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a b s t r a c t

AlGaN/GaN High Electron Mobility Transistors (HEMTs) with various gate lengths have been step-
stressed under both on- and off-state conditions. On-state, high power stress tests were performed on
0.17 lm gate length HEMTs and a single 5 lm spaced TLM pattern. Significant degradation of the submi-
cron HEMTs as compared to the excellent stability of the TLM patterns under the same stress conditions
reveal that the Schottky contact is the source of degradation. Off-state stress showed a linear relationship
between the critical degradation voltage and gate length, though two dimensional ATLAS/Blaze simula-
tions show that the maximum electric field is similar for all gate lengths. Additionally, as the drain bias
was increased, the critical voltage decreased. However, the cumulative bias between the gate and drain
remained constant, further indicating that the electric field is the main mechanism for degradation.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

GaN-based High Electron Mobility Transistors (HEMTs) have
shown exceptional promise for use in both commercial and mili-
tary systems for microwave and optoelectronic applications. Ul-
tra-high power radar systems will require the use of GaN
transistors to be operated at very high voltages, currents and tem-
peratures. Though GaN HEMTs are emerging in the commercial
market, there is still concern with respect to their electrical reli-
ability and the driving mechanisms for degradation [1–8]. Numer-
ous degradation mechanisms have been reported, ranging from
hot-electron induced degradation to field-driven mechanisms
[9–15]. High power operation of GaN HEMTs can also result in
substantial self-heating, which will reduce the 2DEG mobility
and saturation carrier velocity [16–19].

This paper reports on the degradation of AlGaN/GaN HEMTs un-
der off-state (high reverse gate bias) and on-state (high power)
conditions. The devices under test have a gate length ranging from
submicron (0.1–0.17 lm) to 1 lm. To isolate the effect of the gate,
a transmission line method structure was also stressed under the
on-state condition. For the high power condition, both the source
and gate were at ground while the drain was step-stressed. The ef-
fect of high reverse gate bias was investigated by step-stressing the

gate from �10 V to �42 V with both source and drain at ground.
Additional experiments were carried out to investigate the effect
of applying drain bias while step-stressing the gate from �5 V to
�42 V.

2. Experimental

The devices were fabricated on a semi-insulating 6H SiC sub-
strate with an AlN nucleation layer, a 2.25 lm Fe-doped GaN buf-
fer, and 15 nm Al0.25Ga0.75N capped with 3 nm of unintentionally
doped GaN. Hall measurements performed on-wafer displayed a
sheet resistance of 310 Ohm/square, mobility of 1900 cm2/V s,
and sheet carrier concentration of 1.06 � 1013 cm�2. Ohmic con-
tacts of Ti/Al/Ni/Au were annealed for 30 s at 850 �C. The HEMTs
employed a Ti/Au double gate design with a total gate width of
300 lm. All devices were passivated with SiNX. The source-to-gate
and gate-to-drain distances are 2 lm. Electrical data was measured
by HP 4156C semiconductor parameter analyzer and an in-house
designed stress system described elsewhere [20].

For the high power stress, both the source and gate were held at
ground while the drain bias was stepped up in 1 V increments at
30 min intervals. HEMTs with a gate length of 0.17 lm (Fig. 1)
were stressed with the base-plate temperature ranging from
60 �C to 100 �C. To examine the effect of the gate, a single TLM seg-
ment with a 5 lm ohmic to ohmic spacing and 90 lm width was
stressed under the same conditions as the 0.17 lm gate length
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HEMT. In order to investigate the effect of a high electric field on
the gate while isolating any additional degradation due to self-
heating, two additional sets of experiments were carried out on
HEMTs with gate lengths of 0.1 lm, 0.125 lm, 0.14 lm, and
0.17 lm. The first test stepped VGS from �10 V to �42 V in 1 V
increments for 1 min intervals. Both the source and the drain were
grounded, which allowed for symmetric stressing of the gate. The
second test stepped a 0.1 lm gate from �5 V to �42 V in the same
manner, with a drain bias of 0 V, 1 V, 5 V, 10 V and 15 V. In addi-
tion, finite element simulations were employed to estimate device
channel temperature during operation. Automatically Tuned Linear
Algebra Software (ATLAS/Blaze) simulations were also carried out
in order to determine the electric field and theoretically confirm
experimental results for the various gate lengths and bias condi-
tions. Cross-sectional transmission electron microscopy (TEM)
was performed on the devices pre- and post-stress.

3. Results and discussion

3.1. On-state stress

HEMTs with a gate length of 0.17 lm were step-stressed with a
drain bias of 1 V to 25 V. A positive shift in VT of �0.5 V was ob-
served at 60 �C and an increase in VT of �0.7 V at 100 �C. As evident
in the top of Fig. 2, an increase in base-plate temperature of 40 �C
results in �15% decrease in IDSS during the stress test. Upon closer
inspection of the drain current (bottom of Fig. 2), the output cur-
rent is constant for the duration of each step until a critical voltage
is applied, at which point the degradation becomes permanent in
nature and the output current decays under constant drain bias.
This permanent degradation occurs when 10 V and 13 V is applied
on the drain for a base-plate temperature of 100 �C and 60 �C,
respectively. The channel temperature at the onset of degradation
for both base-plate temperatures is 195 �C, as determined by three
dimensional finite element thermal simulations. The maximum
temperature in the channel during the stress test was 240 �C for

both base-plate temperatures. These results show that degradation
is due to a temperature activated mechanism. Both base-plate tem-
peratures resulted in �90% decrease in drain current. Additionally,
gate current characteristics after stress show about a two orders of
magnitude increase in leakage current for a base-plate tempera-
ture of 60 �C, and about three orders of magnitude increase at
100 �C (Fig. 3). In order to eliminate the effect of the gate on the de-
vice, transmission line method (TLM) patterns with a 5 lm spacing
were also stressed under the same conditions. Though the drain
current for the HEMT devices exhibited substantial degradation
at a lower current density, the TLM patterns exhibited excellent
stability regardless of the base-plate temperature, with negligible
increase in total resistance (Fig. 4 top). In addition, the sheet resis-
tance was found to be independent of temperature (Fig. 4 bottom),
further establishing that the ohmic contacts and underlying epitax-
ial layers are not the source of degradation in the HEMTs.

3.2. Off-state stress with VDS = 0V

AlGaN/GaN HEMTs with submicron gate lengths were step-
stressed with a gate bias of �10 V to �42 V in 1 V increments for
1 min at each voltage step with both source and drain at ground.
The current during stress (IGstress) steadily increases with time,

Fig. 1. Optical micrograph of AlGaN/GaN HEMT with double gate design.
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Fig. 2. (Top) Drain current of 0.17 lm gate length HEMT during step stress with
base-plate temperatures of 60 �C and 100 �C. (Bottom) Enlarged section of drain
current shown in top figure.
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until at a certain applied voltage, IGstress abruptly rises up about one
order of magnitude. This has been deemed the critical voltage
(Vcrit). The Vcrit for 100 nm, 125 nm, 140 nm and 170 nm gate
lengths was determined to be �17 V, �22 V, �27 V and �32 V,

respectively (Fig. 5). Two dimensional ATLAS/Blaze simulations
were carried out in order to determine the electric field strength
at the critical voltage for each of the gate lengths (top of Fig. 6).
As seen in the bottom of Fig. 6, the critical voltage is linearly
dependent on gate length. However, the electric field is fairly sim-
ilar at all gate lengths when the critical voltage is reached,
�1.9 MV/cm to �2.7 MV/cm.

The gate current before and after stress for the 140 nm gate
length device is shown in Fig. 7 (top). Prior to stress, there is an
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Fig. 3. Gate current of 0.17 lm gate length HEMT before and after on-state step
stress with a base-plate temperature of 60 �C and 100 �C.
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Fig. 4. (Top) Comparison of current (A/mm) of 0.17 lm gate length HEMT and TLM
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bias step-stress experiment for different gate length devices.
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Fig. 6. (Top) ATLAS/BLAZE simulation of electric field at the critical voltage for the
0.14 lm gate length HEMT at 300 K. (Bottom) Simulated maximum electric field as
a function of gate length.
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anomalous current plateau present in the forward I–V curve. A high
density of spatially non-uniform surface donors with both therm-
ionic field emission and field emission current transport has been
reported by Hasegawa and Oyama as the thin surface barrier mod-
el [21]. Though unintentional, the thin surface barrier results in a
current plateau and may be present in our devices due to a defec-
tive nitride with a high dislocation density. After stress, the reverse
gate current increases an order of magnitude and the forward cur-
rent begins to show normal Schottky transport. As seen in the bot-
tom of Fig. 7, the drain current decreases �10% after stress. The
Schottky barrier height also reduces from �800 mV to �770 mV,
indicating that the interface between the semiconductor and the
gate metal is changing. Cross-sectional TEM before stress shows
a thin oxide layer present at the interface, which is reduced after
stress (Fig. 8). As the devices are stressed beyond the critical volt-
age, plateaus in IGstress form and can be seen in Fig. 5, particularly in
the smaller gate length HEMTs. These plateaus are followed by less
significant increases in stress current.

3.3. Off-state stress with drain–source bias

VGS for HEMTs with a 0.1 lm gate length was stepped from �5
to �42 V in 1 V increments for 1 min at each interval with drain
voltages ranging from 0 V to 15 V. The changes in IGstress for the
various values of VDS are shown in Fig. 9. As shown in Fig. 10, as
drain bias is increased, the critical voltage significantly decreases.

The voltage applied between the drain and gate (|VGS| + VDS) when
gate current degradation occurs, however, is almost constant
(Fig. 10). This result further shows that the electric field between
the drain and gate is the primary cause of degradation.
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Fig. 8. Cross-sectional TEM image of gate finger (top) before and (bottom) after off-
state stress.
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4. Summary and conclusions

AlGaN/GaN HEMTs with a gate length of 0.17 lm and TLM pat-
terns with a 5 lm spacing were step-stressed under on-state, high
power conditions. Devices with 0.17 lm gate length exhibited the
onset of degradation at lower voltages with an increase in base-
plate temperature. Thermal simulations, however, showed that
permanent degradation occurred at the same channel temperature.
Both gate and drain current–voltage characteristics reveal signifi-
cant degradation, while the TLM structure displays remarkable sta-
bility under the same stress conditions and higher current density.
These results confirm that the Schottky contact is the source of
degradation for the HEMT. Reaction of the gate with the underlying
epitaxial layers and subsequent gate metal sinking would result in
a decrease in distance between the metal–semiconductor interface
and the channel. This sinking would in turn increase the depletion
region and account for the decrease in drain current, increase in VT,
and an increase in gate leakage current seen in the HEMTs.

The effect of off-state conditions was investigated for submi-
cron gate length HEMTs. Due to the low currents under these con-
ditions, self-heating did not occur. For VDS = 0, a linear relationship
between gate length and critical voltage was observed. Step-like
increases in current reveal that the reaction occurring between
the gate and underlying semiconductor layers is not a single,
instantaneous event, but rather an incremental process. Chowdhu-
ry et al. performed an extensive TEM investigation of electrically
stressed GaN HEMTs to study the inverse piezoelectric effect
[15]. Analysis showed a correlation between electrical degradation
and physical degradation, with small pits forming on the drain side
of the gate after modest electrical degradation and large cracks
with gate metal diffusion after significant electrical degradation
[15]. While our samples did not reveal pit or crack formation after
stressing, physical degradation of the Schottky contact is apparent
and future studies will further investigate the evolution of gate
degradation. Additional experiments investigated the effect of
increasing drain bias from 0 V to 15 V while step-stressing the gate
from �5 V to �42 V resulted in a decrease in Vcrit. However, the to-

tal applied voltage between the gate and the drain, |VGS| + VDS, re-
mained almost constant. Simulations showed the electric field
strength for all gate lengths at the critical voltage was similar,
demonstrating that the field is the dominant degradation mecha-
nism under off-state stress.
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