Award Number: W81XWH-10-1-0824

TITLE: 64Cu-DOTA-trastuzumab PET imaging in women with HER2 overexpressing breast cancer

PRINCIPAL INVESTIGATOR: Joanne Mortimer, M.D.

CONTRACTING ORGANIZATION: City of Hope Beckman Research Institute
Duarte, CA 91010

REPORT DATE: October 2011

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and
should not be construed as an official Department of the Army position, policy or decision
unless so designated by other documentation.
The assessment of HER2 by immunohistochemical staining or fluorescence in situ hybridization (FISH) is performed on breast cancer tissue and is used to determine candidacy for trastuzumab therapy. The HER2 status in recurrent cancer has been shown to change after treatment of early stage disease. Generally, tissue sampling is limited to a single tumor site and may not be representative of all sites of metastasis. Functional imaging has the potential capacity to characterize whole-tumor HER2 status for all sites of disease. We previously synthesized to 111In-DTPA-trastuzumab and used it to image patients with HER2 positive breast cancer. We have recently synthesized 64Cu-DOTA-trastuzumab and tested it in model systems. Relative to the 111In-labeled antibody, positron emission tomography (PET) with 64Cu-DOTA-trastuzumab is superior in image quality with lower radiation absorbed doses to normal tissue. We have initiated a clinical trial of 64Cu-DOTA-trastuzumab PET in women with advanced HER2 positive breast cancer. To minimize uptake of the radiotracer in normal tissues, participants will receive one of 3 “cold doses” of trastuzumab prior to 64Cu-DOTA-trastuzumab PET. After we have determined the optimal cold dose, women with metastatic disease having varying degrees of HER2 expression will undergo 64Cu-DOTA-trastuzumab PET. We hypothesize that PET imaging will accurately characterize tumor HER2 expression and thus identify patients who are likely to benefit from trastuzumab.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>Body</td>
<td>4</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>6</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>6</td>
</tr>
<tr>
<td>Conclusion</td>
<td>6</td>
</tr>
<tr>
<td>References</td>
<td>6</td>
</tr>
<tr>
<td>Appendices</td>
<td>6</td>
</tr>
<tr>
<td>Supporting Data</td>
<td>6</td>
</tr>
</tbody>
</table>
Introduction:

HER2 is a transmembrane protein in the epidermal growth factor family with tyrosine kinase activity that results in intracellular signaling and activation of genes for cell growth and survival. Women whose cancers overexpress the HER2 protein have a distinct natural history and are candidates for treatment with trastuzumab. The “overexpression of HER2” is determined on the primary tumor or a metastatic site of disease. A positive result is defined as 3+ by immunostaining for HER2 or gene amplification. It has been suggested that individuals with HER2 negative breast cancer may also benefit from trastuzumab therapy. Researchers at City of Hope developed a radiolabeled trastuzumab 64Cu-DOTA-trastuzumab as a positron emission tomography imaging agent. The two major objectives of this research proposal were to: 1.) optimize the image quality of 64Cu-DOTA-trastuzumab PET in women with advanced HER2 positive breast cancer and 2.) assess 64Cu-DOTA-trastuzumab PET uptake in women with advanced breast cancers whose tumors express HER2 at immunostaining levels of 1+ and 2+. This DOD award provided the funding to develop 64Cu-DOTA-trastuzumab as a PET imaging agent.

Body:

Task 1. IND Application and IRB approval

During the first two quarters of the grant period, we responded to questions and concerned raised by the FDA and submitted the protocol to the City of Hope Protocol Review Committee and Institutional Review Board. Once we adequately addressed the FDA queries, an IND was obtained. With the granting of an IND number, the clinical trial was submitted to the institutional review board and to the HRPO. The protocol and consent form were approved as of January 17, 2011.

Task 2. Experiments to improve image quality

Normal tissues express HER2. We hypothesized that a pre-administered dose of cold trastuzumab would improve image quality and have tested 2 different doses at the time of this report. On the clinical protocol, all patients undergo biopsy confirmation of recurrent breast cancer that is HER2 positive and an assessment of the extent of their disease. The staging workup includes an FDG-PET and bone scan to ensure that the volume and location of metastases meet the study requirements. Positron emission tomography is obtained 24 and 48 hours after injection of 64Cu-DOTA-trastuzumab. The first patient was enrolled on the clinical study March 17, 2011 and as of September, 2011 five women with advanced breast cancer have undergone imaging. Three women received 5 mg of cold trastuzumab and two received 50 mg prior to the injection of the 64Cu-DOTA-trastuzumab.

Our findings to date are as follows:

- Bone lesions are well visualized at 23 hours and the Day 1 images appear similar to those obtained on Day 2 (Figure 1):
Lesion to non-lesion contrast improves only modestly between Day 1 and Day 2 after 64Cu-DOTA –Trastuzumab injection (Figure 2)

Numerous bone lesions are well visualized by 64Cu-DOTA –Trastuzumab PET at 23 h, and the Day 1 images appear very similar to the Day 2 images.

A lesion in the left 1st rib (white arrows) is well visualized on the Day 1 64Cu Tras PET and little changed on Day 2. A metastasis in the spine (turquoise arrows) not visualized with FDG is seen equally well on Day 1 and Day 2 64Cu Tras PET. On the other hand, a nodal metastasis (red arrows) is visualized only by Day 2 with 64Cu Tras PET.
- Visualization of hepatic metastases is dramatically improved by pre-infusion of 50 mg of cold trastuzumab (Figure 3)

Key Research Accomplishments:

1. We have demonstrated the feasibility of using 64Cu-DOTA – Trastuzumab as a PET imaging agent.
2. With only five patients imaged thus far the preadministered dose of 50 mg appears to provide improvement in image quality compared to the 5 mg dose.
3. Lesions identified on FDG-PET were also visualized on 64Cu-DOTA – Trastuzumab PET.

Reportable Outcomes:

Only the Era of Hope abstract

Conclusion:

We are encouraged by the results in the first 5 patients and will continue to accrue patients to study.

References:

None

Appendices:

None

Supporting Data:

None