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Abstract 

There has been longstanding government and industry interest in pressure-gain 

combustion for use in Brayton cycle based engines.  Theoretically, pressure-gain 

combustion allows heat addition with reduced entropy increase.  The pulsed detonation 

combustor (PDC) is a device that can provide such pressure-gain combustion and 

possibly replace typical steady deflagration combustors.  The PDC is inherently unsteady, 

however, and comparisons with conventional steady deflagration combustors must be 

based upon time-integrated performance variables.  In this study, the radial turbine of a 

Garrett automotive turbocharger was coupled directly to and driven, full admission, by a 

PDC in experiments fueled by hydrogen or ethylene.  Data included pulsed cycle time 

histories of turbine inlet and exit temperature, pressure, velocity, mass flow, and enthalpy.  

The unsteady inlet flowfield showed momentary reverse flow, and thus unsteady 

accumulation and expulsion of mass and enthalpy within the device.  The coupled 

turbine-driven compressor provided a time-resolved measure of turbine power.  Peak 

power increased with PDC fueled fraction, and duty cycle increased with PDC frequency.  

Cycle-averaged unsteady specific work increased with fueled fraction and frequency.  An 

unsteady turbine efficiency formulation is proposed and evaluated, accounting for heat 

transfer effects and including extensively weighted total pressure ratio and ensemble 

averaging over multiple cycles.  Turbine efficiency increased with frequency but was 

lower than the manufacturer reported conventional steady turbine efficiency. 
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UNSTEADY SPECIFIC WORK AND ISENTROPIC EFFICIENCY OF A 

RADIAL TURBINE DRIVEN BY PULSED DETONATIONS 

I. Introduction 

Gas turbine engines may achieve higher specific work with pulsed detonation 

combustors (PDCs), reducing the entropy associated with heat addition.  PDCs are 

inherently unsteady with large, rapid transients occurring in less than a millisecond 

typically with peak gas pressures ratios greater than 25, peak gas temperatures greater 

than 2,900 K, peak gas velocities near Mach 1 and detonation wave speeds exceeding 

Mach 3.  Incorporating a PDC into a steady Brayton cycle introduces unsteady flow 

behavior with potential negative effects on rotating machinery performance.  Practical 

implementation of a PDC in a gas turbine engine must ensure that performance 

improvements in the combustor are not overcome by performance deterioration in the 

turbine.  Comparisons between conventional steady and pulsed detonation operation 

require time-integrated formulations for specific work and isentropic turbine efficiency.   

Evaluation of pulsed detonation driven turbine performance requires full-cycle, 

time-resolved measurements.  There have been few previous experiments conducted with 

pulsed detonation driven turbines.  Hoke, et al. (2002), Schauer, et al. (2003), and 

Sakurai, et al. (2005) conducted experiments with radial turbines.  Hoke, et al. (2002) 

demonstrated the capability of an automotive turbocharger radial turbine to extract 

unsteady work from a PDC consisting of two simultaneously firing detonation tubes.  

Schauer, et al. (2003) reported a 6.8% thermal efficiency with a single tube PDC-

turbocharger with an initial absolute tube pressure of 2.5 bar and proved that the radial 
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turbine was able to survive more than 50,000 detonations and a 25 minute continuous 

run.  The thermal efficiency was lower than that of the equivalent ideal Brayton cycle, 

which is 23% thermally efficient with an overall pressure ratio of 2.5.  Sakurai, et al. 

(2005) experimented with a single tube PDC driven turbocharger and showed that power 

output improved with increasing operating frequency.  None of the above studies 

included time-resolved measurements of turbine inlet and exit pressures, temperatures 

and velocities with full-admission pulsed detonation operation.     

Currently, there is no widely accepted method for characterization of ideal 

unsteady turbine performance, in particular unsteady turbine efficiency.  Suresh, et al. 

(2009) proposed and evaluated two formulations from a two-dimensional (2-D) numerical 

simulation with a full-admission array of PDC tubes feeding a translating axial turbine 

cascade.  One formulation was based on integrated turbine inlet and exit total enthalpy 

and assumed instantaneous expansion, and the other formulation was based on mass-

averaged inlet and exit total temperature and work-averaged inlet and exit total pressure.  

There was a significant difference between efficiency results from the two formulations, 

using the same flowfield data.  An industry standard, unsteady turbine efficiency 

formulation is needed. A practical formulation for unsteady turbine efficiency must 

account for differences in experimental pulsed detonation operation and conventional 

steady deflagration operation.  

I.A.  Objectives 

The current objective, to evaluate pulsed detonation driven turbine performance, 

is accomplished in two parts:  1) time-resolved measurements of power and turbine inlet 
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and exit flowfield properties, and 2) evaluation of cycle-averaged unsteady specific work 

and isentropic turbine efficiency.  Time-resolved power and turbine inlet and exit 

flowfield properties show the interaction between the PDC and turbine.  Time-integrated 

turbine power is necessary to compute cycle-averaged specific work.  To compute cycle-

averaged turbine efficiency, measured flowfield properties must include pressure, 

temperature, velocity, mass flow, and enthalpy.  A standard formulation for turbine 

efficiency is proposed, accounting for heat transfer effects and including cycle-average 

terms for work, enthalpy, and pressure ratio.  

A comparison of cycle-averaged specific work and isentropic efficiency over a 

range of PDC operating parameters shows the full relationship between the coupled PDC 

operation and turbine performance.  Key PDC operating parameters include frequency, 

fueled fraction, purge fraction, and fuel type.  The operating hypothesis was that unsteady 

specific work and isentropic efficiency increase with PDC frequency and fueled fraction 

due to shorter quiescent periods in the flowfield and that isentropic efficiency is lower 

than comparable conventional deflagration operation due to fluctuations away from the 

designed steady operating condition. 

I.B. Outline 

The first section of this document introduced the motivation and objectives of this 

research.  Section II includes previous research of unsteady flow in conventional and 

pulsed detonation driven turbines.  Section III addresses unsteady thermodynamics 

associated with conventional and pulsed detonation driven turbines and introduces an 

unsteady turbine model for the proposed isentropic efficiency formulation.  Section IV 
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describes the experimental research facility, test article and instrumentation.  Section V 

includes a discussion of the data reduction and uncertainty analysis.  Section VI contains 

results from pulsed detonation driven turbine experiments.  Section VII entails a 

discussion of the results as related to comparisons between steady and unsteady turbines 

and axial and radial turbines.  Section VIII includes conclusions drawn from experimental 

results.  Section IX includes recommendations for continued research. 
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II.  Previous Pulsed Detonation Driven Turbine Research 

The PDC-turbine arrangement used in this study was developed from recent 

pulsed detonation driven turbine research, as described below.  A more detailed history of 

previous research is provided in Appendix A, relating the current research to the 

development history of pressure-gain combustion and gas turbine integration.  Theory and 

operation of pulsed detonation combustors are discussed in Appendices B and C, 

respectively. 

The radial turbine of a Garrett automotive turbocharger was selected for this 

research due to previously proven pulsed detonation driven performance and durability.  

Schauer, et al. (2003) conducted an experiment with a single-tube, hydrogen-fueled, 

pulsed detonation driven radial turbine from a Garrett T3 automotive turbocharger.  

Power output was measured with the turbocharger coupled compressor, and maximum 

cycle-average thermal efficiency was 6.8%.  Operating frequencies ranged from 20 to 40 

Hz.  The current study also used the turbocharger compressor for power measurements 

and explored a range of operating frequencies from 10 to 30 Hz.  Testing at higher 

frequencies was not possible due to back-fire.   

Schauer, et al. (2003) reported that peak pressure was attenuated through the 

turbine from 27.6 bar to 6.9 bar, indicating that the amplitude of unsteadiness was smaller 

at the turbine exit than at the inlet.  The choice of 50 bar pressure transducers for this 

current experiment was determined to be sufficient for the expected peak pressures. 

A full-admission PDC-turbine arrangement was selected for this current research 

to eliminate the effect of viscous mixing between the PDC exhaust and steady bypass 
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flow associated with partial-admission arrangments.  Rasheed, et al. (2005), Glaser, et al. 

(2007), and Caldwell, et al. (2006 and 2008) experimented with axial turbine arrangments 

driven by a partial-admission, annular, multi-tube PDC array and a steady flow of cooling 

“bypass” air that mixed with PDC exhaust before entering the turbine.  The cooling air 

allowed conventional measurement techniques for turbine inlet and exit pressures, 

temperatures, and velocities.  Glaser, et al. (2007) reported that work output and turbine 

efficiency from this arrangment were comparable to that of steady deflagration operation.  

Caldwell and Gutmark (2008) investigated the inlet flowfield of the same PDC-turbine 

arrangement.  Shadowgraph images showed a shock-jet interaction between the primary 

and secondary flow that induced a vortex ring, attenuating the exiting PDC shock before 

entering the turbine and reducing the energy available for shaft work due to viscous 

mixing.  The results indicated that a full-admission PDC-turbine arrangement is necessary 

to eliminate energy mixing losses at the turbine inlet.  

The flowfield of a full-admission PDC-turbine arrangement was previously 

studied by Rasheed, et al. (2004) to observe the interaction of a single-tube full-admission 

pulsed detonation with a 2-D turbine cascade.  Shadowgraph images showed strong 

shocks reflected from blade leading edges and weaker shocks passed through the cascade.  

Rasheed, et al. (2004) also conducted an unsteady numerical study of the full-admission 

cascade arrangement and concluded that multi-cycle measurements and calculations are 

necessary to evaluate detonation driven turbine performance. 

Appendices D, E, F, and G include preliminary results from experiments using 

different test articles, PDC configurations, and instrumentation techniques and were 
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presented at various conferences (Rouser, et al. 2010a,  Rouser, et al. 2010b, Rouser, et 

al. 2011a, Rouser, et al. 2011b).  The initial experiments were essential to the 

development of the current test configuration; however, they did not contain a complete 

full-cycle evaluation of specific work and turbine efficiency.   

Appendix D includes a preliminary comparison of pulsed detonation and steady 

deflagration turbine performance with the radial turbine in a GT2860RS ball bearing 

turbocharger (similar to the GT28 journal bearing turbocharger used in the current study).  

With a combustor inlet pressure of about 2 bar, there was a 41.3% relative improvement 

in specific work with PDC operation.  There was also a 28.7% relative improvement in 

brake specific fuel consumption (BSFC) at the same baseline operating condition.  The 

conclusions drawn from this initial experiment demonstrated potential for improved 

performance; however, the rudimentary steady deflagration arrangement was not 

representative of a typical gas turbine engine. 

Appendix E includes a parametric study of a PDC driven GT28 radial turbine 

using orifice plates as obstacles for deflagration-to-detonation transition (DDT).  Results 

showed that cycle-average specific work increased with frequency, and rotor speed 

behavior was steadier at higher frequencies, as shown in Fig. 1 with instantaneous rotor 

speed normalized by maximum cycle rotor speed and time normalized by total cycle time.  

The orifice plates were effective for DDT; however, they also incurred significant total 

pressure loss. 
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Figure 1.  Normalized rotor speed time history for stoichiometric hydrogen-fueled 

PDC operation at 10 Hz, 15 Hz, and 20 Hz operating frequencies  

Appendix F includes preliminary GT28 radial turbine inlet and exit flowfield 

measurements using high-speed cameras and silicon-carbide seed particles.  Results for 

turbine inlet and exit flowfield properties during 6 ms of blowdown were comparable to 

results obtained in this current study, including peak inlet static temperature greater than 

2,500 K, peak inlet static pressure about 10 bar, and peak inlet velocity about 1,000 m/s.  

The optical measurement technique was limited by the particle emission threshold and 

could not be used for full-cycle measurements; however, the technique was used in this 

current study to increase confidence in laser-based measurements. 

Appendix G includes results from a PDC driven T3/T4E turbocharger radial 

turbine arrangement with a pre-detonator for detonation initiation.  Results showed 

increased cycle-average specific work with increasing frequency, as well as with 
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increasing fueled fraction, as shown in Fig. 2.  Performance improvements were more 

strongly related to frequency than fueled fraction.  The pre-detonator arrangement 

eliminated the total pressure loss incurred by DDT obstacles; however, initiation was not 

consistent. 

 

Figure 2.  Time-average specific work from 10 Hz to 25 Hz operation, fueled 

fractions of 0.5 to 0.8 and 0.5 purge fraction 

Appendices D, E, and G show that average specific work improved with a pulsed 

detonation driven radial turbine and increased with increasing frequency and fueled 

fraction. Average isentropic efficiency, however, must also be known to ensure that 

improvements in specific work were not overcome by deterioration in turbine efficiency.   
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III. Unsteady Thermodynamics and Unsteady Turbine Model 

Unsteady flows in turbomachinery have been the subject of many experimental, 

numerical, and analytical studies.  The main motivation has been to gain understanding of 

unsteady flow effects on operability, durability, and performance in order to improve 

engine design.  Glaser, et al. (2007) noted from experiments that PDC driven turbine 

performance was comparable to that of steady deflagration; however, the comparison was 

based on conventional steady formulations for specific work and turbine efficiency.  

Formulations for specific work and turbine efficiency are developed below, starting from 

conventional turbine thermodynamic analysis and accounting for unsteady effects. 

III.A.  Unsteady Flow in Conventional Brayton Cycle Turbines 

Conventional turbine thermodynamic analysis usually involves an Eulerian 

approach that assumes uniform steady flow.  Figure 3 illustrates the energy interactions in 

a typical control volume 1st Law formulation for turbine power.  Steady shaft power is 

related to the rate change of enthalpy across the device and the rate of energy lost to heat 

transfer, as shown in Eq. (1).  In many cases, heat transfer effects can be neglected or 

estimated as a second order effect and the power related directly to the net total enthalpy 

rate across the turbine.  Steady turbine efficiency is the ratio of actual and ideal net total 

enthalpy rate across the turbine.  Figure 4 illustrates a notional Mollier enthalpy-entropy 

diagram for a conventional turbine.  A typical formulation for steady isentropic turbine 

efficiency is shown in Eq. (2), relating actual change in total specific enthalpy rate to 

ideal using an isentropic relationship for a calorically perfect gas. 
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Figure 3.  Schematic of 1
st
 Law thermodynamic analysis for a steady flow turbine 
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Figure 4.  Notional Mollier diagram for a steady flow turbine 
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Though steady formulations are typically used for conventional gas turbines, 

unsteady flow can be caused by potential field interactions, wake-blade interactions, 

rotor-stator shock interactions, blade flutter, turbulence, blade tip leakage, and vortex 

shedding, all of which can affect enthalpy and total pressure at the turbine inlet and exit.   

Oro, et al. (2009) identified various unsteady flow structures within conventional gas 

turbine engines, classifying the structures by length and time scales and by deterministic 

or stochastic behavior (i.e., forced or unforced behavior).  Sieverding, et al. (2004),  

Sharma, et al. (1992),  Greitzer, et al. (1993)  and Fritsch and Giles (1992) examined 

various unsteady flow effects in conventional turbomachines and concluded that 

performance losses from secondary flow effects are small because the time scales are fast 

compared to the mean through-flow time and energy content is low compared to that of 

the mean flow. 

III.B.  Unsteady Flow in Pulsed Detonation Driven Turbines 

Steady performance formulations are not appropriate for turbines operating in 

unsteady flowfields with rapid, large excursions in pressure, temperature, and velocity, 

such as those associated with pulsed detonation combustion.  A complicating feature is 

unsteady mass storage, and thus, specific power must be integrated over a full-cycle to 

obtain cycle-average specific work, ,s turbW .  In this study, turbine power and mass flow 

measurements were expected to have different characteristic response times regarding 

pulsed detonation inputs.  Thus, the formulation for cycle-average specific work proposed 

here includes separate time-integrals for the numerator and denominator, seen in Eq. (3).     
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A formulation for unsteady isentropic turbine efficiency must include integrated 

properties over at least one full-cycle but better over many cycles to account for unsteady 

mass and energy storage effects.  Figure 5 illustrates a notional Mollier diagram for a 

pulsed detonation driven turbine.  Due to the unsteady nature of pulsed detonation 

operation, the thermodynamic state at the turbine inlet changes over cycle time, illustrated 

by a large circle.  The amplitude and time scales at the turbine exit differ from that at the 

inlet.  Preliminary results (Rouser et al., 2011a) showed that fluctuations in temperature, 

pressure, and velocity are attenuated at the turbine exit, and thus the time variation for 

actual and ideal conditions are shown as smaller circles.    

 

Figure 5.  Notional Mollier diagram for a pulsed detonation driven turbine 

Two general methods can be used to evaluate cycle average unsteady turbine 

efficiency:  average instantaneous efficiency and average net efficiency.   The first 
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method yields a time-integrated formulation of Eq. (2) and includes instantaneous inlet 

and exit total enthalpy rate and total pressure, as shown in Eq. (4).  In a steady machine, 

the instantaneous isentropic relationship between the inlet and exit is unambiguous and is 

associated with a fixed mass travelling through the turbine.  The unsteady thermodynamic 

model is complicated in pulsed detonation driven operation due to the time-uncoupled 

states of the gas at the inlet and exit, as shown by Rouser, et al. (2011a).   Thus, the time-

integrated instantaneous formulation was impractical for this experimental study in which 

pressure, temperature, and velocity measurements at the turbine inlet and exit were not 

correlated for each fixed mass passing the turbine. 
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The second method evaluates the cycle average unsteady turbine efficiency based 

on the net total enthalpy entering and exiting the turbine.  A general form of the proposed 

formulation, based on 1-D measurements of stagnation pressure and total enthalpy rate, is 

shown in Eq. (5).  The formulation does not require total enthalpy rate at the turbine inlet 

and exit to be correlated to a fixed mass.  Rouser, et al. (2011a) showed that the exit total 

pressure is nearly steady at ambient conditions.  Thus, a simple and accurate procedure is 

to assume instantaneous-like expansion and employ the isentropic relation in the 

denominator of Eq. (5).  In this study, the exponent of the isentropic relation is based on 

an average specific heat across the turbine, as a function of temperature. 
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An averaging method, shown in Eq. (7), is applied to the collective pressure ratio 

term in the denominator of Eq. (5) based on an extensive weighting parameter, , which 

is required due to the extensive property of the enthalpy rate terms of Eq. (5).  Thus, the 

efficiency formulation shown in Eq. (8) is based on mean effective pressure.  Two 

different weighting parameters were considered in this study to model the large rapid 

excursions associated with the detonation arrival at the turbine inlet:  inlet total enthalpy 

rate and inlet mass flow rate, both of which can be used to determine the thermodynamic 

state on a Mollier diagram.  A sensitivity study is presented in the results discussion to 

show the effect of weighting parameter on unsteady turbine efficiency. 
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Suresh, et al. (2009) proposed two formulations for periodic isentropic efficiency 

for a turbine driven by pulsed detonations.  Their first formulation was similar to Eq. (5), 

based on net total enthalpy entering and exiting the turbine.  Shown in Eq. (9), their 

formulation was predicated on shaft power equal to change in total enthalpy rate across 

the turbine, with negligible heat transfer.  Equation (9) includes temporal and spatial 

integration with constant specific heat, where T is PDC cycle time, Tt is stagnation 

temperature, Pt is stagnation pressure, Ai is turbine inlet area, and Ae is turbine exit area.   
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 (9) 

For simplification, the formulation in Eq. (9) can be expressed in terms of inlet 

and exit net total enthalpy and average total pressure to show similarity with the Eq. (5) 

formulation proposed in this study. 
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 (10) 

Suresh, et al. (2009) applied Eq. (9) to a numerical study of a 2-D, translating 

turbine rotor cascade with inlet conditions from 1-D numerical simulations of a 30 Hz 

pulse detonation tube and nozzle with adiabatic walls.  The simulation started from a 

uniform flow condition and evolved into a periodic state.  Rotor blade passing frequency 
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was 778 blades per PDC cycle (23,575 Hz).  The resulting integrated isentropic efficiency 

was 84%.   

Suresh, et al. (2009) also proposed a work-averaged formulation, shown in Eq. 

(11),  that yielded a 73.5% turbine efficiency under the same PDC-cascade conditions, 

indicating that the averaging technique has a significant effect on efficiency results.  The 

work-averaged formulation included mass-averaged inlet and exit total specific enthalpy, 

work-averaged inlet and exit total pressure, and constant specific heat.   
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 (11) 

The work-averaged total pressure terms proposed by Suresh, et al. (2009) are 

expressed in Eq. (12) in terms of  enthalpy weighted inlet total pressure and time-average 

exit total pressure to show similarity with the Eq. (8) formulation in this study, with inlet 

total enthalpy rate as the weighting parameter.  The formulation proposed by Suresh, et al. 

(2009) differs in that exit total pressure is not enthalpy weighted.  

 
   

 
 

, ,_ _

,

,

1

1
, _

, ,_
, _ _

1

t i n t o u tm a s s a v g m a s s a v gS u r e s h

t u r b w o r k a v g

t i n

t i n n e t t i m e

t i n t o u tm a s s a v g
t i n n e t t i m e t i m e a v g

h h

m h

P
h P

m h



 



 








  
  
  
        

  
  

 
 
 

 (12)   



 

18 

 

III.C.  Unsteady Turbine Model with Heat Transfer 

Due to short run times, experiments in this study did not reach thermal 

equilibrium, thus requiring a formulation for turbine efficiency that accounts for unsteady 

heat transfer and storage, unlike the formulations proposed by Suresh, et al (2009).  The 

proposed formulation is based on the model shown in Fig. 6.  Turbine efficiency is 

obtained from the thermodynamic states at stations 2 and 3; however, flowfield 

temperature, pressure and velocity measurements were made at stations 1 and 4.  Heat 

transfer and storage within the turbine and housing occurs between stations 2 and 3, 

shown in the Fig. 3 steady model on page 11, at a rate that is expected to decrease from 

the turbine inlet to the exit, with decreasing temperature potential.  Heat transfer and 

storage across the turbine reduces enthalpy available for turbine work and must be taken 

into account for turbine efficiency.  Station 1 enthalpy measurements overestimate actual 

enthalpy available for turbine work, and station 4 enthalpy measurements underestimate 

actual enthalpy at the turbine exit.  Thus, the analysis in this study splits the amount of 

heat transfer across the turbine, modeling the inlet duct and housing as a heat exchanger 

upstream of the turbine, between stations 1 and 2, and the turbine exit duct and housing 

as a downstream heat exchanger, between stations 3 and 4.  In the analysis, the upstream 

heat exchanger accounts for reduced total enthalpy available for shaft work due to heat 

transfer at the turbine inlet, and the downstream heat exchanger accounts for the 

additional drop in enthalpy by heat rejection at the turbine exit.  Thus, evaluation of 

unsteady turbine efficiency is based on inferred thermodynamic states at stations 2 and 3. 



 

19 

 

 

Figure 6.  Schematic of unsteady model for a pulsed detonation driven turbine 

The new model for average isentropic turbine efficiency assumes constant total 

pressure between stations 1 and 2 and stations 3 and 4, as indicated in the notional 

Mollier diagram included in Fig. 7.  A Rayleigh flow analysis was conducted at the 

turbine inlet to validate the constant pressure heat transfer assumption, as will be shown 

in the results discussion.   

 

Figure 7.  Notional Mollier diagram for an pulsed detonation driven turbine with 

heat transfer 
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Drop in total enthalpy between stations 1 and 2 in Fig. 7 is due to the fraction of 

heat transfer and storage in the turbine inlet duct and housing.  Drop in total enthalpy 

between stations 2 and 3 is due to expended power.  The difference in total enthalpy 

between stations 3 and 3i is associated with loss in turbine efficiency.  Ideal enthalpy at 

the exit, 3i, is computed from the isentropic pressure ratio between stations 2 and 3i.  

Without accounting for heat transfer between stations 3 and 4, the apparent efficiency 

would falsely approach unity, as shown by the close proximity of stations 4 and 3i.  

Turbine inlet total enthalpy rate at station 2 is obtained from measurements of 

shaft power output via shaft-coupled compressor power and total enthalpy rate at stations 

1 and 4.  The derivation for turbine inlet total enthalpy rate begins with a calculation of 

total heat transfer and storage rate between stations 1 and 2 and between 3 and 4, as 

shown in Eq. (13).   

 1 2 3 4 ,1 ,4total t t outQ Q Q H H W       (13) 

A fraction of the total heat transfer and storage rate is attributed to the inlet, 

between stations 1 and 2, through the inlet heat transfer fraction parameter, .  A 

sensitivity study is shown later for the effect of  on unsteady turbine efficiency.   

  1 2 totalQ Q   (14) 

Turbine inlet total enthalpy rate at station 2 is obtained from measurement of total 

enthalpy rate at station 1 and the inferred heat transfer rate between stations 1 and 2. 

  , , ,2 ,1 1 2 ,1t in turb t t t totalH H H Q H Q      (15) 
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The Eq. (16) formulation is obtained by substituting Eq. (13) into Eq. (15). 

   , , ,1 ,1 ,4t in turb t t t outH H H H W     (16) 

Turbine exit total enthalpy rate at station 3 is inferred from the remaining fraction 

of total heat transfer and storage rate and measurement of total enthalpy at station 4. 

  3 4 1 totalQ Q    (17) 

    , , ,3 ,4 3 4 ,4 1t out turb t t t totalH H H Q H Q       (18) 

The Eq. (19) formulation is obtained by substituting Eq. (13) into Eq. (18), and 

the Eq. (20) formulation is obtained by distributing terms. 

   , , ,4 ,1 ,41t out turb t t t outH H H H W      (19) 

   , , ,1 ,1 ,4t out turb t out t t outH H W H H W      (20) 

Thus, the difference between inlet total enthalpy rate in Eq. (16) and exit total 

enthalpy rate in Eq. (20) is equal to turbine power output, and the integrated turbine 

power output over one or more full pulsed detonations is equal to the integrated power 

into the coupled compressor. 

 , , , ,t in turb t out turb outH H W   (21) 

 , , , , ,t in turb t out turb out turb

cycle cycle cycle

H dt H dt W dt     (22) 
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, ,out turb in compr

cycle cycle

W dt W dt   (23) 

Cycle integrated turbine power output is equal to compressor power input (less 

mechanical losses), because the two components are coupled to the same shaft.  Typical 

turbocharger mechanical efficiency at high-power is above 95%. In this study, the 

efficiency was assumed to be 100%.  A formulation for cycle integrated compressor 

power input, shown in Eq. (24), is developed from a one-dimensional, adiabatic 

thermodynamic analysis.  The formulation assumes constant average specific heat across 

the compressor, which is reasonable for the temperatures in these experiments.     

   , , , ,in compr compr p avg t out t in compr
cycle cycle

W dt m c T T dt    (24) 

Equation (24) assumes steady-state, uniform compressor inlet and exit temperatures; 

however, in this current study exit temperature measurements do not reach steady-state 

during short run times.  Duration of combustor run times is restricted by instrumentation 

temperature limits.  A formulation for cycle integrated compressor power is developed 

using isentropic relations for a calorically perfect gas and compressor efficiency.  

Compressor efficiency is obtained from the manufacturer compressor map (Fig. 8). 
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Figure 8.  Compressor operating map for Garrett GT28R automotive turbocharger 

(used with permission from Honeywell) 

The Eq. (27) formulation is obtained by substituting Eq. (26) into Eq. (25).  
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The Eq. (28) formulation for cycle-average specific work is obtained by 

combining Eqs. (27) and (3) on page 13.  
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Substituting Eqs. (16) and (27) into the formulation of turbine efficiency in Eq. 

(8) on page 15 yields a proposed formulation for cycle-average mean effective isentropic 

efficiency that account for heat transfer effects.   
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A sensitivity study is presented in the results discussion section to show the 

effects of three different methods for evaluating Eq. (29) over multiple cycles.  In the first 

method, the cycle-average efficiency for each full cycle is computed, followed by an 

ensemble average of the cycle-averaged efficiencies.  In the second method, the pressures, 

temperatures and velocities are ensemble-averaged before computing cycle-average 

efficiency.  In the third method, the cycle-average efficiency is computed from ensemble-

average mass flow, enthalpy and total pressure ratio terms.  As will be shown, the 

difference in efficiency results between ensemble averaging methods is between 2.1% 

and 7.2%. 
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IV. Facility and Procedures 

The following detailed description of the experimental arrangement includes the 

final configuration tested.  Initial tests, as discussed in Appendix D, compared steady 

deflagration driven turbine operation to pulsed detonation turbine operation using a 

Garrett GT2860RS ball bearing turbocharger, spark ignition, and an internal spiral for 

detonation transition.  During subsequent testing, the PDC-turbine experimental 

arrangement was refined.  The ball-bearing turbocharger was supplanted by a journal 

bearing turbocharger to better withstand high axial thrust loads.  Two other detonation 

initiation configurations were tested, as described in Appendices E and G:  spark ignition 

with two orifice plate detonation transition obstacles and pre-detonator initiation with 

transition from a small to large diameter detonation tubes.  Whereas the pre-detonator 

configuration offered the greatest potential for reduced total pressure loss, the spark-spiral 

arrangement offered the best initiation consistency, which was preferred for high-speed 

optical instrumentation techniques employed in this experiment.  Appendix F includes 

initial results from optical flowfield measurements using silicon carbide seed particles; 

however, subsequent testing determined that a simplified approach using soot particles 

from ethylene-air operation provided sufficient emission for optical measurements. 

To date, there have been no time-resolved experimental measurements of PDC-

turbine inlet and exit flowfields from which to calibrate or confirm measurement 

accuracy.  Therefore, different flowfield measurement techniques were utilized, as 

described below, to increase confidence in measurement accuracy.  Comparison of results 

from the two techniques is discussed in the uncertainty section of the next chapter. 
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IV.A.  Detonation Engine Research Facility 

Experiments were carried out in the AFRL Detonation Engine Research Facility 

(DERF), using similar configurations as previous work by Hoke, et al. (2002) and 

Schauer, et al. (2003).  Formerly a full-scale turbine engine test cell, the facility has been 

modified to enable pulsed detonation engine tests.   

The facility supplies compressed air to the main fill and purge manifolds as seen 

in Fig. 9.  Fuel is mixed at the main manifold entrance.  Fill distribution and ignition 

takes place using an automotive engine head, shown in Fig. 10, with camshafts to operate 

intake and exhaust poppet valves for a desired operating frequency.  The fill mixture 

enters the engine head from the top, and the purge air enters from the bottom.  The 

detonation rig is capable of mounting and operating up to four detonation tubes at one 

time.  However, in this current experiment, a single detonation tube was mounted in the 

first position from the left (Port #1), and the main and purge lines to the three other ports 

were capped during testing. 

 

Figure 9.  Block diagram of AFRL Detonation Engine Research Facility engine test 

rig 
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Figure 10.  Detonation engine head, fill and purge lines, and fill and purge valves 

The camshafts are driven by an electric motor and are aligned to provide 

approximately equal time with main valves open, all valves closed, and purge valves open 

(corresponding to the fill, fire and purge phases of PDC operation) in each tube.  The 

intake valves are used for the main fill fuel-air mixture, and the exhaust valves are used to 

inject purge air.  During the fire phase, intake and exhaust valves are closed.  Ignition 

timing is based on the stock cam design, with a variable spark delay for optimal 

detonation operability. 

Combustion products and purge flow expand through the turbocharger turbine, 

which is coupled to the detonation tube exit.  Turbine exhaust passes through a 77.9 mm 

diameter 90 degree elbow, followed by a 77.9 mm to 52.5 mm reducer coupling, and 

finally through a 52.5 mm exhaust pipe.  A notional temperature-entropy diagram in Fig. 

11 illustrates the experimental configuration as an ideal cycle in which the turbocharger 

turbine does not drive the air supply compressor. 
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Figure 11.  Notional ideal temperature-entropy diagram of experimental test 

configuration 

IV.A.1.  Air Supply 

The DERF uses Ingersoll-Rand air facility compressors to provide compressed air 

to the main and purge manifolds.  Each of the three compressors is capable of supplying 

up to 40 m
3
/min of volumetric flow at pressures up to 6.9 bar.  Compressed air flows into 

a 4.5 m
3
 receiver tank, and then is routed into the test cell, where it separated into two 

streams for the main and purge manifolds.  Each air stream is controlled by Tescom 

electromagnetic controllers that actuate pressure regulators and is metered through 

calibrated converging-diverging nozzles.  Mass flow rate through the nozzle is governed 

by the equation: 
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where P0 and T0 are the stagnation pressure and temperature, CD is the nozzle discharge 

coefficient, d is the nozzle throat diameter,  is the ratio of specific heats, and R is the gas 

constant.   

IV.A.2.  Fuel Supply 

Gaseous fuel is fed to the combustor from pressurized bottles.  Fuel flow is 

controlled by a Tescom electromagnetic controller that actuates a pressure regulator and 

is metered through a calibrated converging-diverging nozzle.  Gaseous fuel mass flow 

rate is also governed by Eq. (30).  Fuel is injected into the main manifold approximately 

5.9 m (19.5 ft) upstream of the poppet valves.  Fuel was added to the main manifold at a 

rate to achieve a desired equivalence ratio ( = 1.0 for hydrogen and 1.2 for ethylene in 

these experiments). 

IV.B.  Pulsed Detonation Combustor 

The PDC assembly shown in Figs. 12 and 13 consists of schedule-40 round steel 

pipe with a 52.5 mm inner diameter.  The detonation tube, 1092 mm in length, was 

coupled to the engine head and included an internal spiral-type obstacle, 457 mm in 

length, which extended from the engine head and assisted with deflagration to detonation 

transition.  The turbine inlet diagnostic section, 178 mm in length, was coupled to the 

detonation tube exit.  The diagnostic section includes non-intrusive laser instrumentation 

and a wall-mounted static pressure transducer, the details of which are provided later.  A 

transition section, 178 mm in length, coupled the diagnostic section to the turbine inlet, 

adapting the round pipe to a rectangular T3 turbocharger inlet flange.  The total 

combustor length was 1.4 m, and the volume was 0.003 m
3
. 
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Figure 12.  Side view schematic of PDC-turbine test section arrangement 

 

Figure 13.  PDC-turbine arrangement with inlet and exit diagnostic sections 

The turbine exit diagnostic section, 178 mm in length, with a 52.5 mm inner 

diameter, was coupled with a pipe reducer to the turbine exhaust elbow, which had a 77.9 

mm inner diameter.  Exit diagnostics were the same as that of the inlet, as will be 
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discussed later.  A straight 52.5 mm inner diameter exhaust nozzle, 229 mm in length, 

was coupled downstream of the exit diagnostic section. 

IV.B.1.  Operating Procedure 

PDC operation was attained by first setting desired fill and purge air flows and 

operating frequency.  Thus, the turbine was spinning before pulsed detonation operation 

was achieved.  After fill and purge air flows were established, spark operation was 

started, and then fuel flow commenced in the main fill manifold and increased until a 

desired fuel-air ratio was attained.  Typically, the desired equivalence ratio was achieved 

within five seconds, during which time intermittent detonations occurred.  Once the start-

up sequence was complete and desired operating conditions were achieved, 

measurements were taken and then fuel was shut-off.  Most run times were less than 30 

seconds and included about 500 detonation cycles. 

IV.B.2.  Operating Conditions 

Table 1 includes the range of operating conditions explored in this study.  Total 

turbine airflow ranged from 2.35 kg/min to 7.45 kg/min, and frequency ranged from 10 to 

30 Hz.  Two key PDC operating parameters are fueled fraction (FF) and purge fraction 

(PF).  These volumetric fractions of the detonation tube are associated with the respective 

phases of the PDC cycle.  For a 0.75 fueled fraction, the volume of fuel-air mixture 

extended to a nominal location 1016 mm downstream from the engine head, just 

upstream of the inlet diagnostic section, shown in Fig.12.  For a 0.90 fueled fraction, the 

volume of fuel-air mixture extended to a nominal location 1270 mm from the engine 
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head, just downstream of the inlet diagnostic section.  Larger fueled fractions were 

possible; however, 0.90 was chosen to avoid over-filling and burning in the turbine.   

Table 1. Summary of PDC operating conditions 

Hydrogen (  =1.0)

Frequency 

(Hz)

Fueled 

Fraction

Purge 

Fraction

Main Air 

Flow 

(kg/min)

Purge Air 

Flow 

(kg/min)

Main 

Manifold 

Pressure 

(bar)

Purge 

Manifold 

Pressure 

(bar)

Total Air 

Flow 

(kg/min)

10 0.60 0.75 0.85 1.50 1.19 1.38 2.35

10 0.75 0.75 1.05 1.50 1.27 1.37 2.55

10 0.90 0.75 1.26 1.50 1.37 1.37 2.76

20 0.60 0.50 1.67 1.97 1.52 1.66 3.64

20 0.60 0.75 1.67 2.98 1.55 2.04 4.65

20 0.75 0.75 2.08 2.97 1.74 2.04 5.05

20 0.90 0.50 2.50 1.97 1.88 1.57 4.46

20 0.90 0.75 2.50 2.97 1.92 2.06 5.46

30 0.60 0.75 2.48 4.41 2.07 2.55 6.89

30 0.75 0.75 3.09 4.36 2.33 2.60 7.45

Ethylene (  =1.2)

Frequency 

(Hz)

Fueled 

Fraction

Purge 

Fraction

Main Air 

Flow 

(kg/min)

Purge Air 

Flow 

(kg/min)

Main 

Manifold 

Pressure 

(bar)

Purge 

Manifold 

Pressure 

(bar)

Total Air 

Flow 

(kg/min)

20 0.90 0.50 2.89 1.75 1.94 1.57 4.64  

 
 air fuel fill

tube

t
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  
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
    

 air purge

tube

t
PF

 



 (31) 

Volumetric flow rate is governed by manifold pressure and mass flow rate.  

Volumetric flow rate was controlled by adjusting tube volume, frequency and fueled and 

purge fractions input into the PDC controls.  The tube volume was set to 0.00287 m
3
 for 

the hydrogen runs and 0.00254 m
3
 for the ethylene runs.  The difference in tube volume 

settings between hydrogen and ethylene runs accounts for the different stoichiometric 

fuel-air ratio and fuel density of the two fuels.  Total air mass flow rates for hydrogen and 
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ethylene runs were within 5% of each other at 20 Hz with 0.90 fueled and 0.5 purge 

fractions.  Ambient tube volume was the same for hydrogen and ethylene runs; however, 

back-pressure from the turbine affected the volumetric flow rate.  The tube volume input 

to the PDC controls was adjusted to ensure accurate fueled and purge fractions, as 

described in the next section. 

IV.B.3.  Instrumentation 

Fuel flow rates and main and purge air flow rates, as well as main and purge 

manifold pressures and temperatures were recorded at 1 Hz.   J-type thermocouples were 

mounted to the exterior wall of the PDC tube at locations 558 mm and 1422 mm 

downstream of the engine head (see Fig. 14).  Tube wall temperatures were equal to test 

cell ambient temperature at the start of each run, and maximum wall temperature was 

limited to 500 K to avoid overheating instrumentation. 

 

Figure 14.  Locations of PDC thermocouples and ion probes 

Ion probes were installed along the length detonation tube, as shown in Fig. 13, at 

800 mm and 952 mm from the engine head (see Fig. 14).  The probes are automotive 
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spark plugs that short circuit in the presence of ionized gas associated with a detonation 

front, indicating the detonation arrival time.  Flame speeds were determined from the 

transit time between probes, confirming that detonations were achieved with observed 

Chapman-Jouguet (C-J) velocities (approximately 1800 m/s for ethylene-air). 

Ion probes were also used to confirm fueled fraction.  When the main fill 

volumetric flow rate was set too low, a detonation was not detected by the ion probe at 

the location associated with corresponding fueled fraction.  Volumetric flow rate was 

adjusted until the fueled fraction was confirmed.  The volumetric flow rate adjustment 

was made by changing the apparent tube volume input to the PDC controls, affecting the 

manifold pressure and density.  The presence of a turbine downstream of the PDC 

generated back-pressure, requiring a higher volumetric flow rate than without the turbine.  

Therefore, the apparent tube volume with the coupled turbine was larger than the 

calculated ambient tube volume without the turbine. 

IV.C.  Radial Turbine 

The nine-blade, radial turbine used in this study is part of a Garrett GT28R journal 

bearing automotive turbocharger, pictured in Fig. 15.  According to the manufacturer, the 

rotating assembly has a moment of inertia of 3.2E-5 kg m
2
 and a maximum conventional 

steady turbine efficiency of 61%.  The manufacturer’s steady turbine operating map is 

included in Fig. 16 and is addressed later in the results discussion with regard to operating 

points in this current study.  Turbine efficiency plateaus above a pressure ratio of 2.0 on 

the steady operating map, indicating choked flow under normal automotive conditions.  
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The turbine wastegate, shown in Fig. 15, was capped so that all combustor exhaust passed 

through the turbine. 

 

Figure 15.  Garrett GT28R journal bearing turbocharger (used with permission 

from Advanced Tuning Products, Inc.) 

 

Figure 16.  Turbine operating map for Garrett GT28 journal bearing turbocharger 

(used with permission from Honeywell) 



 

36 

 

The GT28R is equipped with a radial compressor having 12 blades, 6 primary 

impeller blades and 6 splitter blades.  The compressor was used as a dynamometer to 

measure shaft power output from the turbine, as described later.  J-type thermocouples 

were attached to the exterior of the turbine and compressor housings.  Temperature 

measurements of center housing inlet and exit cooling water were also taken.  Cooling 

water flow rate was set at 5.7 liters per minute.  Housing and cooling water temperatures 

were sampled at 1 Hz.  Figure 17 includes a time history of turbine housing and inlet wall 

temperatures with 10 and 20 Hz hydrogen-fueled PDC with 0.75 fueled and purge 

fractions, indicating significant heat storage between the inlet measurement location and 

turbine, as discussed later in the data analysis and uncertainty section.   

 

Figure 17.  Turbine housing and inlet wall temperatures with 10 and 20 Hz 

hydrogen-fueled PDC with 0.75 fueled and purge fractions 
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IV.D.  Turbine Inlet and Exit Flowfield Instrumentation 

Turbine inlet and exit flowfield diagnostics included multiple techniques, 

including laser absorption spectroscopy for inlet and exit static temperature and velocity, 

optical pyrometry for inlet static temperature, particle streak velocimetry (PSV) for inlet 

velocity, and inlet and exit wall-mounted static pressure transducers.  Two different 

configurations were used.  One configuration employed laser absorption spectroscopy 

with the static pressure transducers, as shown in Figs. 12 and 13 on page 30, and the 

other, described below, employed pyrometry and PSV with the transducers.  Each 

configuration sampled data simultaneously, and results from the two configurations 

allowed for measurement comparison at the same operating conditions.  A summary of 

the flowfield techniques and configurations is included in Tables 2 and 3. 

Table 2. Summary of laser absorption configuration 

Flowfield 

Property
Instrumentation Location

Sampling 

Frequency

Tin

laser absorption 

spectroscopy

267 mm upstream of 

turbine inlet flange
50 kHz

Tout

laser absorption 

spectroscopy

584 mm downstream 

of turbine exit flange
50 kHz

Pin

50 bar static pressure 

transducer (Kulite)

217 mm upstream of 

turbine inlet flange
1 MHz

Pout

50 bar static pressure 

transducer (Kulite)

634 mm downstream 

of turbine exit flange
1 MHz

vin

laser absorption 

Doppler shift

267 mm upstream of 

turbine inlet flange
50 kHz

vout

laser absorption 

Doppler shift

584 mm downstream 

of turbine exit flange
50 kHz

Instrumentation Configuration #1
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Table 3. Summary of pyrometry and PSV configuration 

Flowfield 

Property
Instrumentation Location

Sampling 

Frequency

Tin

two-band optical 

pyrometry

343 mm upstream of 

turbine inlet flange
10 kHz

Pin

50 bar static pressure 

transducer (Kulite)

343 mm upstream of 

turbine inlet flange
1 MHz

Pout

50 bar static pressure 

transducer (Kulite)

584 mm downstream 

of turbine exit flange
1 MHz

vin

particle streak 

velocimetry

343 mm upstream of 

turbine inlet flange
10 kHz

vout

background oriented 

Schlieren

584 mm downstream 

of turbine exit flange
10 kHz

Instrumentation Configuration #2

 

IV.D.1.  Laser Absorption Spectroscopy 

Tunable diode-laser absorption spectroscopy (TDLAS) was employed for 

flowfield measurements at the turbine inlet and exit diagnostic sections.  TDLAS is a 

well-established method for rapid gas measurements in practical environments.  Mattison, 

et al. (2003) used TDLAS to characterize pulsed detonation engine water temperatures 

and concentration.  Lyle, et al. (2007) used Doppler frequency shift between the 

absorption features to determine velocity of the flow.  In this current study, a single beam 

was used to determine water temperature, pressure, and molarity from absorption 

spectroscopy, scanning three wavelength windows centered at 1340 nm, 1358 nm, and 

1365 nm every 0.02 ms, as shown in the top view of Fig. 18.  Gas velocity was 

determined from Doppler shift in the water absorption features, using two counter-

propagating beams, as shown in the side view of Fig. 18.  Temperature and velocity 

measurements were taken simultaneously and at the same location in the flowfield at 50 

kHz, averaged over the beam path.  Turbine inlet and exit laser absorption measurements 

were also simultaneous. 
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Figure 18.  Top and side view schematics of laser absorption instrumentation 

IV.D.2.  Static Pressure Transducers 

An arrangement of 50 bar Kulite static pressure transducers at the turbine inlet and 

exit, as shown in Fig. 18, were mounted to the tube wall with a 3.2 mm diameter stand-

off tube, 76 mm in length, to prevent overheating.  The stand-off distance reduced the 

natural frequency response of the transducer from 750 kHz to an estimated 300 kHz.  

Pressure measurements from laser absorption were used to synchronize the transducer 

pressures with the TDLAS temperatures and velocities by aligning the timing of the 

pressure rise associated with the arrival of the detonation wave.  Turbine inlet and exit 

static pressure transducers were sampled simultaneously at 1 MHz, along with ion probe 

and dynamometer measurements. 
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IV.D.3.  Two-Band Optical Pyrometry 

Optical pyrometry instrumentation was used as an alternative method to compare 

with laser absorption results for turbine inlet static temperature using ethylene soot 

particles in the optically thin flowfield.  A detailed description of the technique is 

included in Appendix E.  The same PDC arrangement was used as with the laser 

measurements; however, a square pipe section with a 50.8 mm by 50.8 mm cross section, 

a 457 mm length, and two side-mounted quartz windows was added upstream of the 

turbocharger in place of the laser diagnostic section, mounted to the detonation tube with 

a flange as shown in Fig. 19.  The measurement location area increased from 0.00216 m
2
 

to 0.00258 m
2
, and the total PDC tube volume increased by 6%; however, the total length 

remained the same as with the laser diagnostics configuration. 

 

Figure 19.  Side view schematic of optical access arrangement for pyrometry and 

velocimetry measurements 

A PCO Dimax high-speed color camera with 110.4 micron per pixel was used to 

detect emission from soot particles to determine static temperature.  The emission 

threshold was 1300 K, below which particle emission was insufficient to detect.  Thus, 

pyrometry temperatures were not available during fill and purge phases.  Sampling 

frequency was determined by frame rate, which was set to 10 kHz to achieve sufficient 
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time resolution of the fastest transient events in the pulsed detonation flow.  The camera 

was set to a 15 s exposure, having a 1.5 m focal distance with a 180 mm lens, as shown 

in Appendix E.   Measurements with a tungsten lamp and spectrometer allowed spectral 

responsivity of the camera red, green and blue channels to be measured.  Substituting 

spectral responses and integrating them with a blackbody function over appropriate 

wavelengths (350 nm to 750 nm) allowed the ratio to be determined as a function of 

temperature.  Figure 20 shows a single pyrometry frame for a detonation passing into the 

turbine inlet.  Streamwise centerline temperature is plotted alongside the pyrometry 

frame.  Temperature of unburned fuel-air was assumed to be that of the main manifold. 

 

Figure 20.  Single pyrometry frame of a detonation travelling from left to right at 

the turbine inlet, such that black represents unburned fuel-air 

IV.D.4.  Particle Streak Velocimetry 

The ethylene soot particles were also used for particle streak velocimetry (PSV) 

measurements at the turbine inlet.  A detailed description of the technique is included in 
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Appendix E.  Time history of soot particle streaks was traced from frame to frame.  The 

turbine inlet velocity field was determined by dividing the length of particle streaks by the 

exposure time.  To increase the contrast between the soot streaks and the surrounding gas 

emission, an edge enhancing convolution was applied to images before analysis.  Figure 

21 shows a single frame of PSV before and after post-processing.  During blowdown, the 

flowfield has a non-axial velocity component due to transverse waves associated with the 

cellular structure of a confined detonation, as discussed further in Appendix B. 

 

Figure 21.  Single particle streak velocimetry image during blowdown at the turbine 

inlet 

IV.E.  Power Instrumentation 

The turbocharger compressor was used as a dynamometer to measure turbine 

power.  A mass air flow (MAF) sensor (Professional Flow Technologies Model 92 

Special) was mounted to the compressor inlet, as shown in Fig. 22, receiving ambient air.  

The compressor discharge was instrumented with a wall-mounted Sensotec 3.44 bar static 
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pressure transducer located 1170 mm downstream of the compressor exit along a 52.5 

mm diameter pipe (not shown).  A J-type thermocouple was located 152.4 mm 

downstream of the pressure transducer.  A ball valve, located 609 mm downstream of the 

thermocouple, was used to back-pressure the compressor.  The ball valve was set so that 

the compressor operated toward the center of its operating map.  Several different 

compressor operating conditions were achieved by adjusting the PDC operating 

frequency and fueled fraction and leaving the ball valve fixed.   

 

Figure 22.  Top view schematic of test section 

IV.F.  Rotor Speed Instrumentation 

A Garrett speed sensor (part number #781328-0002) was positioned in the compressor 

housing, as shown in Fig. 23, to detect blades arrival.  The sensor emits a magnetic field 

that is interrupted by passing blades.  Rotor speed is determined from the blade passing 

frequency.  The input frequency is one pulse per blade.  The internal sensor electronics 
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divide the input signal by eight (set by the manufacturer), so that the output frequency is a 

square-wave signal at 1/8
th

 the actual blade passing frequency.  The output frequency is 

multiplied by eight during post-processing to obtain in the input frequency.  The 

turbocharger compressor has 12 blades; therefore, the rotor speed is equal to 1/12
th

 the 

sensor input frequency.    

   

Figure 23.  Garrett speed sensor arrangement (used with permission from Advanced 

Tuning Products, Inc.) 
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V.  Data Reduction and Uncertainty Analysis 

There were several data acquisition (DAQ) systems employed in this research, as 

shown in Fig. 24.  The facility system, illustrated in Fig. 25, used to record PDC manifold 

gage pressures, static temperatures and mass flows, acquired data continuously and 

simultaneously at 1 Hz, using a LabVIEW program.  This facility system was also used to 

record turbocharger housing temperatures and cooling water inlet and exit temperatures, 

as well as ambient test cell conditions. 

 

Figure 24.  Schematic of data acquisition systems 
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Figure 25.  Schematic of facility data acquisition system 

A high-speed DAQ system, illustrated in Fig. 26, recorded signals from the 

turbocharger turbine inlet and exit wall-mounted pressure transducers, compressor inlet 

MAF and compressor exit wall-mounted pressure transducer, and speed sensor, as well as 

spark ignition and ion probe signals.  The high-speed DAQ system is capable of sampling 

up to 12 channels simultaneously, using a LabVIEW program.  The sampling rate used in 

these experiments was set to 1 MHz with a duration of 0.5 seconds. 

 

Figure 26.  Schematic of high-speed data acquisition system 
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Laser absorption signals at the turbine inlet and exit flowfields were recorded 

simultaneously with a dedicated DAQ system, illustrated in Fig. 27, with a sampling rate 

of 50 kHz.  Laser absorption was synchronized with high-speed DAQ turbine inlet and 

exit wall-mounted static pressures based on the initial rapid rise associated with the 

detonation arrival at the turbine inlet.  High-speed camera instrumentation for pyrometry 

and PSV were recorded simultaneously at the turbine inlet at 10 kHz on a separate DAQ 

system associated with the respective camera.  

 

Figure 27.  Schematic of laser absorption data acquisition system 

Data sampled from the high-speed DAQ at 1 MHz was imported into a LabVIEW 

program called PT Reader, converted from binary to text format, and parceled by 

detonation cycle time.  During the parceling process, turbine inlet and exit pressures were 

reduced to 10 kHz to be consistent with the sampling rate of the optical measurements for 

pyrometry and PSV.  Similar methods were used to convert the laser absorption and high-
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speed camera temperatures and velocities into text format so that all turbine inlet and exit 

flowfields could be assessed at 10 kHz using a simple spreadsheet program. 

The following discussion regarding data reduction and uncertainty analysis 

addresses the properties necessary to determine turbine performance in terms of power, 

specific work, and turbine isentropic turbine efficiency.  Rotor speed is included in the 

results section; however, it was not used to measure turbine performance.  All data 

reduction was accomplished using Microsoft Excel spreadsheet software.   

V.A.  Turbine Inlet and Exit Flowfields 

Simultaneous temperatures, velocities, and pressures from laser absorption and 

static pressure transducers at the turbine inlet and exit flowfields were imported in to 

Excel for each detonation cycle.  Time-resolved values for total temperature, total 

pressure, mass flow rate and total enthalpy rate were calculated for each cycle, treating air 

as an ideal gas and assuming 1-D point properties were representative of the flow field.  

Values for  and cp were obtained for air as a function of temperature, and cross sectional 

area was based on the inner diameter of the pipe used in the diagnostic section.  

Velocities at the inlet were known to have an offset error due to a signal conditioning 

issue in the TDLAS instrumentation; however, the issue was isolated to the inlet.  The 

magnitude of the offset was determined by matching inlet to exit mass flows and iterating 

to the applied offset to preserve continuity. 
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V.A.1.  Ensemble Averaging 

Ensemble averages of the raw static temperature, static pressure, and velocity 

were used to produce time-resolved plots.  Peak total enthalpy for each cycle was aligned 

in time before ensemble averaging.  Ensemble-averaged total enthalpy was used to 

produce time-resolved plots and to calculate cycle-average turbine isentropic efficiency, 

as described below.  The number of cycles included in each ensemble was dependent on 

the PDC operating frequency due to fixed sampling frequency (1 MHz) and duration (0.5 

seconds).    

V.A.2.  Uncertainty 

There are currently no published time-resolved inlet and exit flowfield properties 

for a full-admission detonation driven radial turbine that could be used for validation.  

Therefore, the bias error cannot be quantified for PDC conditions, though the 

measurement methods are well-established.   Cycle-to-cycle variation was characterized 

using standard deviations from the operating condition at 30 Hz PDC with 0.75 fueled 

and purge fractions.  This condition was chosen due to the largest number of cycles from 

which a statistical analysis could be performed.  Percent standard deviation was 
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calculated at each point in time over ensemble cycles, and average values are included in 

Table 4.  Variation is larger at the inlet than at the exit, and the biggest contribution is 

from velocity.  Variation in velocity propagates into total temperature and pressure, mass 

flow, and ultimately into total enthalpy. 

Table 4. Average percent standard deviation of turbine inlet and exit ensemble data 

Inlet Exit

Static Temperature 9.4% 4.7%

Static Pressure 3.8% 2.7%

Velocity 23.3% 16.6%

Total Enthalpy 9.9% 10.0%

Property

Average Percent 

Standard Deviation

 

Optical pyrometry and PSV temperatures and velocities were recorded to 

qualitatively evaluate the uncertainty of the laser absorption method at the 20 Hz 

operating PDC condition with 0.90 fueled fraction and 0.5 purge fraction, using ethylene 

fuel.  Figure 28 shows good agreement in the inlet static pressures for the two separate 

runs, demonstrating good test repeatability.  The stand-off distance for the wall-mounted 

transducer was about 38 mm greater in the optical experiment, which limited response 

time, limiting the pressure slope and peak and obtaining less resolution of the secondary 

wave-form structures.  Peak C-J pressure associated with ethylene-air under this operating 

condition is expected to be about 20 bar; however, the increase is nearly instantaneous 

with C-J velocity of about 1800 m/s, and neither experiment captured the expected C-J 

peak pressure.  The plateau condition behind the detonation was expected to have a 

pressure of between five and six bar, based on ethylene-air detonation properties, and the 

plateau duration was expected to be between one to two milliseconds, based on shock 
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travel time through the turbine and exhaust nozzle.  The pressure measurements from the 

laser absorption test case captured the plateau condition, and pressure measurements from 

both tests captured the remaining expansion portion of the cycle with reasonable 

agreement in terms of profile and magnitude.  Therefore, the operating conditions are 

assumed to be similar for the two tests for the following comparison of inlet temperature 

and velocity using the two measurement techniques:  optical pyrometry/PSV and laser 

absorption.   

 

Figure 28.  Comparison of inlet static pressure results for optical pyrometry and 

laser absorption experiments with 20 Hz ethylene-fueled PDC with 0.9 fueled 

fraction and 0.5 purge fraction.  Transducer stand-off distance was 38 mm greater 

in the optical experiment. 

Figure 29 shows a comparison of turbine inlet static temperature results from laser 

absorption and optical pyrometry measurements during 6 ms of blowdown.  Peak 

temperatures, which are associated with detonation arrival, differ by 278 K, and the 

average difference over the 6 ms duration is 334 K.  The expected C-J temperature for 

ethylene-air at this condition is about 2900 K at detonation, and the expected plateau 
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condition is expected to be about 2500 K.  The peak and plateau temperatures obtained 

from laser absorption spectroscopy are within 15% of the expected detonation properties.  

The duration of the plateau condition was about 1.4 ms and occurred between 0.2 ms and 

1.6 ms.  The measurement differences between 0 and 4.5 ms can be attributed mostly to 

the estimated emissivity of the ethylene soot particles for pyrometry during the moment 

associated with the largest excursions in temperature and pressure.  Between 4.5 ms and 

5.5 ms, the two measurement methods are in reasonable agreement. 

 

Figure 29.  Comparison of inlet static temperature results from optical pyrometry 

and laser absorption during 6 ms of blowdown with ethylene-fueled PDC at 20 Hz 

with 0.9 fueled fraction and 0.5 purge fraction 

Figure 30 shows a comparison of turbine inlet velocity results from laser 

absorption Doppler shift and PSV measurements during 6 ms of blowdown.  The trace 

from laser measurements was not able to resolve the flow between 0 and 0.4 ms most 

likely due to beam-steering associated with diffraction through the detonation shock wave 
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and trailing Taylor wave.  The trace from PSV measurements was intermittent after 4 ms 

due to reduced particle emission.  Peak velocities differ by 465 m/s; however, the 

remaining portion of the blowdown, after the first 0.4 ms, is in good agreement.  The C-J 

speed of sound for ethylene-air at this condition is 1000 m/s detonation, which is 

expected to occur immediately behind the detonation wave.  Whereas the peak velocity 

from PSV is within 4% of the C-J speed of sound, the peak velocity obtained from laser 

absorption Doppler shift is 50% of the expected detonation property. 

 

Figure 30.  Comparison of inlet velocity results from soot particle velocimetry and 

laser absorption Doppler shift during 6 ms of blowdown with ethylene-fueled PDC 

at 20 Hz with 0.9 fueled fraction and 0.5 purge fraction 

Table 5 includes a summary of the aggregate cycle mass flow uncertainty analysis 

based on calibrated facility converging-diverging metering nozzles and average mass 

flow rates.  Aggregate mass was calculated using Eq. (36).  Error ranges from as low as 

5% to 52%, with an average error of 12%. Mass flow rates obtained from laser absorption 
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experiments were not used to calculate cycle-average specific work, which was computed 

using the average mass flow rate from the calibrated facility converging-diverging 

metering nozzles.  However, instantaneous mass flow rate was used to calculate 

instantaneous total enthalpy rate, shown in Eq. (35) on page 49, which was necessary to 

compute turbine efficiency. 

Table 5. Summary of mass flow uncertainty analysis 

Fuel Frequency

Fueled 

Fraction

Purge 

Fraction

Calibrated 

Facility Nozzle

Turbine 

Diagnostics

10 0.60 0.75 0.00392 0.00438 12%

10 0.75 0.75 0.00425 0.00536 26%

10 0.90 0.75 0.00460 0.00701 52%

20 0.60 0.50 0.00303 0.00393 30%

20 0.60 0.75 0.00388 0.00422 9%

20 0.75 0.75 0.00421 0.00458 9%

20 0.90 0.50 0.00372 0.00249 -33%

20 0.90 0.75 0.00455 0.00604 33%

30 0.60 0.75 0.00383 0.00362 -5%

30 0.75 0.75 0.00414 0.00539 30%

Ethylene 20 0.90 0.50 0.00386 0.00262 -32%

Hydrogen

PDC Operating Condition Aggregate Cycle Mass Flow (kg) Difference in 

Aggregate 

Cycle Mass
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Uncertainty in average total enthalpy rate was estimated by conducting a 

conservation of energy analysis, accounting for the rate of energy transfer and storage into 

and out of the PDC-turbine system between inlet and exit measurement locations, as 

shown in Fig. 31.  The cycle average change in total enthalpy rate between inlet and exit 

measurement locations is equal to average power output, average change in enthalpy rate 

of the oil and cooling water, and the average rate at which energy is stored in the PDC 

exit and turbine housing. 
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Figure 31.  Schematic of energy conservation analysis for PDC-turbine arrangement 

 , , , &, , &t in t out stored PDC Turbot out out PDC TurboH H W Q E     (37)  

  The conservation of energy analysis used start-up temperatures acquired from the 

PDC wall, turbine housing, and cooling water flow.  Temperatures for the oil flow were 

not measured and were assumed to be approximately equal to water flow temperatures.  

The turbine housing was modeled as a sphere for radiation and free convection estimates.  

Details of the analysis are included in Appendix G.  Table 6 includes a summary of the 1
st
 

Law analysis for the operating condition with a hydrogen-fueled PDC at 30 Hz with 0.75 

fueled and purge fractions, which has an agreement of 1% between estimated and 

measured change in total enthalpy rate, 24.23 kW and 24.51 kW, respectively.  The 

average heat transfer and storage rate was greater than the cycle-average power from the 

compressor dynamometer, thus emphasizing the need to account for unsteady heat 

transfer effects in the turbine efficiency formulation. 
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Table 6. Energy conservation analysis with 30 Hz hydrogen-fueled PDC with 0.75 

fueled and purge fractions 

Average Energy Storage Rate in PDC Exit Pipe 2.29 kW

Average Heat Transfer Rate from PDC Exit Pipe 0.08 kW

Average Energy Storage Rate in Turbine Housing 9.94 kW

Average Heat Transfer Rate from Turbine Housing 0.12 kW

Average Heat Transfer Rate into Cooling Water 0.83 kW

Average Heat Transfer Rate into Turbocharger Oil 0.25 kW

AVERAGE HEAT TRANSFER & ENERGY STORAGE RATE: 13.51 kW

AVERAGE DYNAMOMETER POWER: 10.72 kW

24.23 kW

AVERAGE CHANGE IN TOTAL ENTHALPY RATE: 24.51 kW

DIFFERENCE: 1.13%  

V.B.  Turbine Power 

Compressor dynamometer power was reduced separately from turbine inlet and 

exit flowfield properties.  Compressor mass flow rates and exit wall-mount static 

pressures were analyzed at 1 MHz, calculating time-resolved power for 5 cycles using Eq. 

(27) on page 23 and using test cell static temperature and pressure from the facility DAQ.  

It was assumed that the test cell ambient conditions were equal to the compressor 

dynamometer inlet conditions.  It was verified that the inlet static temperature and 

pressure were steady just downstream of the MAF and approximately equal to the test cell 

ambient conditions.   

V.B.1.  Ensemble Averaging 

A cycle-based ensemble average of the power was used to produce smooth time-

resolved plots of turbine power.  A linear average of the ensemble-averaged power was 

used in addition to the average total facility mass flow rate from the facility DAQ to 

calculate the average specific turbine work, as shown in Eq. (28) on page 24.  Figure 32 
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shows time-resolved power for 5 successive detonation cycles at 30 Hz with 0.75 fueled 

and purge fractions.  The profiles and magnitudes are very similar, indicating good 

repeatability.  Figure 33 shows ensemble average power for the same 5 cycles.   

 

Figure 32.  Time-resolved power over 5 cycles at 30 Hz with 0.75 fueled and purge 

fractions  

 

Figure 33.  Ensemble-average power over 5 cycles at 30 Hz with 0.75 fueled and 

purge fractions  
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V.B.2.  Uncertainty 

Calibration information was not available for the compressor dynamometer 

operating in this test configuration; however, cycle-to-cycle variation was estimated using 

ensemble power from the operating condition at 30 Hz with 0.75 fueled and purge 

fractions.  This condition was chosen due to the largest number of cycles from which a 

statistical analysis could be performed.  Percent standard deviations were calculated at 

each moment in time across ensemble cycles and the average value was 2.3%, including 

cycle-to-cycle variability and measurement scatter.   

V.C.  Sources of Error 

A sensitivity study in the results section shows the impact of the measurement 

error on turbine efficiency.  Most of the measurement error was associated with inlet 

pressure and velocity during the first 0.5 ms after detonation arrival, due to clipped 

transducer response and beam-steering associated with the laser Doppler measurements.  

Otherwise, measurements were reasonably close to expected values associated with 

known fuel-air detonation properties.  Cycle-to-cycle variation in temperature, pressure, 

and velocity measurements, as noted above, also contributed to error in turbine efficiency. 

Aside from measurement error, other sources of uncertainty are associated with 

assumptions in the development of formulations for specific work and turbine efficiency.  

First, the 1-D analysis assumes that the measured point properties are representative of 

the 2-D flowfield.  The 2-D turbine inlet flowfield is known to be non-uniform, as shown 

in preliminary experiments detailed in Appendix E.   Furthermore, the scroll-type inlet 

volute associated with the radial turbine “smears” the flow as incoming mass enters the 
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turbine passages at different moments in time along the length of the volute.  The flow at 

the turbine exit is expected to be mixed, and the 1-D analysis is reasonable.  The 1-D 

assumption was used to evaluate turbine efficiency, as will be discussed in more detail in 

the next section.  The 1-D assumption was also applied to the compressor dynamometer 

exit, and thus was applied to the evaluation of specific work.  The flow at the compressor 

exit is expected to be mixed, and the 1-D assumption is reasonable. 

A linear average was assumed for the ratio of specific heats across the turbine, as 

well as across the compressor.  This assumption is reasonable for the compressor 

dynamometer, where there was a small change in temperature from the inlet to the exit.  

Specific heat was calculated as a function of temperature, and it was assumed that the 

working fluid for both the compressor and turbine was air.  A sensitivity study in the 

results section shows the impact of the specific heat on turbine efficiency. 

The specific gas constant for dry air, R, was assumed to be constant over the 

detonation cycle, having a value of 287.04 J/kgK; however, the gas constant is expected 

to be different for detonation products for brief moments in the pulsed detonation cycle.  

A sensitivity study in the results section shows the impact of the gas constant on turbine 

efficiency. 

The formulation for turbine efficiency in Eq. (29) on page 24 is predicated on 

instantaneous expansion; however, the time associated with the expansion of a fixed mass 

through the turbine depends on the gas velocity.  The velocity changes over the cycle; 

therefore, the expansion time also changes over the cycle.  A sensitivity study in the 

results section shows the impact of expansion time on turbine efficiency. 
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Mechanical efficiency between the turbine and compressor was assumed to be 

100%.  This assumption was made for both specific work and turbine efficiency 

formulations.  A sensitivity study in the results section shows the impact of mechanical 

efficiency on specific work and turbine efficiency. 
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VI. Results 

The following results show that unsteady specific work and isentropic efficiency 

increase with PDC frequency due to larger duty cycles.  The results also show that the 

proposed formulation for unsteady turbine efficiency in Eq. (29) on page 24 yields 

reasonable values with the extensive weighting parameter applied to the pressure ratio 

term.  The choice of weighting parameter, inlet heat transfer fraction parameter, and 

ensemble-averaging technique have a small impact on efficiency results.  The next 

chapter includes a comparison between steady and unsteady turbine models.  Appendices 

I and J include all time-resolved results for turbine power and inlet and exit flowfields, 

respectively. 

VI.A.  Turbine Cycle-Average Specific Work 

The following results show the effect of PDC operating parameters on time-

resolved turbine power, using Eq. (27) on page 23, and cycle-average specific work, using 

Eq. (28) on page 24.  Table 7 and Fig. 34 include a summary of cycle-average total air 

flow rate from the facility-calibrated converging-diverging metering nozzles, power 

output from the dynamometer, and specific work.  Average power ranged from 1.07 kW 

to 12.74 kW.  Average specific work ranged from 27 kJ/kg to 111 kJ/kg.  At 20 Hz with 

0.9 fueled fraction and 0.5 purge fraction, average specific work with ethylene was 7% 

higher than that with hydrogen.  Though hydrogen has a lower heating value (LHV) that 

is nearly three times greater than ethylene, the fuel mass flow rate of ethylene at the 20 Hz 

condition was nearly three times higher.  Thus, turbine performance was not significantly 

affected by fuel type.  
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Table 7. Summary of turbine cycle-average power and specific work 

Hydrogen (  =1.0)

Frequency 

(Hz)

Fueled 

Fraction

Purge 

Fraction

Total Air 

Flow 

(kg/min)

Cycle Average 

Power        

(Eq. 27)      

(kW)

Cycle Average 

Specific Work 

(Eq. 28) 

(kJ/kg)

10 0.60 0.75 2.35 1.07 27.37

10 0.75 0.75 2.55 1.50 35.24

10 0.90 0.75 2.76 1.95 42.32

20 0.60 0.50 3.64 3.34 55.04

20 0.60 0.75 4.65 4.01 51.69

20 0.75 0.75 5.05 5.35 63.53

20 0.90 0.50 4.46 6.11 82.16

20 0.90 0.75 5.46 6.94 76.15

30 0.60 0.75 6.89 8.22 71.57

30 0.75 0.75 7.45 10.72 86.39

Ethylene (  =1.2)

Frequency 

(Hz)

Fueled 

Fraction

Purge 

Fraction

Total Air 

Flow 

(kg/min)

Cycle Average 

Power        

(Eq. 27)      

(kW)

Cycle Average 

Specific Work 

(Eq. 28) 

(kJ/kg)

20 0.90 0.50 4.64 6.81 88.14  

 

Figure 34.  Summary of turbine cycle-average specific work with hydrogen-fueled 

PDC 
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VI.A.1.  Sensitivity Study 

Average specific work increased with increasing fueled fraction and frequency, as 

shown in Fig. 34.  A sensitivity study was conducted with the hydrogen-fueled PDC to 

show the influence of frequency, fueled fraction and purge fraction on average specific 

work.  The definition of thermal efficiency in Eq. (38), which is typically applied for 

engine power take-off, is combined with average specific work in Eq. (28) on page 24 to 

produce the formulation for average specific work in Eq. (39).   
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Dividing the numerator and denominator in Eq. (39) by the integral of fill air mass 

flow rate yields the formulation shown in Eq. (40), which includes the fill fuel-air ratio in 

the numerator and a ratio of purge air to fill air in the denominator.  Fuel-air ratio was 

constant in these experiments.  Eq. (40) was rearranged to solve for thermal efficiency so 

as to show the influence of purge and fueled fraction, as well as frequency. 
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Fill and purge air mass flow rates are related to fueled and purge fractions, as 

show respectively in Eqs. (42) and (43).  Formulations for fueled fraction, FF, and purge 

fraction, PF are shown in Eq. (31) on page 32. 
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Table 8 includes a summary of the results from the sensitivity study.  Cycle-

average specific work was calculated from Eq. (28) on page 24, and thermal efficiency 

was calculated using Eq. (41). As frequency increased and fueled and purge fraction were 

held constant, the average specific work increase is attributed to increased thermal 

efficiency, as shown in Eq. (40).  Considering the conditions with 0.75 fueled and purge 

fractions, as frequency changed by 100% from 10 Hz to 20 Hz, thermal efficiency and 

average specific work increased by 77%.  Increasing frequency by 50% from 20 Hz to 30 

Hz resulted in a 35% increase in thermal efficiency and average specific work.  Thus, the 

relationship between frequency and average specific work was not linear. 
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Table 8. Sensitivity study for cycle-average specific work with hydrogen-fueled PDC 

Hydrogen (  =1.0)

Frequency 

(Hz)

Fueled 

Fraction

Purge 

Fraction

Cycle Average 

Specific Work 

(Eq. 28) 

(kJ/kg)

Thermal 

Efficiency 

(Eq. 41)

10 0.60 0.75 27.37 2.21%

10 0.75 0.75 35.24 2.48%

10 0.90 0.75 42.32 2.69%

20 0.60 0.50 55.04 3.47%

20 0.60 0.75 51.69 4.17%

20 0.75 0.75 63.53 4.48%

20 0.90 0.50 82.16 4.26%

20 0.90 0.75 76.15 4.83%

30 0.60 0.75 71.57 5.76%

30 0.75 0.75 86.39 6.04%  

As fueled fraction increased and fuel-air ratio remained constant, average specific 

work and thermal efficiency increased with fill air flow rate, as shown in Table 8.  

Considering the 20 Hz conditions with 0.75 purge fraction, as fueled fraction increased by 

25% from 0.60 to 0.75, average specific work increased by 22%.  Using Eq. (41), it was 

determined that thermal efficiency increased by 12%.  Therefore, the increase in average 

specific work was due to an increase in both fill air flow rate and thermal efficiency.  

Increasing fueled fraction by 20% from 0.75 to 0.90 resulted in a 20% increase in average 

specific work and an 8% increase in thermal efficiency.  Average specific work had a 

nearly linear relationship with fueled fraction.  However, there was a non-linear 

relationship between fueled fraction and thermal efficiency. 

As purge fraction decreased, average specific work and thermal efficiency 

changed with purge air flow rate, as seen in Table 8.  Considering the 20 Hz condition 
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with 0.60 fueled fraction, as purge fraction decreased by 33% from 0.75 to 0.50, average 

specific work increased by 6.5% and thermal efficiency increased by 3.3%.  At the 20 Hz 

condition with 0.90 fueled fraction, as purge fraction decreased by 33% from 0.75 to 

0.50, average specific work increased by 7.9% though thermal efficiency decreased by 

27%.  Average specific work was relatively insensitive to purge fraction, compared to 

fueled fraction and frequency.  The optimal PDC-turbine arrangement for average 

specific work occurred with higher frequencies and fueled fraction.   

VI.A.2.  Time-Resolved Turbine Power:  Effect of PDC Frequency 

Figure 35 shows the effect of increasing frequency on time-resolved power, using 

Eq. (27) on page 23.  Power is shown over a single detonation cycle at three frequencies 

with 0.75 fueled and purge fractions.  Peak power output at 10 Hz was about 2 kW, and 

peak power at 30 Hz was 12 kW; however, the cycle-integrated mass flow rate was the 

same.  Thus, cycle-average specific work increased with frequency, as seen in Fig. 34 on 

page 62.  

The time from detonation arrival to peak power was nearly equal (about 10 ms) at 

each frequency, during which time rotor speed increased and rotational energy was stored 

in the wheel assembly, as discussed in Appendix F.  As power drops, rotor speed 

decreases, and rotational energy dissipates.  The rate at which power rose and fell 

increased with frequency.  At 10 Hz, power began to drop midway through the fire phase 

at 20 ms; however, at 30 Hz, power did not begin to fall until after the fire phase.  Power 

duty cycle was defined in this study as the fraction of cycle time in which power 

increased.  The duty cycle was about 15% at 10 Hz and about 40% at 30 Hz. 
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Figure 35.  Time-resolved power with 10, 20, and 30 Hz hydrogen-fueled PDC with 

0.75 fueled and purge fractions  

    rise
power

cycle

t
Duty Cycle

t
 (44) 

The power duty cycle is illustrated in Fig. 36, which shows time-resolved power 

from Eq. (27) on page 23 normalized by maximum power and time normalized by total 

cycle time.  At 30 Hz, peak power output occurred near the midpoint of the detonation 

cycle compared to 10 Hz operation.  At 10 Hz, power rose during 15% of the cycle time 

and fell for the remaining 85%.  At 30 Hz, power rose during 40% of the cycle time.  The 

duty cycle became steadier with increased frequency, as seen by a 40% drop from peak 

power at 10 Hz and 25% drop from peak power 30 Hz.  The increase in cycle-average 

specific work at higher frequencies, as shown in Fig. 34 on page 62, resulted from the 
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larger and steadier power duty cycle.  The optimal frequency for a given PDC-turbine 

arrangement has a 50% duty cycle.   

 

Figure 36.  Normalized time-resolved turbine power with 10, 20, and 30 Hz 

hydrogen-fueled PDC with 0.75 fueled and purge fractions  

VI.A.3.  Time-Resolved Turbine Power:  Effect of Fueled Fraction 

The power duty cycle did not change significantly with increased fueled fraction, 

as seen in Fig. 37, which shows time-resolved turbine power over a single 20 Hz 

detonation cycle at three different fueled fractions.  However, power output at each 

moment in time was higher with increased fueled fraction.  At 0.60 fueled fraction, peak 

power was about 1.5 kW; whereas, peak power at 0.90 fueled fraction was about 2.75 

kW.  Therefore, instantaneous power and average specific work increased with fueled 

fraction, as shown respectively in Figs. 37 and 34.  
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Figure 37.  Time-resolved power with 10 Hz hydrogen-fueled PDC with fueled 

fractions of 0.60, 0.75, and 0.90 and with 0.75 purge fraction 

VI.A.4.  Time-Resolved Turbine Power:  Effect of Purge Fraction 

Figure 38 shows the effect of purge fraction on time-resolved turbine power over 

a single detonation cycle at 20 Hz with 0.90 fueled fraction.  There was no significant 

change in duty cycle, and there was a small increase in instantaneous power with purge 

fraction, likely due to the increased purge manifold pressure from 1.57 bar to 2.04 bar and 

increased purge mass flow rate from 1.97 kg/min to 2.98 kg/min.  Peak power at 0.50 

purge was about 7.5 kW; whereas, peak power at 0.75 purge was about 1.25 kW higher.  

The percent increase in power was similar to the percent increase in purge air flow rate, 

and thus there was a small change in average specific work with increasing purge 

fraction, seen in Fig. 34 on page 62.  Purge fraction had less effect on time-resolved 

turbine power and average specific work, than did fueled fraction or frequency. 
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Figure 38.  Time-resolved power with 20 Hz hydrogen-fueled PDC with 0.90 fueled 

fraction and 0.50 and 0.75 purge fractions 

VI.B.  Cycle-Average Isentropic Turbine Efficiency 

Cycle-average isentropic turbine efficiency was calculated for the hydrogen-fueled 

operating conditions at 20 Hz and 30 Hz with 0.75 fueled and purge fractions using Eq. 

(29) on page 24.  These frequencies offered larger data sets for ensemble averaging than 

10 Hz.  The conditions were also chosen because they demonstrated high cycle-average 

specific work.  Appendix K includes results based on the Eq. (4) instantaneous efficiency 

formulation on page 14, which produced non-physical results with instantaneous 

efficiencies less than zero and greater than 100%. 

Table 9 shows the effect of inlet weighting parameter and inlet heat transfer model 

on the turbine efficiency formulation in Eq. (29).  As expected, the unweighted 

formulation ( 1  ) yielded unreasonable results with turbine efficiency greater than the 
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manufacturer reported maximum conventional steady efficiency (61%), indicating that 

the unsteady efficiency formulation requires the pressure term to be weighted by an 

extensive property, such as mass flow rate or total enthalpy rate.  The difference in 

efficiency results between the two weighting parameters was about 5% with the constant 

pressure heat transfer model.  Mass flow rate weighting parameter can be helpful when 

referencing a Mollier diagram, which is based on specific mass; however, total enthalpy 

rate is physically attractive because it differentiates between hot and cold flows.   

Table 9. Comparison of weighting parameters and inlet heat transfer models for 

unsteady turbine efficiency with 30 Hz hydrogen-fueled PDC with 0.75 fueled and 

purge fractions, using Eq. (29) and ensemble-averaged efficiency 

Inlet Weighting 

Parameter Std Dev

None (WPin = 1) 96.7% 1.8% 11.23 kW

Mass Flow Rate 53.6% 9.3% 20.27 kW

Total Enthalpy Flux 46.8% 4.9% 23.22 kW

Inlet Weighting 

Parameter Std Dev

None (WPin = 1) 69.5% 1.0% 11.23 kW

Mass Flow Rate 44.9% 6.8% 20.27 kW

Total Enthalpy Flux 42.3% 3.6% 23.22 kW

Inlet Weighting 

Parameter Std Dev

None (WPin = 1) 69.5% 1.0% 15.65 kW

Mass Flow Rate 44.4% 6.2% 24.47 kW

Total Enthalpy Flux 39.9% 3.4% 27.27 kW

Inlet Weighting 

Parameter Std Dev

None (WPin = 1) 60.8% 4.7% 17.89 kW

Mass Flow Rate 39.1% 8.0% 27.77 kW

Total Enthalpy Flux 35.0% 5.2% 31.05 kW

Constant Pressure Heat Transfer at Inlet

Constant Pressure Heat Transfer at Exit

Constant Volume Heat Transfer at Inlet

Rayleigh Line Flow at Inlet

, t idealH

, t idealH

, t idealH

, t idealH
turb

turb

turb

turb

 

A Rayleigh line flow analysis, detailed in Appendix L, was used to validate the 

proposed constant pressure heat transfer model.  The analysis used Eq. (29) to calculate 

turbine efficiency, accounting for total pressure change between the inlet measurement 

location and the turbine.  In the Rayleigh model, pressure changes in proportion to 

momentum changes brought about by heat transfer; however, the model assumes constant 

area.  The turbine inlet and exit are constant area ducts, but the turbine inlet volute is not; 
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therefore, the Rayleigh model lacks fidelity with test section arrangement.  The constant 

pressure heat transfer model was in reasonable agreement with the Rayleigh model.  The 

change in cycle-average turbine inlet total pressure was 0.4% with the 30 Hz condition. 

The effect of the inlet heat transfer fraction parameter,  is shown in Fig. 39.  

Turbine efficiency improved as more heat transfer was attributed to the inlet.  The 

potential for heat transfer is expected to decrease from the inlet to the exit, as the flow 

expands.  Therefore, the 75% model is most reasonable. 

 

Figure 39.  Comparison of inlet heat transfer fraction for turbine efficiency with 30 

Hz hydrogen-fueled PDC with 0.75 fueled and purge fractions, using Eq. (29) and 

ensemble-averaged efficiency 
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Figures 40 and 41 show a comparison of unsteady turbine efficiency results at the 

30 Hz and 20 Hz conditions using Eq. (29) with constant total pressure heat transfer at the 

inlet only ( = 1) and using the three different averaging techniques.  The first technique 

used ensemble average pressures, temperatures, and velocities to evaluate cycle-average 

turbine efficiency.  The second technique applied an ensemble average to the total 

enthalpy rate and total pressure ratio terms before evaluating efficiency.  The third 

technique applied an ensemble average over multiple cycle-averaged turbine efficiencies.  

The difference between all three techniques is less than 8%.  Based on the third averaging 

method with the total enthalpy rate weighting parameter, the cycle-average turbine 

efficiency was about 40% at 30 Hz and 36% at 20 Hz.   

 

Figure 40.  Comparison of averaging techniques for turbine efficiency with 30 Hz 

hydrogen-fueled PDC with 0.75 fueled and purge fractions, using Eq. (29) with 

constant total pressure heat transfer at the inlet only ( = 1)   
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Figure 41.  Comparison of averaging techniques for turbine efficiency with 20 Hz 

hydrogen-fueled PDC with 0.75 fueled and purge fractions, using Eq. (29) with 

constant total pressure heat transfer at the inlet only ( = 1) 

VI.B.1.  Sensitivity Study 

This sensitivity study address the impact of measurement error and uncertainty 

associated with assumptions used in the development of the unsteady turbine efficiency 

formulation.  Table 10 summarizes the sensitivity of cycle-average turbine efficiency to 

measurement error associated with turbine inlet and exit pressures, temperatures, and 

velocities.  The baseline case was associated with the 30 Hz hydrogen-fueled PDC with 

0.75 fueled and purge fractions, ensemble-averaging efficiency results using Eq. (29) with 

 = 1.0 and weighting the total pressure ratio with inlet total enthalpy rate.  A 10% 

measurement error was independently applied to each flowfield measurement parameter 
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at each instant in time across the entire PDC cycle, and the difference in turbine 

efficiency was assessed. 

Table 10. Sensitivity of cycle-average turbine efficiency to measurement error 

Measurement Baseline with +10% Error  /baseline

Inlet Static Pressure 39.9% 36.3% -3.58% -8.98%

Exit Static Pressure 39.9% 40.6% 0.78% 1.96%

Inlet Static Temperature 39.9% 40.3% 0.45% 1.13%

Exit Static Temperature 39.9% 39.7% -0.18% -0.45%

Inlet Velocity 39.9% 38.8% -1.08% -2.71%

Exit Velocity 39.9% 36.8% -3.06% -7.68%

Cycle-Average Turbine Efficiency Sensitivity

 

Turbine efficiency is most sensitive to inlet static pressure and exit velocity.  An 

inlet static pressure measurement error of 10% resulted in about 9% difference in turbine 

efficiency, and a 10% exit velocity measurement error resulted in nearly 8% difference in 

turbine efficiency.  As noted in the section on data reduction and uncertainty, average 

inlet static pressure cycle-to-cycle variation was about 3.8%; however, average exit 

velocity cycle-to-cycle variation was about 16.6%.  Therefore, exit velocity measurements 

were the largest potential source of error in cycle-average turbine efficiency.  

The assumption of average specific heat across the turbine was made for the 

isentropic pressure ratio term in the Eq. (29) efficiency formulation.  Air was assumed to 

be the working fluid for the calculation of specific heat as a function of temperature.  In 

reality, combustion products for hydrogen-air include air and water; however, purge air 

comprised a large portion of the total cycle flow used to calculate efficiency.  Purge air 

has less water than the combustion products in the blowdown portion of the cycle.  Using 

the baseline operating condition at 30 Hz with 0.75 fueled and purge fractions,  = 1.0, 

and inlet total enthalpy rate weighting parameter, a 10% error in the ratio of specific heats 
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was applied to each moment in time over the entire cycle and resulted in less than a 1% 

change in cycle-average turbine efficiency.  Therefore, the assumption for average 

specific heat across the turbine had an insignificant effect on cycle-average turbine 

efficiency 

Turbine efficiency was evaluated with the assumption that the specific gas 

constant for dry air, 287.04 J/kgK, was applicable over the entire PDC cycle.  However, 

the gas constant is expected to about 347.7 J/kgK for detonation products associated C-J 

conditions during the fire phase.  The difference in the gas constant affects calculations 

for density, which is used in turn for mass flow rate, total enthalpy rate, and turbine 

efficiency.  Furthermore, the gas constant was used to calculate the exponent of the 

isentropic pressure ratio.  Assuming a 10% error in the gas constant at each moment in 

time over the entire PDC cycle resulted in less than 3% change in cycle-average turbine 

efficiency, using the 30 Hz hydrogen-fueled PDC baseline condition with 0.75 fueled and 

purge fractions,  = 1.0, and inlet total enthalpy rate weighting parameter.  Because purge 

air comprised a large portion of the total cycle flow used to calculate efficiency, the 

assumption for gas constant had an insignificant effect on cycle-average turbine 

efficiency. 

The assumption of instantaneous expansion was made to simplify the analysis for 

turbine efficiency; however, the actual time associated with expansion across the turbine 

is dependent on the time required for a particle to travel from the turbine inlet to the exit.  

The inlet and exit velocities change over the cycle, and the path length of a particle 

through the radial turbine depends on how far the particle travels through the turbine 
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volute before entering a turbine blade passage.  A sensitivity study was conducted, 

applying a time shift to the exit temperatures, pressures, and velocities for the operating 

condition at 30 Hz with 0.75 fueled and purge fractions.  Time shifts of one to five 

milliseconds were applied independently across the entire exit data set, and there was 

about 1% difference in efficiency results with the one or two millisecond time shift, as 

seen in Table 11.  The results are sensitive to the alignment of the initial inlet and exit 

pressure peaks, the time between which is about 2 ms.  The width of the exit pressure 

peak is also about 2 ms.  Applying a time shift larger than 2 ms aligns the inlet pressure 

peak with the large flat portion of the exit pressure trace, and results are insensitive to 

further increases in the time shift.  

Table 11. Sensitivity of cycle-average turbine efficiency to time-shifted turbine exit 

flowfield pressures, temperatures, and velocities 

Time Shift Baseline with Time Shift  /baseline

1 ms 39.85% 38.64% -1.21% -3.04%

2 ms 39.85% 38.62% -1.23% 3.09%

3 ms 39.85% 39.45% -0.40% 1.00%

4 ms 39.85% 39.31% -0.54% 1.36%

5 ms 39.85% 39.49% -0.36% 0.90%

SensitivityCycle-Average Turbine Efficiency

 

The mechanical efficiency for the compressor-turbine wheel assembly was 

assumed to 100% over the entire PDC cycle at each operating condition.  Mechanical 

efficiency for turbochargers operating at high rotor speeds is typically about 95% or 

greater.  A 5% loss in mechanical efficiency directly corresponds to a 5% improvement in 

cycle-average turbine efficiency, using Eq. (29) and the 30 Hz hydrogen-fueled PDC 

baseline condition with 0.75 fueled and purge fractions,  = 1.0, and inlet total enthalpy 

rate weighting parameter. 
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VI.B.2.  Time-Resolved Turbine Inlet and Exit Flowfields:  Temperature 

The following figures show time-resolved turbine inlet and exit flowfield 

properties that were used to calculate turbine efficiency.  The time-resolved plots show 

the interaction between the PDC and turbine.  Furthermore, the time-resolved plots aid in 

the uncertainty analysis, showing repeatability across cycles and peak magnitudes that can 

be compared with expected detonation properties.  Results are shown with the hydrogen-

fueled PDC at 0.75 fueled and purge fractions.  The 0.75 fueled fraction extends from the 

engine head to entrance of the inlet diagnostic section.  Therefore, the mutually 

supporting shock-combustion of the detonation front is expected to decouple in the 

diagnostic section; however, a shock is expected to continue through the diagnostic 

section, though it is expected to decay without support from combustion. 

Figure 42 shows time-resolved inlet and exit static temperatures from laser 

absorption measurements for five successive detonation cycles at 30 Hz with 0.75 fueled 

and purge fractions.  There is good repeatability between cycles, especially at the turbine 

exit.  The inlet profile and peak magnitudes are very similar, though they indicate a 

variation in detonation arrival time.  Furthermore, there is a small peak in the exit profile 

at about 11.5 ms which is likely associated with the decaying shock.  The variation in exit 

temperature appears to be damped compared to the inlet, with a peak temperature about 

one third of that at the turbine inlet.  The exit does not experience a long quiescent period 

like that at inlet, which occurs between 5 ms and 10 ms.  The ensemble average static 

temperature included in Fig. 43 produces a smooth profile, preserving key features, 

though the peak inlet temperature is reduced from about 2,000 K to about 1,800 K. 
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Figure 42.  Turbine inlet and exit static temperature over 5 cycles with 30 Hz 

hydrogen-fueled PDC with 0.75 fueled and purge fractions  

 

Figure 43.  Ensemble average of turbine inlet and exit static temperature over 13 

cycles with 30 Hz hydrogen-fueled PDC with 0.75 fueled and purge fractions  
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Figure 44 shows turbine inlet and exit total temperature over two full detonation 

cycles at 20 and 30 Hz PDC operating frequencies.  Total temperature was calculated 

from laser absorption measurements of static temperature and velocity using Eq. (32) on 

page 48, assuming specific heat for air as a function of temperature.  Peak temperatures 

were periodic and consistent at the different frequencies.  Inlet and exit temperature 

profiles were very similar at the different frequencies.  At 30 Hz the inlet temperature 

remains above 1000 K for a larger fraction of the cycle time.   

 

Figure 44.  Turbine inlet and exit total temperature over 2 cycles with 20 and 30 Hz 

hydrogen-fueled PDC with 0.75 fueled and purge fractions 
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VI.B.3.  Time-Resolved Turbine Inlet and Exit Flowfields:  Pressure 

Figure 45 shows time-resolved inlet and exit static pressures for five successive 

detonation cycles at 30 Hz with 0.75 fueled and purge fractions.  There is good 

repeatability between cycles with very similar profiles and peak magnitudes.  The stand-

off distance associated with the wall-mounted pressure transducers limited the response 

time such that the expected Von Neumann peak pressure (around 40 bar) was not 

captured at the turbine inlet.  The exit peak pressure is attenuated, compared to the 

turbine inlet peak pressure, and variation in exit pressure magnitude over the cycle time is 

small compared to the inlet, fluctuating just above the ambient test cell static pressure.   

 

Figure 45.  Turbine inlet and exit static pressure over 5 cycles with 30 Hz hydrogen-

fueled PDC with 0.75 fueled and purge fractions  

The time difference between the sharp rise at the inlet (at 10 ms) and at the exit (at 

12 ms) indicates the travel time of the detonation pressure wave through the turbine.  
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Assuming the pressure wave travels at the local speed of sound at the moment it enters 

and passes through the turbine, the distance associated with transit time between the inlet 

and exit measurement locations is consistent with the experimental arrangement.  The 

time between the first and second inlet pressure peaks indicates the presence of a 

reflected wave travelling the length of the PDC tube and back, assuming local speed of 

sound at the turbine inlet measurement location.  Likewise, the time between the second 

and third inlet pressure peaks indicates the presence of a subsequent reflected pressure 

wave.  The pressure wave travelling upstream likely reflected off the engine head, but it 

could not be conclusively determined if the subsequent pressure waves travelling 

downstream reflected off the turbine blades or else where in the turbine volute.  Rasheed, 

et al. (2004) observed shock waves reflecting from blade leading edges.  The ensemble 

average static pressured included in Fig. 46 produces a smooth profile that preserves the 

key features, though the peak inlet temperature is reduced from about 6 bar to about 5.5 

bar.   
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Figure 46.  Turbine inlet and exit static pressure ensemble averaged over 13 cycles 

with 30 Hz hydrogen-fueled PDC with 0.75 fueled and purge fractions  

Figure 47 shows turbine inlet and exit total pressure over two full detonation 

cycles at 20 and 30 Hz PDC operating frequencies.  Total pressure was calculated from 

total and static temperature and static pressure using Eq. (33) on page 49, assuming a 

ratio of specific heat for air as a function of temperature.  The peak inlet pressures at 30 

Hz were clipped more than at 20 Hz.  The trailing portions of the inlet profiles were very 

similar at both frequencies; however, the quiescent period was smaller at 30 Hz, with the 

pressure exceeding 2 bar for more than 20% of the cycle time.  The manufacturer turbine 

map indicates choked flow for conventional operation for total pressure ratios greater 

than 2, which occurs for about 25% of cycle time with the 30 Hz PDC operation. 
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Figure 47.  Turbine inlet and exit total pressure over 2 cycles with 20 and 30 Hz 

hydrogen-fueled PDC with 0.75 fueled and purge fractions 

VI.B.4.  Time-Resolved Turbine Inlet and Exit Flowfields:  Velocity 

Figure 48 shows time-resolved laser measurements of inlet and exit velocities for 

five successive detonation cycles at 30 Hz with 0.75 fueled and purge fractions.  There is 

good repeatability between cycles with similar profiles and peak magnitudes.  The peak 

inlet velocity is near the local speed of sound, which about 1000 m/s.  The flow rapidly 

decelerates after 11 ms during the subsequent expansion, and reverse flow was observed 

at 12 ms, followed by a quiescent region and then two more velocity peaks, which occur 
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simultaneously with the reflected pressure waves.  Reverse flow was also observed in the 

high-speed PSV video. 

 

Figure 48.  Turbine inlet and exit velocity over 5 cycles with 30 Hz hydrogen-fueled 

PDC with 0.75 fueled and purge fractions  

The time between rapid rise in velocity at the turbine inlet and exit is consistent 

with the time observed in the static pressure plot.  The inlet velocity between 10 ms and 

12 ms is greater than that of the exit, indicating mass accumulation.  Between 12 ms and 

24 ms, the exit velocity exceeds that of the inlet, indicating mass expulsion.     

Figure 49 shows turbine inlet and exit velocity over two full detonation cycles at 

20 and 30 Hz PDC operating frequencies.  Reverse flow was observed at the turbine inlet 

at 10 Hz (not shown), 20 Hz and 30 Hz.  Reverse flow was also observed at the turbine 

exit at 10 Hz, 20 Hz but not at 30 Hz.  
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Figure 49.  Turbine inlet and exit velocity over 2 cycles with 20 and 30 Hz hydrogen-

fueled PDC with 0.75 fueled and purge fractions 

VI.B.5.  Time-Resolved Turbine Inlet and Exit Flowfields:  Mass Flow 

Figure 50 shows time-resolved inlet and exit mass flow rates for five successive 

detonation cycles at 30 Hz with 0.75 fueled and purge fractions.  Mass flow rate is 

calculated using velocity and static temperature and pressure in the diagnostic section 

where the cross sectional area is 0.002 m
2
.  There is good repeatability between the first 

four cycles with similar profiles and peak magnitudes.  The peak inlet mass flow during 

the fifth cycle was significantly greater than the others due to coincidental peak in 
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pressure and velocity measurements.  Otherwise, the mass flow rates indicated the same 

flow features observed in the velocity results. 

 

Figure 50.  Turbine inlet and exit mass flow rate over 5 cycles with 30 Hz hydrogen-

fueled PDC with 0.75 fueled and purge fractions  

Figure 51 shows turbine inlet and exit mass flow rates over two full detonation 

cycles at 20 and 30 Hz PDC operating frequencies.  Inlet peak mass flow rates are higher 

at 20 Hz, but the quiescent period is smaller at 30 Hz.  As with the velocity profiles, the 

mass flow rates indicate reverse flow at the turbine inlet just behind the detonation wave.  

A secondary inlet peak mass flow rate is also apparent about 4 to 5 ms after the reverse 

flow event, coinciding with the trailing pressure peaks.  The exit mass flow rate is 

relatively steady compared to the inlet mass flow rates.  As noted with the velocities, 

momentary mass accumulation and expulsion is observed.   
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Figure 51.  Turbine inlet and exit mass flow rate over 2 cycles with 20 and 30 Hz 

hydrogen-fueled PDC with 0.75 fueled and purge fractions 

Figure 52 shows turbine inlet and exit aggregate mass over two full detonation 

cycles at 10 and 30 Hz PDC operating frequencies.  Aggregate mass was calculated to 

show the accumulation and expulsion of mass in the system, using an average of mass 

flow rate over a sampling time interval, as shown in Eq. (36) on page 54.  
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Figure 52.  Turbine inlet and exit aggregate mass over 2 cycles with 10 and 30 Hz 

hydrogen-fueled PDC with 0.75 fueled and purge fractions 

Figure 52 shows storage in the system as the difference between the inlet and exit 

aggregate mass at a moment in time.  Initially, aggregate mass is zero at time zero.  As the 

detonation arrives at the turbine inlet, mass storage increases between the inlet and exit 

measurement locations, while the exit mass flow rate remains relatively low.  

Subsequently, the inlet mass flow rate decreases while the exit mass flow rate increases 

and remains higher than the inlet, depleting the mass storage.  By the end of the 

detonation cycle, mass accumulation returns to returns to zero.  The unsteady mass 

storage behavior is more pronounced at 10 Hz; however, the same amount of mass flows 
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through the system at both frequencies over each complete detonation cycle because the 

fueled and purge fractions were the same at both frequencies. 

Figure 53 shows time-varying mass storage in the system over 14 full cycles at the 

30 Hz PDC operating frequency with 0.75 fueled and purge fractions.  Variation in mass 

storage and depletion results from cycle-to-cycle variation in pulsed detonation arrival 

time and flowfield pressures, temperatures, and velocities.   

 

Figure 53.  Turbine inlet and exit aggregate mass over 14 cycles with 30 Hz 

hydrogen-fueled PDC with 0.75 fueled and purge fractions 

VI.B.6.  Time-Resolved Turbine Inlet and Exit Flowfields:  Total Enthalpy Rate 

Figure 54 shows time-resolved inlet total enthalpy rate for 13 successive 

detonation cycles at 30 Hz with 0.75 fueled and purge fractions.  Total enthalpy rate was 

calculated using Eq. (35) on page 49.  The profiles were shifted to align peak magnitudes.  

The profiles are very similar in shape except for a small portion of the cycle time after 30 

ms during the fill phase and during the detonation expansion in the first 2 ms.  The 
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ensemble average is indicated by the dashed line.  Figure 55 shows time-resolved exit 

total enthalpy rate for 13 successive detonation cycles at 30 Hz with 0.75 fueled and 

purge fractions.  The scale of the vertical axis is much smaller than for the inlet figure, 

amplifying the variation between cycles.  As observed at the inlet, the exit total enthalpy 

rate profiles are very similar in shape except in the last 30 ms.  The variation during the 

fill phase is likely due to the relatively low water content in the air, compared to that of 

the combustion products which are expelled during blowdown and purge.  The laser 

absorption measurements were based on water molecules and relies on sufficient water 

content to resolve absorption features. 

 

Figure 54.  Turbine inlet total enthalpy rate over 13 cycles with 30 Hz hydrogen-

fueled PDC with 0.75 fueled and purge fractions  
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Figure 55.  Turbine exit total enthalpy rate over 13 cycles with 30 Hz hydrogen-

fueled PDC with 0.75 fueled and purge fractions  

Figure 56 compares the ensemble-averaged inlet and exit total enthalpy rate at 30 

Hz with 0.75 fueled and purge fractions.  The peak ensemble-average inlet enthalpy rate 

is reduced from about 5 MW to about 2 MW.  Reverse flow at the turbine inlet results in 

negative total enthalpy rate at about 2 ms; however, the subsequent peak is associated 

with the reflected pressure wave that likely returns from the engine head at about 5 ms.  

There is another peak at the inlet which occurs around 8 ms and is associated with the 

second reflected pressure wave returning from the engine head.  The exit total enthalpy 

rate appears to be relatively steady, compared to that of the inlet. 



 

93 

 

 

Figure 56.  Turbine inlet and exit total enthalpy rate ensemble-averaged over 13 

cycles with 30 Hz hydrogen-fueled PDC with 0.75 fueled and purge fractions  

Figure 57 shows turbine inlet and exit total enthalpy rate over two full detonation 

cycles at 10 and 30 Hz PDC operating frequencies.  Inlet peak enthalpy rate is higher at 

10 Hz, but the quiescent period is smaller at 30 Hz.  The peak inlet enthalpy rate at 10 Hz 

exceeded 5 MW; whereas, peak inlet enthalpy rate at 30 Hz did not exceed 2.5 MW.  

During the quiescent region of the 10 Hz enthalpy profile, there is little enthalpy available 

for turbine power.  The turbine spins down during the quiescent region, depleting stored 

rotational energy, as discussed in Appendix F.  The duration of the quiescent region at 30 

Hz is shorter; therefore, there is less turbine spin down.   
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Figure 57.  Turbine inlet and exit total enthalpy rate over 2 cycles with 10 and 30 Hz 

hydrogen-fueled PDC with 0.75 fueled and purge fractions 
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VII. Discussion 

The following discussion addresses the broader application of this research: 

applying the unsteady turbine efficiency formulation to steady turbine turbines, 

comparing unsteady to steady turbine operation, and comparing radial to axial turbines.   

VII.A.  General Application of the Unsteady Turbine Efficiency Formulation 

A simulated steady test case was created to determine if the proposed unsteady 

turbine efficiency formulation would function with a steady operation.  The test case 

included single step transient conditions, which were related to a nominal, near adiabatic, 

steady turbine with 86% isentropic efficiency.  A profile of the periodic run conditions is 

shown in Fig. 58, including initial transients at the turbine exit with increasing velocity 

and decreasing static temperature and static pressure.  Subsequently, there was a sudden 

inlet static pressure drop followed immediately by a rise in turbine exit static temperature 

and static pressure and drop in turbine exit velocity.  Inlet static temperature and velocity 

were steady over the cycle.  Continuity was maintained over the period.  The run profile 

was that of a step change in turbine inlet pressure, affecting inlet density, mass flow and 

total enthalpy rate.  The turbine inlet pressure change was attenuated at the exit, such that 

the changes in density and mass flow rate at the turbine exit were realized in terms of 

changes in velocity and temperature.  Applying Eq. (29) on page 24, with the inlet 

enthalpy total rate weighting parameter and the constant pressure heat transfer model with 

 = 0.75 yielded a result of 86.34% turbine efficiency.  Therefore, the formulation shows 

good potential for general application across unsteady and steady turbine operation. 
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Figure 58.  Simulated test case for evaluating the proposed unsteady turbine 

efficiency formulation with a steady operation including a single transient condition 

A separate study was conducted to determine the effect of unsteady turbine 

efficiency on apparent average efficiency.  Figure 59 shows an analytical model for time-

varying turbine efficiency, with equal steps in time, turbine efficiency drop, and total 

specific enthalpy expansion.  Change in total pressure for each expansion step was 

calculated based on the initial total specific enthalpy and the turbine efficiency associate 

with the expansion.  The first total specific enthalpy expansion step occurred with 60% 

turbine efficiency and final expansion step occurred with 48% efficiency.  Thus, the 

average efficiency is 54%; however, the apparent efficiency from the initial total specific 

enthalpy and total pressure condition to the final state is 40%.  Apparent average turbine 

efficiency was skewed toward a lower efficiency over the full expansion.  Therefore, 

average turbine efficiency results in this study were likely skewed in a similar fashion. 
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Figure 59.  Simulated test case for time-varying turbine efficiency, with equal steps 

in time, turbine efficiency drop, and total specific enthalpy expansion 

VII.B.  Steady and Unsteady Turbine Operation 

Instantaneous and cycle-average operating points indicated on the steady 

dynamometer map shown in Fig. 60 show that the coupled compressor experienced 

nearly steady operation.  The instantaneous dynamometer operating points are indicated 

for the 30 Hz operation with 0.75 fueled and purge fractions, showing that compressor 

conditions through-out the cycle remained within the 77% efficiency island, which was 

used to calculate power with Eq. (27) on page 23.  The instantaneous behavior was 

similar at the other PDC driven conditions, in that operation was confined to cyclic 

pattern at about the same pressure ratio and ranging by about 15,000 RPM across speed 

lines.  Furthermore, the time-average operating points from the all the operating PDC 
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driven conditions fell on the dashed dynamometer operating line connecting the center of 

the efficiency islands. 

 

Figure 60.  Compressor dynamometer map with instantaneous and average 

operating points with 30 Hz hydrogen-fueled PDC with 0.75 fueled and purge 

fractions and with average operating points for other frequencies, fueled fractions, 

and purge fractions  

The cycle-average dynamometer operating condition for the hydrogen-fuel PDC at 

30 Hz with 0.75 fueled and purge fractions was used to model an equivalent steady 
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deflagration driven turbine, using a formulation for corrected compressor mass flow, 

,c comprm , shown in Eq. (45) that was developed from compressor-turbine work and mass 

balanced relations presented by Mattingly (1996). 
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Compressor pressure ratio, compr , and efficiency,  compr were obtained from the 

cycle-average condition on the dynamometer map.  Turbine efficiency was assumed to be 

the manufacturer reported maximum 61%, which is expected for the high-power 

condition.  Combustor pressure ratio, burner , was assumed to be unity.  Fuel-air ratio, f, 

was assumed to be stoichiometric.  Constant pressure specific heat for the compressor, 

,p comprc , was assumed for ambient air (1.005 kJ/kg K).  Constant pressure specific heat for 

the turbine, ,p turbc , was assumed to be 1.143 kJ/kg K, which was based on an average 

turbine inlet temperature of 1100 K.  Iterations on corrected turbine mass flow, ,c turbm , 

and expansion ratio, turb , were made until the point was converged on the manufacturer 

steady turbine operating map, as shown by point A2 in Fig. 61 with a pressure ratio of 

2.20.  At this operating point, steady turbine operation would normally be choked, as 

indicated by the plateau in turbine efficiency at point A1.  Point B2 on the operating map 

represents the equivalent steady operating point for the cycle-average turbine expansion 

ratio of 1.72 experienced with the actual PDC-driven operation; however, the cycle-

average corrected turbine mass flow was above the steady operating line, as denoted by 
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point B3.  Thus, the cycle-average turbine operating condition does not fall on the steady 

turbine operating map.  The PDC-driven turbine produces equal power to the compressor 

as a steady turbine, while at an operating condition with a lower average turbine 

efficiency.  Therefore, the potential exists for design improvements to the sub-optimal 

PDC-driven turbine used in this study, thereby producing greater power than a similar 

steady deflagration driven turbine.  

 

Figure 61.  Steady turbine model operating points for the condition equivalent to the 

steady compressor dynamometer map with 30 Hz hydrogen-fueled PDC with 0.75 

fueled and purge fractions  

Whereas the instantaneous dynamometer operating points did not fluctuate 

significantly from the cycle-average operating condition, the instantaneous turbine 

operating points fluctuate beyond the scale of the manufacturer turbine operating map, as 

shown in Fig. 62, and do not collapse to a single operating line.  The instantaneous points 
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indicate that the majority of time is spent on the left side of the map with a pressure ratio 

less than 2.0; however, nearly half of the turbine mass flow, associated with blowdown, 

occurs on the right side, where the turbine is choked under steady operating conditions.   
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Figure 62.  Instantaneous turbine model operating points with 30 Hz hydrogen-

fueled PDC with 0.75 fueled and purge fractions  

The instantaneous turbine operating points in Fig. 62 show that the turbine 

responded to the reflected pressure waves at the turbine inlet that were observed during 

blowdown at about 15 ms and 20 ms.  The time-resolved power shown in Fig. 36 on page 

68 did not show the fluctuation in turbine response.  Therefore, the instantaneous 

unsteady forcing function imparted to the turbine was damped in the power output.  It is 
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not apparent from this study whether or not an axial turbine would also have a damped 

power response. 

VII.C.  Radial and Axial Turbines 

The following discussion distinguishes the operational differences between radial 

and axial turbines and addressed the potential general application of this research for both 

types of turbines.  Both turbine types serve the same basic purpose to extract mechanical 

work from the kinetic energy of exhaust gas.  Wilson (1993) provides a detailed 

discussion of the design and operational differences between axial and radial flow 

turbines.  Radial-inflow turbines typically have lower efficiencies than axial turbines due 

to more flow turning, higher aerodynamic loading, and larger surface area.  Due to the 

lower efficiency, radial turbines are typically run as a single stage; whereas, axial turbines 

are often multi-stage with a lower exit velocity.   

Radial turbines usually have a higher rotor speed than axial turbines and higher 

rotating inertia than axial turbines, a potential advantage in a pulsed detonation operation.  

However, the longer hub of a radial turbine with more wetted surface area has high 

thermal stresses, which is a potential disadvantage in detonation driven operation.  On the 

other hand, axial turbines are more susceptible to stresses from bending moments, 

torsion, buffeting, flutter, and/or vibration.  Both types of turbines would experience 

significant axial loads from pulsed detonations; however, the manner in which they 

handle the load is different.  The axial turbine is more likely to experience blade bending, 

and the radial turbine is more likely to transmit the axial load to the bearings, as was 

observed with preliminary tests in this research. 
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The design method for axial and radial turbines is similar, usually based on 

Euler’s equation and involving velocity triangles; however, traditional design 

methodologies for both turbine types do not account for such unsteady flow as 

experienced with pulsed detonation operation.  In general, radial turbines are more stall 

tolerant due to longer blade passages.  Therefore, the reverse flow observed at the turbine 

inlet is more likely to stall an axial turbine, reducing performance in terms of power 

output and isentropic efficiency. 

The thermodynamic analysis and modeling in this research was not predicated on 

either type of turbine, and the formulation for unsteady turbine efficiency has good 

potential to treat radial and axial turbines impartially.  Average specific power will likely 

increase with frequency, regardless of the turbine type, due to larger duty cycles; 

however, it is unknown how significant the inherent differences in operability will effect 

isentropic efficiency. 
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VIII. Conclusions 

Previous work demonstrated the capability of a PDC to drive a radial turbine.  The 

practicality of that arrangement was examined in this current study, identifying 

relationships between turbine inlet and exit flowfield properties, time-resolved turbine 

power and cycle-averaged specific work and isentropic turbine efficiency.  Experiments 

were conducted with the radial turbine of Garrett GT28R journal bearing turbocharger 

driven by a pulsed detonation combustor fueled by hydrogen or ethylene. 

The results in this study show that cycle-average specific work and isentropic 

efficiency of pulsed detonation driven radial turbine increase with increasing frequency.  

The increase in specific work was related to increased power duty cycle increased, as 

shown by time-resolved turbine power.  The increase in efficiency was related to shorter 

quiescent periods at the turbine inlet, as shown by the time-resolved flowfield.  Time-

resolved fluctuations were attenuated at the turbine exit.  The optimal PDC frequency was 

found to have a 50% duty cycle, minimizing the quiescent periods at the turbine inlet. 

Practical integration of a PDC in a gas turbine engine will require the ability to throttle 

power while maintaining high operating frequency. 

Mass accumulation and expulsion was observed during the cycle, requiring cycle-

averaged formulations for specific work and turbine efficiency.  The formulation for 

turbine efficiency requires an inlet weighting parameter for the total pressure ratio term.  

Inlet total enthalpy rate is the preferred weighting parameter because it differentiates 

between hot and cold gases.  The proposed formulation for average unsteady turbine 

efficiency produced sound results for steady and unsteady operation, using a constant 
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pressure heat transfer model with a 75% inlet heat transfer fraction parameter.  Ensemble 

averaging turbine efficiency showed that standard deviation across multiple cycles was 

low. 

Preliminary results showed a 41.3% improvement in cycle-average specific work 

over conventional steady deflagration driven operation; however, the current study 

showed that cycle-average turbine efficiency was about 30% less than the manufacturer 

reported maximum turbine efficiency.  Therefore, performance improvements from the 

combustor were marginally greater than performance deterioration in the turbine.  

Comparison of steady and unsteady turbine operation showed that the unsteady turbine 

was less efficient than the steady turbine while producing equivalent power.  Significant 

potential was demonstrated for future PDC-turbine design improvements to produce more 

power than a steady deflagration driven turbine. 
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IX. Recommendations 

This current work evaluated turbine performance during short duration test runs. 

Longer duration runs were performed but did not include flowfield instrumentation. In the 

future, actively cooled flowfield instrumentation should be used to run experiments to 

thermal equilibrium, reducing the effects of heat transfer into the turbine housing. 

The experiments conducted in this study included a radial turbine; however, an 

axial turbine is more likely for future applications in which a pulsed detonation 

combustor would be embedded into conventional Brayton cycle gas turbine engines.  

Potential applications include large engines, in which radial turbines are unusual.  Further 

research should consider an arrangement with full admission pulsed detonation driven 

axial turbines in order to determine if the results and conclusions from this research apply 

in a broad sense across both radial and axial turbines.   

Topics for future research with axial turbines should include performance, 

durability, and operability.  Generally, radial turbines blades are more durable and more 

stall tolerant that axial turbines.  Thus, future experiments with axial turbines should 

include studies to determine if similar time-resolved turbine power and inlet and exit 

flowfield characteristics are present as those observed in this study with a radial turbine, 

including reverse flow at the turbine inlet.  The laser absorption instrumentation approach 

used in this research should be used in future experiments for time-resolved flowfield 

measurement, in order to acquire full-cycle temperatures, pressures and velocities.  High 

speed cameras should also be used for flow visualization at the turbine inlet and for 
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optical pyrometry and particle streak velocimetry during blowdown, in order to increase 

confidence in laser absorption measurements at the same conditions. 

Further research should be conducted to determine how axial turbines respond to 

the reflected inlet pressure waves observed in this study with a radial turbine.  Axial 

turbines are more generally more susceptible to fatigue stresses from blade bending, 

flutter, and vibration, which are more likely to occur in the pulsed detonation driven 

operation with reflected pressure waves at the turbine inlet.  Future experiments should 

include blade stress measurements for bending and twist.  Once the blade stresses are 

characterized, turbine design improvements should be made and tested. 

Operability experiments should be conducted with pulsed detonation driven axial 

turbines to study the relationship between PDC operating parameters and separated flow 

on the blade surface.  Specifically, surface pressure taps should be place along blade 

suction and pressure surfaces to characterize unsteady pressure coefficients and determine 

regions of separated flow.  Several passive and active flow control schemes exist for 

conventional axial turbines that offer the potential to improve operability and 

performance in a PDC arrangement. 

Finally, the formulation for unsteady turbine efficiency proposed in this study 

should be used as the standard when comparing steady and unsteady turbine performance.  

There is currently a need for an industry standard, and the formulation proposed here is 

based on sound thermodynamic principles.  In particular, the unsteady formulation must 

be integrated over at least one full cycle and apply an extensive property as a weighting 

parameter for the pressure ratio term.   
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Appendix A:  Development History of Pressure-Gain Combustion and Gas Turbine 

Integration 

A brief summary of previous research is provided here to explain how the current 

research fits into the development history of pressure-gain combustion and gas turbine 

integration.  A general timeline is provided in Fig. 63, including significant milestones 

which are discussed in further detail below. The term “pressure-gain combustion” is 

intended to include the broad class of combustion processes that experience a pressure 

rise, including constant volume and near constant volume combustion with subsonic and 

supersonic combustion fronts.  Subsonic pressure-gain combustors are also referred to as 

pulsejet combustors.  The theory and operation of pulsed detonation combustors is 

contained in Appendices B and C.  There are three general classifications for 

arrangements that have been studied for extracting power from confined detonations in an 

aircraft propulsion system:  a multi-tube PDC array and mixed-flow axial turbine, a 

detonation wave rotor and axial turbine, and an integrated PDC and radial turbine. 

Holzwarth: 
Explosion Turbine 

for Power 
Generation

Hoffman: 
Intermittent 
Detonation 
Propulsion

Shultz-Grunow: 
Pulsejet Engine

Nicholls, et. al: 
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Kentfield, et. al: 
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Eidelman, et. al: 
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Figure 63.  Development timeline of pressure-gain combustion driven turbines 
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Early Developments with Pressure Gain Combustion 

One of the earliest gas turbines utilized pressure-gain combustion and is attributed 

to German engineer Hans Holzwarth (Holzwarth 1912).  In 1908, Holzwarth ran 

experiments with a turbine driven by a confined explosion, and ultimately achieved a 1 

Hz operating frequency and 13% overall efficiency while producing over 4,474 kW 

(6,000 hp).  His powerplants ran successfully on a variety of coal gas and liquid fuels, 

including benzene and tar oil.  A cross section of the arrangement is shown in Fig. 63.  

The powerplant installed in Mannheim in 1910 used ten combustion chambers with 

mechanical valves for fuel and air, and the cycle included fill, fire and purge phases.  

Peak chamber pressure was 11.7 to 13.8 bar (170 to 200 psia) with 2.3 to 3.0 bar (33 to 

43 psia) pre-compression.  The turbine may not have been driven by detonations, but it 

demonstrated practical application of unsteady, pressure-gain combustion driven 

operation.   

A) Combustion Chamber

B) Air Reservoir

C) Fuel Reservoir

D) Mechanical Air Inlet Valve

E) Mechanical Fuel inlet Valve

F) Nozzle Flap Valve

G) Turbine Nozzle

H) Turbine Rotor

J) Exhaust

Centerline
 

Figure 64.  Cross section of the Holzwarth pressure-gain combustion gas turbine 

(Holzwarth 1912) 



 

110 

 

As German research in pressure gain combustion progressed, Hoffman (1940) 

explored intermittent detonations for propulsion without turbomachinery, using 

acetylene/oxygen and benzene/oxygen mixtures.  He attempted to determine an optimum 

cycle frequency; however, the injection flow rate and ignition were out of phase, leading 

to the conclusion that intermittent detonations could only occur at low frequencies.  

Subsequent work (Shultz-Grunow 1947) continued through World War II, and the 

German pulsejet powered V-1 Buzz Bomb was an offshoot.  Shortly after the war, U.S. 

researchers Zipkin and Lewis (1948), achieved a 2.9 maximum pressure ratio with an 

explosion cycle engine and reported specific thrust as high as 35 s
-1

. 

Developments in the 1950’s and 1960’s with Pulsed Detonations 

In the span of 1950-1970, several other research efforts continued to explore the 

practicality of pressure-gain combustion for thrust applications, using detonations without 

turbomachinery.  In 1952, detonations were studied with a Schlieren system (Nicolls and 

Morrison 1952), and subsequent experimental investigations studied the feasibility of a 

thrust producing device using intermittent gaseous detonation waves (Nicholls, et al. 

1955; Dunlap, et al. 1957).  Operating frequencies peaked at 35 Hz, using hydrogen and 

acetylene fuels.  Krzycki (1962) conducted similar analytical and experimental 

investigations with propane/air, demonstrating  operating frequencies of 25 and 50 Hz. 

Developments in the 1970’s with Pressure-Gain Combustion Driven Turbines 

In the 1970’s, there was a resurgence in coupling turbines with pressure-gain 

combustion (Kentfield 1971; Marzouk and Kentfield 1974; Catchpole and Runacres 

1974; Kentfield, et al. 1977; Kentfield,et al. 1979).  Kentfield, et al. (1979) postulated 
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that for simple cycles, specific power output and specific fuel consumption improved one 

to two percent for every percent pressure gain in the combustor as illustrated in Fig. 65.  

They studied the effect of combustor geometry and operating conditions on the 

performance of a valveless pulsejet combustor with an ejector at the exit, achieving an 

operating frequency of 190 Hz.  They achieved a combustor total pressure gain of 6% at a 

combustor total temperature ratio of 2.5.  Kentfield, et al. (1979) also concluded that 

pressure-gain combustors could have very beneficial effects on overall gas turbine 

performance.  Ultimately, a second version of their pulsejet combustor demonstrated the 

capability to maintain a small pressure gain of up to 1.6% while driving Cussons P9000 

gas-generator turbine, concluding that a 40% potential net power improvement was 

achievable with a  low pressure ratio engine (Kentfield and O'Blenes 1990).  Whereas this 

conclusion was promising, it did not offer the advantages of detonation combustion. 



 

112 

 

=5.0
=3.0 =2.0

=1.5

0 5 10 15 20 25 30
0

1

2

3

4

5

6

%
 I

n
c
r
e
a

se
 i

n
 N

e
t 

O
u

tp
u

t 
p

e
r
 P

e
r
c
e
n

t 
P

r
e
ss

u
r
e
 G

a
in

Cycle Pressure Ratio

= cycle temperature ratio

= combustor temperature ratio

compr = turb = 0.85

compr = 1.40, turb = 1.34

cp, compr = 0.24, cp, turb= 0.27

c o m p r t u r bm m

 

Figure 65.  Relative improvement in net power output per percent pressure gain in 

the combustor, varying with of cycle pressure ratio, cycle temperature ratio, and 

combustor temperature ratio (Kentfield, et al. 1979). 

Developments in the 1980’s with Detonation Engines 

In the mid 1980’s, detonation engine concepts were revisited (Helman, et al. 

1986), and a self-aspirated PDE system demonstrated operation at 25 Hz without a 

turbine.  Early versions of these engines used an oxygen rich pre-detonator to initiate the 

cycle.  Subsequently, much focus was given to improvements in detonation initiation, as 

well as PDE thrust production (Dean 2003).  This continued through the 1990’s, and is 

still the subject of much PDE research. 

Developments in the 1990’s with Wave Rotors 

In the 1990’s, a renewed interest in wave rotors was targetted toward jet engine 

application, as shown in Fig. 66 (Wilson and Fronek 1993).  Wave rotors use axially 
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aligned passages and unsteady waves to produce streams of gas at either higher or lower 

total pressure than the input stream.  As the rotor spins, the passages are exposed to ports 

at different pressures.  As a passage containing high pressure gases is exposed to a  low 

pressure exhaust port, an expansion wave propagates into the passage.  As the rotor 

continues to spin, the passage achieves a lower pressure until it reaches the next inlet port 

which is at a higher pressure, which results in propagation of a shock wave, increasing the 

passage back to its initial condition.  Early NASA research determined that leakage losses 

were very significant (Wilson and Fronek 1993).  Later NASA work (Welch, et al. 1999)  

predicted a 300% increase in peak engine temperature and 25 to 30% increase in engine 

overall pressure, coupling a self-cooled, four-port wave rotor (shown in Fig. 67) to a 

Rolls-Royce Allison model 250 turboshaft engine.  Recent studies have proposed a new 

wave rotor concept that integrates a PDC, as shown in Fig. 68 (Snyder, et al. 2002; 

Akbari, et al. 2007).   

 

Figure 66.  Schematic of a wave rotor used as a topping cycle for jet engines (Wilson 

and Fronek 1993) 
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Figure 67.  Schematic of NASA self-cooled, four-port wave rotor (Welch, et al. 1999) 

 

Figure 68.  Schematic of constant volume combustion wave rotor (Akbari, Szpynda 

and Nalim 2007) 

Developments in the 21
st
 Century with Pulsed Detonation Driven Turbines 

A gas turbine driven by pulsed detonation combustion was first realized by the Air 

Force Research Laboratory (AFRL) with a self-aspirated PDE and Garrett T3 

turbocharger (Hoke, et al. 2002).  Two simulaneously firing PDE tubes drove the turbine, 

and the capability demonstration included a 25 minute continuous run time.  Subsequent 

work (Schauer, et al. 2003) reported average cycle thermal efficiencies up to 6.8%.  
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Operating frequencies ranged from 20 to 40 Hz with stoichiometric hydrogen-air 

mixtures.  Peak pressure attenuated through the turbine from over 27.6 bar (400 psi) to 

less than 6.9 bar (100 psi).   

Sakurai, et al. (2005) also experimented with PDC driven turbocharger with a 

single detonation tube, showing that power extraction improved with increasing operating 

frequency.  They reported thermal efficiencies as high as 2.2%.  Later work by Tsuji, et 

al. (2008) explored higher frequencies up to 40 Hz, using two alternately firing PDC 

tubes for an overall operating frequency as high as 80 Hz.  Turbine inlet pressure 

diminished with increasing frequency and thermal efficiency did not exceed 1%.  Tsuji, et 

al. (2008) concluded that the alternating fire pattern caused interfence between detonation 

tubes, so that the exit shock from one tube affected the fill phase of the other tube.   

Deng, et al. (2009) experimented with a turbocharger, comparing cold flow driven 

operation with detonation driven operation.  Results showed the impact of equivalence 

ratio on peak turbine inlet pressure and pressure attenuation through the turbine.  Peak 

pressure occurred at an equivalence ratio of 1.15; however, this condition also 

experienced the least attentuation.   

Tsukui, et al. (2009) investigated turbocharger performance with non-reacting 

high pressure flow, simulating PDC operation.  The parametric study considered the 

effect of operating frequency, duty cycle, and mass flow on rotor speed.  The test facility 

used a pressure tank and rotary valve.  Results indicated that higher tank pressure and 

longer duty cycles resulted in higher rotor speeds.  Rotor speed also increased with mass 

flow and remained independent of frequency. 
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Two-Dimensional Detonation-Turbine Interaction Studies 

Rasheed, et al. (2004) performed experimental and numerical investigations of a 

2-D turbine cascade, using high-speed flow visualization and unsteady computation fluid 

dynamics.  In both sets of results, strong shocks were observed to reflect off the turbine 

cascade and proceed upstream.  A weaker shock passed through the turbine cascade.  

Furthermore, there was significant time variation in turbine performance from one cycle 

to the next.  The cycle-to-cycle variation diminished over time, reaching a quasi-steady 

state.  The study included a cold-flow starting arrangement in which the first pressure 

pulse impacted the turbine cascade without a combustion reaction.  Peak turbine pressure 

ratio dropped by 20% from the first to sixth cycles, and the temperature ratio became 

quasi-steady within the first three cycles.  Nango, et al. (2007) also observed a strong 

reflected shock in a 2-D finite difference method study of a turbine cascade.  

Additionally, time integration of total enthalpy revealed an 81.8% isentropic turbine 

efficiency and 18.9% thermal efficiency.  Isentropic efficiency improved at higher rotor 

speeds.  Nango, et al. (2008) defined thermal efficiency as: 

 s
t h

W

L H V
   (46) 

where sW  is specific turbine power, and LHV is the lower heating value of the fuel: 

hydrogen.  Specific power, as defined by Nango, et al. (2008), is the time integrated 

power (i.e., work) divided by total mass flow per cycle and fuel-air ratio as shown in Eq. 

(47). 
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Nango, et al. (2008) defined turbine work as total mass flow per cycle multiplied 

by the difference in time-averaged enthalpy across the turbine as shown in Eq. (48). 

  c y c l e c y c l e i n o u tW m h h    (48) 

Kojima, et al. (2007) performed a design study for integrating a turbine and PDC, 

assuming a general single stage axial turbine without mixed flow.  The 2-D numerical 

study modeled a detonation tube with converging nozzle that simulated a turbine.  Three 

different nozzle shapes were considered with converging angles ranging from 0 to 10 

degrees. 

Mixed-Flow, Detonation-Driven Axial Turbine Studies 

Axial turbines have been experimentally studied with a multi-tube, can-annular 

PDC arrangement (Caldwell and Gutmark 2008; Glaser, et al. 2007; Van Zante, et al. 

2007; Baptista, et al. 2006).  Rasheed, et a. (2005) experimented with an arrangment 

consisting of eight, 52.5 mm (2 inch) diameter PDC tubes driving a single axial turbine 

stage designed for 3.6 kg/s (8 lbm/s), 25000 RPM, and 746 kW (1000 hp).  The rig 

operated up to 30 Hz (per tube) with stoichiometric ethylene-air, achieving a rotor speed 

as high as 18,500 RPM and extracting as much as 261 kW (350 hp).  Secondary air, 

refered to as “bypass” air, mixed with PDC exhaust before entering the turbine.  The 

steady stream of bypass air was used to cool the PDC tubes and also served as a means to 

dampen the pressure pulses of detonation waves.  Secondary flow rates were equal to or 
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greater than primary air flow into the PDC.  The turbine stator and rotor were from a 

locomotive scale turbocharger, and the coupled compressor was used as a dynamometer 

to apply a load to the turbine and measure power.  Work extraction was determined from 

measurements of the compressor mass flow, pressures, and temperatures.  Turbine 

pressure measurements indicated that peak pressure was attenuated across the turbine 

from 18.0 bar (260 psi) at the inlet to 2.1 bar (30 psi) at the exit. 

Subsequent work performed by Baptista, et al. (2006) used the same test rig and 

reported mechanical blade response with strain gages placed on six turbine stator vanes.  

Tests were conducted at 2 kg/s (4.4 lbm/s) air flow, split evenly between primary and 

secondary flow paths, achieving 11000 RPM rotor speed.  Tests were conducted for both 

sequential PDC tube operation and simultaneuous operation.  The staggered firing pattern 

spread the resonance response over a wider frequencies and reduced the maximum 

resonance amplitude. 

Van Zante, et al. (2007) conducted numerical studies with a PDC and axial 

turbine arrangement, including a single stage stator and rotor.  A 3-D, viscous, time-

accurate Reynolds-average Navier-Stokes solver was used in a rotating cartesian 

coordinate system.  The PDC arrangement was such that secodary air passed around the 

detonation tubes with a volumetric flow rate similar to that of the primary air flow, 

mixing just before entering the turbine.  The initial condition was set with unreacting 

primary and secondary flow, then the solver proceeds with three PDC cycles.  Van Zante, 

et al. (2007) observed pressure attenuation with shock reflection off turbine leading 

edges.  They also reported regions of reverse flow in the reflected shock, such that the 
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flow proceeded upstream through the secondary flow duct.  This indicates that the turbine 

is not able to process all the energy immediately available from the PDC exhaust. 

Glaser, et al. (2006 and 2007) and Caldwell, et al. (2006 and 2008) conducted 

experiments with an array of six, 25.4 mm (1 in) diameter PDC tubes feeding an axial 

turbine designed for 0.72 kg/s (1.6 lbm/s), 60,400 RPM , and 67.1 kW (90 hp).  

Maximum operating frequency was 20 Hz for each tube.  Secondary air flow mixed with 

the primary flow before entering the turbine.  Parametric studies investigated the effects 

of fueled-fraction, equivalence ratio, operating frequency, bypass ratio, and firing 

patterns.  Glaser, et al (2007) conducted a side-by-side study of steady cold flow, steady 

deflagrative and unsteady detonation cumbustion driven turbine performance.  The 

turbine was couple to a torque cell and water dynamometer to obtain power 

measurements.  Specific power was defined as: 

 
,

s

t i n

W
W

m T
  (49) 

where Tt,in is stagnation temperature entering the turbine.  PDC driven turbine 

performance was very similar to performance when driven by steady deflagration 

combustion.  Also, PDC driven turbine performance decreased with increasing fueled 

fraction.  A subsequent study performed by Caldwell and Gutmark (2008) using high 

speed shadowgraph images revealed a shock-jet interaction between the PDC exhaust and 

secondary flow that attenuated the shock and induced a vortex that propagated into the 

turbine passage.  Some of the energy from the shock is presumed to create the secondary 

flow effect and is therefore not available to the turbine for power extraction.   
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Thermodynamic Analysis of a Pulsed Detonation Driven Cycle  

Traditional approaches to thermodynamic cycle analysis based on steady flow 

may not be adequate for a pulsed detonation driven turbine engine, and there have been 

several proposed methods to model unsteady behavior.  Heiser and Pratt (2002) published 

a thermodynamic cycle analysis comparing an ideal PDE cycle with classical ideal 

Brayton (constant pressure combustion) and Humphrey (constant volume combustion) 

cycles.  A temperature-entropy (T-s) diagram for these cycles is shown in Fig. 69.  The 

process between point 3 and 3a is associated with part of the detonation wave heat 

addition process and is the entropy sum of an adiabatic normal shock wave.  The entropy 

generated from point 3a to 4 is a constant-area heat addition process (i.e., Rayleigh flow).  

Heiser and Pratt (2002) concluded that the ideal PDE cycle has a higher efficiency at all 

conditions, but the difference diminishes with increasing compressor temperature ratio. 
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Figure 69.  Heiser and Pratt comparison of ideal PDE, Humphrey, and Brayton 

cycles on a temperature-entropy diagram (Heiser and Pratt 2002) 

Dyer and Kaemming (2002) proposed a thermodynamic model similar to that of 

Heiser and Pratt (2002), including perfect gas assumptions and treatment of fuel-air 

ratios.  When comparing the ideal PDE to an ideal ramjet in Fig. 70, Dyer and Kaemming 

(2002) noted that the leading shock wave of the detonation does work on the fluid 

element, raising its pressure and energy state (point 3 to 3’).  At this point, the total 

enthalpy includes the kinetic energy associated with detonation velocity.  The heat of 

combustion is released at this elevated energy state (point 3’  to 4), such that the static 

enthalpy of the fluid element is higher than the combined entrance total enthalpy and heat 

release (state 4 on the dashed line).   
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Figure 70.  Comparison of ideal PDE and ramjet cycles on a temperature-entropy 

diagram (Dyer and Kaemming 2002) 

Cycle thermal efficiency, as defined by Dyer and Kaemming (2002), is: 

 
added rejected

th

supplied

q q

q



  (50) 

where qadded is the heat of combustion, qrejected is the thermal energy rejected in the 

exhaust, and qsupplied is the energy available from the fuel.  A comparison of ideal PDE, 

ramjet, and Brayton cycle thermal efficiencies is shown in Fig. 71 (Dyer and Kaemming 

2002), in which heat addition losses are the only difference between the Brayton and 

ramjet cycles.  Higher inlet compression experienced by Brayton and ramjet cycles 

diminishes the thermal efficiency advantage of the ideal PDE.   
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Figure 71.  Comparison of ideal PDE, ramjet and Brayton cycle thermal efficiencies 

(Dyer and Kaemming 2002) 

Petters and Felder (2002) used an on-design thermodynamic cycle analysis of a 

hybrid PDC high-bypass turbofan in the Numerical Propulsion Systems Simulation 

(NPSS) program, simulating the PDC as a conventional steady ramjet.  The model 

predicted an improvement in thrust and fuel consumption over the baseline conventional 

high bypass turbofan.  Andrus and King (2007) used an on-design cycle deck study of a 

high-bypass turbofan with an embedded PDC, comparing results from the NPSS program 

to results from Mattingly’s AEDsys program (Mattingy 2006).  The model assumed an 

ideal transition from unsteady PDC exhaust to steady mixed turbine inlet flow.  Unlike 

Petters and Felder (2002) who treated the PDC as a ramjet, the study incorporated Heiser 

and Pratt (2002) equations for an ideal PDE.  NPSS and AEDsys results showed good 

agreement and a potential 8% decrease in thrust specific fuel consumption.      
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Wintenberger and Shepherd (2004) offered a control mass approach to compute 

unsteady ideal PDE performance.  The analysis incorporates time-averaged flow 

properties and the Fickett-Jacobs (FJ) cycle; a closed system.  A comparison of cycle 

thermal efficiencies is shown Fig. 72.  Thermal efficiency of th FJ cycle as defined by 

Wintenberger and Shepherd (2004) is: 

 n e t e x i t i n
F J

c o m b u s t i o n c o m b u s t i o n

W h h

q q



   (51) 

Whereas the FJ cycle has a higher thermal efficiency than the Brayton cycle, it is 

also better than the Humphrey cycle.  This is consistent with the Heiser and Pratt (2002) 

T-s diagram, which indicates that the ideal PDE has less heat addition losses than the 

Humphrey cycle.  Also, the thermal efficiency improvement of the FJ cycle over the 

Brayton cycle diminishes with increasing pressure ratio, which is consistent with Dyer 

and Kaemming (2002).   

 

Figure 72.  Comparison of ideal Fickett-Jacobs, Humphrey and Brayton cycle 

thermal efficiencies (Wintenberger and Shepherd 2004) 
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Hofer, et al. (2009) developed a performance metric for pulsed detonation turbine 

engines, treating the combustor and turbine as a single component.  This approach avoids 

the complexity of unsteady turbine inlet conditions, making use of steady compressor exit 

conditions.  The formulation for isentropic efficiency includes a ratio of actual pulsed 

detonation driven turbine work to ideal Brayton turbine work. 
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Station 3 is the combustor inlet, station 4 is the turbine inlet, and station 8 is the 

turbine exit.  Hofer, et al. (2009) presume to measure turbine work directly with torque 

and speed sensors.  An energy balance around the combustor is used to obtain an ideal 

turbine inlet temperature: 
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where ideal combustor efficiency is 100%, and there is no heat loss.  The approach 

proposed by Hofer, et al. (2009) allows for a more direct comparison of turbine 

performance with pulsed detonation combustors and conventional steady combustors. 
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Appendix B: Theory of Confined Detonations 

The following discussion of detonation theory is intended to orient the reader’s 

understanding of PDC operation and its advantages.  A one-dimensional (1-D) Rayleigh 

flow analysis leads to the Rayleigh line relation and one of the Rankine-Hugoniot 

relations.  Development of the Hugoniot curve illustrates the significance of the 

Chapman-Jouguet conditions.  Introduction of a 1-D model explains the coupled and 

mutually supporting nature of the detonation shock wave and combustion reaction.  The 

ensuing discussion of three-dimensional (3-D) detonation wave structure highlights 

length scales and unsteady behavior of confined detonations. 

Rayleigh Line and Rankine-Hugoniot Relations 

A simplified 1-D thermodynamic model of a generalized combustor is shown in 

Fig. 73 with constant area duct flow and a stationary combustion wave, either 

deflagration or detonation.  In reality, the combustion wave would move from right to 

left, but for convenience, the frame of reference is such that the wave is considered fixed.  

Pre-mixed reactants enter from the left toward the combustion wave front, and products 

exit to right.   

Unburned Burned

Stationary Combustion Wave

u1, 1, p1, T1 u2, 2, p2, T2

 

Figure 73.  Schematic of stationary, one-dimensional, confined combustion wave 

model 
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Assuming steady, 1-D flow with no body forces and no external heat addition or 

rejection, the equations for continuity, momentum and energy conservation are, 

respectively (Kuo 1986): 

 0
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

dx

ud 
 (55) 
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where  is the dynamic viscosity, ’ is the bulk viscosity and qcond is the conduction heat 

transfer per unit mass associated with the combustion reaction as described in Eq. (58),  

 cond

dT
q

dx
   (58) 

where  is thermal conductivity. 

The velocity gradient (du/dx) and thermal gradient (dT/dx) are both zero on either 

side of the combustion wave.  Assuming ’ is very small and can be neglected, the 

integration from state one to state two yields: 

 2211 uu    (59) 
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The Rayleigh line relation follows from the combination of Eq. (59) for mass and 

Eq. (60) for momentum, as shown in Eq. (62).  
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The Rankine-Hugoniot relation in Eq. (63) is derived from a combination of mass 

Eq. (59), momentum Eq. (60), energy Eq. (61), and ideal gas equation of state.  
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The Hugoniot curve in Fig. 74 is for a fixed heat release per unit mass (q).  

Rayleigh lines, which are tangent to the Hugoniot curve at U and L, emanate from the 

initial pressure and specific volume (1/1) (point A in Fig. 74).  The distance between 

point A and the Hugoniot curve is proportional to q.  The points of tangency are the upper 

and lower Chapman-Jouguet (C-J) points.  The Hugoniot curve is divided into five 

regions, I through V, as demarcated by the C-J points and the intersections of constant 

pressure and constant specific volume lines through with the initial conditions.  These 

regions contain all of the possible solutions to Eq. (63).  Domain V is a region of 

imaginary solutions to the Rayleigh line relation, Eq. (62), and is consequently not 

relevant.  Region IV would require gases to accelerate from subsonic to supersonic speeds 

across a deflagration wave, and this is not physical.  Region III contains solutions 

corresponding to subsonic deflagration.  The upper branches of the curve, regions I and II, 

include detonation solutions to the Rankine-Hugoniot equation, Eq. (63). 
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I (Strong Detonation)

II (Weak Detonation)

III (Weak Deflagration)
IV (Strong Deflagration)

V

U

L

Upper Chapman-Jouguet Point

Lower Chapman-Jouguet Point

P

1/

1/1

P1

A

 

Figure 74.  Hugoniot curve with solution domains of different combustion 

conditions 

Table 12 contains a comparison of typical detonation and deflagration combustion 

properties.  Station numbering is consistent with Fig. 73, where c1 is the speed of sound 

in the unburned, pre-mixed reactants.  Detonation waves can propagate at five times the 

speed of sound, whereas deflagration occurs at low subsonic speeds.  Furthermore, there 

is significant pressure gain from detonation, with pressure ratios greater than ten.  

Conversely, deflagration results in a slight expansion of gases. 

Table 12.  Comparison of detonation and deflagration (Kuo, 1986:234) 

 Detonation Deflagration 

u1/c1   5-10   0.0001-0.03 

u2/u1   0.4-0.7 (deceleration)   4-6 (acceleration) 

p2/p1   13-55 (compression) ~0.98 (slight expansion) 

T2/T1   8-21   4-16 

2/1   1.7-2.6   0.06-0.25 
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Chapman-Jouguet Conditions 

The upper and lower C-J points correspond to unique velocities associated with 

the set of simultaneous solutions to Eq. (62), the Rayleigh line relation, and Eq. (63), the 

Hugoniot equation.  The velocity at the upper C-J point (called the Chapman-Jouguet 

velocity, VC-J) is usually five times or more the speed of sound (Friedman 1953).  The 

magnitude of VC-J can be calculated using a Newton-Raphson iterative method (Kuo 

1986) and has been determined experimentally (Dean 2007).  VC-J varies as a function of 

fuel and oxidizer, equivalence ratio, and pressure (Dean 2007).  For an ethylene-air 

mixture at 25 deg C and 1.013 bar, VC-J is approximately 1822 m/s, and the 

corresponding C-J pressure is 18.6 bar (Baker, et al. 1983). 

Zeldovich, von Neumann and Döring One-Dimensional Model 

A detonation front consists of a closely coupled shock wave followed by a 

combustion reaction.  The shock raises temperature and pressure of the reactants, 

initiating a fast reaction, and the resulting combustion energy sustains the shock wave.  A 

model for a 1-D planar detonation wave was independently contrived by Zeldovich, von 

Neumann and Döring (ZND) (Kuo, 1986; Glassman 1996).  The ZND model assumes 1-

D, steady flow, with respect to the detonation front and is depicted in Fig. 75.  A narrow 

induction zone separates the shock wave from the trailing rapid reaction zone.  During the 

induction period, the reaction rate is assumed to follow the Arrhenius law and increases 

slowly, resulting in nearly constant pressure, temperature, and density.  The reaction rate 

spikes in the reaction zone, rapidly releasing the energy required to sustain the strength 

and speed of the shock wave.  Concurrently, the shock wave pre-heats and pressurizes 
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reactants prior to combustion.  The reaction zone and shock wave decouple if the space 

between them becomes so great that they can no longer support each other.  

Consequently, the shock loses strength, the reaction rate slows and the detonation fails. 
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Figure 75.  Notional variation of temperature, pressure, and density through a ZND 

1-D detonation wave model (not to scale) 

Three-Dimensional Structure of Confined Detonations 

The ZND model is useful for revealing general characteristics of a steady 

detonation; however, it has inconsistencies with experimental observations (Glassman 

1996), revealing that it has limited ability to completely characterize the nature of a real 

detonation (Coleman 2001).  A fish-scale pattern was observed in a detonation channel 

that was lined with a soot-covered foil (Coleman 2001; Guirao, et al. 1982).  The pattern 

was etched into the soot as shown in the sketch of Fig. 76, indicating that the planar 

detonation front is actually multi-dimensional, consisting of incident shocks and Mach 

stems that intersect at a triple point with a transverse-moving shock wave (Kuo 1986).  

The cellular pattern results from the transverse motion of these triple points associated 



 

132 

 

with the propagating detonation wave.  The lines composing the diamond shapes are the 

trajectories traced by the triple points.  The resulting characteristic dimension is the cell 

width, . 



 

Figure 76.  Components of detonation wave cell structure  (Porowski and 

Teodorczyk 2009) 

The magnitude of  depends on various reactant properties, such as equivalence 

ratio () as shown in Fig. 77. Experimentally measured cell widths are plotted for four 

different fuel-air mixtures over a range of equivalence ratios (Guirao, et al. 1982; 

Knystautas, et al. 1984).  The minimum  occurs near stoichiometric conditions (= 1.0) 

and increases for either lean or rich mixtures.  Hydrogen (H2) and short-chain 

hydrocarbons such as acetylene (C2H2) and ethylene (C2H4) have relatively lower minima.  

In general, increases with the length of the hydrocarbon chain; however, some 

hydrocarbon chains longer than propane (C3H8) have been measured with approximately 
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the same cell size as propane (Austin and Shepherd 2003).  Initial pressure of the mixture 

also has a strong inverse relationship with , in which higher pressures result in small  

(Bauer, et al. 1984; Bauer, et al. 1986). 

 

Figure 77.  Measured cell sizes of different fuels (Guirao, et al. 1982:583-590; 

Knystautas 1984:23-37) 

Experimental Schlieren and computational images have more accurately depicted 

the 3-D cellular structure (Austin and Shepherd 2003; Pintgen, et al. 2003a; 2003b; 

Austin, et al. 2005a; 2005b; Pintgen and Shepherd 2005).   These images reveal periodic 

weakening and strengthening of the leading shock wave, as well as oscillating shock 

velocities between 0.8 VC-J and 1.5 VC-J (Austin, et al. 2005b).  Furthermore, a keystone 

shaped pocket of reactants is seen to form behind the leading shock just prior to the 

collision of transverse waves (Pintgen, et al. 2003a; 2003b; Austin, et al. 2005b; Oran, et 

al. 1982; Mikutsu, et al. 1999).  The shock front and combustion wave continually 

decouple and the detonation wave begins to fail; however, the transverse waves prevent 
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the detonation from failing completely (Oran, et al. 1982).  The reaction quickens 

whenever transverse waves collide, bringing the reaction zone closer to the shock wave, 

accelerating the detonation wave, and strengthening the shock front.  Therefore, the 1-D, 

steady planar detonation wave in the ZND model cannot really exist without the 3-D, 

unsteady interaction of transverse waves necessary for the continually coupled and 

mutually supporting shock wave and reaction zone.  Furthermore, the transverse waves 

are integral to creating the cellular structure, and PDC diameter limits are a function of 

the cell width.  If the PDC diameter is too large, transverse waves are not able to sustain 

the necessary cell width for successful detonation operation. 
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Appendix C:  Pulsed Detonation Combustor Operation 

The PDC operates in a periodic fashion with three phases as illustrated in Fig. 78. 

The cycle begins with the fill phase, in which premixed fuel and oxidizer are introduced 

into the PDC tube.  The second phase is composed of four parts and is referred to as the 

fire phase.  During this phase, the reactants are ignited, combustion then transitions from 

a subsonic deflagration to supersonic detonation, the detonation wave completes the 

combustion process, and finally the exhaust products expand out of the tube.  The third 

phase is a buffer between cycles, in which a charge of non-reacting gas purges any 

remaining exhaust products from the tube.  This so called purge phase separates hot 

exhaust products and fresh reactants.  Cycle frequency is a direct function of the total 

time duration consumed of the three phases as shown in Eq. (64). 

 
purgefirefill ttt
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
1

 (64) 

 

Figure 78.  Pulsed detonation combustor cycle with timing for 11 Hz operation with 

equal phase times 
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Fire Phase 

The fire phase begins when the fill valve is closed and ends when the purge valve 

opens.  An example timeline of the intermediate processes in the fire phase is shown in 

Fig. 79.  After a deliberate delay, a spark is deposited, igniting the fuel/oxidizer mixture.  

Combustion involves a deflagration to detonation transition (DDT), after which the 

detonation wave proceeds down the remaining length of the tube, raising the chamber 

pressure.  The ensuing blowdown process reduces pressure through a series of expansion 

waves that propagate upstream from the combustor exit.  Minimizing or eliminating as 

many of these events as possible will enable increased PDC operating frequency. 

 
Figure 79.  Notional timeline of events in fire phase (adapted from Hopper 2008) 

Hoke, et al. (2002) showed that ignition and DDT times for a PDE increased as a 

consequence of expansion waves resulting from valve closure, which decreased tube 

pressure.  Tube pressure followed a cyclical pattern, oscillating between maxima and 

minima.  This behavior suggested that optimal spark timing coincided with pressure rise, 

potentially improving ignition and DDT and reducing overall fire phase time. 

Helfrich (Helfrich 2006;  Helfrich, et al. 2006) found that increasing the spark 

delay from 2 ms to 4 ms decreased ignition time by more than 2 ms when operating at 15 

Hz with JP-8/air and using a test setup similar to that of Hoke, et al. (2002).  

Additionally, Helfrich (Helfrich 2006;  Helfrich, et al. 2006) found that delays of 6, 8 and 



 

137 

 

10 ms decreased ignition and DDT time as much or even further than with a 4 ms delay.  

Furthermore, he determined that the minimum overall time to detonation (i.e., spark 

delay, ignition time, and DDT) was achieved with a 4 ms spark delay. 

Some PDE researchers (Glaser, et al. 2005; Glaser, et al. 2007) may have avoided 

the need for a spark delay because they were using highly detonable gaseous mixtures 

such as ethylene/oxygen, diminishing the effects of pressure fluctuations.  The large 

pressure fluctuations experienced by Helfrich, Hoke, Bradley and Schauer may also be 

associated with the automotive valves used in their research.  Werner (2002) avoided 

these pressure fluctuations using a “valveless” PDE design, flowing a continuous stream 

of inlet air. 

The formation of a deflagration wave has been determined experimentally with an 

optical sensor detecting increased luminescence and with a pressure transducer indicating 

pressure rise at the PDE head (Tucker 2005; Helfrich 2006; Slack 2007).  DDT has been 

characterized by measuring wave transient times in the detonation tube with ion probes 

and pressure transducers, determining when the velocity reaches VC-J (Tucker 2005; 

Austin and Shepherd 2003; Helfrich 2006; Werner 2002;  Rolling 2002; Panzenhagen 

2004; Miser 2005).  The DDT process starts with a laminar deflagration that propagates 

compression waves.  Shock formation results from these coalescing compression waves, 

disturbing the flow and causing turbulence (Kuo, 1986).  The resulting turbulent flame 

propagates at much higher speeds than the laminar flame, on the order of 0.5 VC-J (Zhu, et 

al. 2007).  A localized explosion occurs within the turbulent region (Oran and Khokhlov 

1999; Gamezo, et al. 2007), creating transverse waves that quickly accelerate the shock 
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front into a bona fide detonation and simultaneously forming a retonation wave; a shock 

wave that travels upstream through the combustion products (Kuo, 1986).  DDT can 

occur unaided in a confined tube as transverse waves reflect off side walls; however, 

obstacles have been inserted into the tube accelerate the process (Schauer, et al. 2001; 

Meyer, et al. 2002; Sinibaldi, et al. 2001).  Schauer, et al. (2002) used high speed imaging 

in a polycarbonate PDE tube to show that a spiral obstacle increases flame turbulence and 

encourages hot spot formation, promoting DDT. 

During blowdown, mass exits the combustor and tube head pressure is higher than 

atmospheric, adding a component of thrust.  As the exhaust mass exits, chamber pressure 

and thrust diminishes.  Opening the purge valve too early at the head of the tube reduces 

the thrust benefit, and if the tube pressure is higher than the purge manifold pressure, hot 

reactants may flow into the purge manifold.  When a turbine is coupled to the PDC, 

chamber pressure will remain higher than atmospheric pressure.  It is prudent to allow 

blowdown to proceed long enough for chamber pressure to fall below purge manifold 

pressure. 

Fill and Purge Phases 

Fill and purge phases operate in similar fashions.  The duration is a function of the 

convection time associated with a gaseous mixture in the detonation tube.  The only 

difference is the mixture of fuel and oxidizer in the fill phase, and the non-reactive 

mixture in the purge phase.  Fueled fraction is the fill mixture volumetric flow rate 

(governed by manifold pressures and temperatures), multiplied by fill time, and divided 

by detonation tube volume.  A fueled fraction equal to unity implies that the tube is 
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completely filled with a reactive mixture; whereas, a partially filled tube has a fueled 

fraction less than 1.0.  Similarly, purge fraction is the volumetric ratio of inert mixture to 

tube volume. 

The duration of these two phases is a function of the fill and purge manifold 

pressure differentials, flow coefficients, and the volume of the detonation tube, itself.  

Increasing supply pressure reduces fill/purge time up to a choked-flow condition limited 

by the supply system.  Reducing the time further requires either lower fueled/purge 

fractions, a shorter tube, and/or a smaller tube diameter.  Changing the tube volume also 

has effects on the timing of the fire phase.  If the tube is too short, DDT may not occur 

and detonations may not be produced.  Therefore, all three phases must be considered 

when specifying the detonation tube geometries. 

Rotating Detonation Configuration 

A continuous, rotating detonation engine (RDE) configuration, illustrated in Fig. 

80, has been proposed as an alternative to the axial pulsed detonation tube arrangement 

(Bykovskii, et al. 2006; Daniau, et al. 2005; Hayashi, et al. 2009).  The RDE contains an 

annular duct with one open end for exhausting detonation products.  Fuel and oxidizer are 

injected at the upstream head and ignited by one or more continuously running detonation 

waves that traverse the circumference of the chamber.  The expanding detonation 

products travel downstream with a radial component of velocity, tracing out a helical 

trajectory.  Therefore, the RDE operates with only the fill and fire phases, like a PDE, and 

omits the purge phase. 
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Figure 80.  Notional diagram of a rotating detonation combustor (adapted from 

Daniau, Falempin and Zhdan 2005) 

When coupled to a turbine the RDE is called a rotating detonation combustor 

(RDC).  The potential benefit of this arrangement includes an annular exhaust flow that 

may be is more easily integrated with an axial turbine flow.  Furthermore, the exhaust is 

potentially steadier without oscillating between such disparate pressures as an axial 

detonation tube.  Whereas the flow field at the RDC head is very heterogeneous, the 

expanding exhaust at the exit is expected to be more uniform in terms of pressure and 

temperature.  Using a two-wave numerical model with one-step chemical kinetics of 

hydrogen/air, Yi, et al. (2010) reported inlet chamber pressures oscillating between 2 bar 

to 39 bar at a fixed circumferential location, while exit pressures only oscillated between 

0.5 bar and 2.2 bar.  As RDE technology capabilities mature, the potential for 

experimental studies of RDC-turbine configurations increases. 

 



 

141 

 

 

Key Operating Parameters 

There are many parameters to consider when implementing a PDC, and they are 

often interrelated.  Fuel selection influences detonation tube diameter and length.  The 

cell width associated with the fuel determines the range of tube diameters, and DDT 

length relates to fuel detonability, which is also related to cell width (Hopper 2008).  

DDT length is also influenced by the type of obstacles in the tube.  Tube length is 

generally a little longer than the DDT length (e.g., a 305 mm or more longer).  Tube 

length and diameter are used to determine tube volume.  Fueled and purge fractions are a 

function of tube volume, as well as fill/purge volumetric flow rates (governed by 

manifold pressures and temperatures) and fill/purge time.  Frequency is determined by the 

time associated with fueled and purge fractions, ignition time, DDT time, detonation 

wave travel time, and blowdown time, which are also functions of fuel selection.  

Therefore, adjusting one parameter has broad implications on PDC operation.    
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Appendix D:  Comparison of Pulsed Detonation and Steady Deflagration Turbine, 

Presented at the 2010 AIAA Aerospace Sciences Meeting (AIAA-2010-1116) 

Experimental turbine performance driven by an unsteady PDC is compared 

directly to turbine performance driven by a near constant pressure, steady deflagration 

combustor (SDC).  Additionally, time-dependent turbine response is correlated to the 

unsteady forcing function imposed by the PDC.  The turbine used in this study has nine 

blades and is part of a Garrett GT2860RS automotive turbocharger, pictured in Fig. 81. 

The turbine wastegate (as seen in Fig. 82) is disabled so that all combustor exhaust passes 

through the turbine.  The GT2860RS is equipped with a radial compressor having six 

primary impeller blades and six splitter blades.  The water-cooled, center housing 

contains the shaft and dual ball bearing assembly. 

 

  Figure 81.  Garrett GT2860RS automotive turbocharger (used with 

permission) 
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  Figure 82.  Turbocharger components (used with permission) 

Performance Figures of Merit 

Two measures of merit are considered for turbine performance: specific work and 

brake specific fuel consumption (BSFC).  An expression for turbine shaft power output is 

obtained in Eq. (65) from a one-dimensional, adiabatic thermodynamic analysis, as seen 

in Fig. 83.  The development of this expression assumes steady flow and an average 

specific heat and includes a mechanical efficiency term.  To compare turbine performance 

at different operating conditions, power is considered per unit of turbine mass flow (i.e., 

specific power), as shown in Eq. (66).   Dimensional analysis shows this expression to be 

specific work because mass flow rate is used. 

    , ,3 ,3.5turb mech in out mech turb p avg t tW m h h m c T T         (65) 
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  Figure 83.  Schematic of one-dimensional, adiabatic thermodynamic analysis 

of a radial turbine 

Direct measurement of time-resolved PDC and turbine exhaust temperatures is 

problematic; therefore, the compressor side of the turbocharger is treated as a 

dynamometer for measuring turbine power.  Turbine power is equal to compressor power 

(assuming 100% mechanical efficiency), because the two components are coupled to the 

same shaft.  An expression for compressor power, shown in Eq. (68), is developed using 

the same assumptions and similar one-dimensional, adiabatic thermodynamic analysis as 

used for turbine power.  For the turbocharger, the mechanical efficiency term for the 

compressor and turbine are equal because they share a common bearing assembly. 

 turb comprW W  (67) 

  , ,2 ,1compr compr p avg t tW m c T T    (68) 

Equation (68) requires steady-state compressor inlet and exit temperatures; 

however, exit temperature measurements did not reach steady-state due to short run 

times.  Duration of combustor run times was restricted by combustor wall temperature 
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limits, which were reached less than a minute after ignition with the SDC configuration.  

Therefore, an expression for exit temperature is developed in Eqs. (69) and (70), using 

isentropic relations and the definition of compressor efficiency.  These equations assume 

constant specific heat.   Compressor efficiency can be obtained from the manufacturer’s 

compressor map, shown in Fig. 84. 
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The temperature obtained from Eq. (70) is then used in Eq. (68) for compressor 

power, resulting in Eq. (71).  Equation (71) is combined with Eqs. (66) and (67) to 

produce an expression for specific turbine work, shown in Eq. (72). 
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Figure 84.  Compressor map for GT2860RS (used with permission) 

To compare specific turbine work between SDC and PDC configurations using 

Eq. (72), similar compressor operating conditions must be matched to reduce influence 

from variations in compressor efficiency.  Furthermore, the same mechanical and 

compressor efficiencies must be assumed for steady and unsteady operation (i.e., SDC 

and PDC configurations).  Using the SDC driven turbine configuration as a baseline, Eq. 

(73) quantifies relative improvements. 
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Another figure of merit for turbine performance is BSFC, which is simply fuel 

flow rate divided by power.   An equation for BSFC is derived from Eqs. (67) and (71), 

and relative improvements are reported using Eq. (75). 
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Time-dependent compressor power and turbocharger rotor speed are correlated to 

the three-phase PDC cycle.  For this study, the duration of each phase is about equal and 

depends on the operating frequency. 

Experimental Arrangement and Methodology 

Experiments were carried out in the AFRL Detonation Engine Research Facility, 

using an ethylene-air mixture.  For PDC operation, fill distribution and ignition takes 

place using an automotive engine head and cam to operate intake and exhaust valves for a 

desired operating frequency.  The intake valves are used for the main fill fuel-air mixture, 

and the exhaust valves are used to inject purge air.  During the fire phase, intake and 

exhaust valves are closed.  For SDC operation, the intake valves remain fixed in the full-

open position, exhaust valves remain closed, and fuel is injected and mixed downstream 
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of the intake valves to prevent backfire into the main manifold.  For both PDC and SDC 

configurations, combustion products expand through the turbocharger turbine and then 

exit through a 77.9 mm (3 inch) diameter elbow.  A temperature-entropy (T-s) diagram in 

Fig. 85 illustrates the notional ideal cycle for these two configurations. 
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Figure 85.  Notional ideal temperature-entropy diagram of PDC and SDC 

configurations 

The general approach to this experiment study consisted of three phases.  First, the 

PDC configuration was operated without fuel, such that the equivalence ratio is zero, and 

fueled fraction is unity.  The objective was to observe the turbine response to pressure 

pulses, as well as to confirm instrumentation operability.  The second phase was the SDC 

configuration.  The objective was to set a performance baseline for comparison with the 

PDC configuration and to determine the range of operating conditions for which a 

continuous flame may be established.  The final phase of testing was in the PDC 

configuration, and the primary objective was to assess turbine performance at a matching 

SDC inlet operating condition. 
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Turbocharger Instrumentation 

The compressor side of the turbocharger received ambient air through a mass air 

flow (MAF) sensor.  A 3.45 bar (50 psi) static pressure transducer and J-type 

thermocouple were just downstream of the MAF on a 77.9 mm (3 inch) diameter elbow, 

as seen in Fig. 86.  The compressor exhaust contained a 3.45 bar (50 psi) static pressure 

transducer and J-type thermocouple along a 52.5 mm (2 inch) diameter pipe and a ball 

valve to back-pressure the compressor, as seen in Fig. 87.  The ball valve is set such that 

the compressor is on its design operating map.  Several different compressor operating 

conditions are considered by adjusting the PDC operating frequency.  J-type 

thermocouples are attached to the turbine and compressor housings.  Turbocharger 

temperature measurements also include center housing cooling water inflow and outflow.  

All temperatures were sampled once per second, separately from the other turbocharger 

measurements. 

 

Figure 86.  Turbocharger experimental arrangement 
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Figure 87.  Turbocharger compressor instrumentation and control valve 

Laser tachometers positioned at the compressor inlet and turbine exhaust, as 

shown in Fig. 88, determined turbocharger rotor speed.  Each tachometer was constructed 

with a 4 mW, 670 nm diode laser with a collimating lens that focused a beam on blade 

leading/trailing edges, as shown in Fig. 89.  The return deflected off an internal mirror 

toward a photodiode with a switchable-gain, amplified silicon detector.  Blade arrival was 

indicated by a peak signal from the photodiode.  Rotor speed was determined by the 

difference in blade arrival times.  Pressure, mass flow rate, and rotor speed were sampled 

simultaneously at 5 MHz. 
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Figure 88.  Schematic of turbocharger tachometer arrangement 

 

Figure 89.  Schematic of laser tachometer  

Phase One: Cold Flow Driven Turbine 

For the first phase of testing, the turbocharger was mounted to a 152.4 mm (6 

inch) long, 52.5 mm (2 inch) diameter steel pipe nipple that extends from the engine 

head.  A quartz crystal, piezoelectric, dynamic pressure sensor was placed on the nipple at 

the turbine entrance.  This pressure measurement was used to determine arrival of 

pressure pulses at the turbine inlet.  Testing was conducted at a 10 Hz operating 
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frequency with 5.16 kg/min (11.35 lb/min) total turbine inlet air flow.  As the equivalence 

ratio was zero, the fire phase only consisted of blow down from fill-air momentum. 

Phase Two: Steady Deflagration-Driven Turbine 

The second phase involved a modification to the normal PDE configuration for 

near constant pressure, steady deflagration combustion (shown in Fig. 90), by holding the 

main fill valves open and purge valves closed.  The turbocharger was mounted to the end 

of the PDE tube such that the total length of 52.5 mm (2 inch) diameter steel pipe was 

1219 mm (48 inches).   

 

Figure 90.  Schematic of steady deflagration turbine experimental arrangement with 

GT2860RS turbocharger 

All internal DDT obstacles were removed that are normally used for PDE 

operation.  An orifice plate with a 19 mm (0.75 inch) diameter hole was added 152.4 mm 

(6 inches) downstream of the fill valve to aid combustion.  Fuel was injected just 
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downstream of this orifice plate at three equally spaced circumferential locations.  A 

second orifice plate with a 31.75 mm (1.25 inch) diameter hole was added 304.8 mm (12 

inches) downstream of the first orifice plate to assist with mixing and flame holding.  An 

automotive spark plug was used for ignition just upstream of the second orifice plate.  It 

was mounted flush to the tube wall and discontinued sparking once a flame was 

established.  The remaining 762 mm (30 inches) of tube length was sufficient to ensure 

complete combustion before exhausting through the turbine.  A J-type thermocouple was 

attached to the tube wall 304.8 mm (12 inches) downstream of the second orifice.  After 

ignition, tube wall temperatures reached 644 K (700 deg F) in less than one minute, at 

which time data was sampled.  The flame length was estimated to extend 152.4 mm (6 

inches) downstream of the second orifice based on visible tube temperature discoloration. 

SDC operation was attained by first setting desired air flow and then increasing 

fuel flow to a 0.75 equivalence ratio, at which point the spark plug operated at 100 Hz 

until a flame was achieved.  The spark was then discontinued and tube temperature was 

observed to confirm that a continuous flame had been established.  If tube temperature 

did not rise, spark ignition was repeated.  Data was sampled as soon as the flame was 

established and before tube wall temperatures exceeded 644 K (700 deg F).  Flames were 

established with up to 4.1 kg/min (9 lb/min) inlet air flow, bounding the range of 

operating conditions to be used for turbine performance comparisons. 

Phase Three: Pulsed Detonation-Driven Turbine  

The PDC in this experiment was a 52.5 mm (2 inch) diameter steel pipe.  It was 

1219 mm (48 inches) long, and used a 914.4 mm (36 inches) long, internal spiral to assist 
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with DDT.  Equivalence ratio was set to 0.75 and is computed with both fill and purge 

air, as shown in Eq. (76).  Fueled fraction was set to unity, and purge fraction was 0.31. 
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Two ion probes were installed downstream of the spiral to verify Chapman-Jouget 

velocities.  The probes short-circuit when the flame front arrives, and velocity is 

determined from the transition time between probes.  The turbocharger turbine inlet was 

coupled to the PDC exhaust nozzle, as shown in Fig. 91.  Data was sampled when tube 

wall temperatures reach 644 K (700 deg F). 

 

Figure 91.  Schematic of PDC-turbine experimental arrangement with GT2860RS 

turbocharger 
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PDC operation was attained by first setting desired air flow and operating 

frequency.   Then fuel was added until a 0.75 equivalence ratio is achieved, at which 

point spark ignition of the first detonation cycle occurred.   Before the first detonation 

was achieved, the turbocharger turbine was driven by the fill and purge phases associated 

with the start-up sequence. 

Operating Conditions 

Combustor inlet operating conditions are tabulated below in Table 13.  The range 

of conditions evaluated was constrained by SDC blow-out limits.  Turbine rotor speed 

response was evaluated with the 10 Hz cold flow and 10 Hz PDC conditions.  Total air 

flow for the PDC 11 Hz operating condition was matched to the SDC main air flow at 

approximately 3.63 kg/min (8 lb/min).  The results from these two matching conditions 

were used for performance comparisons.  Manifold pressures were higher for the SDC 

configuration because of the additional blockage from the orifice plate; however, there 

was also a greater associated total pressure loss with this configuration, such that initial 

combustor pressures were about the same, approximately 1.65 bar (24 psia), for both 

SDC and PDC operation. 

Table 13. Summary of SDC and PDC operating conditions 

Test 

Configuration 

Operating 

Frequency 

(Hz) 

Main 

Manifold 

Pressure 

(psia) 

Main 

Manifold 

Temperature 

(deg F) 

Purge 

Manifold 

Pressure 

(psia) 

Purge 

Manifold 

Temperature 

(deg F) 

Main 

Air 

Flow 

(lb/min) 

Purge 

Air 

Flow 

(lb/min) 

Fuel 

Flow 

(lb/min) 

SDC - 29.76 69.16 - - 7.51 - 0.380 

SDC - 31.76 69.57 - - 8.04 - 0.405 

SDC - 33.16 70.15 - - 8.49 - 0.427 

PDC 10 22.42 78.24 16.67 72.73 5.53 1.83 0.373 

PDC 11 23.83 79.96 16.89 73.13 6.05 2.01 0.410 

PDC 12 25.53 79.14 17.01 73.40 6.63 2.20 0.448 
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Results 

Turbine performance was assessed in terms of specific work and BSFC using Eqs. 

(72) through (75).  PDC results are normalized by cycle time to compare average 

performance.  Additionally, PDC driven turbine power and rotor transients are presented 

to assess unsteady turbine response. 

Cold Flow Driven Turbine 

Figure 92 includes a trace from the compressor laser tachometer at an average 

compressor operating condition of 5.05 kg/min (11.11 lb/min) corrected mass flow and an 

average pressure ratio of 1.29.  One of the blade leading edges is painted white, rendering 

a stronger return than the others.  This blade is arbitrarily called, “Blade #1.” 

Instantaneous rotor speed is computed from Blade #1 arrival time subtracted from the 

previous Blade #1 arrival time (i.e., transient time for one revolution).  The average rotor 

speed over the two cycles is about 70,359 RPM, which is consistent with the compressor 

operating map in Fig. 84 on page 146.  Time history of rotor speed response and turbine 

inlet pressure is shown in Fig. 93.  Transients in rotor speed correspond to transients in 

turbine inlet pressure, rising and falling with a lag of about 10 milliseconds.  The first rise 

in rotor speed corresponds to the fill phase pressure, then decays during blow down, 

levels off momentarily at start of the purge phase, and then decays again until the start of 

the next fill phase. 



 

157 

 

 

Figure 92.  Compressor tachometer signal with 10 Hz cold flow operation  

 

Figure 93.  Rotor speed response over 2 cycles with 10 Hz cold flow operation 
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Steady Deflagration Combustor Driven Turbine 

Results for the SDC driven turbine are tabulated below in Table 14.  Compressor 

exit temperature was computed using Eq. (70) and 72% isentropic compressor efficiency.  

Specific turbine work was computed with Eq. (72), assuming 100% mechanical 

efficiency.  In general, specific power increases with increasing inlet air flow, indicating 

an increase in either combustor, compressor or turbine efficiency, or a combination 

thereof.  The second operating condition with 3.65 kg/min (8.02 lb/min) inlet air flow 

was selected as the baseline condition for comparing SDC and PDC driven turbine 

performance, minimizing the potential effects of variations in compressor efficiency. 

Table 14. Results from steady deflagration operation 

Combustor Compressor Turbine

Inlet Air 

Flow Rate 

(kg/min)

Inlet Fuel 

Flow Rate 

(kg/min)

Corrected 

Mass Flow 

(kg/min)

Pressure 

Ratio

Average 

Rotor Speed 

(RPM)

Average 

Corrected Rotor 

Speed (RPM)

Average Exit 

Static Temp 

(K)

Average 

Power (Eq. 70) 

(kW)

Average Specific 

Work (Eq. 72) 

(kJ/kg)

3.40 0.17 4.68 1.19 60981 61722 316 1.61 28.41

3.65 0.18 4.98 1.22 62241 62997 319 2.00 32.94

3.86 0.19 5.29 1.24 65847 66647 321 2.33 36.30  

Pulse Detonation Combustor Driven Turbine 

Results for the PDC driven turbine are tabulated below in Table 15.  As with the 

SDC configuration, compressor exit temperature was computed using Eq. (70) and 72% 

isentropic compressor efficiency.  Specific turbine work was computed with Eq. (72), 

assuming 100% mechanical efficiency.  Specific work increases more significantly from 

the 10 Hz to 11 Hz operating conditions, than from the 11 Hz to 12 Hz, indicating a 

possible gradient in rising compressor/turbine efficiency.     
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Table 15. Results from pulsed detonation operation 

Combustor Compressor Turbine

PDC 

Frequency 

(Hz)

Inlet Air 

Flow Rate 

(kg/min)

Inlet Fuel 

Flow Rate 

(kg/min)

Corrected 

Mass Flow 

(kg/min)

Pressure 

Ratio

Average 

Rotor Speed 

(RPM)

Average 

Corrected Rotor 

Speed (RPM)

Average Exit 

Static Temp 

(K)

Average 

Power (Eq. 70) 

(kW)

Average Specific 

Work (Eq. 72) 

(kJ/kg)

10 3.35 0.17 5.20 1.23 66716 67526 321 2.21 39.85

11 3.66 0.19 5.67 1.28 70873 71734 325 2.84 46.66

12 4.01 0.20 5.94 1.30 74793 75701 328 3.21 48.04   

Figure 94 includes a trace of rotor speed at the 10 Hz PDC operating condition.  

Scatter in the rotor speed is attributed to the vibration induced by the PDC.  Therefore, a 

moving average of five data points was applied.  The average rotor speed is 66,716 RPM 

with one major peak corresponding to the fire phase.  Other signal traces included in Fig. 

94 indicate the start of the fire phase and presence of the detonation wave.  Spark ignition 

occurs at 30 milliseconds, followed by a drop in the ion probe signal 10 milliseconds 

later, indicating the detonation wave arrival.  The photodiode in the turbine tachometer 

indicates the detonation wave exiting the turbine.  The rotor speed rises just after the 

detonation wave exits the turbine, and peak rotor speed occurs less than 10 milliseconds 

later.  Turbine rotor speed increases faster with the PDC at 10 Hz than with the cold flow 

driven turbine at 10 Hz.  Rotor speed drops off during blow down and purge and settles 

during the fill phase. 
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Figure 94.  Rotor speed response with 10 Hz PDC 

Comparison of SDC and PDC Driven Turbine Performance 

Relative improvements are considered at a baseline operating condition in which 

combustor inlet air flow was about eight pounds per minute.  Using Eq. (73) on page 147 

for SDC and PDC results at this operating condition, there is a 41.3% relative 

improvement in specific work.  This relative improvement is consistent with the 30% to 

50% potential improvement reported by Bussing and Pappas (1994), using stoichiometric 

hydrogen-air at a compressor ratio of six.  The ratio of inlet manifold pressure to ambient 

pressure in this study is about two.  Using Eq. (75) on page 147, there is also a 28.7% 

relative improvement in BSFC at this baseline operating condition.  Specific work is 

plotted in Fig. 95 for all inlet air flow operating conditions, and the PDC results are all 

higher than for the SDC driven turbine. 
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Figure 95.  Comparison of specific work for SDC and PDC configurations  

Figure 96 includes traces for two PDC cycles at 11 Hz, indicating the time 

dependent relationship between rotor speed and power.  Peaks in compressor power 

correspond to peaks in rotor speed.  Furthermore, there is a quasi-steady performance 

trend, in which power remains higher than the steady 2.0 kW (2.68 hp) achieved with the 

SDC configuration. 
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SDC

 

Figure 96.  Compressor power response over 2 cycles driven by PDC at 11 Hz with 

cycle turbine air flow of 3.65 kg/min  

Summary 

At approximately the same combustor inlet conditions, there is a 41.3% relative 

improvement in specific power with the PDC driven turbine driven and a 28.7% relative 

improvement in BSFC, indicating that the turbine is able to extract the unsteady power in 

an effective manner.  Turbine rotor speed reached peak RPM in less than 10 milliseconds 

after a detonation wave exited the turbine.    
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Appendix E: Preliminary Parametric Study of PDC Operating Parameters, 

Presented at the 2010 AIAA Joint Propulsion Conference (AIAA-2010-6536) 

This experiment is an extension of previous work described in Appendix C; 

however, there are three distinct differences in the experimental configuration: use of 

hydrogen fuel, a GT28 journal bearing turbocharger, and a PDC with two orifice plate 

DDT obstacles that match the SDC arrangement.  The first objective is to assess the 

current PDC-turbine arrangement by comparing PDC and SDC operation at conditions 

similar to the previous work.  The primary objective is a parametric study of PDC overall 

equivalence ratio and operating frequency, assessing average specific work and rotor 

speed response.  As equivalence ratio approaches unity, specific work is expected to 

increase.  As operating frequency increases, specific work is expected to increase and 

rotor speed response is expected to approach a quasi-steady behavior with less variation 

between maximum and minimum rotor speed over a cycle.   

The nine-blade, radial turbine used in this study is part of a Garrett GT28 

automotive turbocharger, pictured in Fig. 15 on page 35.  The turbine wastegate is capped 

so that all combustor exhaust passes through the turbine.  The water-cooled, center 

housing contains the shaft and journal bearing assemblies.  A journal bearing was chosen 

for durability with respect to thrust loads.  The GT28 has a T04B class .60 A/R 

compressor housing and T3 5-Bolt, .63 A/R turbine housing. 

PDC-Turbine Arrangement with Orifice Plates for DDT 

The PDC in this experiment is a 52.5 mm (2 inch) diameter steel pipe with an 

overall length of 1.7 m.  Two orifice plates assist with DDT.  The first orifice is 31.75 
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mm in diameter and is located 355.6 mm from the head.  The second orifice is 25.4 mm 

in diameter as is located 673.1 mm from the head.  The blockage ratio is 0.6 for the 

upstream orifice and 0.75 for the downstream orifice.  Blockage ratio is defined as the 

duct area blocked by orifice plates divided by total duct area.  Two ion probes are 

installed downstream of the orifice plates to verify Chapman-Jouguet velocities.  The 

probes indicate arrival of the flame front, and flame speed is determined from the 

transition time between probes.   

PDC operation is attained by first setting desired air flow and operating frequency.  

Fuel is then added until a stoichiometric fill (fill = 1.0) is achieved, at which point spark 

ignition of the first detonation cycle occurs.  The turbocharger turbine inlet is coupled to 

the PDC exit as shown in Fig. 97 so that all of the mass flow from the PDC enters the 

turbocharger.  Before the first detonation, the turbine is driven by fill and purge phases 

associated with the start-up sequence.  The same configuration is used for SDC operation; 

however, fuel is mixed and ignited just downstream of the first orifice.  During SDC 

operation, fill valves remain open and purge valves remain closed. 
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Figure 97.  Schematic of PDC-turbine rig with orifice plate DDT obstacles  

PDC operating frequency ranges from 10 Hz to 20 Hz while fueled fraction is 

held at unity.  At each frequency tested, purge fraction ranges from 0.5 to 0.2.  Overall 

equivalence ratio is defined in Eq. (76) on page 154.  Test conditions are included in 

Table 16.  Detonations were not observed at overall equivalence ratios of 0.58 and 0.64 

while running at 20 Hz operating frequency. 

Table 16. Summary of PDC operating conditions with orifice plate DDT obstacles 

PDC 

Frequency 

(Hz)

Fueled 

Fraction

Purge 

Fraction

Overall 

Equivalence 

Ratio (Eq. 76)

Total Air 

Flow Rate 

(kg/min)

10 1.0 0.5 0.58 3.18

10 1.0 0.4 0.64 2.92

10 1.0 0.3 0.70 2.67

10 1.0 0.2 0.78 2.35

15 1.0 0.5 0.58 4.76

15 1.0 0.4 0.64 4.37

15 1.0 0.3 0.70 3.98

15 1.0 0.2 0.78 3.37

20 1.0 0.3 0.70 5.09

20 1.0 0.2 0.78 4.42  
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Power and Rotor Speed Instrumentation 

The compressor side of the turbocharger was used as a dynamometer, receiving 

ambient air through a mass air flow (MAF) sensor.  A 3.45 bar (50 psi) static pressure 

transducer and J-type thermocouple are just downstream of the MAF on a 77.9 (3 inch) 

diameter elbow.  The compressor exhaust contains a 3.45 bar (50 psi) static pressure 

transducer and J-type thermocouple along a 52.5 mm (2 inch) diameter pipe and a ball 

valve to back-pressure the compressor, as shown in Fig. 87 on page 150.  The ball valve 

is set such that the compressor is on its design operating map.  Several different 

compressor operating conditions are considered by adjusting the PDC operating 

frequency and equivalence ratio.   

A Garrett speed sensor is positioned in the compressor housing, as shown in Fig. 

23 on page 44.  The sensor emits an electromagnetic field that is interrupted by passing 

blades.  Rotor speed is determined by the difference in blade arrival times.  Pressure, 

mass flow rate, and rotor speed were sampled simultaneously at 1 MHz. 

Results 

A summary of PDC-turbine results are included in Table 17.  At an overall 

equivalence ratio of 0.7, there is almost twice as much average specific work at 20 Hz 

than at 10 Hz.  Variation in average rotor speed is shown in Fig. 98.  At each frequency, 

average rotor speed varied less than 10% while overall equivalence ratio varied 34%.  At 

an equivalence ratio of 0.70, average rotor speed increased 66% from 10 Hz to 20 Hz 

operation. 
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Table 17. Summary of results with PDC having orifice plate DDT obstacles 

Combustor Turbine

PDC 

Frequency 

(Hz)

Fueled 

Fraction

Purge 

Fraction

Overall 

Equivalence 

Ratio (Eq. 76)

Total Air 

Flow Rate 

(kg/min)

Average 

Rotor Speed 

(RPM)

Average 

Power (Eq. 70) 

(kW)

Average Specific 

Work (Eq. 72) 

(kJ/kg)

10 1.0 0.5 0.58 3.18 75,356          1.80 33.93

10 1.0 0.4 0.64 2.92 77,960          2.01 41.13

10 1.0 0.3 0.70 2.67 75,356          1.92 43.20

10 1.0 0.2 0.78 2.35 74,764          1.77 45.27

15 1.0 0.5 0.58 4.76 105,426        4.41 55.63

15 1.0 0.4 0.64 4.37 104,471        4.35 59.68

15 1.0 0.3 0.70 3.98 102,796        4.12 62.14

15 1.0 0.2 0.78 3.37 100,971        3.99 71.12

20 1.0 0.3 0.70 5.09 124,924        7.04 82.95

20 1.0 0.2 0.78 4.42 114,360        5.53 75.06  

 

Figure 98.  Variation in average rotor speed with increasing PDC frequency  

Comparison of SDC and PDC Turbine Performance 

There was a 74% improvement in average specific work at 10 Hz operating 

frequency with purge fraction of 0.4, compared to SDC operation at the same airflow and 

fuel flow conditions.  Main manifold pressure for the SDC was 0.2 bar (3 psi) greater 
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than for the PDC arrangement; however, a 0.2 bar (3 psi) drop was measured across the 

two orifice plates while running in the SDC mode.  Airflow in SDC operation was 3.0 

kg/min (6.6 lb/min), which was within 2% of the matching PDC operation.  The large 

improvement in average specific work is comparable to previous work described in 

Appendix C. 

Average Specific Work 

Figure 99 shows a linear relationship between overall equivalence ratio and 

specific work, such that average specific work increases with increasing equivalence 

ratio.  At 20 Hz operating frequency, average specific work decreases with increasing 

equivalence ratio possibly due to sub-optimal PDC operation.  Specific work increases 

significantly with operating frequency and is more sensitive to changes in operating 

frequency than overall equivalence ratio.  In this study, equivalence ratio increased by 

reducing purge fraction.  Therefore, the relative insensitivity of specific work to 

equivalence ratio indicates relative insensitivity of specific work to purge fraction.  

Increasing purge flow does not have a significant effect on specific work because of the 

relatively low energy content compared to the fueled flow.  However, specific work does 

not distinguish between performance contributions from the combustor and the turbine.  

Rotor speed response must be considered to describe the turbine contribution. 
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Figure 99.  Comparison of average specific work at four equivalence ratios and two 

operating frequencies  

Rotor Speed Response to Pulsed Cold Flow ( = 0.0) 

Figure 100 includes a time history of rotor speed while operating the combustor 

without fuel (i.e., equivalence ratio of zero) at 10 Hz with a fueled fraction of one and 

purge fraction of zero.  During the fire phase, valves are closed and tube pressure drops as 

the fill charge evacuates.  Mass flow during the fill phase was 6.12 kg/min (13.5 lb/min).  

Main manifold pressure was 1.86 bar (27 psi), and there was about a 0.69 bar (10 psi) 

pressure drop across the orifice plates.  Three cycles are overlaid from a single run, 

synchronized by minimum RPM.  Figure 100 indicates good periodicity.  During the fill 

phase, rotor speed climbs more than 8,000 RPM.  Rotor deceleration was constant during 

fire and purge phases due to the absence of combustion and purge flow.   



 

170 

 

58,000

60,000

62,000

64,000

66,000

68,000

70,000

72,000

0 10 20 30 40 50 60 70 80 90 100

R
o

to
r 

Sp
e

e
d

, R
P

M

Time, ms

Cycle # 1 Cycle # 2 Cycle # 3

FILL FIRE PURGE

 

Figure 100.  Rotor speed periodicity for 10 Hz cold flow operation ( = 0.0) with 1.0 

fueled fraction and zero purge fraction 

Figure 101 shows rotor speed time history for two cold flow operating 

frequencies, normalized by total cycle time and max RPM.  Rotor speed drops 8% during 

15 Hz operation and 12% during 10 Hz operation.  As frequency increases, rotor response 

approaches quasi-steady behavior.  A polynomial fit was applied to the data to help 

visualize the turbine behavior. 
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Figure 101.  Normalized rotor speed time history with 10 and 15 Hz cold flow 

operation ( = 0.0) with 1.0 fueled fraction and zero purge fraction 

Rotor Speed Response to Pulsed Detonations 

Figure 102 includes rotor speed history for three PDC cycles at 10 Hz operating 

frequency with a fueled fraction of one and purge fraction of 0.4.  Good periodicity is 

indicated in Fig. 103, where the three cycles are overlaid and synchronized by minimum 

RPM.  During the fire phase, rotor speed climbs more than 15,000 RPM in about 15 ms.  

As with cold flow operation, rotor deceleration is constant, indicating that purge flow 

does not contribute significantly rotor speed response.  The turbine unwinds during 

blowdown, purge and fill over the course of 85 ms. 
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Figure 102.  Rotor speed time history with 10 Hz PDC with 1.0 fueled fraction and 

0.40 purge fraction  
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Figure 103.  Rotor speed periodicity with 10 Hz PDC with 1.0 fueled fraction and 

0.40 purge fraction  

Figure 104 shows rotor speed time history for three PDC operating frequencies 

normalized by cycle time and max RPM.  Purge fraction is 0.3 for an overall equivalence 
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ratio of 0.70.  Rotor speed drops 10% during 20 Hz operation, 13% during 15 Hz 

operation, and about 17% during 10 Hz operation.  As with cold flow operation, rotor 

response approaches quasi-steady behavior with increasing operating frequency.  Peaks 

level-off and slide to the right as frequency increases.  There is 4 times more rotational 

energy stored during the fire phase at 20 Hz than 10 Hz.  A polynomial fit was applied to 

the data to help visualize the turbine behavior. 
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Figure 104.  Normalized rotor speed time history with 10, 15, and 20 Hz PDC with 

overall equivalence ratio of 0.70  

Figure 105 overlays rotor speed history for four overall equivalence ratios at 15 

Hz PDC operating frequency, synchronized by minimum rotor speed.  The shapes of the 

curves are not sensitive to changes in equivalence ratio; however, the magnitudes increase 

slightly with decreasing equivalence ratio due to additional purge mass flow.  Whereas 

purge mass flow increased by 259% from equivalence ratio of 0.78 to 0.58, peak rotor 
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speed increased by 3.61%.  Peak rotor speed occurs around 12 ms for each curve, and the 

difference between minimum and maximum rotor speed is about 15,000 at each 

equivalence ratio.  A polynomial fit was applied to the data to help visualize the turbine 

behavior. 
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Figure 105.  Rotor speed history with 15 Hz PDC with overall equivalence ratios of 

0.58, 0.64, 0.70, and 0.78  

Summary 

The current study investigated the effect of PDC operating parameters on turbine 

performance.  Higher operating frequencies increased average specific work and resulted 

in rotor speed response approaching quasi-steady behavior.  Average specific work was 

not as sensitive to equivalence ratio as it was to operating frequency.  Rotor speed 

response was not sensitive to overall equivalence ratio, increasing slightly in magnitude 

as purge mass flow increased.    



 

175 

 

Appendix F:  Preliminary PDC-Turbine Flowfield and Rotor Speed Measurements, 

Presented at the 2011 AIAA Aerospace Sciences Meeting (AIAA-2011-0577) 

The primary motivation of this experiment is to evaluate instrumentation methods 

with sampling frequencies greater than 10 kHz, acquiring data required for future 

unsteady turbine performance assessments.  Time-resolved temperature, pressure, and 

velocity are required to calculate unsteady turbine efficiency, and time-resolved rotor 

speed is essential for describing turbine response to detonations.  Additionally, a 

comparison of rotor speed instrumentation techniques is made with measurements of 

compressor blade passing frequencies.  High frequency events in the pulsed detonation 

cycle, such as the von Neumann spike, size the time scale and determine the minimum 

sampling rate for adequate wave-form resolution.   

PDC-Turbine Arrangement with Internal Spiral for DDT 

The nine-blade, radial turbine used in this initial configuration was part of a 

Garrett GT28 automotive turbocharger, pictured in Fig. 15 on page 35.  The turbine 

wastegate was capped so that all combustor exhaust passes through the turbine.  

Experiments were carried out in the AFRL Detonation Engine Research Facility, using 

configurations similar to previous work described in Appendix C and Appendix D.  The 

PDC in this configuration was a 52.5 mm (2 inch) diameter steel pipe that is 914.4 mm 

(36 inches) in length.  An internal spiral 457.2 mm (18 inches) in length assisted DDT.   

PDC start-up operation was attained by first setting desired air flow and operating 

frequency.  Then, start-up spark ignition occurred as hydrogen fuel was added until a 

desired equivalence ratio ( = 1.0) was achieved, by which time the detonation cycle was 
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established.  The turbine inlet of the turbocharger was coupled to the PDC exit as shown 

in Fig. 106.  All of the mass flow from the PDC entered the turbocharger.  Before the first 

detonation, the turbocharger turbine was driven by the fill and purge phases associated 

with the start-up sequence.  The compressor side of the turbocharger was used as a 

dynamometer, as described in Appendix C and shown in Fig. 87 on page 150. 
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Figure 106.  Schematic of PDC-turbine test rig arrangement for preliminary high-

speed flowfield measurements  

Rotor Speed Measurement Techniques 

Two different rotor speed instrumentation packages were used during testing.  A 

Garrett speed sensor (part number #781328-0002) was positioned in the compressor 

housing, as shown in Fig. 23 on page 44, to detect blades arrival.  The sensor emits a 

magnetic field that is interrupted by passing blades.  Rotor speed is determined from the 

blade passing frequency.  The input frequency is one pulse per blade.  The internal sensor 

electronics divide the input signal by eight, so that the output frequency is a square-wave 
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signal at 1/8
th

 the actual blade passing frequency.  The output frequency is multiplied by 

eight during post-processing to obtain in the input frequency.  The turbocharger 

compressor has 12 blades.    

The second rotor speed measurement was made with laser tachometers positioned 

at the compressor inlet and turbine exhaust, as described in Appendix C and shown in 

Figs. 86 and 87 on pages 149 and 150, respectively.  Each tachometer was comprised of a 

4 mW, 670 nm diode laser with a collimating lens that focused a beam on compressor 

blade leading edges and turbine blade trailing edges.  The return beam deflected off an 

internal mirror toward a photodiode with a switchable-gain, amplified silicon detector.  

Blade arrival was indicated by a peak signal from the photodiode.  As with the Garrett 

sensor, rotor speed was determined by the difference in blade arrival times.  The 

photodiode output frequency matched the blade passing frequency.  The compressor 

tachometer does not detect the six secondary splitter blade leading edges, which are 

concealed by the six primary blades.  In hot flow (with detonations) the turbine laser 

tachometer photodiode was saturated by the flame illumination, preventing the detection 

of blade trailing edges.  Though this effect was limited to a brief period, the timing 

coincides with the rapid acceleration in rotor speed.  Therefore, the compressor 

tachometer results are used for rotor speed in this study, not the turbine tachometer. 

Turbine Inlet and Exit Flowfield High-Speed Measurement Techniques 

Table 18 includes a summary of the flow field instrumentation techniques 

employed in this experiment.  A combination of these techniques will be used to collect 

the necessary flow field properties to calculate unsteady turbine efficiency.  Static 
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pressure transducers were flush mounted on the inlet and exhaust tube walls.  The inlet 

transducer was located 25.4 mm (1 inch) upstream of the turbocharger turbine inlet 

flange.  The exit transducer was located 152 mm (6 inches) downstream of the turbine. 

Table 18. Preliminary turbine inlet and exit flowfield measurement techniques 

 
Technique T_in T_exit P_in P_exit u_in u_exit 

Wall-Mounted Static Pressure Transducer   X X   

Two Color Band Optical Pyrometry X X     

Particle Streak Velocimetry (PSV)     X  

Background Oriented Schlieren (BOS)    X
*
  X 

*Note:  The BOS technique provides density, which will ultimately produce pressure data when 

combined with temperature data from optical pyrometry 
 

Turbine inlet and exit pressures, temperatures, and velocities were measured on 

different test runs, under the same test set-up and operating conditions.  Kulite static 

pressure transducers were mounted to the inlet and exhaust walls with a 14 mm stand-off 

for cooling.  The inlet transducer was located 25.4 mm upstream of the T3 flange.  The 

exit transducer was located 152 mm downstream of the turbine.  The sampling frequency 

for pressures was 1 MHz.  Inlet and exit pressure measurements were made 

simultaneously; however, they were made apart from velocity and temperature 

measurements.   

For velocity and temperature optical instrumentation, a square pipe section with a 

50.8 mm by 50.8 mm cross section, a 610 mm length, and two side-mounted quartz 

windows was added upstream of the turbocharger, coupled between the second and third 

combustor sections, as shown in Fig. 107.  A similar arrangement with a polycarbonate 
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window was mounted downstream of the turbo, coupled to the exhaust elbow with a pipe 

reducer.   

 

Figure 107.  Schematic of optical access for preliminary high-speed measurements 

Optical Pyrometry 

For optical pyrometry temperature and PSV velocity measurements, a square pipe 

section with a 50.8 mm x 50.8 mm (2 in x 2in) cross section, 305 mm (1 ft) in length, and 

two side-mounted quartz windows was mounted upstream of the turbocharger turbine, as 

shown in Fig. 108.  A square pipe section with a 50.8 mm x 50.8 mm (2 in x 2in) cross 

section, 915 mm (3 ft) in length, and with two side-mounted plexiglass windows was 

mounted downstream of the turbine, coupled to the turbine exhaust elbow with a pipe 

reducer.  To demonstrate the capability of a high speed color camera to capture 

temperature fields in combustion systems, a PCO Dimax high-speed color camera was 

used.  Measurements with a tungsten lamp and spectrometer allowed the spectral 

responsivity of the red, green and blue channels of this camera to be measured (see Fig. 

109 left graph).  Substituting the spectral responses and integrating them with a 

blackbody function over the appropriate wavelengths allows the ratio to be determined as 

a function of temperature (see Fig. 109 right graph).   
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Figure 108.  Preliminary arrangement of turbine inlet and exit optical access high-

speed flowfield measurements  
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Figure 109.  Left graph:  PCO Dimax camera relative responsivity for the blue, 

green and red channels as a function of wavelength. Right graph:  ratio of the 

various color channels for a PCO Dimax camera as a function of temperature for a 

black or gray body emitter  
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Soot is only formed in the fuel rich areas of flames and may not be present in a 

combustion region of interest.  Therefore, silicon carbide (SiC) seed particles (1-2 μm in 

size) have been used for seeding combustion flow fields.  SiC filaments have been used 

for thermometry for many years.  The technique termed Thin Filament Pyrometry (TFP) 

has been used in a variety of laboratory flame systems  (Vilimpoc, et al. 1988).  Graybody 

emission from the filament is recorded and used to determine flame temperature.  

Because the filament is small, the temporal response of the filament to temperature 

changes is high (>1,000 Hz).  The technique is somewhat limited, however, by the 

fragility of the small 10 μm filaments.  To overcome this limitation, SiC particles are 

used to seed combustion flow, rather than filaments.  The SiC particles, 2400 grit size, 

were injected into the PDC fuel line with a standard dry cyclone seeder.  The PCO Dimax 

camera was operating with a 1.5 s exposure and 87 s inter-frame time to achieve a 

frame rate of 11,484 frames/s.  Pyrometry was only valid when particles were at high 

enough temperatures to produce sufficient emission.  Thus, pyrometry temperatures were 

not available during fill and purge phases. 

Particle Streak Velocimetry 

PSV measurements were taken through the quartz window at the turbine inlet to 

determine the velocity of the PDC gases after the detonation front.  When using ethylene 

fuel, a significant amount of soot was formed in exhaust gases at stoichiometric 

conditions.  By increasing exposure time of the PCO Dimax high-speed camera from 1 to 

10 μs, time history of the soot particle streaks were traced from frame to frame.  The 

turbine inlet velocity field was determined by dividing the length of a particle streaks by 
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the exposure time.  To increase the contrast between the soot streaks and the surrounding 

gas emission, an edge enhancing convolution was applied to the image before analysis. 

Background Oriented Schlieren 

BOS is an optical measurement technique that has the ability to visualize density 

gradients.  Meier (1998) first proposed BOS, which can be described as a simple 

Schlieren technique based on image displacements of a background caused by density 

gradients in the optical path.  A major advantage of the technique is that it requires only a 

digital camera of sufficient resolution to allow background displacements to be accurately 

captured.  The background displacements are typically determined using particle image 

velocimetry (PIV) based correlation methods which are well established.  Early studies 

(Richard, et al. 2000;  Raffel, et al. 2000) demonstrated several possible applications of 

BOS for determining density fields of helicopter-generated vortices and supersonic jets.  

Recent work has demonstrated quantitative visualization of density flow in an 

axisymmetric cone-cylinder in a Mach 2,0 flow.   Venkatakrishnan and Meier (2004) 

successfully validated the BOS technique by comparing the cone cylinder results with 

data from cone tables and isentropic solutions.  The kilohertz capability of the BOS 

technique was demonstrated in 2009 when it was successfully used to capture transient 

igniter temperatures at rates in excess of 24,000 frames per second  (Blunck, et al. 2010). 

The BOS technique was chosen for this study because of its ability to function 

with high speed cameras, which allow density field images of pulsed detonation exhaust 

to be captured at a very high rate.  To achieve these high rates, a Phantom v7 was utilized 

in conjunction with an over-driven pulsed LED array.  High framing rates required that 
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the BOS background be setup in a transmission mode with the LED array arranged as a 

back light.  This ensured that the maximum amount of light was available to the Phantom 

camera, which helped to minimize the pulse width of the LED array (~1μs) and allowed 

the use of a large f# (22) needed for increased sensitivity and measurement resolution.   

The experimental arrangement used to capture the BOS data is shown in Fig. 110.  

The output of the pulsed LED array was directed through a series of scattering glass 

plates that formed the random background needed for the BOS experiment.  The 

background image from the scattering plate was recorded with a high speed cine Phantom 

v7 camera with a 500 ns exposure and 122 s inter-frame time.  Transient density 

gradients caused by the PDC-turbine exhaust pulse distorted the background image and 

were recorded by the Phantom camera.  The displacement of the background due to the 

density field was determined by conducting a correlation analysis between the non-

disturbed image (no flow) and the gradient disturbed images (flow).  This is an 

established approach used in PIV analysis where particle movement between successive 

images is correlated to yield the velocity field.  If the temperature field or pressure field is 

known from an independent measurement, then either the transient-temperature or 

transient-pressure can be determined from the density field.   
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Figure 110.  Schematic of background oriented Schlieren arrangement utilized for 

high-speed visualization, density and velocity measurements at the PDC-turbine exit  

Figure 111 shows the BOS displacement vector magnitudes in the flow field of 

the pulsed detonation driven turbine exit.  Not only was the BOS technique used to 

determine density, it was also used to measure the velocity of the density structures.  To 

accomplish this task, the displacement magnitude images were correlated (using PIV 

analysis software) to yield the gradient density velocity. 

 

Figure 111.  Six sequential frames of BOS vector magnitude plots for a pulsed 

detonation turbine exhaust flow field. Flow in each image is from bottom to top, and 

the sequence proceeds from left to right with 0.12 ms time step. 
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Comparison of Rotor Speed Results 

Figure 112 shows a sample trace of rotor speed history from the compressor laser 

tachometer for a 10 Hz PDC with a fueled fraction of 1.0 and a purge fraction of 0.3.  

Scatter in rotor speed is attributed to vibration induced by the PDC.  A simple arithmetic 

average of rotor speed was 66,716 RPM with the major peak corresponding to the effects 

of fire phase.  The spark signal trace included in Fig. 112 indicates the start of the fire 

phase at about 30 ms, and the signal peak from the turbine laser tachometer photodiode 

indicates the detonation wave exits the turbine at about 40 ms.  The rotor speed rises just 

after the detonation wave exits the turbine, and peak rotor speed occurs about 10 ms later. 

 

Figure 112.  Rotor speed history using the compressor laser tachometer with 10 Hz 

PDC with 1.0 fueled fraction and 0.3 purge fraction  

Figure 113 shows compressor rotor speed history from the Garrett speed sensor 

over three detonation cycles for a 15 Hz PDC with a fueled fraction of 1.0 and a purge 

fraction of 0.5.  There is less scattered than with the laser tachometer, due to the 1/8
th
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frequency filter; however, there is also less resolution around the time that the detonation 

arrives at the turbine (about 0.06 ms).  There is good periodicity between detonation 

events, and the rotor speed climbs about 15,000 RPM.  Peak rotor speed occurs in less 

than 10 milliseconds, as was observed with the laser tachometer. 

 

Figure 113.  Compressor rotor speed history using a Garrett speed sensor with 15 

Hz PDC with 1.0 fueled fraction and 0.5 purge fraction 

Time-resolved net shaft torque, ,shaft net
, was calculated using Eq. (77), and 

rotational energy was calculated using Eq. (78), using data from the Garrett speed sensor.  

The manufacturer’s reported moment of inertia for the wheel assembly is 3.2E-5 kg m
2
. 
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Figure 114 shows time history of rotational energy and net shaft torque for one 

complete detonation cycle. From minimum rotor speed at the detonation arrival time to 

the time at peak rotor speed (about 11 ms), the average rate at which rotational energy 

was stored was 59.34 kW (from the slope of the curve), and the average rate at which 

rotational energy was depleted over the remaining 55 ms was 11.57 kW, from the time at 

peak rotor speed until the next detonation arrived. Torque response was dynamic, with a 

sharp increase that coincided with the rise in rotor speed with the detonation arrival at the 

turbine inlet. The ensuing large peaks and valleys in torque indicate possible winding and 

unwinding in the shaft. This ringing in the shaft was most pronounced during the rise in 

rotor speed but quickly settled as rotor speed began to fall. 

 

Figure 114.  Time history of rotational energy and net shaft torque with 15 Hz PDC 

with 1.0 fueled fraction and 0.5 purge fraction 

Figure 115 shows time history of turbine power from compressor dynamometer 

measurements, and rotational energy stored in the rotating assembly. The peak power 
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lagged the peak rotational energy because the response of the compressor dynamometer is 

slower than that of the speed sensor. Peak power and peak rotational energy were both 

attained about 11 ms after their initial rise. Evaluations of time-averaged performance 

circumvent the phase shift between measurements. 

 

Figure 115.  Time history of rotational energy and power with 15 Hz PDC with 1.0 

fueled fraction and 0.5 purge fraction  

Both compressor rotor speed measurement techniques capture the magnitudes and 

transients associated with the turbine response to detonations.  The sharp acceleration that 

occurs with the detonation arrival indicates a large shaft torque.  Whereas the Garrett 

sensor produces a rotor speed trace with less scatter, it is also less resolved around the 

detonation arrival time at the turbine. 

Initial High-Speed Flowfield Results 

Figure 116 shows time history of static pressure at the turbine inlet and exit during 

the fire phase for a 15 Hz PDC with a fueled fraction of 1.0 and a purge fraction of 0.5.  
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Peak inlet pressure is about 10 bar (150 psia), which is less than the expected 60 bar 

magnitude of the von Neumann pressure spike associated with a detonation wave.  This 

single point measurement technique to obtain pressures may not necessarily be 

representative of the average 2-D pressure field. 

 

Figure 116.  Turbine inlet and exit wall static pressures with 15 Hz PDC with 1.0 

fueled fraction and 0.5 purge fraction 

Figure 117 shows turbine inlet and exit flow field velocity results from PSV and 

BOS 1-D point measurements, respectively, for a 15 Hz PDC with a fueled fraction of 1.0 

and a purge fraction of 0.5.  The velocity is shown over the blowdown portion of the PDC 

fire phase.  The initial inlet gas velocity appears high, possibly due to an expected Taylor 

wave following the detonation front.  The large inlet velocity fluctuations are damped by 

the turbine, such that the exit velocity is more linear.  The turbine inlet velocity 

excursions include momentary reverse flow.   
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Figure 117.  Turbine inlet and exit velocities from PSV and BOS measurements, 

respectively, with 15 Hz PDC with 1.0 fueled fraction and 0.5 purge fraction  

Figure 118 shows pyrometry turbine inlet and exit static temperatures for a 

blowdown event at 15 Hz PDC operation with a fueled fraction of 1.0 and a purge 

fraction of 0.5.  Temperatures were obtained at a single centerline point.  The initial inlet 

gas temperature exceeds the adiabatic flame temperature for hydrogen because of the 

elevated combustion pressure.  The exit temperature is nearly constant, but drops quickly 

at the end of the blowdown.  The difference between the inlet and exit temperatures 

indicates a drop in enthalpy across the turbine. 
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Figure 118.  Turbine inlet and exit static temperatures from pyrometry 

measurements with 15 Hz PDC with 1.0 fueled fraction and 0.5 purge fraction  

Turbine Inlet Temperature and Pressure Spatial Variation 

For this work, 1-D temperatures and velocities are measured at a single x-location, 

midway along the flowfield streamwise centerline.  Only the x-component of velocity 

magnitude is reported.  Figure 119 shows variation of turbine inlet velocity along the 

centerline at two moments in time:  0.174 ms after the detonation arrival and 3.306 ms 

after detonation arrival, respectively.  Velocity varied by 200 m/s at 0.174 ms and by 

about 100 m/s at 3.306 ms. 
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Figure 119.  Axial turbine inlet velocity variation in the x-direction along the 

centerline at two moments during blowdown 

Figure 120 shows turbine inlet static temperature variation in the y-direction at the 

streamwise mid x-location, approximately 610 mm upstream of the T3 turbine inlet 

flange.  Temperature varied by 80 K at 0.174 ms and by nearly 300 K at 3.306 ms. 

 

Figure 120.  Turbine inlet temperature variation in the y-direction at two moments 

during blowdown 



 

193 

 

Summary of Initial High-Speed Measurements and Rotor Speed Results 

This current work evaluated various instrumentation techniques to acquire the 

flowfield properties of a PDC driven turbine, which are necessary to calculate turbine 

efficiency.  Furthermore, this study compared instrumentation techniques to measure 

rotor speed, which is essential to characterizing the turbine response to detonations.  

Static pressure transducers adequately captured 1-D magnitudes of gas pressures and 

pressure ratio across the turbine.  Use of SiC particles made it possible to use a 

combination of optical pyrometry and particle streak velocimetry to obtain temperature 

and velocity.  The results included expected magnitudes and flow field transients.  The 

background oriented Schlieren (BOS) technique was able to provide velocity and density 

flow field.  Turbine exit velocities obtained from the BOS measurements did not fluctuate 

as much as the inlet velocities obtained from PSV.  The BOS density results showed good 

potential for obtaining 2-D flow field pressures by combining results from optical 

pyrometry.  Rotor speed from compressor blade passing frequencies obtained with a laser 

tachometer and a Garrett speed sensor were also similar.  Laser tachometer results had 

better resolution of the rotor acceleration; however, there was some scatter. 
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Appendix G:  Performance of a PDC-Turbine with a Pre-Detonator Configuration, 

Presented at the 2011 ASME Turbo Expo (GT2011-45396) 

The purpose of this experiment was to evaluate an alternate PDC-turbine 

arrangement using a pre-detonator and a transition from small to large diameter tubes in 

the PDC.  The motivation to study this arrangement was to reduce total pressure loss 

associated with DDT obstacles.  Experiments are carried out in the AFRL Detonation 

Engine Research Facility.  The radial turbine used in this subsequent configuration was 

part of a Garrett T3/T4E turbocharger, pictured in Fig. 121.  The turbine wastegate was 

capped so that all combustor exhaust passed through the turbine.  As with the previous 

experiment described in Appendix E, a 77 mm diameter steel pipe elbow was attached to 

the turbine exhaust flange. 

 

Figure 121.  Garrett T3/T4E Turbocharger (used with permission from Advanced 

Tuning Products, Inc.)  

The T3/T4E turbocharger is equipped with an 11-blade, radial turbine and a 45-

trim radial compressor having six primary impeller blades and six splitter blades.  A 

water-cooled center housing contains the shaft and journal bearing assembly.  The 

compressor was used as dynamometer as previously described Appendix C.    
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PDC Arrangement with a Pre-detonator 

As with the initial experiments, testing was carried out in the AFRL Detonation 

Engine Research Facility, using a different configuration, as shown in Fig. 122.  The 

pulsed detonation combustor consisted of three sections of schedule-40 steel pipe.  The 

first section was a 26.6 mm diameter pipe, 305 mm in length, and coupled to the engine 

head.  The second section was a 40.8 mm diameter pipe, 915 mm in length, and coupled 

to the first pipe with a reducer.  The final section was a 52.5 mm diameter pipe, 152 mm 

in length, and coupled to the second pipe with a reducer.  The exit of the final pipe 

section transitioned from round to rectangular and was welded to a T3 turbocharger 

flange.  The total combustor length was 1.4 m, and the volume was 0.0019 m
3
.  There 

were no internal DDT obstacles or devices.  Such devices would reduce the amount of 

pressure gain from combustion.  Ignition was accomplished with a pre-detonator.   

 

Figure 122.  Schematic of PDC-turbine arrangement using a pre-detonator and 

small to large diameter pipe transition 

The diameter of the first combustor section was chosen to ensure that the 

detonation from the pre-detonator was re-established.  The diameter of the third 
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combustor section was chosen to match the T3 inlet circumference.  The diameter of the 

second combustor section was chosen to ensure a smooth transition between the first and 

third sections. 

The pre-detonator, pictured in Fig. 123, consisted of a 14 mm tube with an 

internal spiral for DDT.  The tube was contained in a water jacket for cooling.  Propane 

and nitrous oxide were the pre-detonator fuel and oxidizer, respectively, and an 

automotive spark plug was the ignition source.  A detonation was established in the pre-

detonator tube and then passed into the pulsed detonation combustor.   

 

Figure 123.  Pre-detonator and PDC arrangement at the engine head  

PDC operation was attained by first setting fill and purge air flow at a desired 

operating frequency via cam speed.  At that point, pre-detonator operation was started, 

and hydrogen was added to the main fill manifold to achieve a stoichiometric fuel-air 

ratio.  Typically, the desired fuel-air ratio was achieved within five seconds, during which 
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time intermittent detonations occurred.  Once the start-up sequence was complete and 

stoichiometric operation was achieved, data was taken and then fuel was shut-off.  Most 

run times were less than 30 seconds. 

Table 19 includes the range of operating conditions explored in this study.  Total 

turbine airflow ranged from 1.6 kg/min to 5.1 kg/min as frequency increased from 10 Hz 

to 25 Hz and fueled fraction increased from 0.5 to 1.0. 

Table 19. Summary of PDC operating conditions using a pre-detonator 

PDC 

Frequency 

(Hz)

Fueled 

Fraction

Purge 

Fraction

Fill Air 

Flow Rate 

(kg/min)

Purge Air 

Flow Rate 

(kg/min)

Fill 

Pressure 

(kPa)

Purge 

Pressure 

(kPa)

Manifold 

Temp      

(K)

10 0.5 0.5 0.65 0.93 113.5      115.8 296.6

10 0.6 0.5 0.78 0.94 117.2      116.7 296.6

10 0.7 0.5 0.91 0.94 121.4      117.8 296.6

10 0.8 0.5 1.06 0.94 126.3      118.0 296.6

15 0.5 0.5 0.99 1.41 131.6      223.3 296.6

15 0.6 0.5 1.19 1.41 138.2      233.6 296.6

15 0.7 0.5 1.39 1.41 145.1      234.1 296.6

15 0.8 0.5 1.58 1.41 152.1      241.3 296.6

15 1.0 0.5 2.96 2.11 82.7        103.9 301.9

20 0.5 0.5 1.33 1.88 139.9      147.4 293.7

20 0.6 0.5 1.59 1.88 149.9      148.9 293.7

20 0.7 0.5 1.86 1.88 159.5      149.9 293.7

20 0.8 0.5 2.11 1.88 167.4      150.9 293.7

25 0.5 0.5 1.68 2.36 162.9      200.3 294.0

25 0.6 0.5 2.01 2.36 162.9      200.3 294.0

25 0.7 0.5 2.33 2.36 172.5      203.4 294.0

25 0.8 0.5 2.66 2.35 184.7      203.1 294.0   

Results for PDC-Turbine with a Pre-Detonator 

Figure 124 includes instantaneous compressor dynamometer operating points 

overlaid on the manufacturer’s map.  The compressor dynamometer varied 15,000 RPM 

in corrected rotor speed.  The red square represents the time-average point over a 

complete cycle, and most of the operation occurred within the 74% efficiency island. 
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Figure 124.  Variation in corrected rotor speed with 25 Hz PDC with 0.8 fueled 

fraction and 0.5 purge fraction 

Figure 125 shows a consistent trend in average specific work as shown previous 

experiments described in Appendix D.  Average specific work increases both with fueled 

fraction and frequency.  As shown in Table 19, main and purge manifold pressures also 

increases with fueled fraction and frequency, as does average rotor speed.  At 25 Hz, 

there is a 22% increase in main fill pressure from a fueled fraction of 0.5 to 0.8, as shown 

in Table 19, and a 30% increase in average specific work.  At a fueled fraction of 0.8, 

there is a 21% increase in main fill pressure from 15 Hz to 25 Hz and an 80% increase in 

average specific work.  Thus, specific work gains appear more sensitive to frequency than 

to main fill pressure (combustor inlet pressure). 
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Figure 125.  Time-average specific work with 10 to 25 Hz operation with 0.5 to 0.8 

fueled fractions and 0.5 purge fraction 

Summary and Conclusions 

This experiment evaluated an alternate PDC-turbine arrangement using a pre-

detonator and a transition from small to large diameter tubes in the PDC.  Average 

specific work followed the same trend as noted in previous experiments described in 

Appendix D, increasing with PDC frequency.  Average specific power also increased 

with fueled fraction but was more sensitive to frequency.  Though this arrangement is a 

viable alternative, it is not be the preferred option for experiments that rely on a trigger 

for instrumentation, such as high-speed video measurements.  The inherent “soft start” 

nature of the pre-detonator arrangement did not consistently establish PDC operation with 

the first spark. 



 

200 

 

Appendix H:  PDC-Turbine Energy Conservation Analysis 

Heat Transfer from Turbine Housing (treating housing as a sphere)

PROPERTIES: EE SI

Thousing (deg F, deg C, K) 329 165.00 438.15

Tamb (deg F, deg C, K) 65 18.33 291.48 EQUATIONS:

Tdelta (deg F, deg C, K) 264 146.67 146.67

Tavg (deg F, deg C, K) 197.00 91.67 364.82

Density, (kg/m3) 0.96610

Dynamic Vicosity,  (N s/m2) 2.14E-05

Kinematic Viscosity,  (m2/s) 2.22E-05

 (K-1) 0.00273

Pr 0.70260

GrD 1.64E+07

RaD 1.15E+07

NuD 27.03835

Thermal Conductivity, k (W/m K) 0.03085

Convective Coefficient, h (W/m2 K) 6.56897

D (in, m) 5 0.127

Emissivity of Steel,  0.8

q'free_conv (W, KW) 48.819 0.0488

q'rad (W, kW) 68.12 0.0681

q'total (W, kW) 116.935 0.1169
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Heat Transfer into Housing Cooling Water
(30 Sep 10 Data)

PROPERTIES: EE SI

Tin (deg F, deg C, K) 82.5 28.06 301.21

Tout (deg F, deg C, K) 86.3 30.17 303.32

Tdelta (deg F, deg C, K) 3.8 2.11 2.11

Tavg (deg F, deg C, K) 84.40 29.11 302.26

Specific Heat, cp, Water, (kJ/kg K) 4.179

Mass Flow, Water (gal/min, kg/s) 1.5 0.095

PDC Frequency (Hz) 30 EQUATIONS:

Cycle Time, tcycle (sec) 0.0333

Hflux (W, kW) 834.8 0.83

 flux p out in

flux cycle

cycle

H m c T T

H t

    

 
 

(30 Sep 10 Data)

PROPERTIES:

Tamb (deg F, deg C, K) 81.9 27.72 300.87

Tfinal (deg F, deg C, K) 329 165.00 438.15

Tdelta (deg F, deg C, K) 247.1 137.28 137.28

Run Time (s) 20

dT/dt (K/s) 6.86 EQUATIONS:

Housing Mass (lbm, kg) 6.5 2.955

Specific Heat, cp, Steel (kJ/kg K) 0.49

Estored (W, kW) 9937.0 9.94

Heat Transfer into Energy Storage in Turbine Housing 

 ,stored steel p steel final initial

stored cycle

cycle

E m c T T

E t

    

 
 

Heat Transfer Estimate into Turbocharger Oil

PROPERTIES: EE SI

Tin (deg F, deg C, K) 72 22.22 295.37

Tout (deg F, deg C, K) 75 23.89 297.04

Tdelta (deg F, deg C, K) 3 1.67 1.67

Specific Heat, cp, Oil (kJ/kg K) 2 EQUATIONS:

Mass Flow, Oil (gal/min, kg/s) 1.5 0.076

Hflux (W, kW) 252.3 0.25

 flux p out in

flux cycle

cycle

H m c T T

H t

    

 
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 Heat Transfer into PDC Exit Pipe (between Diagnostic Section and Turbine Inlet)

Imp SI

F K

Ttube,avg (conservative) 314.33 430

Tamb 72 295.3722

Tdelta 242.33 134.6278

Tavg 362.6861

Beta (K^-1) 0.002757

D (in, m) 2.375 0.060325

L,tube (in,m) 6 0.1524

Visc (N s/m^2) 2.11E-05

rho (kg/m^3) 0.961255

nu,avg (m^2/s) 2.19E-05

alpha,avg (m^2/s) 3.16E-05

Pr,avg 0.691125

k,avg (W/mK) 0.0469

emiss,Steel 0.8

Ra,D 1150295

Nu,D 15.06775

h (W/m^2K) 11.7145

q',nat.conv. (W/m) (W) (kW) 298.8862 45.55025 0.05

q',rad. (W/m) (W) (kW) 228.463 34.81776 0.03

q,total (Hp, W, kW) 0.107693 80.36801 0.08

 
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Gr ideal gas
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g T T D
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h Nu

D


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


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
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


 
 

  
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   4 4' ' 'conv rad s sq q q h D T T D T T        

 

(30 Sep 10 Data)

PROPERTIES:

Tamb (deg F, deg C, K) 81.9 27.72 300.87

Tfinal (deg F, deg C, K) 329 165.00 438.15

Tdelta (deg F, deg C, K) 247.1 137.28 137.28

Run Time (s) 20

dT/dt (K/s) 6.86 EQUATIONS:

Housing Mass (lbm, kg) 1.5 0.682

Specific Heat, cp, Steel (kJ/kg K) 0.49

Estored (W, kW) 2293.2 2.29

Heat Transfer into Energy Storage in PDC Exit Pipe 

 ,stored steel p steel final initial

stored cycle

cycle

E m c T T

E t

    

 
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Appendix I:  Time-Resolved PDC-Turbine Power Results 

 

Figure 126.  Time-resolved power with 10 Hz hydrogen-fueled PDC with 0.60 fueled 

fraction and 0.75 purge fraction 

 

Figure 127.  Time-resolved power with 10 Hz hydrogen-fueled PDC with 0.75 fueled 

fraction and 0.75 purge fraction 
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Figure 128.  Time-resolved power with 10 Hz hydrogen-fueled PDC with 0.90 fueled 

fraction and 0.75 purge fraction 

 

Figure 129.  Time-resolved power with 20 Hz hydrogen-fueled PDC with 0.60 fueled 

fraction and 0.50 purge fraction 
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Figure 130.  Time-resolved power with 20 Hz hydrogen-fueled PDC with 0.60 fueled 

fraction and 0.75 purge fraction 

 

Figure 131.  Time-resolved power with 20 Hz hydrogen-fueled PDC with 0.75 fueled 

fraction and 0.75 purge fraction 
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Figure 132.  Time-resolved power with 20 Hz hydrogen-fueled PDC with 0.90 fueled 

fraction and 0.50 purge fraction 

 

Figure 133.  Time-resolved power with 20 Hz hydrogen-fueled PDC with 0.90 fueled 

fraction and 0.75 purge fraction 
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Figure 134.  Time-resolved power with 30 Hz hydrogen-fueled PDC with 0.60 fueled 

fraction and 0.75 purge fraction 

 

Figure 135.  Time-resolved power with 30 Hz hydrogen-fueled PDC with 0.75 fueled 

fraction and 0.75 purge fraction 
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Figure 136.  Time-resolved power with 20 Hz ethylene-fueled PDC with 0.90 fueled 

fraction and 0.50 purge fraction 
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Appendix J:  Time-Resolved PDC-Turbine Inlet and Exit Flowfield Results 

 

Figure 137.  Time-resolved turbine inlet and exit flowfield properties with 10 Hz 

hydrogen-fueled PDC with 0.60 fueled fraction and 0.75 purge fraction 
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Figure 138.  Time-resolved turbine inlet and exit flowfield properties with 10 Hz 

hydrogen-fueled PDC with 0.75 fueled fraction and 0.75 purge fraction 
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Figure 139.  Time-resolved turbine inlet and exit flowfield properties with 10 Hz 

hydrogen-fueled PDC with 0.90 fueled fraction and 0.75 purge fraction 
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Figure 140.  Time-resolved turbine inlet and exit flowfield properties with 20 Hz 

hydrogen-fueled PDC with 0.60 fueled fraction and 0.50 purge fraction 
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Figure 141.  Time-resolved turbine inlet and exit flowfield properties with 20 Hz 

hydrogen-fueled PDC with 0.60 fueled fraction and 0.75 purge fraction 
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Figure 142.  Time-resolved turbine inlet and exit flowfield properties with 20 Hz 

hydrogen-fueled PDC with 0.75 fueled fraction and 0.75 purge fraction 
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Figure 143.  Time-resolved turbine inlet and exit flowfield properties with 20 Hz 

hydrogen-fueled PDC with 0.90 fueled fraction and 0.50 purge fraction 
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Figure 144.  Time-resolved turbine inlet and exit flowfield properties with 20 Hz 

hydrogen-fueled PDC with 0.90 fueled fraction and 0.75 purge fraction 
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Figure 145.  Time-resolved turbine inlet and exit flowfield properties with 30 Hz 

hydrogen-fueled PDC with 0.60 fueled fraction and 0.75 purge fraction 
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Figure 146.  Time-resolved turbine inlet and exit flowfield properties with 30 Hz 

hydrogen-fueled PDC with 0.75 fueled fraction and 0.75 purge fraction 
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Figure 147.  Time-resolved turbine inlet and exit flowfield properties with 20 Hz 

ethylene-fueled PDC with 0.90 fueled fraction and 0.50 purge fraction 
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Appendix K:  Alternate Unsteady Turbine Efficiency Results 

The results presented here are from variations in the Eq. (4) formulation on page 

14 for instantaneous turbine efficiency using data collected with the 30 Hz hydrogen-

fueled PDC with 0.75 fueled and purge fractions.   

Instantaneous Turbine Efficiency 

One such variation accounted for heat transfer effects, substituting Eqs. (16) and 

(20) on page 21 for inlet and exit total enthalpy rate, respectively, into Eq. (4), including 

station numbers consistent with Fig. 6 on page 19.  The instantaneous power term in Eq. 

(79) includes the instantaneous power to the compressor from Eq. (27) on page 23, as 

well as the instantaneous change in rotational energy of the wheel assembly, using Eq. 

(78) on page 186 and the manufacturer’s moment of inertia, 3.2E-5 kg m
2
.  Due to the 

periodic nature of the rotor speed, the initial rotor speed was obtained from the final point 

of the data set. 
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Figure 148 includes results over 14 sequential cycles at 30 Hz, using the 

instantaneous efficiency formulation proposed in Eq. (79) with  = 0.75.  For a 

significant portion of the cycle time, instantaneous efficiency is non-physical exceeding 

100% or below 0%; however, the cycle average instantaneous efficiency is 8%.  The large 

positive and negative spikes are associated with moments during the detonation cycle 

when total enthalpy rate and total pressure are nearly the same at the inlet and exit.  The 

negative values occur at moments when exit total enthalpy rate exceeds that of the inlet. 

 

Figure 148.  Time resolved turbine efficiency with 30 Hz hydrogen-fueled PDC with 

0.75 fueled and purge fractions and  = 0.75, using Eq. (79) 

Figure 149 shows ensemble averaged turbine efficiency over 14 sequential cycles 

at 30 Hz, including ensemble averaged time-resolved efficiency points, represented by 

squares, within 0% to 100%.  Reasonable magnitudes for ensemble averaged time-

resolved efficiency occurred during the fire phase due to total pressure ratios significantly 

greater than unity. There are a few random moments during the purge phase when 

ensemble averaged efficiency is of reasonable magnitude; however, these moments occur 
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when the total enthalpy rate and total pressure are nearly the same at the inlet and exit 

with a low signal-to-noise ratio such that there is little confidence the points represent 

actual efficiency. 

 

Figure 149.  Ensemble averaged turbine efficiency over 14 cycles with 30 Hz 

hydrogen-fueled PDC with 0.75 fueled and purge fractions and  = 0.75, using Eq. 

(79) 

Mean Effective Instantaneous Turbine Efficiency 

Another variation of the Eq. (4) formulation for instantaneous turbine efficiency 

included a moving average for mean effective inlet and exit total pressure and specific 

heat.  The development of the formulation began with Eq. (79) and included mass 

average total pressure and specific heat over a time window. 
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Figure 150 shows the effect of window size on cycle average turbine efficiency 

over 14 cycles, using the instantaneous efficiency formulation proposed in Eq. (82) with 

 = 0.75.  The magnitude of average turbine efficiency was nearly asymptotic with a 

window size greater than 113. Figures 151 and 152 show time-resolved efficiency, using 

Eq. (82) with a window size of 113 points.  Time-resolved turbine efficiency was non-

physical for a significant portion of the cycle time.  Reasonable magnitudes for time-

resolved turbine efficiency occurred during periods with large peaks in inlet total enthalpy 

rate.  Time average efficiency was 21%.  The general shape of the time-resolved turbine 

efficiency was similar to that of the turbine power from Eq. (80), indicating a strong 

relationship between instantaneous turbine efficiency and turbine power. 
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Figure 150.  Cycle average turbine efficiency over 14 cycles with 30 Hz hydrogen-

fueled PDC with 0.75 fueled and purge fractions and  = 0.75, using Eq. (82) 

 

Figure 151.  Time-resolved turbine efficiency and inlet total enthalpy rate over one 

cycle with 30 Hz hydrogen-fueled PDC with 0.75 fueled and purge fractions and  = 

0.75, using Eq. (82) 
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Figure 152.  Time-resolved turbine efficiency using Eq. (82) and turbine power 

using Eq. (80) for one cycle with 30 Hz hydrogen-fueled PDC with 0.75 fueled and 

purge fractions and  = 0.75  

Summary and Conclusions 

The various formulations proposed here for instantaneous turbine efficiency are 

impractical for the instrumentation arrangement in this study.  Non-physical values for 

instantaneous efficiency include magnitudes significantly above 100% and significantly 

below 0%.  Large excursions in instantaneous efficiency result from moments when total 

enthalpy rate and total pressure are nearly equal at the inlet and exit.  Negative values for 

instantaneous turbine efficiency result when exit total enthalpy rate at a moment exceeds 

that of the inlet.  To properly characterize instantaneous efficiency and avoid non-

physical results, the instrumentation arrangement would need to track each fixed mass 

from the inlet, through the turbine, and to the exit and account for the difference in 

flowfield and mechanical response times to the pulsed detonations. 
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Appendix L:  Turbine Inlet Rayleigh Line Flow Analysis 

The Rayleigh line flow analysis presented here is an alternative to the proposed 

constant pressure heat transfer model in Eq. (29) on page 24.  In this analysis and for 

comparison purposes, the inlet transfer fraction parameter is 100% ( = 1).  The total 

amount of heat transfer from the First Law analysis between turbine inlet and exit 

measurement locations is the same regardless of the heat transfer model, as shown in Eq. 

(13) on page 20; however, in the Rayleigh model, total pressure changes in proportion to 

the momentum imparted by heat transfer.  The Rayleigh analysis is used to determine the 

total pressure at the turbine inlet, at station 2 in Fig. 153, downstream from the inlet 

measurement location at station 1.  The resulting total pressure is used in the denominator 

of the pressure ratio in the Eq. (29) formulation for turbine efficiency.  The analysis 

begins by calculating instantaneous Mach number at station 1 from measurements of 

velocity and temperature, as shown in Eq. (85), where specific heat is calculated for air as 

a function of temperature. 

 

Figure 153.  Schematic of unsteady model for Rayleigh analysis of a pulsed 

detonation driven turbine 
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The instantaneous ratio of total temperature at station 1 and a reference condition 

where Mach number is unity, Tt
*
, is calculated as function of Mach number and ratio of 

specific heat at station 1. 
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The instantaneous total temperature at station 2 is calculated from total 

temperature at station 1 and the cycle-average heat transfer from Eq. (13) and cycle-

average mass flow rate and specific heat.  The use of cycle-average properties is a 

limitation in this analysis, as instantaneous heat transfer is not known. 
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The instantaneous ratio of total temperature at station 2 and a reference condition 

where Mach number is unity, Tt
*
, is calculated from total temperature relationships 

between stations 1 and 2, as well as the reference condition where Mach number is unity. 
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The analysis proceeds with iterations of M2, assuming that  and 2 are equal, 

until the calculation for total temperature ratio from Eq. (90) is equal to that of Eq. (89).  
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Stations 1 and 2 static pressure ratios, shown in Eqs. (91) and (92), are then 

calculated using Mach numbers at the respective stations and the ratio of specific heats. 
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Static and total pressures at station 2 are then calculated using Eqs. (93) and (94) 

with ratios to the reference condition, the measured static pressure at station 1, and Mach 

number and ratio of specific heats at station 2. 
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Station 2 total pressure is then used to calculate mean effective isentropic turbine 

efficiency using Eq. (29) on page 24. 
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