ANALYTICAL STUDY: TEMPERATURE VARIATION ACROSS THE HEATED SURFACE OF A POST WITH CONVECTIVE SIDEWALL COOLING (PREPRINT)

Kirk L. Yerkes and Kelli Ashbrook
Energy/Power/Thermal Division

APRIL 2012

Approved for public release; distribution unlimited.
See additional restrictions described on inside pages

STINFO COPY
Analytical Study: Temperature Variation Across the Heated Surface of a Post with Convective Sidewall Cooling (Preprint)

Authors:
- Kirk L. Yerkes (AFRL/RZPE)
- Kelli Ashbrook (APRL/RZPS)

Performing Organizations:
- Energy and Power Systems Branch (AFRL/RZPE)
- Thermal and Electrochemical Branch (AFRL/RZPS)
- Energy/Power/Thermal Division
- Air Force Research Laboratory, Propulsion Directorate
- Wright-Patterson Air Force Base, OH 45433-7251
- Air Force Materiel Command, United States Air Force

Performing Organization Number:
AFRL-RZ-WP-TP-2012-0117

Distributio/Availability Statement:
Approved for public release; distribution unlimited.

Supplementary Notes:
- Paper contains color.
- PA Case Number: 88ABW-2012-1993; Clearance Date: 04 Apr 2012.

Abstract:
Often it is desirable to cool electronic components to minimize the temperature gradient across the heat generating surface. This isothermal requirement is often required to in order to minimize thermal stresses, in the case of power electronics, or in the case of laser components, such as laser diodes, to minimize optical distortion.

The objective of this analysis is to determine the effects of boundary condition(s) that will influence the steady-state temperature gradient along the top heated surface of cylindrical and rectangular posts. This is accomplished by casting the dimensionless analytical solutions in graphical form similar to Heisler-Gröber Charts. Both dimensional and dimensionless analytical solutions are presented followed by graphical presentations in dimensionless form.

In this manner, the “best” boundary conditions can be used to specify the cold plate requirements to optimally cool the electronics package. The generated dimensionless plots also allow for easy graphical determination of these boundary conditions as defined in a dimensionless form which can be readily interpreted and used to determine optimal dimensional geometries and/or thermo physical material properties to minimize temperature gradients across a heated electronic surface.

Subject Terms:
electronics cooling, heat transfer, convection, conduction

Security Classification:
- Unclassified

<table>
<thead>
<tr>
<th>a. REPORT</th>
<th>b. ABSTRACT</th>
<th>c. THIS PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>Unclassified</td>
<td>Unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a. NAME OF RESPONSIBLE PERSON</th>
<th>b. TELEPHONE NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jim Scofield</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Limitation of Abstract: SAR

Number of Pages: 42
TABLE OF CONTENTS

- LIST OF FIGURES .. ii
- NOMENCLATURE ... v
- 1.0 EXECUTIVE SUMMARY .. 1
- 2.0 INTRODUCTION .. 2
- 3.0 ANALYTICAL FORMULATION ... 2
 - 3.1 Rectangular .. 4
 - 3.2 Cylindrical ... 4
- 4.0 RESULTS ... 5
 - 4.1 Rectangular ... 6
 - 4.2 Cylindrical .. 20
 - 4.3 Comparison of Rectangular and Cylindrical Results ... 34
- 5.0 CONCLUSION ... 35
- REFERENCES .. 36
LIST OF FIGURES

Figure 1. Example for (a) rectangular, dimensional case; (b) rectangular, dimensionless; (c) cylindrical, dimensional case; and (d) cylindrical, dimensionless case...3

Figure 2. Top surface dimensionless centerline temperature, $\theta(0,0)$, and temperature variation, $\theta(0,0) - \theta(0,1)$, plotted against $1/Bi$ for varying aspect ratio, ζ; (a), (b) $\eta = -0.5$, (c), (d) $\eta = -0.2$, and (e), (f) $\eta = -0.1$... 6

Figure 3. Top surface dimensionless centerline temperature, $\theta(0,0)$, and temperature variation, $\theta(0,0) - \theta(0,1)$, plotted against $1/Bi$ for varying aspect ratio, ζ; (a), (b) $\eta = 0.1$, (c), (d) $\eta = 0.2$, and (e), (f) $\eta = 0.5$... 7

Figure 4. Top surface dimensionless centerline temperature, $\theta(0,0)$, and temperature variation, $\theta(0,0) - \theta(0,1)$, plotted against $1/Bi$ for varying dimensionless heat input, η; (a), (b) $\zeta = 0.25$, (c), (d) $\zeta = 0.5$, and (e), (f) $\zeta = 1$. ... 8

Figure 5. Top surface dimensionless centerline temperature, $\theta(0,0)$, and temperature variation, $\theta(0,0) - \theta(0,1)$, plotted against $1/Bi$ for varying dimensionless heat input, η; for varying $1/Bi$; (a), (b), (c), (d) $\zeta = 0.25$ and (e), (f), (g), (h) $\zeta = 0.5$. .. 9

Figure 7. Top surface dimensionless centerline temperature, $\theta(0,0)$, and temperature variation, $\theta(0,0) - \theta(0,1)$, plotted against dimensionless heat input, η, for varying $1/Bi$; (a), (b), (c), (d) $\zeta = 1$ and (e), (f), (g), (h) $\zeta = 2$. ... 10

Figure 8. Top surface dimensionless centerline temperature, $\theta(0,0)$, and temperature variation, $\theta(0,0) - \theta(0,1)$, plotted against dimensionless heat input, η, for varying $1/Bi$; (a), (b), (c), (d) $\zeta = 3$ and (e), (f), (g), (h) $\zeta = 5$. ... 11

Figure 9. Top surface dimensionless centerline temperature, $\theta(0,0)$, and temperature variation, $\theta(0,0) - \theta(0,1)$, plotted against dimensionless heat input, η, for varying aspect ratio, ζ; (a), (b) $1/Bi = 1000$, (c), (d) $1/Bi = 100$, and (e), (f) $1/Bi = 10$. ... 12

Figure 10. Top surface dimensionless centerline temperature, $\theta(0,0)$, and temperature variation, $\theta(0,0) - \theta(0,1)$, plotted against dimensionless heat input, η, for varying aspect ratio, ζ; (a), (b) $1/Bi = 5$, (c), (d) $1/Bi = 1$, and (e), (f) $1/Bi = 0.01$. ... 13

Approved for public release; distribution unlimited
Figure 11. Top surface dimensionless centerline temperature, \(\theta(0,0) \), and temperature variation, \(\theta(0,0) - \theta(0,1) \), plotted against aspect ratio, \(\zeta \), for varying \(1/Bi \); (a), (b) \(\eta = -0.5 \), (c), (d) \(\eta = -0.2 \), and (e), (f) \(\eta = -0.1 \).

Figure 12. Top surface dimensionless centerline temperature, \(\theta(0,0) \), and temperature variation, \(\theta(0,0) - \theta(0,1) \), plotted against aspect ratio, \(\zeta \), for varying \(1/Bi \); (a), (b) \(\eta = 0.1 \), (c), (d) \(\eta = 0.2 \), and (e), (f) \(\eta = 0.5 \).

Figure 13. Top surface dimensionless centerline temperature, \(\theta(0,0) \), and temperature variation, \(\theta(0,0) - \theta(0,1) \), plotted against aspect ratio, \(\zeta \), for varying dimensionless heat input, \(\eta \); (a), (b), (c), (d) \(1/Bi = 1000 \) and (e), (f), (g), (h) \(1/Bi = 100 \).

Figure 14. Top surface dimensionless centerline temperature, \(\theta(0,0) \), and temperature variation, \(\theta(0,0) - \theta(0,1) \), plotted against aspect ratio, \(\zeta \), for varying dimensionless heat input, \(\eta \); (a), (b), (c), (d) \(1/Bi = 10 \) and (e), (f), (g), (h) \(1/Bi = 1 \).

Figure 15. Top surface dimensionless centerline temperature, \(\theta(0,0) \), and temperature variation, \(\theta(0,0) - \theta(0,1) \), plotted against aspect ratio, \(\zeta \), for varying dimensionless heat input, \(\eta \); (a), (b), (c), (d) \(1/Bi = 0.1 \) and (e), (f), (g), (h) \(1/Bi = 0.01 \).

Figure 16. Top surface dimensionless centerline temperature, \(\theta(0,0) \), and temperature variation, \(\theta(0,0) - \theta(0,1) \), plotted against \(1/Bi \) for varying aspect ratio, \(\zeta \); (a), (b) \(\eta = -0.5 \), (c), (d) \(\eta = -0.2 \), and (e), (f) \(\eta = -0.1 \).

Figure 17. Top surface dimensionless centerline temperature, \(\theta(0,0) \), and temperature variation, \(\theta(0,0) - \theta(0,1) \), plotted against \(1/Bi \) for varying aspect ratio, \(\zeta \); (a), (b) \(\eta = 0.1 \), (c), (d) \(\eta = 0.2 \), and (e), (f) \(\eta = 0.5 \).

Figure 18. Top surface dimensionless centerline temperature, \(\theta(0,0) \), and temperature variation, \(\theta(0,0) - \theta(0,1) \), plotted against \(1/Bi \) for varying dimensionless heat input, \(\eta \); (a), (b) \(\zeta = 0.25 \), (c), (d) \(\zeta = 0.5 \), and (e), (f) \(\zeta = 1 \).

Figure 19. Top surface dimensionless centerline temperature, \(\theta(0,0) \), and temperature variation, \(\theta(0,0) - \theta(0,1) \), plotted against \(1/Bi \) for varying dimensionless heat input, \(\eta \); (a), (b) \(\zeta = 2 \), (c), (d) \(\zeta = 3 \), (e), (f) \(\zeta = 4 \), and (g), (h) \(\zeta = 5 \).

Figure 20. Top surface dimensionless centerline temperature, \(\theta(0,0) \), and temperature variation, \(\theta(0,0) - \theta(0,1) \), plotted against dimensionless heat input, \(\eta \), for varying \(1/Bi \); (a), (b), (c), (d) \(\zeta = 0.25 \) and (e), (f), (g), (h) \(\zeta = 0.5 \).

Figure 21. Top surface dimensionless centerline temperature, \(\theta(0,0) \), and temperature variation, \(\theta(0,0) - \theta(0,1) \), plotted against dimensionless heat input, \(\eta \), for varying \(1/Bi \); (a), (b), (c), (d) \(\zeta = 1 \) and (e), (f), (g), (h) \(\zeta = 2 \).
Figure 22. Top surface dimensionless centerline temperature, $\theta(0,0)$, and temperature variation, $\theta(0,0) - \theta(0,1)$, plotted against dimensionless heat input, η, for varying $1/Bi$; (a), (b), (c), (d) $\zeta = 3$ and (e), (f), (g), (h) $\zeta = 5$.

Figure 23. Top surface dimensionless centerline temperature, $\theta(0,0)$, and temperature variation, $\theta(0,0) - \theta(0,1)$, plotted against dimensionless heat input, η, for varying aspect ratio, ζ; (a), (b) $1/Bi = 1000$, (c), (d) $1/Bi = 100$, and (e), (f) $1/Bi = 10$.

Figure 24. Top surface dimensionless centerline temperature, $\theta(0,0)$, and temperature variation, $\theta(0,0) - \theta(0,1)$, plotted against dimensionless heat input, η, for varying aspect ratio, ζ; (a), (b) $1/Bi = 5$, (c), (d) $1/Bi = 1$, and (e), (f) $1/Bi = 0.01$.

Figure 25. Top surface dimensionless centerline temperature, $\theta(0,0)$, and temperature variation, $\theta(0,0) - \theta(0,1)$, plotted against aspect ratio, ζ, for varying $1/Bi$; (a), (b) $\eta = -0.5$, (c), (d) $\eta = -0.2$, and (e), (f) $\eta = 0.1$.

Figure 26. Top surface dimensionless centerline temperature, $\theta(0,0)$, and temperature variation, $\theta(0,0) - \theta(0,1)$, plotted against aspect ratio, ζ, for varying dimensionless heat input, η; (a), (b), (c), (d) $1/Bi = 1000$ and (e), (f), (g), (h) $1/Bi = 100$.

Figure 27. Top surface dimensionless centerline temperature, $\theta(0,0)$, and temperature variation, $\theta(0,0) - \theta(0,1)$, plotted against aspect ratio, ζ, for varying dimensionless heat input, η; (a), (b), (c), (d) $1/Bi = 10$ and (e), (f), (g), (h) $1/Bi = 1$.

Figure 28. Top surface dimensionless centerline temperature, $\theta(0,0)$, and temperature variation, $\theta(0,0) - \theta(0,1)$, plotted against aspect ratio, ζ, for varying dimensionless heat input, η; (a), (b), (c), (d) $1/Bi = 0.1$ and (e), (f), (g), (h) $1/Bi = 0.01$.

Figure 29. Rectangular dimensionless heat input and aspect ratio combinations that are independent of $1/Bi$ for (a) top surface dimensionless centerline temperature, $\theta(0,0)$ and (b) top surface dimensionless temperature variation, $\theta(0,0) - \theta(0,1)$.

Figure 30. Cylindrical dimensionless heat input and aspect ratio combinations that are independent of $1/Bi$ for (a) top surface dimensionless centerline temperature, $\theta(0,0)$ and (b) top surface dimensionless temperature variation, $\theta(0,0) - \theta(0,1)$.
NOMENCLATURE

\(A \)
cross sectional area, \(m^2 \)

\(b \)
half width of the rectangular slab or radius of cylinder, \(m \)

\(Bi \)
Biot number, \(hb/k \)

\(H \)
\(h/k \)

\(h \)
convective heat transfer coefficient \(W/(m^2 \cdot K) \)

\(L \)
height of rectangular slab or cylinder, \(m \)

\(k \)
thermal conductivity \(W/(m \cdot K) \)

\(Q \)
heater input power, \(W \)

\(r \)
dimensional coordinate, \(m \)

\(R \)
dimensionless coordinate, \(r/b \)

\(T \)
temperature, \(K \)

\(T_\infty \)
temperature of surroundings

\(y \)
dimensional coordinate, \(m \)

\(Y \)
dimensionless coordinate, \(y/b \)

\(Z \)
dimensional coordinate, \(m \)

\(Z \)
dimensionless coordinate, \(z/b \)

Greek Symbols

\(\beta_m \)
eigenvalue

\(\eta \)
dimensionless heat input, \(b(Q/A)/(k(T_c-T_\infty)) \)

\(\theta \)
dimensionless temperature

\(\xi \)
aspect ratio, \(L/b \)
1.0 EXECUTIVE SUMMARY

Often it is desirable to cool electronic components to minimize the temperature gradient across the heat generating surface. This isothermal requirement is often required to in order to minimize thermal stresses, in the case of power electronics, or in the case of laser components, such as laser diodes, to minimize optical distortion.

The objective of this analysis is to determine the effects of boundary condition(s) that will influence the steady-state temperature gradient along the top heated surface of cylindrical and rectangular posts. This is accomplished by casting the dimensionless analytical solutions in graphical form similar to Heisler-Gröber Charts. Both dimensional and dimensionless analytical solutions are presented followed by graphical presentations in dimensionless form.

In this manner, the “best” boundary conditions can be used to specify the cold plate requirements to optimally cool the electronics package. The generated dimensionless plots also allow for easy graphical determination of these boundary conditions as defined in a dimensionless form which can be readily interpreted and used to determine optimal dimensional geometries and/or thermo physical material properties to minimize temperature gradients across a heated electronic surface.
2.0 INTRODUCTION

Often it is desirable to cool electronic components in such a manner as to minimize the temperature gradient across the heat generating surface. This isothermal requirement is often required to in order to minimize thermal stresses, in the case of power electronics, or in the case of laser components, such as laser diodes, to minimize optical distortion. Traditionally, electronics cooling has been accomplished by mounting cold plates or cooling fins to the electronics package. In doing so, the “best” cooling approach was typically taken from a thermal management “tool box” consisting of proven concepts. This bolt-on approach to electronics thermal management is only partially effective and does little to optimize the thermal management of electronics with regard to minimizing thermal stresses within the electronics package. Another option to electronics thermal management is to define the boundary conditions in order to minimize thermal stresses within the electronics package generating the heat. The specific cooling approach is then designed to optimally match the boundary conditions that will minimize thermal stresses within the electronics package. Once this is done one can account for the necessary thermal management components needed to transport the heat to the final heat sink. Yovanovich1 investigated thermal spreading resistances in a finite circular cylinder with side and end cooling. He developed a general dimensionless analytical solution, for a circular heat source, showing that the dimensionless thermal resistance depended upon four dimensionless system parameters; relative heat source size, relative cylinder thickness, and side and end surface Biot numbers. Muzychka2 followed up on the research of Yovanovich and examined the dimensionless analytical solutions for the thermal spreading resistance of circular cylinder and rectangle geometries. These solutions addressed geometries consisting of both isotropic and compound systems and resulted in simple expressions to determine the impact of edge cooling on the thermal spreading resistance. However, these studies do not take into account temperature variation at the heated surface.

The objective of this analysis is to determine the effects of boundary condition(s) that will influence the steady-state temperature gradient along the top heated surface of cylindrical and rectangular posts. This is accomplished by casting the dimensionless analytical solutions in graphical form similar to Heisler-Gröber Charts.3,5 Both dimensional and dimensionless analytical solutions are presented followed by graphical presentations in dimensionless form.

3.0 ANALYTICAL FORMULATION

A simplified example of this analytic approach, in rectangular and cylindrical, dimensional and dimensionless forms, is shown in Figure 1. In this example, a uniform and constant heat flux is applied to the top surface of a solid material. The centerline of the material lies along \(y = Y = 0 \) or \(r = R = 0 \) and is defined as an adiabatic surface. A convective boundary of the third kind lies along \(y, r = b \) or \(Y, R = 1 \) and is bounded by temperature, \(T_\infty \). The base of the material represents a cold plate, that is a boundary condition of the first kind, at a fixed constant temperature \(T = T_c \) or \(\theta = 1 \).
Figure 1. Example for (a) rectangular, dimensional case; (b) rectangular, dimensionless; (c) cylindrical, dimensional case; and (d) cylindrical, dimensionless case.
3.1 Rectangular

The dimensionless form of the example shown in Figure 1b is formulated using the dimensionless parameters

\[\theta = \frac{(T - T_w)}{(T_c - T_w)}, \]

\[Z = \frac{z}{b}, \]

and \(Y = \frac{y}{b}. \)

The dimensionless, steady-state, form of the conservation of energy now becomes

\[\frac{\partial^2 \theta}{\partial Y^2} + \frac{\partial^2 \theta}{\partial Z^2} = 0, \quad 0 \leq Z \leq \xi, \quad 0 \leq Y \leq 1, \quad (1a) \]

with the boundary conditions

\[\frac{d\theta}{dY} = 0, \quad Y = 0, \quad (1b) \]

\[\frac{d\theta}{dY} + Bi \theta = 0, \quad Y = 1, \quad (1c) \]

\[\frac{d\theta}{dZ} = -\eta, \quad Z = 0, \quad (1d) \]

and \(\theta = 1, \quad Z = \xi. \)

The dimensionless solution of Eqs. (1a-1e) is given by

\[\theta(Z, Y) = \sum_{m=1}^{\infty} \left(\frac{\cosh(\beta_m Z) + \eta \sinh(\beta_m (\xi - Z))}{\beta_m} \right) \left(\frac{2 \cos(\beta_m Y) \sin(\beta_m) \beta_m^2 + Bi^2}{\beta_m [(\beta_m^2 + Bi^2) + Bi] \cosh(\beta_m \xi)} \right), \quad (2) \]

where \(\beta_m \)s are the positive roots of

\[\beta_m \tan(\beta_m) = Bi. \]

3.2 Cylindrical

The dimensionless, steady-state, form of the example shown in Figure 1d is formulated using the dimensionless parameters

\[\theta = \frac{(T - T_w)}{(T_c - T_w)}, \]

\[Z = \frac{z}{b}, \]

and \(Y = \frac{y}{b}. \)
The dimensionless form of the conservation of energy becomes

\[
\frac{\partial^2 \theta}{\partial R^2} + \frac{1}{R} \frac{\partial \theta}{\partial R} + \frac{\partial^2 \theta}{\partial Z^2} = 0, \quad 0 \leq Z \leq \xi, \quad 0 \leq R \leq 1,
\]

with the boundary conditions

\[
\begin{align*}
\frac{d\theta}{dR} &= 0, \quad R = 0, \\
\frac{d\theta}{dR} + Bi \theta &= 0, \quad R = 1, \\
\frac{d\theta}{dZ} &= -\eta, \quad Z = 0, \\
\text{and } \theta &= 1, \quad Z = \xi.
\end{align*}
\]

The dimensionless solution of Eqs. (3a-3e) is given by

\[
\theta(Z, R) = \sum_{m=1}^{\infty} \left(\cosh(\beta_m Z) + \frac{\eta}{\beta_m} \sinh(\beta_m (\xi - Z)) \right) \left(\frac{2 Bi J_0(\beta_m R)}{J_0(\beta_m) (\beta_m^2 + Bi^2) \cosh(\beta_m \xi)} \right),
\]

where \(\beta_m\)'s are the positive roots of

\[
\beta_m J_1(\beta_m) = Bi J_0(\beta_m).
\]

4.0 RESULTS

Equations 2 and 4 were solved to determine the effect on the surface temperature across the top surface at \(Z = 0\) for both the rectangular and cylindrical cases. The top surface temperatures at the centerline, \(\theta(0,0)\), and temperature variation, \(\theta(0,0) - \theta(0,1)\), were calculated for varying dimensionless heat input, \(\eta\), aspect ratio, \(\xi\), and Biot number of the form \(1/Bi\). The eigenvalues were solved using a bisection method. The number of eigenvalues, used in the series expansion, was chosen in such a manner that when doubled, the resulting solution varied less than 1%. The results of these calculations are shown, as plots, in Figs. 2-15 and Figs. 16-29 for the rectangular and cylindrical cases respectively.

There were small variations when the results for the rectangular and cylindrical cases were compared; but overall, both show the same trend as dimensionless heat input, \(\eta\), aspect ratio, \(\xi\), and Biot number of the form, \(1/Bi\), were varied.
4.1 Rectangular

Figures 2-15 are grouped into three sets of plots each highlighting the effects of the three varying parameters; dimensionless heat input, η, aspect ratio, ξ, and Biot number of the form $1/Bi$. Figures 2-5 show the variation in the top surface dimensionless centerline temperature, $\theta(0,0)$, and temperature variation, $\theta(0,0) - \theta(0,1)$, plotted against $1/Bi$ with aspect ratio, ξ, varying from 0.01 to 5 and dimensionless heat input, η, varying from -0.5 to 0.5. Figures 6-10 show the variation in the top surface dimensionless centerline temperature, $\theta(0,0)$, and temperature variation, $\theta(0,0) - \theta(0,1)$, plotted against dimensionless heat input, η, with $1/Bi$ varying from 0.01 to 1000 and aspect ratio, ξ, varying from 0.25 to 5. Figures 11-15 show the variation in the top surface dimensionless centerline temperature, $\theta(0,0)$, and temperature variation, $\theta(0,0) - \theta(0,1)$, plotted against aspect ratio, ξ, with $1/Bi$ varying from 0.01 to 1000 and dimensionless heat input, η, varying from -0.5 to 0.5.

Figure 2. Top surface dimensionless centerline temperature, $\theta(0,0)$, and temperature variation, $\theta(0,0) - \theta(0,1)$, plotted against $1/Bi$ for varying aspect ratio, ξ. (a), (b) $\eta = -0.5$, (c), (d) $\eta = -0.2$, and (e), (f) $\eta = -0.1$.

Approved for public release; distribution unlimited
Figure 3. Top surface dimensionless centerline temperature, \(\theta(0,0) \), and temperature variation, \(\theta(0,0) - \theta(0,1) \), plotted against \(1/Bi \) for varying aspect ratio, \(\eta \); (a), (b) \(\eta = 0.1 \), (c), (d) \(\eta = 0.2 \), and (e), (f) \(\eta = 0.5 \).
Figure 4. Top surface dimensionless centerline temperature, $\theta(0,0)$, and temperature variation, $\theta(0,0) - \theta(0,1)$, plotted against $1/Bi$ for varying dimensionless heat input, η; (a), (b) $\xi = 0.25$, (c), (d) $\xi = 0.5$, and (e), (f) $\xi = 1$.

Approved for public release; distribution unlimited
Figure 5. Top surface dimensionless centerline temperature, \(\theta(0,0) \), and temperature variation, \(\theta(0,0) - \theta(0,1) \), plotted against \(1/Bi \) for varying dimensionless heat input, \(\eta \); (a), (b) \(\xi = 2 \), (c), (d) \(\xi = 3 \), (e), (f) \(\xi = 4 \), and (g), (h) \(\xi = 5 \).
Figure 6. Top surface dimensionless centerline temperature, $\theta(0,0)$, and temperature variation, $\theta(0,0) - \theta(0,1)$, plotted against dimensionless heat input, η, for varying $1/Bi$; (a), (b), (c), (d) $\xi = 0.25$ and (e), (f), (g), (h) $\xi = 0.5$.

Approved for public release; distribution unlimited
Figure 7. Top surface dimensionless centerline temperature, $\theta(0,0)$, and temperature variation, $\theta(0,0) - \theta(0,1)$, plotted against dimensionless heat input, η, for varying $1/Bi$; (a), (b), (c), (d) $\xi = 1$ and (e), (f), (g), (h) $\xi = 2$.
Figure 8. Top surface dimensionless centerline temperature, $\theta(0,0)$, and temperature variation, $\theta(0,0) - \theta(0,1)$, plotted against dimensionless heat input, η, for varying $1/Bi$: (a), (b), (c), (d) $\zeta = 3$ and (e), (f), (g), (h) $\zeta = 5$.
Figure 9. Top surface dimensionless centerline temperature, $\theta(0,0)$, and temperature variation, $\theta(0,0) - \theta(0,1)$, plotted against dimensionless heat input, η, for varying aspect ratio, ξ; (a), (b) $1/\text{Bi} = 1000$, (c), (d) $1/\text{Bi} = 100$, and (e), (f) $1/\text{Bi} = 10$.

Approved for public release; distribution unlimited
Figure 10. Top surface dimensionless centerline temperature, $\theta(0,0)$, and temperature variation, $\theta(0,0) - \theta(0,1)$, plotted against dimensionless heat input, η, for varying aspect ratio, ξ; (a), (b) $1/Bi = 5$, (c), (d) $1/Bi = 1$, and (e), (f) $1/Bi = 0.01$.

14
Approved for public release; distribution unlimited
Figure 11. Top surface dimensionless centerline temperature, \(\theta(0,0) \), and temperature variation, \(\theta(0,0) - \theta(0,1) \), plotted against aspect ratio, \(\xi \), for varying \(1/Bi \); (a), (b) \(\eta = -0.5 \), (c), (d) \(\eta = -0.2 \), and (e), (f) \(\eta = -0.1 \).
Figure 12. Top surface dimensionless centerline temperature, $\theta(0,0)$, and temperature variation, $\theta(0,0) - \theta(0,1)$, plotted against aspect ratio, ζ, for varying $1/\text{Bi}$; (a), (b) $\eta = 0.1$, (c), (d) $\eta = 0.2$, and (e), (f) $\eta = 0.5$.
Figure 13. Top surface dimensionless centerline temperature, θ(0,0), and temperature variation, θ(0,0) – θ(0,1), plotted against aspect ratio, ζ, for varying dimensionless heat input, η; (a), (b), (c), (d) 1/Bi = 1000 and (e), (f), (g), (h) 1/Bi = 100.
Figure 14. Top surface dimensionless centerline temperature, $\theta(0,0)$, and temperature variation, $\theta(0,0) - \theta(0,1)$, plotted against aspect ratio, ξ, for varying dimensionless heat input, η; (a), (b), (c), (d) $1/\text{Bi} = 10$ and (e), (f), (g), (h) $1/\text{Bi} = 1$.

Approved for public release; distribution unlimited
Figure 15. Top surface dimensionless centerline temperature, $\theta(0,0)$, and temperature variation, $\theta(0,0) - \theta(0,1)$, plotted against aspect ratio, ξ, for varying dimensionless heat input, η; (a), (b), (c), (d) $1/Bi = 0.1$ and (e), (f), (g), (h) $1/Bi = 0.01$.

Approved for public release; distribution unlimited
4.2 Cylindrical

Similar to the rectangular coordinate case, Figs. 16-29 are grouped into three sets of plots each highlighting the effects of the three varying parameters; dimensionless heat input, \(\eta \), aspect ratio, \(\xi \), and Biot number of the form \(1/Bi \). Figures 16-19 show the variation in the top surface dimensionless centerline temperature, \(\theta(0,0) \), and temperature variation, \(\theta(0,0) - \theta(0,1) \), plotted against \(1/Bi \) with aspect ratio, \(\xi \), varying from \(-0.5 \) to \(0.5 \). Figures 20-24 show the variation in the top surface dimensionless centerline temperature, \(\theta(0,0) \), and temperature variation, \(\theta(0,0) - \theta(0,1) \), plotted against dimensionless heat input, \(\eta \), with \(1/Bi \) varying from \(0.01 \) to \(1000 \) and aspect ratio, \(\xi \), varying from \(0.25 \) to \(5 \). Figures 25-29 show the variation in the top surface dimensionless centerline temperature, \(\theta(0,0) \), and temperature variation, \(\theta(0,0) - \theta(0,1) \), plotted against aspect ratio, \(\xi \), with \(1/Bi \) varying from \(0.01 \) to \(1000 \) and dimensionless heat input, \(\eta \), varying from \(-0.5 \) to \(0.5 \).

![Figure 16](image-url)

Figure 16. Top surface dimensionless centerline temperature, \(\theta(0,0) \), and temperature variation, \(\theta(0,0) - \theta(0,1) \), plotted against \(1/Bi \) for varying aspect ratio, \(\xi \); (a) \(\eta = -0.5 \), (b) \(\eta = -0.2 \), and (c) \(\eta = -0.1 \).
Figure 17. Top surface dimensionless centerline temperature, $\theta(0,0)$, and temperature variation, $\theta(0,0) - \theta(0,1)$, plotted against $1/Bi$ for varying aspect ratio, ζ, (a), (b) $\eta = 0.1$, (c), (d) $\eta = 0.2$, and (e), (f) $\eta = 0.5$.

Approved for public release; distribution unlimited
Figure 18. Top surface dimensionless centerline temperature, $\theta(0,0)$, and temperature variation, $\theta(0,0) - \theta(0,1)$, plotted against $1/Bi$ for varying dimensionless heat input, η; (a), (b) $\xi = 0.25$, (c), (d) $\xi = 0.5$, and (e), (f) $\xi = 1$.
Figure 19. Top surface dimensionless centerline temperature, $\theta(0,0)$, and temperature variation, $\theta(0,0) - \theta(0,1)$, plotted against $1/Bi$ for varying dimensionless heat input, η; (a) $\zeta = 2$, (b) $\zeta = 2$, (c) $\zeta = 3$, (d) $\zeta = 3$, (e) $\zeta = 4$, and (f) $\zeta = 4$, and (g) $\zeta = 5$. (h) $\zeta = 5$.

Approved for public release; distribution unlimited
Figure 20. Top surface dimensionless centerline temperature, $\theta(0,0)$, and temperature variation, $\theta(0,0) - \theta(0,1)$, plotted against dimensionless heat input, η, for varying $1/\text{Bi}$; (a), (b), (c), (d) $\xi = 0.25$ and (e), (f), (g), (h) $\xi = 0.5$.

Approved for public release; distribution unlimited
Figure 21. Top surface dimensionless centerline temperature, $\theta(0,0)$, and temperature variation, $\theta(0,0) - \theta(0,1)$, plotted against dimensionless heat input, η, for varying $1/Bi$; (a), (b), (c), (d) $\xi = 1$ and (e), (f), (g), (h) $\xi = 2$.

Approved for public release; distribution unlimited
Figure 22. Top surface dimensionless centerline temperature, $\theta(0,0)$, and temperature variation, $\theta(0,0) - \theta(0,1)$, plotted against dimensionless heat input, η, for varying $1/Bi$: (a), (b), (c), (d) $\xi = 3$ and (e), (f), (g), (h) $\xi = 5$.
Figure 23. Top surface dimensionless centerline temperature, \(\theta(0,0)\), and temperature variation, \(\theta(0,0) - \theta(0,1)\), plotted against dimensionless heat input, \(\eta\), for varying aspect ratio, \(\xi\); (a), (b) \(1/Bi = 1000\), (c), (d) \(1/Bi = 100\), and (e), (f) \(1/Bi = 10\).
Figure 24. Top surface dimensionless centerline temperature, $\theta(0,0)$, and temperature variation, $\theta(0,0) - \theta(0,1)$, plotted against dimensionless heat input, η, for varying aspect ratio, ζ; (a), (b) $1/Bi = 5$, (c), (d) $1/Bi = 1$, and (e), (f) $1/Bi = 0.01$.

Approved for public release; distribution unlimited
Figure 25. Top surface dimensionless centerline temperature, $\theta(0,0)$, and temperature variation, $\theta(0,0) - \theta(0,1)$, plotted against aspect ratio, ξ, for varying $1/Bi$; (a), (b) $\eta = -0.5$, (c), (d) $\eta = -0.2$, and (e), (f) $\eta = -0.1$.

Approved for public release; distribution unlimited
Figure 26. Top surface dimensionless centerline temperature, $\theta(0,0)$, and temperature variation, $\theta(0,0) - \theta(0,1)$, plotted against aspect ratio, ξ, for varying $1/Bi$: (a), (b) $\eta = 0.1$, (c), (d) $\eta = 0.2$, and (e), (f) $\eta = 0.5$.
Figure 27. Top surface dimensionless centerline temperature, $\theta(0,0)$, and temperature variation, $\theta(0,0) - \theta(0,1)$, plotted against aspect ratio, ξ, for varying dimensionless heat input, η; (a), (b), (c), (d) $1/Bi = 1000$ and (e), (f), (g), (h) $1/Bi = 100$.

Approved for public release; distribution unlimited
Figure 28. Top surface dimensionless centerline temperature, $\theta(0,0)$, and temperature variation, $\theta(0,0) - \theta(0,1)$, plotted against aspect ratio, ζ, for varying dimensionless heat input, η; (a), (b), (c), (d) $1/Bi = 10$ and (e), (f), (g), (h) $1/Bi = 1$.

Approved for public release; distribution unlimited
Figure 29. Top surface dimensionless centerline temperature, $\theta(0,0)$, and temperature variation, $\theta(0,0) - \theta(0,1)$, plotted against aspect ratio, ζ, for varying dimensionless heat input, η; (a), (b), (c), (d) $1/\text{Bi} = 0.1$ and (e), (f), (g), (h) $1/\text{Bi} = 0.01$.

Approved for public release; distribution unlimited
4.3 Comparison of Rectangular and Cylindrical Results

Both rectangular and cylindrical results compare closely with only slight differences. One aspect noted is the fact that there are some unique combinations of dimensionless heat input and aspect ratio combinations that are independent of $1/Bi$. Figures 30 and 31 show these dimensionless heat input and aspect ratio combinations that are independent of $1/Bi$ for the top surface dimensionless centerline temperature, $\theta(0,0)$ and the top surface dimensionless temperature variation, $\theta(0,0) - \theta(0,1)$. These combinations can be readily determined from Figs. 6-8 and Figs. 20-22, for the rectangular and cylindrical geometries respectively, as the location of the intersection point for the constant $1/Bi$ lines. In the plots shown in Figs. 30 and 31 were generated with constant lines $1/Bi = 0.01$ and 1000.

Figure 30. Rectangular dimensionless heat input and aspect ratio combinations that are independent of $1/Bi$ for (a) top surface dimensionless centerline temperature, $\theta(0,0)$ and (b) top surface dimensionless temperature variation, $\theta(0,0) - \theta(0,1)$.

Figure 31. Cylindrical dimensionless heat input and aspect ratio combinations that are independent of $1/Bi$ for (a) top surface dimensionless centerline temperature, $\theta(0,0)$ and (b) top surface dimensionless temperature variation, $\theta(0,0) - \theta(0,1)$.
5.0 CONCLUSION

This analytical study presents results that can be used to determine the effects of boundary condition(s) that will influence the steady-state temperature gradient along the top heated surface of cylindrical and rectangular posts with sidewall cooling. Both dimensional and dimensionless analytical solutions derived and the results are presented in dimensionless graphical form similar to Heisler-Gröber Charts.

This specific example demonstrates how it is possible to determine the cold plate surface and environmental boundary conditions that are required to minimize either the centerline temperature or temperature variation across the heated surface. In this manner, the “best” boundary conditions can be used to specify the cold plate requirements to optimally cool the electronics package. The generated dimensionless plots also allow for easy graphical determination of these boundary conditions as defined in a dimensionless form which can be readily interpreted and used to determine optimal dimensional geometries and/or thermo physical material properties to minimize temperature gradients across a heated electronic surface.
REFERENCES

