ) ( cos sin )pc K K
σ

θ σ θ θ
=

∆ = +
 (5.1) 

11

2 2
22 3 40

( ) ( cos sin )pc K K
σ

θ σ θ θ
=

∆ = +
 (5.2) 

In these equations, ∆cp is the change of phase velocity, θ is the direction of guided wave 
propagation in the principal (unprimed) coordinate system, and K1, K2, K3 and K4 are the four 
acoustoelastic constants for the particular frequency, mode and applied stress direction.  Similar 
equations have been used for bulk and surface waves although the corresponding acoustoelastic 
constants are independent of frequency [18].  For an isotropic plate, the four acoustoelastic 
constants can be reduced to two (i.e., K1 = K4, K2 = K3) because of symmetry.  We hypothesize 
that the linear combination of Eqs. (5.1) and (5.2) describes the change of phase velocity for an 
applied biaxial stress: 
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2 2
1 11 2 22 2 11 1 22( ) ( ) cos ( )sin .pc K K K Kθ σ σ θ σ σ θ∆ = + + +  (5.3) 

This equation is written in the unprimed coordinate system where the principal axes of the 
applied stress are aligned with the coordinate axes.  However, measurements are made in the 
primed coordinate system, which is rotated by an angle α from the principal axis system.  In this 
system, changes in phase velocity are, 

2 2
1 11 2 22 2 11 1 22

0 1 2

( ') ( )cos ( ) ( )sin ( )

cos(2 ) sin(2 ).
pc K K K K

a a a
θ σ σ θ α σ σ θ α

θ θ

′ ′∆ = + + + + +

′ ′= + +

 
(5.4) 

The coefficients ai are, 

1
0 1 2 11 222 ( )( )a K K σ σ= + + , 

(5.5) 

1
1 1 2 11 222 ( )( ) cos(2 )a K K σ σ α= − − , 

(5.6) 

1
2 1 2 11 222 ( )( )sin(2 )a K K σ σ α= − − − . 

(5.7) 

These equations suggest a strategy to estimate the principal values and direction of the applied 
stresses.  First, acoustoelastic constants K1 and K2 are estimated by least-squares from known 
uniaxial applied loads via Eq. (5.1) or (5.2) using measurements of phase velocity changes at 
multiple angles of propagation.  Second, for similar measurements made at an unknown load, the 
coefficients a0, a1 and a2 can be determined by least-squares using Eq. (5.4).  Finally, the applied 
stresses σ11 and σ22 and the angle α are solved by inverting Eqs. (5.5), (5.6) and (5.7) for the 
unknown quantities: 
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(5.10) 

  
If a temperature change occurs simultaneously with a change in load, Eq. (5.4) includes an 

additional term to describe the change in phase velocity caused by temperature: 

2 2
1 11 2 22 2 11 1 22( ) ( ) cos ( ) ( )sin ( ) .p Tc K K K K Tθ σ σ θ α σ σ θ α α′ ′ ′∆ = + + + + + + ∆  (5.11) 

In this equation ΔT is the change in temperature and αT is a constant for a specific mode and 
frequency.  For the case of a 2D isotropic load, the two stress components are equal and the 
change in phase velocity becomes isotropic,  
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1 2( ) ( ) .p Tc K K Tθ σ α′∆ = + + ∆  (5.12) 

Thus, for a given guided wave mode and frequency, it is not possible to simultaneously 
determine the temperature change and the isotropic load. 

For the case of a uniaxial load applied along the x2 direction, the change in phase velocity 
is,  

2 2
22 2 1
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a a a

θ σ θ α θ α α

θ θ
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′ ′= + +

 (5.13) 

The constants ai are, 

1
0 1 2 222 ( ) ,Ta K K Tσ α= + + ∆  (5.14) 

1
1 1 2 222 ( ) cos(2 ),a K K σ α= − −  (5.15) 

1
2 1 2 222 ( ) sin(2 ).a K K σ α= −  (5.16) 

 

The change in phase velocity caused by the load is clearly anisotropic, with an additional 
isotropic contribution caused by the temperature change.  Inversion of these equations yields, 
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Thus, if there is a priori knowledge that the load is uniaxial, then the load and temperature 
change can be simultaneously determined. 

5.2 Numerical Verification 
The proposed strategy for estimating biaxial loads depends upon the hypothesis that 

changes in phase velocity due to a biaxial load are a linear combination of the two contributions 
for the uniaxial principal components.  To verify this hypothesis, numerical simulations are 
performed to assess its validity.  The changes of phase velocity at 400 kHz for the S0 mode of 
guided waves in a homogeneous and isotropic aluminum plate of thickness 3.175 mm were 
chosen to be consistent with the later experimental verification.  The material properties of the 
plate for numerical simulation are described in Table 5.1.  Note that the software calculates all 
phase velocity changes in the natural (unstressed) coordinate system. 
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Table 5.1.  Density and elastic constants of aluminum used for simulations. 
 

Property Value and Units 
λ 50.281 GPa 
μ 25.902 GPa 
l -252.2 GPa 
m -324.9 GPa 
n -351.2 GPa 
ρ 2700 kg/m3 

 
 

First, phase velocity changes ∆cp were calculated for multiple uniaxial stress conditions as 
σ11 = 0 and σ22 increasing from 0 to 100 MPa in steps of 10 MPa; the propagation angle θ varied 
from 0 to 90 degrees in steps of 5 degrees.  Second, acoustoelastic constants K1 and K2 were 
estimated by least-squares using Eq. (5.2) using the multiple known uniaxial stresses and 
corresponding phase velocity changes ∆cp obtained from the first step; their values were 
consistent for all loads considered.  Third, theoretical phase velocity changes were calculated as 
a function of propagation angle for multiple cases of α, σ11 and σ22.  Finally, K1 and K2 
determined from the second step were used in Eq. (5.4) to approximate the changes of phase 
velocity for the multiple cases of α, σ11 and σ22.   

The approximate results calculated as per Eq. (5.4) were found to be in excellent agreement 
with the theoretical phase velocity changes ∆cp for all cases considered.  Typical results are 
shown in Fig. 5.3 for two cases: (1) α = 30°, σ11 = 50 MPa, σ22 = 100 MPa, and (2) α = 90°, σ11 = 
10 MPa, σ22 = 40 MPa.  The root mean square errors for these two cases are 0.0663m/s and 
0.0112m/s, respectively, and are typical for all cases considered.  Therefore, the assumed 
sinusoidal dependence and linear combination of uniaxial loads as expressed in Eqs. (5.3) and 
(5.4) are taken to be correct. 

 
 (a) (b) 

Figure 5.3.  Phase velocity changes for the S0 mode at 400 kHz versus propagation angle.  (a) 
σ11 = 50 MPa, σ22 = 100 MPa, and α = 30 degrees.  (b) σ11 = 10 MPa, σ22 = 40 MPa, and α = 90 
degrees. 
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 (a) (b) 
 

Figure 5.4.  Drawing of the specimen and transducer geometry for (a) Plate #5 and (b) Plate #6 
(not to scale). 

 

5.3 Experiments and Results for Biaxial Load Estimation 
Results are shown here using fatigue test data from Plate #5 and Plate #6 as described in 

Sections 3.5 and 3.6, respectively.  Each transducer pair corresponds to guided wave propagation 
along a particular direction, which corresponds to the line connecting the transducers; see Figure 
5.4 for sketches of the plates and transducers.  Measured signals were filtered by a 7 cycle, 
Hanning windowed, 400 kHz tone burst signal as described in [32].  The 400 kHz S0 Lamb wave 
mode was chosen for analysis because it has clear first arrivals from all the transducer pairs and 
it is also the dominant mode at this frequency with a very good signal-to-noise ratio.  The only 
other possible mode at 400 kHz is the slower A0 mode, and the echoes were not sufficiently 
distinct to accurately extract phase velocity changes.  

5.3.1 Calibration and error analysis 
The calibration procedure was performed to calculate the acoustoelastic constants K1 and 

K2 using data recorded from the first data set for both fatigue tests.  Figure 5.5(a) shows the 
received S0 signals from transducer pair 2-5 (i.e., transmitting on #2 and receiving on #5) of data 
set #1 from Plate #5 at different loads.  The zero crossings of these direct arrivals were extracted 
as a function of applied load and are plotted in Fig. 5.5(b); it can be seen that the small time 
shifts relative to zero load are linear with load over the entire load range.  The corresponding 
changes of phase velocity ∆cp for the 11 loading conditions and 15 transducer pairs in data set #1 
were calculated by Eq. (4.29) from the calculated time shifts, nominal values of cp obtained at 
zero-load from dispersion curves, and measured transducer separation distances.  The data of ∆cp 
calculated from all the transducer pairs were then used in Eq. (5.2) to estimate constants K1 and 
K2 from all known uniaxial loads via the best sinusoidal fit. 
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 (a) (b) 
 

Figure 5.5.  (a) First arrivals of transducer pair #2−5, data set #1 (no holes, no cracks), Plate #5, 
for the 11 uniaxial loading conditions.  (b) Zero crossing times with respect to loads for transducer 
pair #2−5, data set #1 (line connects first and last points). 

 
 

Figure 5.6 shows the sinusoidal fit for 
phase velocity changes ∆cp with respect to the 
angle of propagation for the load of 92 MPa.  
To evaluate the fit, the root mean square 
(RMS) error between the experimental and 
fitted data as shown in Figure 5.6 was 
computed using the estimated values of K1 and 
K2 obtained from all of the uniaxial loads.  The 
small value of 0.5037m/s indicates an excellent 
sinusoidal fit, and the corresponding values of 
K1 and K2 (-3.42×10-7 m/s/Pa and 0.69×10-7 

m/s/Pa, respectively) are thus assumed to be 
accurate.  The same calibration procedure was 
applied to data set #1 of fatigue test 2, although 
the specimen during calibration was not 
pristine (the four holes were pre-drilled).  The 
acoustoelastic constants K1 and K2 were found to be -3.77×10-7 m/s/Pa and 0.71×10-7 m/s/Pa, 
respectively, which are very close to those values calculated from the first specimen.  

Once K1 and K2 are obtained, applied stresses and directions can be estimated from the 
phase velocity changes ∆cp obtained from later data sets using Eqs. (5.4), (5.8), (5.9) and (5.10).  
However, as the cracks grow in the plate and open under load, the received ultrasonic signals are 
affected by the guided waves interacting with and scattering from the cracks.  As shown in 
Figure 5.7 for transducer pair 2-5 of data set #9 from Plate #5, the relationship between time shift 
and applied load is no longer linear over the full range of applied loads.  As the time shift data 
become skewed by the opening cracks, there are resulting errors in the phase velocity changes 
∆cp.  These errors affect the sinusoidal fit of Eq. (5.4) and subsequent determination of both the 
ai and the recovered stress information. 

 
Figure 5.6.  Experimental data and sinusoidal fit 
of phase velocity changes versus angle for data 
set 1 of Plate #5. 



33 
Approved for public release; distribution unlimited. 

 
 (a) (b) 
 

Figure 5.7.  (a) First arrivals of transducer pair #2−5, data set #9, Plate #5, for the 11 uniaxial 
loading conditions.  (b) Zero crossing times with respect to loads for transducer pair #2−5, data 
set #9 (line connects first and last points). 

 
 

To calculate error bars for estimated stress results, consider the following least squares 
minimization for determining a0, a1 and a2 based upon Eq. (5.4): 
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where N is the number of data points.  The resulting values of a0, a1 and a2 can be expressed as a 
linear combination of the ∆cp(θʹi), the change of phase velocity measured by the ith transducer 
pair: 
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where the C matrix is defined as [22], 
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The variance associated with each aj can then be calculated by: 
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(5.23) 

Here σi is the standard deviation of ∆cp(θʹi), the change in phase velocity measured from the ith 
transducer pair.  These standard deviations are all assumed to be equal, and are set to the sample 
standard deviation of the errors of ∆cp(θʹi) from the sinusoidal fit performed for each unknown 
load.  Thus, when there are no cracks and the fit is very good, the standard deviation is low, and 
as cracks grow and affect the guided wave signals, the fit becomes worse and the standard 
deviation increases.   

Finally, the standard deviation of estimated stresses and directions are computed from the 
variance of parameters a0, a1 and a2 as follows, 
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(5.24) 

This procedure was implemented for both fatigue tests to obtain error bars on final results.  

5.3.2 Plate #5 Results 
The accuracy of the estimated loads is driven by the sinusoidal fit of ∆cp(θi).  As was seen 

in Figure 5.6, this fit is typically very good when there are no cracks.  In contrast, Figure 5.8 
shows typical data from Plate #5 for two different loads when cracks are present.  If the data 
points (all solid and open triangles) are compared to the sinusoidal fit (dashed lines), there are 
clearly significant errors for some of the data points.  These errors are particularly large for 
transducer pairs whose path of direct propagation lies close to the site of cracking. 
 

 
 (a) (b) 
 

Figure 5.8.  Experimental data and sinusoidal fit of phase velocity changes for data set #9 of 
Plate #5.  (a) σ11 = 0 MPa, σ22 = 46 MPa, (b) σ11 = 0 MPa, σ22 = 92 MPa. 
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To minimize the effects of opening cracks on stress estimates, data from some of the 
transducer pairs were eliminated.  As shown in Fig. 5.4(a), it can be seen that the direct arrivals 
for three transducer pairs travelled directly through the cracked region: 1-4, 2-5, and 3-6.  Data 
from these three pairs were excluded from the sinusoidal fit as shown by the solid line in Figure 
5.8; the three excluded data points are denoted by open triangles.  The standard deviation of Δcp 
was estimated from the errors relative to the sinusoidal fits, parameters a0, a1, and a2 were 
calculated using Eq. (5.4), and σ11, σ22 and α were calculated from Eqs. (5.8), (5.9) and (5.10).  
The corresponding errors were estimated for both cases (with and without eliminating data) 
using Eq. (5.24).  

Figure 5.9 shows estimated principal stress components and direction plotted as a function 
of data set number.  For Fig. 5.9(a), the actual values are σ11 = 0 MPa, σ22 = 46 MPa, and α = 0°; 
for Fig. 5.9(b) they are σ11 = 0 MPa, σ22 = 92 MPa, and α = 0°.  It can be seen that elimination of 
the three transducer pairs reduces the impact of cracks and significantly improves the accuracy of 
the recovered values, particularly σ22. 
 

  
 (a) (b) 
 

Figure 5.9.  Estimated stresses and orientation angles for all data sets of Plate #5.  (a) σ11 = 0 
MPa, σ22 = 46 MPa, α = 0 degrees.  (b) σ11 = 0 MPa, σ22 = 92 MPa, α = 0 degrees. 
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 (a) (b) 
 

Figure 5.10.  Estimated stresses and orientation angles for all data sets of Plate #6.  (a) σ11 = 0 
MPa, σ22 = 46 MPa, α = 0 degrees.  (b) σ11 = 0 MPa, σ22 = 92 MPa, α = 0 degrees. 

 
 

5.3.3 Plate #6 Results 
The distribution and growth of cracks for Plate #6 is much more complicated because the 

four holes provide additional sites of crack initiation.  A total of eight cracks initiated and grew 
around the region of holes during the fatigue test. However, the same idea of eliminating 
transducer pairs whose paths intersected with cracks was still effective.  The difference is that 
only the six transducer pairs corresponding to waves propagating near the periphery of the 
transducer polygon were used; the nine transducer pairs 1-4, 2-5, 3-6, 1-6, 3-4, 1-5, 3-5, 2-4 and 
2-6 were eliminated.  Figure 5.10 shows estimated loads and directions compared with actual 
applied stresses for two different loading cases.  As expected, elimination of transducer pairs 
gives better results, particularly for α, the applied stress direction. 

5.4 Combined Estimation of Loads and Temperature 
Numerical results are presented for two special cases of a temperature change occurring 

simultaneously with an applied load.  For both cases, the temperature dependence was simulated 
by modeling the changes in temperature of the thickness and bulk wave speeds [43]. 



37 
Approved for public release; distribution unlimited. 

5.4.1 Temperature change and 2D isotropic load 
As shown in Eq. (5.12), phase velocity changes caused by both temperature and a 2D 

isotropic load are isotropic (i.e., no angular dependence), and are thus not distinguishable using a 
single mode and frequency.  Here we examine the dependence of multiple modes and 
frequencies on such an isotropic change to investigate whether the load-dependent behavior 
differs from that caused by temperature. 

A typical example is taken to be a 2D isotropic load of σ11 = σ22 = 115 MPa and a 
temperature change of 35°C (25°C to 60°C).  This temperature change was selected to yield the 
same change in phase velocity for the S0 mode at 400 kHz as the load of 115 MPa.  First, 
dispersion curves for the S0, A0, S1 and A1 modes were calculated for the baseline condition (no 
load at 25°C), under an isotropic load of 115 MPa at 25°C, and at no load and 60°C.  The 
baseline dispersion curves were then subtracted from the other two cases, and these differential 
dispersion curves are shown in Figure 5.11(a).  It can be seen that for the S0 mode in the 
neighborhood of 500 kHz, the frequency dependence of the dispersion changes are in the 
opposite directions for a temperature change versus an isotropic load.  Figure 5.11(b) shows a 
zoomed version of the S0 curves from 0 to 600 kHz. 

These curves imply that a temperature change could be distinguished from an isotropic 
load by monitoring the change in the S0 phase velocity in this region.  A complicating factor is 
that the S0, A0 and A1 modes all have very similar group velocities at about 610 kHz, and thus all 
measurements of the S0 mode must take place below that to avoid overlapping echoes of 
different modes.  Also, the S0 mode by itself will not provide enough information to characterize 
a combination of an isotropic load and a temperature change.  It may be possible to combine S0 
measurements with changes of one or more additional modes to simultaneously decouple the two 
effects; additional numerical and experimental work is needed to further investigate this 
possibility.  Regardless, changes are small and it is anticipated that measurements will be 
difficult. 

 

 
 (a) (b) 

Figure 5.11.  (a) Phase velocity changes after subtraction of baseline dispersion curves for the first four 
modes.  Solid lines: σ11 = σ22 = 115 MPa; Dashed lines: ΔT = 35 °C.  (b) Zoomed in phase velocity 
changes of the S0 mode below 600 kHz.   
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 (a) (b) 

Figure 5.12.  Phase velocity changes for the S0 mode at 400 kHz under temperature variations for a 
uniaxial load of σ22 = 92 MPa.  (a) α = 0°, and (b) α = 60°. 
 

5.4.2 Combined temperature change and uniaxial load 
Phase velocity changes caused by a combined temperature change and a uniaxial load are 

anisotropic.  As indicated by Eqs. (5.17), (5.18) and (5.19), the angular dependence of the phase 
velocity changes from a single mode and frequency can be used to estimate both the temperature 
change and the load (magnitude and direction).  This strategy is evaluated numerically. 

Figure 5.12 shows two examples of phase velocity changes for the S0 mode at 400 kHz 
caused by a combination of a temperature change and a uniaxial load.  These simulations use 
temperature-dependent bulk wave speeds and plate thickness to calculate phase velocity changes; 
it is assumed that third order elastic constants are not temperature dependent.  If can be seen that 
the primary effect of the temperature changes is to raise (or lower) the entire curve by an amount 
proportional to the temperature change. 

The data of Figure 5.12(b) are used to evaluate the efficacy of the proposed estimation 
strategy.  First, the constant αT is estimated from the constant temperature data (αT = 
-1.2846m/s/°C), and the constants K1 and K2 are estimated from the uniaxial loading data (K1 = 
-4.4433×10-7 m/s/Pa and K2 = 0.7575×10-7 m/s/Pa).  These constants are then used in Eqs. (5.17), 
(5.18) and (5.19) to calculate the temperature, stress magnitude, and stress direction from the 
angular dependence of the group velocity.  Results are shown in Table 5.2, and the accuracy of 
the recovered parameters is quite good.  The largest error is about 2.2% for the estimated stress 
at the biggest temperature change. 

 
5.5 Section Summary: Inversion of Lamb Wave Acoustoelastic Data 

Results from both fatigue tests show that the proposed method of estimating applied biaxial 
stresses from a spatially distributed array of guided wave transducers can provide accurate 
results when cracks are not present along the paths of propagation.  As cracks grow and interfere 
with received signals, the accuracy of the estimates decreases, which is mitigated by removing 
some of the data.  While the accuracy may not be as good as what can be achieved using, for 
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example, dedicated strain gages, the method has the advantage of not requiring additional 
transducers. 

This method is of particular interest for the case where a spatially distributed transducer 
array is attached on a plate-like structure since multiple transducer pairs correspond to guided 
waves propagating at various angles.  It can be used to estimate loads in conjunction with sparse 
array imaging of damage by using the same transducers and recorded signals.  Measuring phase 
velocity changes ∆cp at multiple angles in the measurement coordinate system has the advantage 
of estimating the unknown direction of the applied stress, which cannot be achieved from 
measurements along a single direction.  Furthermore, only two acoustoelastic constants are 
needed to estimate unknown applied stresses and directions, and these two constants can be 
estimated from a single uniaxial loading case.  

Results of a preliminary numerical investigation to simultaneously estimate load and 
temperature changes show some promise but also highlight the difficulty of this problem.  
If there is a priori information that the applied load is uniaxial, the numerical results indicate that 
a homogeneous temperature change can be estimated simultaneously with the load magnitude 
and direction.  Results from considering a 2D isotropic load combined with a homogeneous 
temperature change indicate that it may be possible to separately estimate an arbitrary biaxial 
load and a temperature change if data from multiple modes and frequencies are considered.  It is 
anticipated that the measurements may be prohibitively difficult. 

Recommended future work includes performing experimental measurements incorporating 
true biaxial loads, adapting the estimation strategy to anisotropic materials, and performing 
controlled tests with varying loads and temperatures.  It may also be possible to develop an 
algorithm to automatically mitigate the impact of cracks on ultrasonic signals when the locations 
of the cracks are unknown.   

 
Table 5.2.  Recovered temperatures and stresses for an applied uniaxial load of 92 MPa at 60°. 

Actual 
Temperature 

(°C) 

Estimated 
Temperature 

(°C) 

Estimated Stress 
(MPa) 

Estimated 
Angle 

(degrees) 

25 25.0 92.1 60.0 

30 30.0 92.5 60.0 

35 35.0 92.8 60.0 

40 39.9 93.3 60.0 

45 44.9 93.6 60.0 

50 49.9 94.0 60.0 
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6. Load-Differential Methods 
In this section load-differential imaging methods are motivated by first evaluating the 

effect of loads on imaging methods using damage-free baselines, and then considering load-
differential methods whereby the “baseline” is from the same damage state but a different load. 

6.1 Experiments 
Load-differential results are reported from Plates #5, #6, #7 and #8, which are described in 

Sections 3.5, 3.6, 3.7 and 3.8.  Data from Plate #5 are analyzed in considerable detail, whereas 
only partial results are given for the other three plates.  For all plates received signals were 
filtered to yield the equivalent narrow-band tone burst response as described in [32].  A 3-cycle 
Hanning windowed tone burst response centered at 100 kHz was selected because of the purity 
of the A0 mode and its sensitivity to through-thickness cracks. 

6.2 Analysis Methodology 
The delay-and-sum imaging algorithm as applied to differenced signals is used to visualize 

information obtained from the transducer arrays, and is reviewed in this section (see [8] for 
additional details).  Consider two sets of data recorded from all transducer pairs of a sparse array 
at different times.  These two different times could correspond to before and after introduction of 
damage, or before and after a change in environmental or operational conditions.  The 15-signal 
set recorded at the first time is referred to as the reference signals and the set recorded later as the 
current signals. 

Consider sensor pair ij where the ith transducer (the transmitter) is located at (xi,yi), and the 
jth transducer (the receiver) is located at (xj,yj).  If a scatterer is introduced at location (x,y), the 
delay time, which corresponds to the time of the wave propagating from the transmitter to the 
receiver by way of the scatterer, is: 
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where cg is the group velocity.  Let sij(t) refer to the differenced signal computed by subtraction 
of the reference signal from the current signal for sensor pair ij.  The signal sxy(t) is calculated as 
the sum of the differenced signals delayed by the appropriate time shifts resulting from the 
scattering path going through the point (x,y): 
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The image value at pixel (x,y) is calculated as 
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(6.3) 

where t1 and t2 are the start and end times of the selected time window.  Although the differenced 
signal in Eq. (6.3) can be either the raw (RF) signal or the envelope-detected (rectified) signal, 
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here we only consider the envelope-detected signals.  The group velocity cg is estimated from the 
arrival times of the direct waves propagating between all transducer pairs as described in [8].  
Values for t1 and t2 are calculated to yield a single sample time window centered at the nominal 
peak of the scattered arrival. 

6.3 Imaging with Damage-Free Reference Signals 
The imaging algorithm is first applied to Plate #5 using residual signals computed from 

damage-free reference signals.  Consider images constructed from data set 2 (current signals) and 
data set 1 (damage-free reference signals), between which the only difference is drilling of the 
center through-hole.  Figure 6.1 shows three images that were generated from current signals and 
reference signals recorded at identical loads.  These and subsequent figures were created with a 
pixel resolution of 4 mm.  At the matched loads of 0%, 50% and 100%, the three images are 
almost identical because the static load has minimal effects on the through-hole. 

The results are much different when the same imaging algorithm is applied to the same data 
sets but under mismatched loads.  Figure 6.2 shows three images also constructed between data 
sets 1 and 2, where the reference signals were recorded at zero load and the current signals were 
recorded at 20%, 60% and 100% loads.  Although there is a 20% load mismatch for Figure 
6.2(a), the image is not significantly degraded as compared to the images of Figure 6.1 and the 
center hole is clearly observed.  However, as the load mismatch increases, the image with a 60% 
load mismatch is obviously degraded as Figure 6.2(b) shows with the largest amplitude features 
in the image being artifacts near the plate edges.  The image of Figure 6.2(c) with a 100% load 
mismatch is degraded to a degree that the hole is no longer detectable. 

Image degradation under mismatched loads is explained by considering the effects of 
applied loads on guided wave propagation.  There are two primary effects: (1) specimen 
dimension changes, and (2) guided wave speed changes due to the acoustoelastic effect.  Both of 
these changes perturb the time of arrival of individual echoes, and thus result in significant 
residual signals from baseline subtractions regardless of whether damage has also been 
introduced.  

 

 
 (a) (b) (c) 

Figure 6.1.  Images from Plate #5 generated between data set 1 (baseline signals) and data set 
2 (current signals, after hole drilled) at matched loads. (a) 0 MPa (0% load), (b) 57.5 MPa (50% 
load), and (c) 115 MPa (100% load).  All three images are shown on the same 10 dB color scale. 
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 (a) (b) (c) 

Figure 6.2.  Images from Plate #5 generated between data set 1 (baseline signals) and data set 
2 (current signals, after hole drilled) at mismatched loads. Each image is shown on a 10 dB color 
scale normalized to its maximum amplitude. (a) 0/23 MPa (0/20% load), (b) 0/69 MPa (0/60% 
load), and (c) 0/115 MPa (0/100% load).  

 
 

 
 (a) (b) (c) 

Figure 6.3.  Images from Plate #5 generated between data set 3 (baseline signals) and data set 
7 (current signals, 5.4 mm long fatigue crack) at matched loads.  (a) 0 MPa (0% load), (b) 57.5 
MPa (50% load), and (c) 115 MPa (100% load). All three images are shown on the same 10 dB 
color scale (-58 dB to -48 dB). 

 
 

Now consider images obtained from data set 7 (current signals) and data set 3 (reference 
signals), where the primary difference between the two data sets is a 5.4 mm long single crack.   
Unlike Figure 6.1, which illustrates that matched applied loads have only very small effects on 
the through-hole, Figure 6.3 shows the much more significant effects that applied loads can have 
on a fatigue crack.  As shown in Figure 6.3(a), the crack is not detectable at zero load because it 
is still tightly closed.  By increasing the applied load, clear crack detection is obtained as the 
crack opens.  Figure 6.3(b) is generated at 60% load and Figure 6.3(c) is generated at 100% load, 
showing that higher loads open the crack more completely and thus the images are improved. 

Figure 6.4 shows images from data set 3 and data set 7 under mismatched loads where 
current signals were all recorded at 0% load but reference signals were recorded at 20%, 60% 
and 100% loads.  The crack is closed at zero load and thus the guided waves propagate through it 
with almost no measurable effect.  This situation produces images that are equivalent to those 
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that would be obtained if there were no damage and thus illustrate the effects of applied loads 
only.  These images show that the mismatched loads generate stronger artifacts around the image 
edges; however, the maximum residual signal energy from these artifacts, as shown in Figure 
6.4(c) for the greatest load mismatch, is about 3 dB less than that from the opened crack shown 
in Figure 6.3(c).        

Figure 6.5 shows the images of data set 3 and date set 7 under mismatched loads where 
current signals were recorded at 100% load and reference signals were recorded at 0%, 40% and 
80% loads.  As shown in Figures 6.5(a) and 6.5(b), the crack is not clearly detected when the 
loads are significantly mismatched even though it is fully opened.  The image of Figure 6.5(c), 
which has only a 20% load mismatch, clearly shows the crack and is not significantly degraded 
from Figure 6.3(c).  These results, along with those shown in Figure 6.2(a) for the hole, indicate 
that load mismatches of up to 20% (23 MPa) can be tolerated. 
 

 
 (a) (b) (c) 

Figure 6.4.  Images from Plate #5 generated between data set 3 (baseline signals) and data set 
7 (current signals, 5.4 mm long fatigue crack) at mismatched loads. Each image is shown on a 10 
dB color scale normalized to its maximum amplitude. (a) 23/0 MPa (20/0% load), (b) 69/0 MPa 
(60/0% load), and (c) 115/0 MPa (100/0% load).  

 
 

 
 (a) (b) (c) 

Figure 6.5.  Images from Plate #5 generated between data set 3 (baseline signals) and data set 
7 (current signals, 5.4 mm long fatigue crack) at mismatched loads. Each image is shown on a 10 
dB color scale normalized to its maximum amplitude. (a) 0/115 MPa (0/100% load), (b) 46/115 
MPa (40/100% load), and (c) 92/115 MPa (80/100% load).  
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6.4 Load-Differential Imaging 
The results of the previous section motivate an alternative approach for fatigue crack 

detection and localization – load-differential imaging.  For this method, signals recorded at one 
load are the “reference signals” and the signals recorded at the same damage state but at a 
slightly increased tensile load are the “current signals”.   Differences between the signals are thus 
caused by a combination of crack opening effects and loading effects.  Figures 6.2(a) and 6.5(c) 
indicate that a 20% load difference (or less) will not adversely affect imaging of damage; here a 
10% load difference is considered.  Reference signal loads start from 0% and end at 90% with a 
increment of 10%, and the current signal loads range from 10% to 100% accordingly; a total of 
10 differential-load pairs are thus considered for each data set. 

6.4.1. Pair-wise load-differential signals 
Figure 6.6 shows received signals at 11 loads from two transducer pairs of data set 10, 

where two cracks are present.  Signals for each transducer pair are normalized by the peak 
amplitude of the first arrival at 0% load, when cracks are assumed to be less opened or possibly 
even closed.  The top plot shows signals from transducer pair 2-5 (i.e., transmitting on 2 and 
receiving on 5), where the incident wave is broadside to the cracks and received signals are thus 
strongly affected by opening of the cracks with load.  There is an abrupt amplitude drop between 
0% load and 10% load within the time window of the first arrival of A0 mode, which is between 
80 and 110 us.  The signals amplitude continues to decrease as loads increase and further open 
the cracks.  The bottom plot shows signals from the transducer pair 1-3, where the direct path 
does not go through the cracked area and thus the signals are less affected by the cracks.  The 
signal amplitude and shape change with load between 90 and 120 us, which corresponds to the 
path of propagation from the transmitter to the cracks to the receiver.   
 

 

 
Figure 6.6.  Signals recorded from data set 10 of Plate #5 at 11 loads ranging from 0 to 115 MPa 
(0 to 100%).  Transducer pair 2-5 (top), and transducer pair 1-3 (bottom). 
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 (a) (b)                                             

Figure 6.7.  Differential signals from data set 10 of Plate #5 at ten differential loads (0-to-10%, 
10-to-20%, … 90-100%).  (a) Transducer pair 2-5, and (b) transducer pair 1-3. 

 
 

Figure 6.7 shows waterfall plots of the ten load-differential signals for transducer pairs 2-5 
and 1-3, where signals are normalized as previously described prior to subtraction.  Figure 6.7(a) 
shows more clearly that the larger crack on one side of the hole opens up at 10% load and blocks 
the transmitting guided wave, resulting in the large amplitude change of the first arrival.  At 
about 70% load the smaller crack on the other side opens up and decreases the signal amplitude 
further.  For Figure 6.7(b), the residual signals correspond to guided waves reflected from the 
crack site.  Similar effects can be observed as one crack opens at lower load and another crack 
opens at higher load. 

6.4.2 Load-differential images 
Load-differential signals such as shown in Figure 6.7 can be used as the differenced signals 

in Eq. (2) to generate ten load-differential images for each data set, which correspond to 
differential loads ranging from 0-10% to 90-100%.  Figure 6.8 is the image collage constructed 
from all 14 data sets recorded from the fatigue test where all images are shown on the same 
30 dB color scale.  Note that the data set is the row (increasing top-to-bottom), and the 
differential load is the column (increasing left-to-right).   The 40 images from the first four data 
sets are very similar because there are no cracks even though there are significant changes to the 
specimen (i.e., introduction of the drilled hole and starter notch).  The first crack is barely seen at 
~40% load from the images of data set 6, and is clearly visible by data set 7.  From data set 7 to 
9, images that show the crack appear at progressively lower loads, which is consistent with the 
crack growing as fatiguing continues and thus becoming easier to open at lower loads.  For data 
set 10, the crack on one side of the hole starts to open at very low loads (0-10% load), whereas 
the crack on the other side of the hole opens up at higher loads (50-60% load); both cracks are 
completely opened at 90% load.  Images from data sets 11 through 14 continue to show that the 
cracks become easier to open at low loads as both cracks keep growing.  By data set 14 both 
cracks are very large, but there is still some evidence that they are not opening simultaneously. 
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Figure 6.8.  Load-differential images of the first 14 data sets from Plate #5 plotted on a fixed 30 
dB scale normalized to the overall peak amplitude (-21 to +9 dB). 
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The load-differential images are also capable of discriminating between the two cracks on 
either side of the hole.  Figure 6.9 shows three images from data 12 at differential loads of 20-
30%, 30-40%, and 60-70%, respectively.  Figure 6.9(a) clearly shows that one crack on the left 
side of the hole opens as the load changes from 20% to 30% load.  From 30% to 40% load, as 
shown in Figure 6.9(b), the left side crack, which is almost fully opened, does not change very 
much and the crack on the right side of the hole starts to open up.  Finally, as can be seen in 
Figure 6.9(c), from 60% to 70% load the right crack opens significantly.  

6.4.3 Composite load-differential images 
A composite image can readily be generated for each data set by averaging a series of load-

differential images.  This composite image, while perhaps not as useful for locating individual 
cracks as a single load-differential image, does capture in one image the cumulative effects of the 
applied loads.  Figure 6.10 shows a collage of composite images from all data sets that were 
generated by averaging the ten load-differential images from each data set on a pixel-by-pixel 
basis.  Note that the first three composite images are from data sets recorded prior to fatiguing 
but with differing structural conditions (i.e., no hole, hole, hole plus notch).  It can be seen from 
these images that the fatigue crack is visible by data set 6 and is clearly evident at data set 7.  
Cracking is obviously increasing as fatiguing progresses. 
 

 
 (a) (b) (c) 

Figure 6.9.  Load-differential images generated from data set 12 of Plate #5. (a) 23/34.5 MPa 
(20/30%), (b) 34.5/46 MPa (30/40%), and (c) 69/80.5 MPa (60/70%).  All three images are shown 
on the same 10 dB color scale. 

 

 
Figure 6.10.  Composite load-differential images from all 14 data sets of Plate #5.  All images are 
shown on the same 20 dB color scale (-18 dB to +2 dB). 
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6.5 Load-Differential Imaging of Additional Specimens 
Results from additional specimens demonstrate the potential and challenges of load-

differential imaging.  Note that prior to computing each load-differential image, including those 
of Figure 6.8, all signals from both data sets were normalized by the same scale factor so that the 
reference data set signals had composite unity energy.  This normalization was done so that 
images obtained from the nominally identical specimens used for this project could be compared.  
It was also done because there were several unexplained amplitude jumps during several of the 
tests, which resulted in overall level shifts of the images prior to normalization. 

6.5.1 Plate #3 – Transducer Problems 
The first plate that was fatigue tested as part of this project was Plate #3.  Figure 6.11 

contains the load-differential images for data sets 2-11, the ones recorded prior to replacing the 
bare PZT disc transducers.  In this figure the anomalous images caused by transducer problems 
are obvious (i.e., apparent in data sets 4, 8, 10 and 11).  Despite these problems, evidence of 
growing cracks can be readily seen in data sets 7-10. 

 
 

 
 

Figure 6.11.  Load-differential images of the first ten data sets from Plate #3 plotted on a fixed 
30 dB scale (-21 to +9 dB). 
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The six PZT discs were removed and replaced with identical discs that were protected with 
a backing compound composed of epoxy mixed with micro-bubbles.  Earlier tests indicated that 
all backing materials evaluated had an adverse effect on signal quality, with the primary 
symptoms of decreased amplitude and increased ringing.  The micro-bubble mixture appeared to 
be the best compromise.  Figure 6.12 shows load-differential images from data sets 13-19 of 
Plate #3 on the same 30 dB scale as used for Figure 6.11.  These results are rather disappointing 
in that the overall background noise level of the images appears to be quite high, and there is still 
evidence of transducer problems in two images of data set 16 (middle row).  The specific 
elliptical pattern seen in these two images strongly suggests that data from a single transducer 
pair is bad; in particular, pair 5-6 located in the upper left corner. 

Despite the problems seen in Figure 6.12, evidence of growing cracks is still readily 
apparent.  A comparison of data sets 13 and 14 (first two rows) shows that the first crack is 
opening at lower loads, indicating that it is growing.  Evidence of a smaller, second crack that is 
opening at higher loads can be seen in data set 15 (third row), and it is growing and thus opening 
at lower loads in the subsequent data sets. 

The data of Figure 6.12 is re-plotted in Figure 6.13 with two changes:  (1) transducer pair 
5-6 was removed from all images, and (2) the data are shown on a 20 dB scale (from -11 to 
+9 dB) to lessen the visual effect of the higher noise background.  The images of this figure 
compare well with those of Figure 6.8, clearly showing the initiation of the second crack and the 
growth of both cracks. 
 
 

 
 

 
Figure 6.12.  Load-differential images of the final seven data sets from Plate #3 plotted on a fixed 
30 dB scale (-21 to +9 dB). 
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Figure 6.13.  Load-differential images of the final seven data sets from Plate #3 with transducer 
pair 5-6 removed and plotted on a fixed 20 dB scale (-11 to +9 dB). 

 
 
 Composite images were obtained by averaging each data set as described in Section 6.4.3.  
First, the bad images from the first ten data sets were set to zero (in data sets 4, 8, 10 and 11).  
Also, since the transducers were changed and there was a shift in level between data sets 11 and 
13, the level of the first ten composite images was adjusted by raising their amplitudes by 6 dB.  
This provided a reasonable transition between data sets 11 and 13.  All composite images from 
Plate #3 are shown in Figure 6.14, and the growth of the crack is evident. 
 
 

 
Figure 6.14.  Composite load-differential images from all 17 data sets of Plate #3.  All images are 
shown on the same 20 dB color scale (-18 dB to +2 dB). 
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6.5.2 Plate #4 – No cracks 
Load-differential images are shown in Figure 6.15 for Plate #4.  This plate had a short 

section of a “T”-shaped stiffener bonded to the plate, and disbonds were artificially introduced.  
The purpose of this specimen was initially to disbond the stiffener section under load, but after 
1000 cycles it remained well-bonded.  Several artificial bonds were introduced in the hope that 
they would change under load.   

The load-differential images of Figure 6.15 do show some variations with both data set and 
differential loading level, but nothing that suggests opening of a marginal bond with load.  This 
observation is not surprising since the disbonds were created artificially (as opposed to via 
fatigue).  Some of the faint elliptical patterns are indicative of possible transducer pair problems, 
but are not large enough in amplitude to be of concern. 

 
 

 
 
Figure 6.15.  Load-differential images of all 11 data sets from Plate #4 plotted on a fixed 30 dB scale (-21 
to +9 dB). 
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Composite images were created by averaging the individual load-differential images for 
each data set, and are shown in Figure 6.16.  These composite images are shown on the same 
scale as those for Plates #3 and #5, and corroborate the conclusion that the disbond conditions 
are not changing significantly with load. 
 

 
Figure 6.16.  Composite load-differential images from all 11 data sets of Plate #4.  All images are 
shown on the same 20 dB color scale (-18 dB to +2 dB). 

 
 
6.5.3 Plate #5 – Added doubler and fasteners 

After termination of fatiguing, a doubler was bonded to Plate #5 as described in Section 3.5 
and additional 21 data sets of load-dependent data were recorded (data sets 15-35).  No 
additional fatiguing was performed so there was no additional crack growth.  However, since 21 
sets of load-dependent data were recorded, the plate was subjected to significant static loads that 
may have introduced plastic deformation.  In particular, it is likely that the cracks were held open 
under load enough times so that the degree of crack closure when the load was released 
decreased over the time of the test. 

Figure 6.17 shows load-differential images for data sets 14 through 24.  Recall that data set 
14 corresponds to the final fatigue cycles, data sets 15-18 are of the unchanged specimen after 
fatiguing was terminated, data sets 19-21 are after a doubler was bonded to the plate, and data 
sets 22-24 are after a center hole was drilled through the doubler (aligned with the existing hole 
in the plate).  There are no surprises in this figure.  Data sets 15-18 have less of a load response 
for the lowest differential loading step, most likely because of the crack not closing to its 
previous degree after the static loads of data set 14.  The images from data sets 19-24, which are 
after bonding of the doubler, are of lower amplitude.  This is not unexpected and is caused by a 
combination of two effects:  (1) the bonded doubler partially restrains the crack from responding 
to load changes, and (2) there is some scattering of the incident waves from the doubler. 

Figure 6.18 shows load-differential images for data sets 25 through 35.  The most dramatic 
changes can be seen in data sets 25-27 after insertion and tightening of a center bolt.  This 
change almost entirely obscures the crack response because the tightened bolt keeps it from fully 
opening under load.  After the bolt is loosened, in data sets 28-30, the crack response is again 
evident.  The various bolt changes in data sets 31-34 cause similar effects.  Data set 35, after all 
bolts are removed, again shows a larger amplitude crack response.  The adhesion of the doubler 
around the crack site has probably become unbonded because of the multiple loading cycles. 
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These results, although not completely realistic of a built-up structure, do partially indicate 
the potential efficacy of load-differential imaging.  In a real structure, it is probable that local 
disbonding and fastener loosening/movement would either precede or occur along with 
significant cracking; otherwise, it is unlikely that the local strains would be large enough for 
large cracks to form.  The experiments with Plate #5 have not fully investigated this, but do show 
that successful load-differential imaging can take place with a bonded doubler in place. 

 
 
 

 
 
 

Figure 6.17.  Load-differential images of data sets 14-24 from Plate #5 plotted on a fixed 30 dB 
scale (-21 to +9 dB). 
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Figure 6.18.  Load-differential images of data sets 25-35 from Plate #5 plotted on a fixed 30 dB 
scale (-21 to +9 dB). 

 
 
 

Figure 6.19 shows composite images from all 35 data sets of Plate #5, including those 
already shown in Figure 6.10.  Although the details of the ten load-differential images for each 
data set are not displayed, many of the same deductions can be made.  This figure illustrates the 
usefulness of the composites images for showing the “big picture” effects of the load-differential 
imaging method.  
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Figure 6.19.  Composite load-differential images from all 35 data sets of Plate #5.  All images are 
shown on the same 20 dB color scale (-18 dB to +2 dB). 

 
 
 
6.5.4 Plate #6 – Multiple holes and crack initiation sites 

The original intent of Plate #6 was to include multiple holes so that signals would include 
both multiple scattering from the holes and multiple cracks.  Notches were made in two of the 
four holes (outside of the two inner holes) with the expectation that cracks would primarily grow 
from these two notches.  However, that was not the case as can be seen from Table 3.7 in Section 
3.6.  Crack growth was very complicated with multiple cracks growing from the two inner holes, 
and ultimately cracks also grew from one of the other holes. 

Figure 6.20 shows load-differential images from data sets 3 through 16, which is from the 
undamaged condition up through the end of fatiguing.  Data sets 1 and 2 are not shown; data 
set 2 has one bad signal that results in two differential images with elliptical artifacts.  Data set 1 
does not show any loading effects, as would be expected prior to fatiguing.  The background 
noise level in these images indicates possible transducer problems, although there are not any 
data sets that are clearly bad.  Data set 9 is ambiguous in terms of whether load-dependent 
activity is caused by bad transducers versus cracking; data set 11 is the first one with 
unambiguous indications of cracking.  At this point there are six cracks with the largest ones 
about 5 mm in length (on the surface).  This point of detection is similar to that achieved with 
Plates #3 and #5, where unambiguously detected crack lengths were about 3 and 5 mm, 
respectively.  Subsequent data sets show progression of cracking combined with possible 
transducer degradation issues as manifested by the characteristic elliptical patterns on the 
images. 
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Figure 6.20.  Load-differential images of data sets 3-16 from Plate #6 plotted on a fixed 30 dB 
scale (-21 to +9 dB). 
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Figure 6.21 shows load-differential images from data sets 16 and 18 through 25, which 
include the last data set after fatiguing terminated (16) and all of the remaining ones.  Data sets 
18 through 25 are at nominally the same structural conditions (cracks) but were recorded at 
slightly different temperatures.  The temperature was increased by enclosing the specimen in an 
insulated box containing a heating pad.  The entire testing machine acted as a heat sink and it 
was not possible to raise the temperature more than about 2.5 °C.  In addition, the amplitude 
changed by several dB between the various measurements because of an uncontrolled amplifier 
problem.  It can be seen that the load-differential images for data sets 16 and 18-21 are very 
close to each other, illustrating that this method is inherently not dependent upon temperature.  
However, data sets 22-24 do show some changes, most likely due to permanent deformation 
caused by the extended static loadings. 

Figure 6.22 shows composite load differential images from all 23 data sets of Plate #6.  
These images are consistent with the individual ones of Figure 6.20 and 6.21.   Data from this 
plate illustrate that load-differential imaging can be effective in the presence of complexity 
caused by both multiple scatterers and multiple cracks, and that it is not dependent upon 
temperature. 

 
 

 
 

 
Figure 6.21.  Load-differential images of data sets 16 and 18-24 from Plate #6 plotted on a fixed 
30 dB scale (-21 to +9 dB). 
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Figure 6.22.  Composite load-differential images from all 23 data sets of Plate #6 (1-16 and 18-24).  
All images are shown on the same 20 dB color scale (-18 dB to +2 dB). 

 
 
 
6.5.5 Plate #7 – Added doubler and fasteners 

The initial state of Plate #7 included a bonded doubler with a drilled through-hole.  A 
starter notch was made in the plate (not the doubler) as a site for initiation of cracking.  The plate 
was fatigued until the maximum crack length was about 11 mm, at which point it was observed 
that the doubler had become partially unbonded at one end.  Then two holes were drilled about 
1” from each end of the doubler, and bolts were installed to secure the doubler to the plate. 
Fatiguing continued until the crack grew to about 15 mm in length. 

Figure 6.23 shows load differential images from all 12 data sets of Plate #7.  The doubler 
was bonded to the plate prior to taking any data, and the first two data sets show some initial 
bonding changes in the doubler.  In particular, data set 2 shows the right end of the doubler 
becoming partially disbonded, as can be seen from the higher amplitude indications on the right 
side of the image as the loads increase.  This disbonding was not noticed when it occurred, so 
fatiguing began after data set 2 was recorded.  Data sets 3 and 4 do not show any more evidence 
of the doubler disbonding, and the first evidence of cracking can be seen in data set 5 at high 
load levels.  The crack continues to grow as is evidenced by the higher amplitude localization 
taking place at progressively lower loads.  After data set 7 the disbonding of the doubler was 
visually observed, and after data set 8 the doubler was secured by drilling holes and installing 
bolts about 1” from either end.  Fatiguing continued with data sets 11 and 12, and the installed 
bolts appeared to have minimal effects on the load-differential images.  Fatiguing was 
discontinued after data set 12 when the largest crack was about 15 mm in length. 
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Composite images are shown in Figure 6.24 for all 12 data sets.  In the composite images it 
is clear that the doubler disbonding stabilized after data set 2 with no further load-differential 
effects.  Evidence of cracking is seen at data set 5, as was the case for the individual load-
differential images, and at this point the largest crack was about 5 mm in length.  Drilling of the 
holes and installation of the bolts to secure the doubler are not apparent in these images, 
illustrating the insensitivity of the method to structural changes that are not load-dependent. 
 
 
 

 
 

 

Figure 6.23.  Load-differential images of all 12 data sets from Plate #7 plotted on a fixed 30 dB 
scale (-21 to +9 dB). 
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Figure 6.24.  Composite load-differential images from all 12 data sets of Plate #7.  All images are 
shown on the same 20 dB color scale (-18 dB to +2 dB). 

 
 
6.5.6 Plate #8 – Added doubler and fasteners plus transducer problems 

The intent was for Plate #8 to be similar to Plate #7 with a bonded and bolted doubler.  
Based upon the experience with Plate #7, the doubler was initially both bonded to the plate and 
bolted at both ends; no bolt was inserted in the center hole.  Two data sets were recorded prior to 
fatiguing, and both appeared to be reasonable with no significant load-dependent changes.  
Fatiguing began, and after 3000 cycles data were again recorded.  This data showed load-
dependent changes that did not appear to be related to cracking or disbonding; transducer 
problems were suspected.  Two additional data sets were recorded, and it was decided to replace 
transducers #1 and #6.  After they were replaced, the two bolts were removed and fatiguing was 
restarted.  Data were recorded until the maximum crack length was about 12 mm. 

Figure 6.25 shows all load-differential images from the 13 data sets of Plate #8, and results 
are difficult to interpret.  There are no patterns in the data that appear to be related to cracks, 
which have the characteristic signature of opening at lower loads as the crack size increases.  
Since the visual observations clearly showed typical crack growth, the cracking must be 
obscured by either unstable bonding of the doubler, transducer variations, or a combination of 
the two.  The composite load-differential images of Figure 6.26 are similarly inconclusive.  The 
first two data sets show a stable specimen, and the next three indicate load-dependent changes.  
The elliptical pattern of data set 6 indicates a problem with transducer pair 5-6.  Subsequent data 
sets show increased load variations as fatiguing progresses, but the localization in the image is 
not suggestive of cracking in the center of the plate. 

This final fatigue test, although not providing a positive result, does point out the 
importance of having a relatively stable specimen.  The experience of the authors on other 
projects is that real aerospace specimens are more structurally stable in terms of bonds and 
interfaces than specimens fabricated in the laboratory [44].  The results from Plate #8 also point 
out the need of having robust transducer diagnostics to definitively either identify or rule out 
transducer problems.  In the tests performed here, the method described in [45] was used for 
transducer diagnostics; it was generally effective but not always able to identify subtle transducer 
problems.  

 
 

 1  2  3  4  5  6 

 7  8  9  10  11  12 



61 
Approved for public release; distribution unlimited. 

 
 

 
 

 

Figure 6.25.  Load-differential images of all 13 data sets from Plate #8 plotted on a fixed 30 dB 
scale (-21 to +9 dB). 
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Figure 6.26.  Composite load-differential images from all 13 data sets of Plate #8.  All images are 
shown on the same 20 dB color scale (-18 dB to +2 dB). 

 
 

6.6 Section Summary: Load-Differential Imaging 
This section has reported the positive and negative effects of loads on ultrasonic guided 

wave imaging systems that are based upon changes from damage-free reference signals.  A large 
mismatched load causes significant changes in ultrasonic signals and can thus result in both false 
alarms (when there is no damage) and missed detection of damage if it is present.  However, a 
relatively small load can open cracks to enhance their detectability.  These observations have 
motivated the introduction and demonstration of a load-differential imaging method for fatigue 
crack detection and localization for which the reference signals are taken to be at the same 
damage state but at different loads.  A series of images generated from load-differential signals 
clearly shows the initiation and progression of fatigue crack growth.  Furthermore, load-
differential imaging has the potential for identifying multiple cracks if they open at different 
loads. 

Load-differential methods clearly demonstrate the importance of having open cracks to 
ensure their reliable detection.  It should also be noted that temperature or other environmental 
conditions will not adversely affect load-differential imaging performance as long as there are 
not significant changes in between load steps.  Experiments with bonded components showed 
mixed results.  For the case where the bonding was not changing under load, load-differential 
methods were not able to detect a disbond, which is not unexpected.  Cracks were still able to be 
clearly detected for well-bonded components, but severe variation of boundary conditions during 
loading obscured cracks.  Several of the experiments also pointed out the importance of ensuring 
the health of the transducers as loads are varied. 
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7. Concluding Remarks 

This three year project accomplished its primary objective of using loading effects to 
monitor damage with guided waves but without a direct baseline comparison.  The load-
differential method was successfully demonstrated to detect fatigue cracks by their load-
dependent response.  In some cases localization of individual cracks was achieved.  The success 
of the method strongly depends upon two conditions:  (1) knowledge of the load associated with 
each recorded signal, and (2) the absence of other changes taking place during the load 
variations.  In particular, experimental results demonstrated the importance of both stable 
transducers and boundary conditions during load variations, although some changes in both were 
fairly well tolerated.  Although not specifically investigated as part of this project, changes in 
boundary conditions such as are caused by disbonds may be the desired damage type to detect, in 
which case sensitivity to these boundary conditions changes would be desirable. 

Data recorded from tests performed as part of this project were analyzed primarily using 
conventional delay-and-sum imaging.  This analysis technique not only provided a convenient 
way to combine data from multiple transducer pairs, it also gave confidence in the consistency of 
the data by providing localization information.  However, it is not the only possible analysis 
method.  Signal difference and correlation based methods in common use could also be applied, 
as could adaptive imaging methods that have been used for similar problems [46,47].  Modeling 
to better understand the expected load-dependent response from both cracks and other sources of 
scattering could also enable better analysis methods. 

The effects of loading on baseline comparison methods were also evaluated as part of this 
project.  It was shown that if signals and baselines are recorded at different loads, signal changes 
are significant and could lead to either false alarms or masking of damage.  The general 
anisotropic nature of applied loads inherently prevents application of methods developed for 
temperature compensation, which points to the importance of knowing the current loading state. 

Results from this project also point out the well-known difficulty of detecting tightly closed 
fatigue cracks using ultrasonic methods.  Many proposed SHM systems are considering 
permanently mounted sensors combined with ground-based instrumentation that interrogates the 
sensors on the ground under static conditions.  The danger of this approach is that some fatigue 
cracks may be tightly closed under these conditions and thus undetectable.  On the other hand, 
instantaneous measurement of dynamic loads in flight may also be problematic, as well as 
achieving the range of loads needed to implement a full load-differential measurement.  This 
study provides initial data to help determine if the benefits of such an approach outweigh the 
obstacles to implementation.  It also may provide justification to change ground-based testing 
methods to ensure that cracks are open by application of appropriate static loads. 
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