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When external stresses in a system – physical, social or virtual – are relieved through im-

pulsive events, it is natural to focus on the attributes of separate avalanches. However,

during the quiescent periods in between, stresses may be relieved through competing pro-

cesses, such as slowly flowing water between earthquakes or thermally activated disloca-

tion flow between plastic bursts. Such unassuming, smooth responses can have dramatic

effects on the avalanche properties. Our thorough experimental investigation of slowly

compressed Ni microcrystals, covering three orders of magnitude in nominal strain-rate,

exhibits unconventional quasi-periodic avalanche bursts and higher critical exponents as

the strain rate is decreased. Our analytic and computational study, naturally extend-

ing dislocation avalanche modeling to incorporate competing processes, reveals the emer-
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gence of avalanche oscillator scaling behavior, a novel critical state manifesting through

self-organized oscillatory approaches toward a critical depinning point. We demonstrate

that the predictions of our theory are consistently manifested in our experiments.

Physical systems under slowly increasing stress may respond through abrupt events. Such

jumps in observable quantities are abundant (1), from Barkhausen noise (2) to plastic flow (3–5)

and earthquakes (6). Even though events appear randomly sized and placed, the statistical

properties of avalanches are universal, defining well understood non-equilibrium universality

classes: The main unifying concept is the depinning of an interface under an external field (1,7).

An implicit assumption underlying these concepts is that all other coexisting physical processes

are either too fast and thus average out, or too slow rendering a static approximation valid.

However, the latter assumption is not always true if the slow processes rearrange the pinning

landscape at rates comparable to the external field driving rates. For as the fast avalanches are

scale invariant, the whole timeseries, including the waiting intervals between the fast events, is

also scale invariant (8). It is there within the waiting intervals that a slow restructuring of the

pinning field can thrive and alter universal predictions as observed by Jagla (9).

While intermittent plastic flow is well known (10), only recently was it shown as statistically

akin to universal mean-field avalanche behavior in the quasistatic limit. Investigations of the

phenomenon utilized a wide variety of techniques, including acoustic emission from deforming

ice (3), high resolution extensometry of tensile strained Cu (11) and microcrystal compression

tests for FCC and BCC crystals, including Ni (4), Al (12), Mo (13) and LiF (14). However,

most of these studies covered only a narrow range of nominal high strain rates. Preliminary evi-

dence that suggests a more complex physical picture, was discussed by some of us in Ref. (15),

where a rate dependence of the cumulative strain event size distributions was observed. In our

experiments, Ni microcrystals of comparatively large dimensions, having diameters between

2
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18 and 30 µm, were uniaxially compressed (15). By controlling the applied external stress to

maintain a nominal strain rate and by detecting slip with extremely sensitive extensometry, we

track the crystal displacements in time. In order to study the rate dependence, we perform our

experiments at three different nominal strain rates (10−4/s, 10−5/s, 10−6/s). For each sample, the

timeseries of the displacement time derivative is filtered using optimal Wiener filtering methods

adapted for avalanche timeseries (16), and avalanche events are appropriately defined without

using thresholding.

As plastic deformation proceeds in the micropillars, the dislocation ensemble evolves at dif-

ferent time scales. The most apparent activity is associated with fast glide processes which

produce stochastic bursts of deformation. Concurrently and in between these events, other less

observable processes (cf. Fig. 1) contribute to collective slower relaxations. Like glide, these

too are thermally activated processes accessible at these high levels of stress, but having dif-

ferent activation barriers, for example: the viscoelastic response of the dislocation forests after

fast avalanche strain bursts, the localized dislocation climb motion in directions other than the

glide plane under high local stresses, and also the cross-slip processes of dislocations shifting

between glide planes are slow processes compared to the avalanche events (17). They all com-

pete to minimize the far field stress while changing the local stress landscape and bypassing the

glide process. They affect dislocation slip, but at a slower rate than avalanche glide (18). In

our experiments, we classify as “slow relaxation” all the deformation that does not belong to

avalanches of the scaling regime. Using this definition, the slow relaxation fraction increases

drastically at the two slowest strain rates. Thus, the rate dependence of the avalanche size dis-

tribution (Fig. 2(c)) occurs when the nominal strain-rate becomes comparable to the rate of the

slow relaxation processes (cf. Fig. 1). Although the exact mechanisms are unknown, one lo-

calized reorganization mechanism possible at these large local stresses and low temperatures

(0.17Tm (∼ 300K)) (18) could be tied to newly discovered unconventionally large cross-slip

3
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rates, as calculated for similar conditions to our experiments (19). For our purposes, and re-

gardless of the type of relaxation mechanisms, we focus on the experimental fact that relaxation

and driving rates become comparable. We phenomenologically incorporate the slow relaxation

into our model in a simple and intuitive manner and then a posteriori show that our results are

independent of the particular form of relaxational dynamics (see SOM).

The time series of slip event sizes S, labelled by their beginning time, display a striking

dependence on the driving rate. After we smooth the timeseries over a fixed window of 400s

and then rescale the time axis to display comparable strain evolution, a very clear (cf. Fig. 2(a))

quasiperiodic behavior emerges at the 10−6/s nominal rate. The emergent time period is ob-

served to display an exponential dependence on the nominal strain rate, while its magnitude

reaches ∼ 8 hrs (for 10−6/s), consistently much larger than the length we chose for the fixed

window averaging (cf. Fig. 1(c)). This qualitative change in the behavior is also reflected within

statistical distributions of S: The size distribution shows a power law behavior (P (S) ∼ S−τ )

for all studied strain rates (10−4/s, 10−5/s, 10−6/s), but the value of the power law exponent

drifts from ∼ 1.5 (consistent with Refs. (4, 20)) to a higher and unexpected value of ∼ 2.0 (cf.

Fig. 2(c)). An analogous behavior is observed for the durations T of the avalanches and their

correlation with the sizes (cf. SOM); although there are concerns about the accuracy of these

durations, given the response time of the apparatus and the frequency of the data recorded (15).

Our explanation of the experimental data builds on the model framework of dislocations

moving through a disordered landscape of forest dislocations, on a single slip plane under the

application of shear stress. This is a successful picture for avalanches during stage I plastic-

ity (20–23) that strongly relies on well-understood models of 2+1 dimensional interface depin-

4
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ning (7). Our model represents a minimal generalization via an added relaxation term, D,

dφ(r)

dt
=

(I)
︷ ︸︸ ︷

D
(σ(r)

µ

)n
Θ(σ(r))+

(II)
︷ ︸︸ ︷

1

µε
(σ(r) − σf (r))Θ(σ(r) − σf (r)) . (1)

where µ is the shear modulus of the system, and ε # 1. Here, φ denotes the basic slip variable

of the system, which is the yx-component (Burgers vector along x) of the plastic distortion

tensor, considering only infinite dislocations along z on xz slip planes (23). Part (I) of Eq. 1

denotes the coarse-grained slow relaxation of edge dislocations, assuming a rate D at a fixed

temperature. Only positive slip motion is considered to simplify our simulations (24). With

D ∼ exp(−∆/T ), we define an effective rate of thermally activated processes (∆ is an effective

energy barrier to such processes) that lead to slow relaxation. For simplicity, we set the exponent

n = 1, since our conclusions do not qualitatively depend upon it. The applied stress is the xy-

component of the stress tensor,

σ(r) = σext + σint(r) + σhard(r) = Mc t +

∫

d2
r
′K(r − r

′)φ(r′) − kφ(r) . (2)

We consider a stress-controlled test in a stationary plastic regime (σext ≡ Mc t) (25), whereM

is a machine stiffness, so that c has strain-rate units. In this framework, the relative timescales of

the relaxation and stress rate increase are controlled by the dimensionless parameter R ≡ D/c.

Part (II) of Eq. 1 denotes the fast glide process which controls the avalanche dynamics. Hard-

ening is phenomenologically represented via a coefficient k that controls the distance of the

system from its non-equilibrium depinning critical point. For clarity, we separate the relevant

timescales by considering ε # 1, leading to infinitely fast avalanches compared to the slow re-

laxation process. σf denotes the uncorrelated local pinning potential, due to dislocation forests.

Finally, σint is chosen to contain the appropriate interaction kernel K for single slip straight

edge dislocations (23). However, our main qualitative conclusions are independent of the ker-

nel, and thus are equally applicable to other models of avalanches in plasticity (26).

5
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The model of Eqs. 1 and 2 is solved by explicit integration with an Euler step until the

condition σ(r) > σf (r) is satisfied for some point r, at which point an avalanche is triggered.

For no relaxation (D=0), the avalanches display statistics consistent with the predictions of the

mean-field theory of interface depinning (1, 5). As the relaxation D increases, both the critical

exponent τ for strain jump sizes S (P (S) ∼ S−τ ) and the critical exponent α for event durations

T (P (T ) ∼ T−α), increase substantially (cf. Fig. 2(b), SOM). However, the dependence of

〈S〉 on the duration T (〈S〉 ∼ T 1/σνz) remains unaltered (1/σνz ' 2), signifying that the

universality class of the underlying non-equilibrium critical point remains unaltered while some

critical exponents increase. In the context of mean-field theory, remotely similar behavior takes

place when the driving rate c is increased (16) leading to avalanche overlap, unrelated though

to our results which hold when c → 0 keeping R fixed (and > 1).

The increase of the exponents is accompanied by a quasiperiodic behavior, signified by

large slip events (cf. Fig. 2(b)): If one considers the average avalanche size in a window (cf.

Fig. 2(b)), similar to the experimental study but without strain from relaxation included, it

is clear that the D = 0 flat-in-time profile is replaced by strongly oscillating profiles in the

presence of slow relaxation (D > 0). The average avalanche size (D = 0) is inversely related

to the hardening coefficient k, k ∼ 〈S〉−σk with σk ' 1. Thus, there is a distribution of

hardening coefficients being effectively sampled, reflecting local heterogeneity. We assume

that such a distribution g(k′) biases the integration, over all possible hardenings k′, of the size

probability distribution of the D = 0 model, leading to the observed dynamically integrated

size distribution. That is, a curve in Fig. 2(d) may be obtained as

Pint(S) =

∫
∞

0

g(k′)P (S, k′)dk′ , (3)

For example, assuming that g(k′) = const. for any k′ < k0 and zero above a limiting k0, then

we simply have at D/c ) 1, Pint(S) = S−τ−σkP(Sk1/σk

0 ) , yielding a higher effective sizes-

6
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exponent τ̃ ≡ τ + σk for slow strain rates, with τ̃ = 5/2 at mean-field. However, typically,

g(k′)might have a more complicated functional form, allowing for a large range of possible τ̃s.

The profound effects of slow rate processes within our dislocation model and the comparison

with experiments forces us to ask: Are our findings general? To make analytical progress

toward an answer consider the “susceptibility to jumping” ρ, defined as the number of degrees

of freedom that slip after the trigger slip. On average in our model 〈ρ〉 is proportional to the

hardening coefficient (〈ρ〉 ∝ 1−k). In traditional mean-field models of interface depinning (1),

this quantity describes the “distance” of the system from the critical point and is considered

saturated to a fixed point value after short-time transients (steady state). When ρ # 1, the

system is far from the critical point, while the system is near critical when ρ ' 1. Numerical

solutions to Eq. 1 verify that the additional relaxation process affects ρ in an unusual way:

When an avalanche with size St takes place, ρ instantaneously decreases in a way proportional

to the magnitude of St, while it increases linearly when there are no avalanche events. In a

minimal sense, we suggest that the basic physical mechanism behind the behavior of Eq. 1(with

c → 0 but R fixed) is given by the behavior of the susceptibility to jumping ρ, whose basic

characteristics can be described by the following Markov process,

ρt+1 − ρt ≡ ∆ρt = cd(1 −
St

S̄
) . (4)

where St is picked from the mean-field size distribution P (St) = NS−3/2
t e−St/S0 (where N is a

normalization factor and S0 = a/(1 − ρt)) (1) and the step cd shall be thought as being propor-

tional to R. The well-known avalanche mean-field behavior is described by the trivial cd → 0

fixed point (analogous to higher experimental strain rates). The size of the avalanche at time

t, St, is a stochastic variable which mimics the avalanche dynamics described by Eq. 1 (which

is in the mean-field universality class). When cd # 1, ρ increases in small steps towards the

fixed point given by ρ0 = 1− πa2

4S̄2 with average size S̄ = a
2

√

π/(1 − ρ0) (a being the minimum

7
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accessible size) saturating at a value similar to that for the traditional depinning dynamics (cf.

Fig. 3 left). However, there is a finite probability of a large (but not infinite!) avalanche which

takes the system far from the fixed point, with ∆ρt large and negative. If δS = St − S̄, then

∆ρt = −cdδS/S̄ ∼ −1 indicates the emergence of a novel quasiperiodic behavior (cf. Fig.1(b))

showing large negative ρ−jumps with St being large rare avalanche events, much larger than

S̄. Now, ρ0 is not able to have the essential defining role as a steady-state susceptibility as for

the traditional critical behavior, and ρ performs a Sisyphean task constantly ascending towards

ρ0. In this way, the distribution of ρ effectively flattens as cd increases (low experimental strain

rates) (cf. Fig. 3 right), leading to integrated exponents (cf. Eq. 3). In a consistent manner, the

analogous distribution for the model in Eq. 1 flattens as R increases (cf. Fig. 3 right (inset)).

The rare δS events scale with S0 ∼ 4S̄2/(πa) and qualitatively, the transition between the

two regimes takes place when cd ∼ aπ/(4S̄) ∼ 1/(S̄/a). Numerically, we get a consistent

“phase diagram” line (cf. Fig.3 lower) which separates the two qualitative behaviors. We shall

mention that our model shares a strong resemblance to the case of relaxation limit cycle oscil-

lations near a singular Hopf bifurcation with stochastic perturbations (27), a dynamical system

similar to Sōzu, the traditional Japanese gardening device.

Contemporary observations have revealed novel and creative mechanical behaviors of crys-

tals in the microscale. Together with the size effects (28, 29) and the emergence of avalanche

slip events (3, 4), the importance of often neglected slow processes on intermittency has now

come to light. Our study provides basic elements for constructing a much desired accurate mul-

tiscale theory of microscale plasticity (30). By incorporating the complex microscopic slow

dynamics of dislocations operating between the fast glide processes, it is possible to capture the

complete interplay between local stress concentrations that lead to violent bursts and the collec-

tive relaxational dynamics of the dislocation environment over longer times. These experiments

8
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in the world of “small” and the associated theory that we developed, force us to reconsider our

understanding of the world of “large”, earthquake faults (6), sheared amorphous solids (31)

and other depinning processes, setting additional constraints. Whenever the mechanism that

drives avalanche dynamics competes with other slow coexisting processes to lower stress, when

the driving is slow enough, the nature of the avalanche dynamics is modified and gives rise to

critical quasiperiodic bursts.
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Figure 1 – Complexity of dislocation motion and slow relaxation during avalanche wait-

ing intervals. Upper: A schematic toy demonstration of the complex processes that

dislocation experience. Lighter to darker color scale indicates time evolution. Under the

application of stress, a dislocation loop nucleates and attempts to grow but it gets pinned

on its slip plane(lighter color). Depinning to a larger loop configuration corresponds to a

fast glide-slip burst, the most common dislocation slip. However, as the loop grows a screw

dislocation segment undergoes double cross-slip to a parallel slip plane, in order to bypass

the glide barriers. On the new plane, the dislocation loop glides and, ultimately it under-

goes dislocation climb. Lower Left: A part of the timeseries of the plastic deformation

of a Ni sample at 10−6 rate. The avalanche phenomenon, when close to criticality, does

not manifest itself only through the rather fast and violent scale-invariant bursts (16), but

also through unavoidable long waiting times (8, 32) where glide processes are inactive; It

is due to this scale-invariant distribution of waiting times that slow, non-equilibrium stress

minimizing processes can thrive, altering in a fundamental manner the properties of the

critical avalanche behavior. Lower Right: The estimated percentage of strain accumulated

in slow relaxation flow which does not amount to large, observable strain bursts is shown

on the left (black): The percentage (relaxation strain/total final strain) strongly increases as

the rate decreases. Experimental noise certainly contributes to the relaxation strain mea-

sured. On the right, a non-trivial quasiperiod (average period of intermittent oscillations)

of organised avalanche behavior emerges and increases dramatically as the nominal rate

decreases.

Figure 2 – Experiments vs. Theory. (a) Average avalanche size as a function of time for different

strain rates. Avalanche sizes are averaged based on their start times in 400s windows. Note

that the time axes are rescaled by the nominal strain rate, aligning the “strain scales”. For

different, independently strained samples, clear quasi-periodic avalanche behavior emerges

13

Approved for public release; distribution unlimited



as the nominal strain rate decreases. The period, as soon as it becomes apparent (0.4nm/s

sample), stays of similar size in “strain scale” while it increases drastically in real time –

a key prediction of the theory we present in this paper. (b) The stick-slip oscillations that

are observed experimentally (a) are a typical characteristic of the explored model of Eq. 1.

Here, we fixed the value of the relaxation rate and varied the actual strain-rate (by modifying

c), similarly to the situation in the experiments. We should mention that there is an overall

scale that is freely modified in order to match the experiments. This gives us a unit of strain

being 2×10−6 and a fast timescale unit of 0.5s. We shall notice that there is a difference of

the simulations’ timeseries from the experimental in (a) in that the detected events are the

actual avalanche events without the distortion that would appear due to the strain coming

from the slow relaxation. Ideally, this plot should experimentally emerge if the creep strain

is removed. This difference is behind the overall scale difference of the two plots. (c)

Rate dependence of the critical exponent of the probability distribution for the sizes of the

displacement jumps. Even though the hardening coefficient for the different samples used

is roughly similar (±10%), the slope of the distribution increases as the nominal strain

rate decreases. We shall notice that as the rate decreases a large collection of small, almost

invisible events appear with similar probability in the distribution (not shown). (d) Similarly

as in (c), the decrease of c leads to a ”rate dependence” of the size distribution exponent (and

other related exponents), which we explain in the text. The exponent drifts from the known

∼ 1.5, reported also in the original Ref. (23), to approximately ∼ 2.5, the limiting value

for a ”flat” distribution of ρ’s (cf. Fig. 3). As we show in the Supplementary Information,

it is clear that the high S bump near the cutoff fades away and flattens as k increases, even

though the exponent stays virtually unaltered.

Figure 3 – Effective modeling of the jumping susceptibility. Upper Left: A plot portraying

the behavior of the reduced, analytical model Eq. 4. As the rate cd is increased, large noise
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causes ρ(t) to oscillate between ρ ∼ 1 and small ρ, causing larger exponents, according

to the discussion in the main text. Upper Right: The probability distribution of ρ as cal-

culated from the solutions of the effective model Eq. 4. The distribution becomes flat as

cd increases, with ρ being “sampled” with equal probability during an oscillation. In the

inset, the probability distribution of 〈S〉50 is shown for the simulations of Eq. 1, calculated

by considering the timeseries of the events, regarded as instantaneous, and then averaged

with a running window of size 50. The simulations have the same parameters as in (a).

The histogram, shown in the appropriate scale (1 − 1/〈S〉2 ≡ ρ) becomes flat, while be-

ing sharply peaked for small R. Center: The phase diagram which distinguishes the novel

regime where the fluctuations of ρ are large enough to cause quasiperiodic oscillations from

the traditional regime where ρ fluctuates weakly around the fixed-point value ρ0. The line

signifies the instability to quasiperiodic behavior cd ∼ 1/S̄ as described in the text. The

points label the locations where simulations of Eq. 4 were performed and then, the critical

exponent τ̃ was calculated using Eq. 3 at the points, with a final Gaussian interpolation for

the color background.
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Figure 1 – Complexity of dislocation motion and creep during avalanche waiting
intervals
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Figure 2 – Experiments vs. Theory
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Figure 3 – Effective modeling of the jumping susceptibility
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(A) Materials and Methods

Experimental: The experimental measurements were performed using the methodology de-

scribed in (10). The data are taken at time resolutions 5, 50 and 500 Hz for different samples,

depending on the case. The nominal strain rates were 10−4,−5,−6/s with corresponding aver-

age platen velocities of 4, 0.4 and 0.04 nm/s, given the dimensions of the pillars. The experi-
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mental timeseries were filtered using optimal Wiener filtering methods optimized for studying

avalanches, as described in (3). Optimal Wiener filtering corresponds to a low-pass filter that

has significant effects only at short timescales which are plagued by apparatus problems. In a

similar fashion, as in Ref. (3), we performed adequate tests in order to confirm that the power-

laws and the long-time quasiperiodic behavior are not related to the filtering procedure. The

experimental data is available upon request.

Theoretical: In the simulations of Eq. 1, during diffusion, Euler time stepping is used to

evolve the differential equation on a L×L grid. During an avalanche, given that ε → 0, the

stress is not increased and the relaxation term (I) does not participate in the evolution. This

approximation was performed for clarity purposes, with qualitatively similar results with the

case ε = 1. In that case, the effect of diffusion is more visible and avalanches dissipate (for

large D) much smaller stress percentage, since the relaxation term dominates the behavior.

During the avalanche process, we evolve the system by using cellular automata rules: when the

total local stress crosses its σf threshold, the associated local slip φ increases randomly with a

normal distribution with mean 1 and variance 1. In the stress of Eq. 1, we have also added a

term for regularizing purposes that slightly smoothens the slip profiles. It takes the form α∇2φ

with very small α = 0.05. We have checked for several system sizes (up to 642) that this

term does not affect our reported results in any visible manner. Also, we note that this term

is physically motivated, in as much as it is connected to the coarse-grained form of the stress

generated by dislocation pile-ups (23). In our simulations we used a flat distribution ranged in

(0, 1] for the quenched disorder σf (r), following a typical protocol (1). The kernel K(r) has a

continuum Fourier representation K̃(k) = −Ck2
xk

2
y/(k2

x + k2
y)

2(23), where we set C = 1 for

clarity purposes in our analysis. A modification of C modifies the strength of disorder required

in the model in order to observe avalanche behavior, with no other changes. In all simulations

using Eq. 1 (unless explicitly mentioned otherwise) the hardening coefficient k is selected from
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the formula k = 2L0.85/S0 where we chose S0 = 1000 with S0 being approximately equal to

the cutoff size of the distribution that is derived for D = 0. The reason for this choice has to do

with the fact that the nature of the kernel (23) is such that a fixed local hardening coefficient k

does not set the cutoff for the size distribution. Rather, it allows for a weak increase with the

system size. However, for our purpose (studies of D > 0) it was crucial to have well controlled

critical distributions for D = 0, independent of the system size, to identify the concrete effects

of the relaxation on the distributions. In all plots we refer to the value of R = D/c.

In the simulations of Eq. 4, the stochastic equation was solved using random variables that

follow the required power-law distribution with exponential cutoff, generated with the standard

rejection method. During solving Eq. 4 numerically, ρ can jump above 1, a regime that we do

not consider. There are several options to deal with the boundary condition at ρ = 1 which are

numerically very similar for large S̄ and small cd. After a jump which takes ρ > 1, : i) ρ is reset

to a random value between 0 and 1 (this method was used for the generation of Fig. 3 Center),

ii) ρ is reset to a specific value (for example, 0), iii) ρ is set to be equal with the long-time

average 1 − 1/S̄2. We shall reiterate that these crossings (ρ > 1) are finite-size effects and do

not define the system’s behavior at long times and in the limit of S̄ → ∞, as we verified in

both simulations of Eq. 1 (showing that the distribution “bump” consistently vanish with the

system size) and Eq. 4 (showing that different treatments of the ρ = 1 boundary lead to the

same conclusion and phase boundary cd ∼ 1/S̄).

The codes used for the simulations of Eqs. 1 and 4 are written in Python and are available

upon request.

(B) SOM Text

In this supporting online material we
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Figure S1 – Duration Distributions and Average Size vs. Durations. In associa-
tion with the size distributions of Fig. 1(b), the duration distributions and average size
for given duration plots, show a consistent behavior with theory (the prediction being
〈S〉 ∼ T 1/σνz and at mean-field 1/σνz = 2) (cf. Fig. S8). However, it is worth be-
ing sceptical about the importance of durations, given that they are very long compared
to the expectations, given the magnitude of typical individual dislocation velocities (15,
19). Here, we just show that the whole behavior is roughly consistent with theoretical
expectations, suggesting that the observed durations reflect, perhaps in a serendipitous
manner, the theoretically expected behavior.

(a) Show that the experimental results on the durations of the avalanches are consistent with

the results expected from our theory, and present more details about the methodology for

studying the rate dependent quasi-periodicity.

(b) Show that the simulations of Eq. 1 are consistent with the simple general model of Eq. 4

which explains the reported novel theoretical behavior.

(c) Explore analytically the properties of Eq. 4 and show that the crossover between the two

found qualitative behaviors can be estimated quite accurately using the concept of the sur-

vival probability,

(d) Present more details from the simulations we performed using the model of Eq. 1, discuss

results from other kernels and, present our conclusions on the generality of the effect.

(a) Consistency of durations and more details on the experimental time-
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Figure S2 – Stress vs. Strain and Strain vs. Time (a) Selected stress - strain curves at
different rates, displaying similar hardening coefficients and yield stresses. In the inset,
the strain vs. time behavior is shown, vividly illustrating that the strain increases on
average 10 and 100 times slower in the 10−5 and 10−6 tests.

series

The study of avalanche durations in microplasticity has been scarce because the timescales

observed (due to a very limited time resolution and apparatus’ sensitivity) are many orders of

magnitude larger (milliseconds) than the ones where the actual events are actually taking place

(nanoseconds). Even though the observed events are believed to be well separated in time,

avoiding avalanche overlaps, the internal avalanche temporal structure is questionable (2, 3, 4,

10, 15, 21). However, it is possible that the observed large events actually follow the statistics

of the dislocation dynamics’ critical behavior. Our study of the event durations and their clear

relation to the event sizes suggest that this could be the case: In Figure S1(a), we see that the

duration distribution displays a strong rate dependence with the associated critical exponent

drifting from ∼ 2 to ∼ 3, while the average size 〈S〉 scales with the avalanche duration in a

visibly similar manner, having an exponent ∼ 2. (〈S〉 ∼ T 2) This behavior is consistent with

our simulations, as discussed in (c) of this supplement. The critical exponent for durations α

drifts from 2 to 2 + 1 = 3, while the relation between the average size to its duration remains

invariant. In this sense, the results resemble the effect of a finite driving rate c (avalanche
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Figure S3 – Windowed event timeseries. Here, we display the full timeseries of Fig-
ure 1(c) for three selected samples studied, in order to show that the periodicity we iden-
tified is not an artifact but characterizes the whole deformation process. The actual event
timeseries (blue color, before smoothening) is also present in order to show that the peri-
ods we identified are strongly correlated with strong peaks in the event sizes at the high
points of the periods.

overlap) in the mean-field avalanche model (3), wherein the average size scales as T1/σνz and

σνz remains invariant when c is modified.

The phenomenological hardening coefficient used in the simulations of Eq. 1 is held fixed

without assuming any time or rate dependence. However, experimentally, we observe a weak

but visibly complicated rate dependence of the hardening coefficient. The stress vs. strain

curves for three of the samples studied (one at each nominal strain rate) are shown in Figure S2.

For these, the hardening coefficient corresponds to the average slope of each of the curves. It is

clear that as the rate becomes smaller, the hardening coefficient presents an oscillatory behavior

with no apparent monotonic rate dependence (with about 10% slope fluctuations). These fluctu-

ations could certainly be attributed to the sample-to-sample fluctuations. We shall mention that

this fluctuation takes place at a time/strain-scale very large compared to the oscillation scale we
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discussed in this paper, and thus is not related to the concrete results we presented in the main

text and Figure 1 and 2. Moreover, our main conclusions persist if a slight time dependence is

incorporated to the parameter k, resembling the experiments.

Our microcrystals are large enough (∼ 25 µm) that their plastic deformation is representa-

tive of a comparable subregion of the bulk (which has size independent characteristics). We

believe our observed quasiperiodic oscillations and the competition between glide avalanches

and slow relaxation are also happening in bulk plasticity at these deformation rates. We show

the full timeseries for the three samples chosen to make Figure 2(a) in Figure S3, together with

the actual event timeseries before applying our smoothening procedure. Using the smoothened

timeseries as a guide to the eye, one may observe that these oscilations of the smoothened

timeseries are related to bursts of activity taking place at quasi-periodic intervals. In compar-

ison to the theoretical plot of Figure 2(b) one may also notice that the experimental behavior

has additional complexity. Beyond the universal quasi-periodicity, there is a non-trivial event

structure during the bursts of activity, with some “shock-aftershock” behavior seen: However,

we have not been able to identify a detectable event asymmetry by explicitly calculating the

average skewness of the burst activity in a quasiperiod. It is worth noting that he asymmetry

in the model of Eq. 1 vanishes as k is increasing. Intuitively, this behavior can be understood

by considering the variance of the ρ fluctuations in Eq. 4: When ρ0 is very close to the parent

critical point (equivalently k → 0), an increasing sequence of “shocks” clearly dominates the

system behavior.

(b) Mutual consistency of the models in Eqs. 1, 4 and verification of the
minimal picture

One may argue that the association of the models of Eq. 4 and Eq. 1 is less than obvious

and requires concrete justification. Here, we provide robust numerical evidence that our inter-
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Figure S4 – The effect of c on ρ in the simulations of Eq. 1. It would be a naive
expectation that the increase of the driving rate c is similar to increasing R. For R = 0,
but for a finite c, it is clear that (a) there is no effect of c in-between the avalanche events
and, (b) the difference ∆ρ/ρ for the change of ρ just after an event shows a dependence
on c, but it is on the opposite direction: namely, increasing c leads to an increase of ρ
after an avalanche before it starts decreasing for very large events. This is a result of
the fact that finite c leads to overlapping avalanches, creating positive correlation among
events. Note that the error bars display the saturated sample variation, while the lines
are Bézier interpolants, weighed by the error bars. A large error bar is a signature that
there is a non-trivial intrinsic saturated distribution of ∆ρ, as one would expect. Linear
binning is used.

pretation of the phenomenon described by Eq. 1 is represented in terms of Eq. 4. Our results

are for simulations of Eq. 1 using the parameters mentioned in (A) but also with a simplified

infinite-range kernel (K(r− r′) = const.), which is the mean-field version of Eq. 1. The actual

kernel used in Eq. 1 shows similar qualitatively results, but we choose to not discuss them here

since the numerical correspondence between Eqs. 1 and 4 is qualitative, but not as quantitative

and transparent (for the system sizes used). We believe that the correspondence between Eqs.

1 and 4 becomes exact only in the infinite-range case but the qualitative picture shall be right

for any kernel, even the short-range ones. Since the kernel used in Eq. 1 relevant for plasticity

is in the mean-field universality class (27), we believe that the correspondence of Eqs. 1 and 4

is exact in the infinite-system size and quasistatic (c → 0) limits. Also, we focus on a small

L = 32 system (except otherwise mentioned), since the effects we describe in this section con-
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Figure S5 – The effect of k on ρ and reasoning behind the effective model. (a) A clear
linear dependence of∆ρ/ρ on k is observed in the simulations of Eq. 1. Larger k denotes
a sharper decrease of∆ρ/ρ just after an event, suggesting that ρt+1 = ρt−A k St, where
A is a model dependent constant. (b) Moreover, in this model, one easily observes that
the average event size scales with k in a simple manner 〈S〉 ∼ 1/k (see also (24)), and
holds for all system sizes. In this way, we conclude that ρt+1 = ρt − A St

〈S〉 .

verge for very small system sizes. Note that we do not have, in this paper, any analytical means

of “proving” this correspondence, even though we believe it is a tractable but tedious possibility.

In order to compare the structure of Eq. 4 with Eq. 1, we calculate numerically the suscep-

tibility to jumping at every time-step, without counting the steps inside an avalanche. This is

done by creating a sorted list of the system’s local stresses σ, subtracting the quenched thresh-

olds σf and, by estimating the numerical derivative at the maximum end of this list by averaging

it over a small window. Figure S4 shows, as a consistency check, that an increase of the driv-

ing rate c (for R = 0 (i.e. zero diffusion) and small k) does not affect ρ in a visible manner.

Between avalanches ρ remains constant as expected and, therefore, δρ(t) for time-t intervals

is zero (Figure S4(a)). Also, after an avalanche, (again for R=0 and small k) the change in ρ

is negligible for small event sizes S but, becomes significant for events that are close to the

system size; however, it is not consistently decreasing in a monotonic way. Rather, it increases
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Figure S6 – The effect of R in the simulations and motivation behind the effective
modeling. (a) In between events, ρ increases monotonically with a slope that becomes
larger with R. This behavior suggests that ρt+1 = ρt + cd where cd ∼ R. (b), (c) After
an event, ρ monotonically decreases in a way that is proportional to R in both small (c)
and large (b) event sizes, but with different proportionality coefficients. In the effective
model we degenerate this difference by considering ρt+1 = ρt − cdSt/S̄, where here S̄
serves as a constant. Overall, our observations of Fig. 5, 6 and this one leads to our
conclusion that a minimal model is ρt+1 = ρt + cd(1 − S/S̄) where cd ∼ R and S̄ is the
fixed point value for the average size at long timescales.

for intermediate sizes while it decreases for larger ones; a behavior which becomes more evi-

dent as the rate becomes larger (for example notice c = 0.1 in Figure S4(b)). The effect of the

other free parameter of Eq. 1, the hardening coefficient k, is more significant (keeping R = 0):

For large k, the change of ρ due to an avalanche is simple δρ(S) ∼ −kS, with small finite

system size corrections (cf. Figure S5(a)). Also, notice that the saturated simple standard de-

viation increases with the size, indicating the existence of a corresponding scaling distribution.

Moreover, if we also utilize the fact that 〈S〉∼ 1/k ((24) and Figure S5(b)), we can conclude

that δρ after avalanche events depends crucially on the system’s distance from the critical point

∆ρ/ρ ∼ S/S̄ where S̄ ≡〈S〉 for R = 0.

The situation changes drastically when R is non-zero: In-between avalanches, ρ increases

in an almost linear manner having a slope that is directly proportional to R(cf. Figure S6(a)).

The result of Figure S6(a) justifies the use of the constant rate cd in Eq. 4 and, we identified it

as a coarse-grained relaxation (i. e. effectively proportional to R). Moreover, the presence of a
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Figure S7 – A posteriori verification of the minimal picture. (a) The timeseries of
the event sizes is displayed for simulations of different Rs, showing the emerging large
events that dominate at large R. (b) After averaging the timeseries in (a) over a small
running time window (50), histograms of the observed average sizes display the expected
behavior, as being predicted by our minimal model (and picture) where the behavior of
ρ can account for the relevant effect of R on the distributions. Note that average size is
related to ρ with a robust relationship, even though 〈S〉is much more intuitive. In the
picture, the sharp distribution for R = 0 becomes flatter as R increases.

finite R does not significantly alter the response of ρ to avalanche events for fixed k (cf. Figure

S6(b), (c)), and it ultimately provides a confirmation of the use of Eq. 4 as our minimal model.

We note that the construction of Eq. 4 includes an assertion that we neglect all other effects

the relaxation might have on the internal structure of the avalanches. It is clear that this is an

approximation that might be worrisome in cases where the stress relaxation takes special forms

and, if it has symmetries that are not included in the interaction kernel that is activated during

avalanches.

Finally, we shall mention that our construction is also verified by the study of the histograms

of ρ and 〈S〉 (cf. Figure S7) as R is increased. Even though the structure of the whole timeseries

is altered in a rather complicated manner as R increases (Figure S7(a)), the expected behavior

is clearly present: the observed 〈S〉∼ ρ−θ (where θ = 1/2 at mean-field) is spread over a large

range, losing its well peaked structure.
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Figure S8 – Observables in the simulations and consistency. (a) The duration distri-
butions are shown for the simulations used for Fig. 1(a) and (b), showing that durations
display a strong rate dependence, as in the experiments (Fig. 4). (b) The average size
vs. duration plot, however, does not display an observable dependence on the rate (also
as in the experiments (Fig. 4)), apart from the emerging large event flat profile at very
large sizes. The flat profile is a signature of the renewing events that saturate the cutoff
behavior of the size distributions (bump) which are absent in the thermodynamic limit.
This is just a finite-size effect. In terms of a theoretical interpretation, the absence of such
a dependence is supportive of the idea that the effect does not change the σνz exponent
of the depinning universality class, a vital signature of distribution integration. (c) In
the simulations, the increase of the rate c (at fixed R) or the increase of R (at fixed c),
show very similar behavior. The most characteristic feature of it though, is a stick-slip
emergence in the displacement vs. time behavior that is displayed. As R increases, there
is an emerging stick-slip and quasi-periodic behavior.

(c) Analytical properties of Eq. 4 and derivation of the crossover line cd ∼
a/S̄.

The probability distribution for Eq. 4 has the peculiar feature that it is divergent on short

scales, i.e. it is ultraviolet divergent. If we take

P (S) = 1/NS−3/2e−S/S0 (1)

where S0 = 1/(1 − ρ) from the main text and N a normalization constant, then

N =

∫ ∞

a

P (S)dS = 2/
√

a − 2
√

π/S0 + 2
√

a/S0 + O(1/S3/2
0 ) (2)
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Figure S9 – Probability distributions as the hardening coefficient increases. Clearly,
the exponent of the critical behavior remains unmodified as the hardening coefficient in-
creases and the cutoff moves to smaller sizes. The data are collapsed with S̃ = Sk−1.5,
apart from the cutoff bump which fades away, consistent with the experiment and our
intuitive effective model (Eq. 3), where the bump is not visible. The effective model
agrees with this picture, since increasing k signifies the effective decrease of S̄ and there-
fore the large increase of the fluctuations in ρ. However, in this case, the approach to
ρ = 1 becomes improbable.

Then, the average avalanche size comes out to be,

〈S〉 =

∫ ∞

a

SP (S)dS = (a
√

π/2)
√

S0/a + a(π/2 − 1) + a/2(π3/2 − 3
√

π)
√

a/S0 + O(1/S0) (3)

and in the limit where S0 → ∞ (close to the critical point) we keep the leading term,

〈S〉 =
a
√

π

2

√

S0

a
(4)

The fact that 〈S〉 does not scale with S0 but with its square root, is in the core of the peculiar

properties of such special power-law distributions: Generally, let our power law be τ (it is 3/2

in the case we considered), and let us approximate an exponential cutoff at S0 as a sharp cutoff.

Then 〈S〉 is a ratio of two integrals of power laws, and gives

〈S〉 =
(2 − τ)(S2−τ

0 − a2−τ )

(1 − τ)(S1−τ
0 − a1−τ )

(5)
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If τ < 1, then we can take a → 0 and S̄ ∼ S0. If τ > 2, then we can take S0 → ∞ and S̄ ∼ a.

But if 1 < τ < 2, we can only take a → 0 in the numerator and S0 → ∞ in the denominator,

and get

S̄ $ (τ − 1)Γ(2 − τ)aτ−1S2−τ
0 (6)

which agrees with our previous answer if τ = 3/2.

From Eq. 4, the long-time behavior satisfies the fixed point solution S̄ = 〈S〉 giving that ρ

will fluctuate around the value that satisfies,

S0 =
4a

π
(S̄/a)2 (7)

Since we are focused on the calculation of the crossover line, it is clear that it will take place

when large negative jumps of ρ are proliferating. That requires S being large enough that

S/S̄ ∼ 1/cd leading to∆ρn ∼ −1. As mentioned in the main text, this is roughly equivalent to

saying that S0/S̄ ∼ 1/cd. In more detail,

Plarge(Sm) =

∫ ∞

Sm

P (S)dS

=
S0

2a

2e−Sm/S0√
Sm/a

− 2
√

πErfc(Sm/
√

S0Sm)√
S0/a

1 −
√

π
√

S0/a + S0/a
(8)

which in the limit where Sm → ∞ (equivalent to saying that 1/cd, S0 → ∞),

Plarge =

(S0/a)2

(Sm/a)3/2

1 −
√

π
√

S0/a + S0/a
e−Sm/S0 (9)

Then, for having∆ρn = −1, the number of steps to wait is,

Tw = 1/Plarge(S̄/cd)

=
π

(

π + 4(S̄/a)2 − 2π(S̄/a)
)

8
(

cd

S̄/a

)3/2

(S̄/a)4

e
π
4

1

cdS̄/a

∼=
1

cd

π

2

e
π

cdS̄/a

√

cdS̄/a
(10)
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After each such big avalanche, ρ spends a long time ascending towards the critical point, which

corresponds to an integration procedure which alters the critical exponents. The number of time

steps of integration (assuming the large jump gives ρ = 0 just after the jump) is,

Ta =
1

cd
(11)

neglecting all corrections that involve S/S̄. The crossover line takes place when Tw/Ta ! 1,

which ultimately gives us the solution, in the limit S̄ → ∞ that the crossover line takes place

when,

cd
∼=

3.751

S̄/a
(12)

The simulations which led to Fig. 3 of the main text are consistent with cd
∼= 8/(S̄/a) as one

can easily check. The discrepancy of the constant is due to deficiencies of the theoretical calcu-

lation, since it does not include jumps smaller than 1 which are abundant near the crossover line

and it does not take into account the boundary condition at ρ = 1 (in the simulations, ρ is reset to

a random position after such a jump contributing also to the integration). However, the trend is

captured correctly (∼ 1/(S̄/a)). The fact that cd is dimensionless is consistent with all our pre-

vious findings that point to that we are describing a true, novel critical behavior (quasiperiodic

oscillating behavior) which is system-size independent (but certainly, UV-dependent). Since

it is a true, novel critical behavior, it is rather possible that the two regimes are separated by

another phase transition (instead of a crossover), a possibility that requires further investigation

since it is rather complicated to find evidence for.

(d) Details and conclusions of the simulations of Eq. 1

Here, we provide a more complete picture of the simulations of Eq. 1 that we described in

the main text. While there are several aspects that will be carefully studied in subsequent pub-

lications, there are some main observations and conclusions we can draw herein. In Figure S8,
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we show the behavior of durations for the same simulations discussed in the main text (Figure

2). First, we note that durations correspond to the times taken for jumps in the displacement

(cf. Figure S8(a)). As we described in the caption of Figure 2, in order to compare with ex-

periments we needed to assume that this duration is finite and corresponds to the number of

cellular automata steps inside the avalanche. This picture is a posteriori consistent, since the

experimentally relevant time step is significantly smaller than the timestep of the external stress

increase. However, this is just a working assumption about the dynamics of the avalanches and

the situation could certainly be more complex. Overall, the durations display distributions that

are consistent with the experiments and also consistent with our minimal picture. As seen in

Figure S8(b), the durations have a scaling distribution and drifting exponent α from 2.0 ± 0.1

to 3.0 ± 0.2, with changing strain rate. This finding is consistent with Figure S1. The behavior

of 〈S〉 also displays a power-law with respect to the avalanche duration (〈S〉∼ T 1/σνz) which

stays visibly invariant as c decreases (cf. Figure S8(c)). There is a plateau for large durations,

we have checked that this feature disappears as the system size increases.

In Figure S9, we show the behavior of the size distributions (for fixed relaxation and driving

rates R = 2, c = 0.000125) as k increases for L = 128. For k = 0.01 the system already

displays strong quasi-periodic behavior that we described. A fixed system size controls the

avalanche size cutoff scale S0 according to the formula S0 $ 2L0.85/k. From Figure S9, it is

straightforward to observe that the critical exponents of sizes (Figure S9(a)) and durations (Fig-

ure S9(b)) are invariant to the change in the cutoff scale and, therefore, we conclude that the

distance from the parent critical point (controlled by k) does not alter the integration effect (see

Eq. 4) on the critical distributions. This result, together with the inset of Figure 3(a), signifies

that the integration effect we report does not depend on the distance of the system from the

critical point before R is turned on. However, it is also easy to notice that the distance from

the critical point strongly affects the functional form of the distribution near the cutoff. When
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the system for R = 0 is near to the parent critical point (small k) the size and duration distri-

butions display a characteristic “bump” near the cutoff. This bump is the finite-size signature

of avalanches that percolate, which equivalently corresponds to ρ becoming equal to 1 before

these avalanches take place. However, as expected this bump vanishes when k increases, but

with no visible change in the critical exponents. In a qualitatively similar manner, the bump

vanishes when the system size increases (Figure S10(b)) or when R decreases (Figure S10(a)).

Overall, this evidence signifies that the phenomenon we describe corresponds to true critical

behavior as relaxation processes are present in the system, and not a special finite size effect.

Finally, we present some relevant conclusions about the simulations that we shall describe in

detail in a future publication: First, the quasi-periodicity and associated integration (see Eq. 4

and discussion therein) is present for all interaction kernels we checked in two dimensions:

K(k) = |k|,k2, or const. all display the reported phenomenon as R increases. The kernel |k|

was studied in (20) for a single slip plane of mixed dislocations, and k2 corresponds to a local

kernel which leads to avalanche critical behavior in the short-range interface depinning uni-

versality class (7). Second, the quasi-periodicity and associated integration appears for several

functional forms for the stress relaxation term of Eq. 1; We have explicitly checked a) local

φ diffusion (∼ ∇2φ), b) non-local diffusion (∼ (〈φ〉 − φ)), c) local stress diffusion (acting

between φ slips, φ evolves in a way that dσ/dt ∼ ∇2σ is satisfied). We believe that the case

studied in (9) strongly resembles the much simpler model of K(k) = |k| and the (c) type of

relaxation. All of these models belong to the same class displaying the general phenomenon

described in this paper.
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Figure S10 – Probability distributions as R increases and stability with system size.
(a) As R increases, the model of Eq. 1 displays quasiperiodic oscillations and the expo-
nent τ of the size distribution drifts to 2.5 from the original 1.5. Notice that the distribu-
tion displays a “bump” at the cutoff, which grows as R increases. This bump corresponds
to large events close to the critical point, which cause large changes of the jumping sus-
ceptibility. However, the bump is a finite-size effect, since it goes away when the system
size increases or when k decreases. (b) For fixed R, the system size dependence is stud-
ied for P (S), showing a consistent scaling collapse with S̃ ∼ SL−0.94 (inset). We shall
note that for R = 0, the size distribution does not scale with the system size (the hard-
ening coefficient has been chosen accordingly to scale with the system size in order to
achieve this), in order to isolate the system size dependence related to R. The only non-
collapsing part is the “bump” region, where the bump consistently disappears in the large
system-size limit, signifying that the system never crosses the parent critical point to the
infinite-avalanche phase (i.e. large events are scale invariant, part of the scaling behavior
and do not scale with the system size). The details of this behavior will be discussed
elsewhere.
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