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Abstract

We extend the development of collocation methods within the framework of Iso-
geometric Analysis (IGA) to multi-patch NURBS configurations, various boundary
and patch interface conditions, and explicit dynamic analysis. The methods devel-
oped are higher-order accurate, stable with no hourglass modes, and efficient in
that they require a minimum number of quadrature evaluations. The combination
of these attributes has not been obtained previously within standard finite element
analysis.
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1 Introduction

There are many application areas of finite element analysis in which the ef-
ficiency and success of the methodology is directly related to the number of
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quadrature points needed to integrate arrays. The most salient example is
explicit dynamic analysis in which the predominant cost is determined by
the residual force calculation and, in particular, the evaluation of stresses at
quadrature points. In this case, storage and compute cost are directly pro-
portional to the number of quadrature points. Typical commercial explicit
codes, which represent the dominant technologies utilized in crash analysis
and metal forming, typically employ low-order elements, usually four-node
quadrilateral shell elements with one through-thickness stack of quadrature
points, and eight-node hexahedral elements in three-dimensional solid anal-
ysis with one quadrature point. The location of the quadrature points is at
the origin of parametric coordinates within the element, that is, the one-point
Gauss rule. This minimizes storage of stresses and the number of constitutive
evaluations and results in an efficient computational procedure for very large
industrial problems. However, there are shortcomings engendered by one-point
quadrature for which no completely satisfactory solutions have been found.

The most prominent shortcoming is that one-point quadrature results in rank
deficiency of the discrete system. The poster child for this phenomenon is
the famous “hourglass mode”, although other modes of deformation also give
rise to singularities (see, e.g., Chapters 4.6 and 5.3 in [25]). For simplicity of
vocabulary, henceforth we will simply refer to all spurious singular modes as
hourglass modes.

There has been a very large number of papers devoted to stabilizing hourglass
modes by artificial viscous and elastic mechanisms, but the commonly used
techniques are ad hoc and involve parameters that require tuning. If the pa-
rameters are too small, mesh instabilities appear, if they are too large, physical
response is altered. In many case the happy medium is difficult to predict. If
runs need to be repeated and parameters adjusted in trial and error fashion,
engineering and computer time are wasted.

Another shortcoming is the low-order accuracy of standard explicit dynamics
algorithms. The hope of achieving higher-order accuracy in explicit finite ele-
ment technology seems to have been lost long ago. Why has this occurred? In
our view it has to do with the discrete spectrum of higher-order finite elements.
As the degree of polynomials is increased, the lower modes become more ac-
curate, which is theoretically well understood, but the higher modes diverge
with polynomial degree, a surprising result that was discovered recently in
the investigations of [15,28,36]; see also [14]. These many “bad” modes are
not much of an issue in elliptic (e.g., static elastic) or parabolic (e.g., heat
conduction) problems, due to the strong stability of these operators, but they
are a significant problem in hyperbolic (e.g., structural dynamic) problems
and, in particular, ones in which high modal behavior is unavoidable, such as
during impact in crash dynamics. Higher-order finite elements exhibit a lack of
robustness in these cases. Low-order finite elements have the advantage that
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their higher modes are better behaved than those of high-order finite elements,
and this seems to be an important reason for the preference of low-order el-
ements. Poor practical experiences, which years ago led to the elimination
of higher-order elements in explicit codes, such as LS DYNA, may also be
attributed to these negative results for higher-order finite elements. However,
based on recent innovations, we believe that there may be alternatives to what
currently exists.

One direction that may be pursued in an effort to develop better minimal-
quadrature-point discretization technology is collocation, but within the frame-
work of Isogeometric Analysis (IGA), which has been the subject of numerous
recent studies [1–16,19,21,22,24,26,28,29,36,39,40] , rather than within tradi-
tional finite element analysis. IGA utilizes smooth basis functions emanating
from computer aided geometric design, for example, NURBS, T-splines, etc.
The raison d’être of IGA is to simplify the generation of finite element mod-
els from CAD designs by utilizing a single mathematical representation for
both design and analysis. However, IGA has also been shown to be a superior
computational mechanics technology to traditional finite elements in many
situations [ibid.]. In particular, and of importance in hyperbolic cases, is that,
unlike traditional finite elements, the higher modes of IGA basis functions
do not diverge with increasing degree, but in fact achieve almost spectral
accuracy that improves with degree. It has been shown that the robustness
of higher-order NURBS elements increases with polynomial degree [32], in
contrast with the behavior of higher-order finite elements. This deficiency of
traditional higher-order finite elements is overcome by IGA.

The smoothness of IGA basis functions enables use of the strong form of the
partial differential equations, which provides a platform for collocation with
interesting stability properties. Collocation may be viewed as a variant of
one-point quadrature. It is simple to show that for quadratic and higher-order
NURBS, with uniform knot vectors and a suitable choice of the collocation
points, the discrete Laplace operator produced by collocation is rank sufficient
in all dimensions. It follows that the elasticity operator is also rank sufficient,
that is, no hourglass modes. This is in contrast with one-point quadrature
on low-order finite elements, as described above. The upshot of this observa-
tion is that IGA collocation methods eliminate the need for ad hoc hourglass
stabilization techniques and their tuning parameters.

Based on the previous discussion, IGA collocation opens the way to stable, ro-
bust, higher-order accurate methods with a minimum number of quadrature
points. In order to take advantage of these attributes in explicit dynamics,
one must use lumped mass matrices. A unique, positive, lumped mass matrix
may be computed for IGA by the row-sum technique (see [25], Chapter 7.3).
Unfortunately, the lumped mass matrix does not maintain the accuracy of the
consistent mass matrix. This has been noted in our previous studies [15,28,14].
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In fact, accuracy is limited to second-order no matter the polynomial degree,
and accuracy degrades very significantly in higher modes (see also [39]). A
solution to this dilemma is provided by the explicit predictor multi-corrector
algorithms described in (see [27], Chapter 9.4 in [25] and Chapter 6.2.3 in [14])
in which the lumped mass is used as the diagonal “left-hand-side” matrix and
the consistent mass is used in the “right-hand-side” residual vector calcula-
tion. This preserves the usual explicit computational architecture and through
corrector iterations is able to maintain the spatial accuracy of consistent mass.

The combination of the technologies described above provides the potential
for efficient, stable, robust and higher-order accurate explicit dynamics meth-
ods. This paper is devoted to pursuing the issues arising in the development
of this methodology. It builds on our earlier work [3] in which we introduced
a collocation scheme for a single NURBS patch. In [3] we provided a com-
plete mathematical analysis of the one-dimensional case. The results of the
mathematical analysis are not applicable in multiple dimensions and thus this
remains an open problem. However, we confirmed the theoretical convergence
rates numerically on linear elliptic problems in one, two and three dimensions.
We also numerically investigated the discrete eigenspectrum and the effects of
alternative locations of collocation points.

An outline of this paper follows:

In Section 2 we briefly review some basic results on B-splines, NURBS and
the resulting element structure of multi-patch configurations.

In Section 3 we start with a standard variational formulation for the linear
elastostatic problem and, invoking sufficient smoothness of the function spaces,
integrate by parts to yield the strong form of the residual within patches and
traction continuity conditions on patch interfaces and external boundaries.
We do not assume the test function space is the same as the solution space.
We then use standard techniques to construct C∞ test functions with com-
pact support that comprise Dirac delta sequences about each of the desired
collocation points. Taking the limit of the sequences, defines the collocation
scheme. Special consideration needs to be given to points on the patch inter-
faces and external boundaries and we give precise descriptions of the treatment
of several important cases.

In Section 4 we generalize to dynamics and describe the explicit predictor
multi-corrector time integration algorithms. We argue that if a sufficient num-
ber of explicit multi-corrector iterations is utilized, the higher-order spatial ac-
curacy of the corresponding implicit algorithm with consistent mass is achieved.

In Section 5 we present several static numerical examples. We test the method
on Dirichlet and Neumann boundary conditions, mixed boundary conditions,
and on single and multi-patch configurations with different material properties
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in the patches. Satisfactory results are obtained in all cases.

In Section 6 we present dynamic cases. We confirm the higher-order con-
vergence rates of the explicit multi-corrector method on a one-dimensional
example and a two dimensional plane strain annular configuration.

We draw conclusions in Section 7.

2 NURBS-based isogeometric analysis

Non-Uniform Rational B-splines (NURBS) are a standard tool for describing
and modeling curves and surfaces in computer aided design and computer
graphics (see Piegl and Tiller [34] and Rogers [37] for an extensive description
of these functions and their properties). In this work, we use NURBS as an
analysis tool, as proposed by Hughes et al. [26]. The aim of this section is
to present a short description of B-splines and NURBS, followed by a simple
discussion on the basics of isogeometric analysis and by an introduction to the
proposed collocation method.

2.1 B-splines and NURBS

B-splines in the plane are piecewise polynomial curves composed of linear
combinations of B-spline basis functions. The coefficients (Bi) are points in
the plane, referred to as control points.

A knot vector is a set of non-decreasing real numbers representing coordinates
in the parametric space of the curve

{ξ1 = 0, ..., ξn+p+1 = 1}, (1)

where p is the order of the B-spline and n is the number of basis functions
(and control points) necessary to describe it. The interval [ξ1, ξn+p+1] is called
a patch. A knot vector is said to be uniform if its knots are uniformly-spaced
and non-uniform otherwise; it is said to be open if its first and last knots
have multiplicity p+ 1. In what follows, we always employ open knot vectors.
Basis functions formed from open knot vectors are interpolatory at the ends of
the parametric interval [0, 1] but are not, in general, interpolatory at interior
knots.

Given a knot vector, univariate B-spline basis functions are defined recursively
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starting with p = 0 (piecewise constants)

Ni,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise.
(2)

For p > 1 :

Ni,p(ξ) =


ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ) if ξi ≤ ξ < ξi+p+1

0 otherwise,
(3)

where, in (3), we adopt the convention 0/0 = 0.

In Figure 1 we present an example consisting of n = 9 cubic basis functions
generated from the open knot vector {0, 0, 0, 0, 1/6, 1/3, 1/2, 2/3, 5/6, 1, 1, 1, 1}.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ξ

N
i,
3

Fig. 1. Cubic basis functions formed from the open knot vector
{0, 0, 0, 0, 1/6, 1/3, 1/2, 2/3, 5/6, 1, 1, 1, 1}.

If internal knots are not repeated, B-spline basis functions are Cp−1-continuous.
If a knot has multiplicity k, the basis is Cp−k-continuous at that knot. In par-
ticular, when a knot has multiplicity p, the basis is C0 and interpolates the
control point at that location. We define

S = span{Ni,p(ξ), i = 1, . . . , n} (4)

By means of tensor products, a multi-dimensional B-spline region can be con-
structed. We discuss here the case of a two-dimensional region, the higher-
dimensional case being analogous. Consider the knot vectors {ξ1 = 0, ..., ξn+p+1 =
1} and {η1 = 0, ..., ηm+q+1 = 1}, and an n×m net of control points Bi,j. One
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dimensional basis functions Ni,p and Mj,q (with i = 1, ..., n and j = 1, ...,m) of
order p and q, respectively, are defined from the knot vectors, and the B-spline
region is the image of the map S : [0, 1]× [0, 1]→ Ω given by

S(ξ, η) =
n∑
i=1

m∑
j=1

Ni,p(ξ)Mj,q(η)Bi,j. (5)

The two-dimensional parametric space is the domain [0, 1] × [0, 1]. Observe
that the two knot vectors {ξ1 = 0, ..., ξn+p+1 = 1} and {η1 = 0, ..., ηm+q+1 = 1}
generate a mesh of rectangular elements in the parametric space in a natural
way. Analogous to (4), we define

S = span{Ni,p(ξ)Mj,q(η), i = 1, . . . , n, j = 1, . . . ,m} (6)

In general, a rational B-spline in Rd is the projection onto d-dimensional phys-
ical space of a polynomial B-spline defined in (d+1)-dimensional homogeneous
coordinate space. For a complete discussion see the book by Farin [23] and
references therein. In this way, a great variety of geometrical entities can be
constructed and, in particular, all conic sections in physical space can be
obtained exactly. The projective transformation of a B-spline curve yields a
rational polynomial curve. Note that when we refer to the “degree” or “or-
der” of a NURBS curve, we mean the degree or order, respectively, of the
polynomial curve from which the rational curve was generated.

To obtain a NURBS curve in R2, we start from a set Bω
i ∈ R3 (i = 1, ..., n)

of control points (“projective points”) for a B-spline curve in R3 with knot
vector Ξ. Then the control points for the NURBS curve are

[Bi]k =
[Bω

i ]k

ωi
, k = 1, 2 (7)

where [Bi]k is the kth component of the vector Bi and ωi = [Bω
i ]3 is referred

to as the ith weight. The NURBS basis functions of order p are then defined
as

Rp
i (ξ) =

Ni,p(ξ)ωi∑n
î=1

Nî,p(ξ)ωî
. (8)

The NURBS curve is defined by

C(ξ) =
n∑
i=1

Rp
i (ξ)Bi. (9)

Analogously to B-splines, NURBS basis functions on the two-dimensional
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parametric space Ω̂ = [0, 1]× [0, 1] are defined as

Rp,q
i,j (ξ, η) =

Ni,p(ξ)Mj,q(η)ωi,j∑n
î=1

∑m
ĵ=1

Nî,p(ξ)Mĵ,q(η)ωî,ĵ
, (10)

where ωi,j = (Bω
i,j)3. Observe that the continuity and support of NURBS basis

functions are the same as for B-splines. NURBS spaces are the span of the
basis functions (10).

NURBS regions, similarly to B-spline regions, are defined in terms of the
basis functions (10). In particular a single-patch domain Ω is a NURBS region
associated with the n × m net of control points Bi,j, and we introduce the
geometrical map F : Ω̂→ Ω given by

F(ξ, η) =
n∑
i=1

m∑
j=1

Rp,q
i,j (ξ, η)Bi,j. (11)

In order to deal with multi-patches geometries, consider N spline and NURBS
spaces, defined on Ω̂, possibly from different knot vectors {ξ1,k = 0, ..., ξnk+pk+1,k =
1} and {η1,k = 0, ..., ηmk+qk+1,k = 1} and weights. Denote by Rpk,qk

i,j,k (ξ, η)
the basis functions on the k-th space and consider then the NURBS maps
Fk : Ω̂ −→ Ωk

Fk :=
nk∑
i=1

mk∑
j=1

Rpk,qk
i,j,k (ξ, η)Bi,j,k, k = 1, 2, ..., N,

where the Ωk ⊂ R2 represent the patches which compose the connected
(closed) physical domain

Ω =
⋃

k=1,2,...,N

Ωk.

By Ω we indicate the interior part of Ω. We assume that the maps Fk ∈ C1(Ω̂)
and their inverses F−1

k ∈ C1(Ωk). Moreover we assume that the patches Ωk

form a geometrically conforming multi-patch structure; see for instance figure
3.

Assumption 2.1 (Geometrical conformity) The common boundary of any
two patches is either void, or the image of corners, or the image of edges of
Ω̂. More precisely, we have

∂Ωk ∩ ∂Ωk′ = Fk(E) = Fk′(E
′) 1 ≤ k, k′ ≤ N,

with E,E ′ either two (possibly coincident) corners or two (possibly coincident)
edges of Ω̂ .
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Fig. 2. Example of a domain described by three patches.

Remark 2.1 The extension to three dimensions is analogous and not dis-
cussed.

2.2 NURBS on the physical domain

Following the isoparametric approach, the space of NURBS vector fields on
each patch Ωk is defined, component by component as the span of the push-
forward of the basis functions (10)

Vh,k =
[
span{Rpk,qk

i,j,k ◦ F−1
k , with i = 1, . . . , nk; j = 1, . . . ,mk}

]2
. (12)

We assume that the spaces Vh,k are conforming at the patch boundaries.

Assumption 2.2 (Space conformity) With the notation of Assumption 2.1,
the spaces Vh,k|Fk(E) and Vh,k′|Fk′ (E

′) coincide.

Then, by continuous gluing of (12), we define

Vh =
{
v ∈ [C0(Ω)]2 : v|Ωk

∈ Vh,k
}
. (13)

The image of the elements in the parametric space are elements in the physical
space. The elements of the physical mesh in Ωk are therefore

Tk = {Fk((ξi, ξi+1)× (ηj, ηj+1)), with i = 1, . . . , nk + pk, j = 1, . . . ,mk + qk} .
(14)

We denote by T = ∪k=1,2,...,NTk, and by h the mesh-size, that is, the maximum
diameter of the elements of T.
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The interested reader may find more details on isogeometric analysis as well as
many interesting applications in a number of recently published papers [6,15,16,14,26].

Remark 2.2 Let E and E ′ be two edges as in Assumption 2.1. Then, as a
consequence of Assumption 2.2, the elements generated on the common bound-
ary ∂Ωk ∩ ∂Ωk′ by the mappings Fk and Fk′ coincide. The same holds for the
two associated knot vectors.

3 Isogeometric collocation method for elastostatics in a variational
context

In this section we follow a variational construction in order to derive the col-
location equations. In order to fix ideas, we will concentrate our presentation
on the linear elasticity problem.

3.1 Problem description and variational formulation

Let Ω ⊂ Rd represent an elastic body that is subjected to prescribed displace-
ment on part of its boundary ΓD, and to (possibly null) traction h ∈ [L∞(ΓN)]d

on the remaining part of the boundary ΓN . We assume that ΓD and ΓN are
made of a finite union of connected and regular components. We assume that
the traction h is piecewise continuous, i.e., is continuous on the image of each
face (or edge if d = 2) of Ω̂. Regarding the boundary conditions on ΓD, we
make use of a function g ∈ [C0(ΓD)]d as shown below. The body Ω is also
subjected to a volume loading f ∈ [L∞(Ω)]d such that f |Ωk

∈ [C0(Ωk)]
d for

k = 1, 2, ..., N . We indicate with C the standard fourth-order elasticity ten-
sor. We assume that all components of Ck := C|Ωk

are in C1(Ωk), while we
allow C to have jumps from one patch Ωk to another. The above regularity
requirements on the data can be made weaker; see Remark 3.1 below.

Given the function spaces

Vg = {v ∈ [H1(Ω)]d : v|ΓD
= g},

V0 = {v ∈ [H1(Ω)]d : v|ΓD
= 0},

the elasticity problem in variational form (based on the principle of virtual
work) reads

Find u ∈ Vg such that∫
Ω
C∇S(u) : ∇S(v) =

∫
Ω
f · v +

∫
ΓN

h · v ∀v ∈ V0.
(15)
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3.2 A family of discrete problems

In order to simplify the exposition, we extend the function h by zero on the
whole ∪k=1,2,...,N∂Ωk. Thus h represents a vector function living on ∪k=1,2,...,N∂Ωk

whose support is contained in ΓN . We now assume that the solution u is in
C2(Ωk) for all k = 1, 2, ..., N . Then, integrating by parts on each patch Ωk,
k = 1, 2, .., N , and rearranging terms, equation (15) gives

−
N∑
k=1

∫
Ωk

(
div Ck∇S(u) + f

)
· v +

N∑
k=1

∫
∂Ωk

(
Ck∇S(u) · nk − h

)
· v = 0 , (16)

for all v ∈ V0, where nk represents the outward unit normal to the domain
Ωk.

We will now consider for simplicity the two-dimensional case d = 2, while the
extension to three dimensional problems will be discussed afterwords.

We consider the case where the collocation points are chosen using the (tensor-
product) Greville abscissae [18,20] of the knot vectors. What follows applies
also to other sets of collocation points such as, for instance, the Demko ab-
scissae, see [20].

Let k ∈ {1, 2, ..., N}. Let ξi,k, i = 1, ..., nk, be the Greville abscissae related to
the knot vector {ξ1,k, ..., ξnk+pk+1,k}:

ξi,k = (ξi+1,k + ξi+2,k + ...+ ξi+pk,k)/pk . (17)

Analogously, let ηj,k, j = 1, ...,mk, be the Greville abscissae related to the

knot vector {η1,k, ..., ηmk+qk+1,k}. It is easy to see that ξ1,k = η1,k = 0, ξnk,k
=

ηmk,k
= 1, while all the remaining points are in (0, 1). We define the collocation

points τ̂i,j,k ∈ Ω̂ by the tensor product structure

τ̂i,j,k = (ξi,k, ηj,k) ∈ Ω̂ ,

for i = 1, ..., nk, j = 1, ...,mk. The collocation points on Ω are then defined
accordingly for all k = 1, 2, ..., N and all i, j as above

τi,j,k = Fk(τ̂i,j,k) ∈ Ωk ⊂ Ω .

Note that collocation points on ∂Ωk ∩ ∂Ωk̄ 6= ∅ coincide because of our con-
formity assumptions, see Remark 2.2.

Let functions δεi,j,k ∈ C∞(Ω), for ε ∈ R+ and for the same sets of indices i, j, k,
as given above, be defined as follows. Let ϕ : R+ → R be the C∞ positive
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function

ϕ(x) =

{
e1/(x2−1) x ∈ [0, 1)

0 x ∈ [1,+∞) .

We then define the C∞ radial functions ψε : R2 → R+, depending on the real
parameter 0 < ε ≤ 1, as

ψε(x) = ϕ(‖x‖/ε) ∀ x ∈ R2 ,

where ‖ · ‖ indicates the euclidean norm. Finally, given any collocation point
τi,j,k ∈ Ω, for k = 1, 2, ..., N and i = 1, ..., nk, j = 1, ...,mk, we define the
functions δεi,j,k as

δεi,j,k : Ω −→ R

δεi,j,k(x) = ψε(x− τi,j,k)
( ∫

Ω
ψε(· − τi,j,k)

)−1

∀ x ∈ Ω .
(18)

As is evident, δεi,j,k is a smoothed Dirac delta function converging to the Dirac
delta distribution located at τi,j,k as ε→ 0.

From Lemma A.1 it follows, for all s ∈ [L∞(Ω)]2 that are continuous about
each τi,j,k,

lim
ε→0

∫
Ω
s δεi,j,k = s(τi,j,k), (19)

where the integral above is to be calculated component by component.

In order to derive a collocation method from the variational equation (15), we
search for a bounded function

uh ∈ Vh,g = {vh ∈ Vh : vh(τi,j,k) = g(τi,j,k) ∀τi,j,k ∈ ΓD}

that satisfies (16) for all vector test functions [0, δεi,j,k] and [δεi,j,k, 0], with k =
1, 2, ..., N and i = 1, ..., nk, j = 1, ...,mk. We assume that Vh ⊂ C0(Ω) ∩
C2(∪kΩk), where by C2(∪kΩk) we mean that uh|Ωk

is of class C2, for each
k = 1, 2, ..., N .

Note that, due to the definition of the discrete space Vh, we are strongly
enforcing the global C0 continuity of the solution in Ω.

Testing on the above functions gives the following set of equations depending
on the parameter ε

−
N∑
k̄=1

∫
Ωk̄

(
div Ck̄∇S(uh) + f

)
δεi,j,k +

N∑
k̄=1

∫
∂Ωk̄

(
Ck̄∇S(uh) · nk̄ − h

)
δεi,j,k = 0 ,

(20)
for k = 1, 2, ..., N , i = 1, ..., nk, j = 1, ...,mk, and where as usual an integral
of vector functions is calculated component by component.
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3.3 Collocation equations

The collocation method is obtained in this section by taking the limit ε → 0
of (20). We first consider the simpler case of collocation points that are in the
interior of a patch, that is τi,j,k ∈ Ωk, and then address the more subtle case
of collocation points that belong to the patch boundary, that is τi,j,k ∈ ∂Ωk.

3.3.1 Collocation equations at the patch interior

Let τi,j,k ∈ Ωk. As noted above, such condition is met if and only if i 6= 0, j 6= 0
and i 6= nk, j 6= mk. In such case, since the support of δεi,j,k is contained in
the ball of radius ε centered at τi,j,k, the second term in (20) vanishes for
sufficiently small ε. Moreover, for the same range of ε, all the terms but one
in the first sum of (20) vanish, thus giving

∫
Ωk

(
div Ck∇S(uh) + f

)
· δεi,j,k = 0 .

Taking the limit for ε→ 0 in the above equation and recalling (19), we get(
div Ck∇S(uh) + f

)
(τi,j,k) = 0, (21)

that is, the collocation of the strong form of the equations at τi,j,k.

3.3.2 Collocation equations at the patch boundary

Assume now τi,j,k ∈ ∂Ωk. We follow the rules:

• if τi,j,k ∈ ΓD we do not set a collocation equation (however, we have
uh(τi,j,k) = g(τi,j,k), since the Dirichlet boundary condition is enforced a
priori in Vh,g);
• each τi,j,k ∈ ΓN is associated with a collocation equation, that sets the

traction on the boundary ΓN ;
• the remaining τi,j,k ∈ ∂Ωk belong to the inter-patch boundary, and, as

already observed; these coincide with other boundary points from other
patches; introducing

K = {k̄ ∈ N : 1 ≤ k̄ ≤ N, τi,j,k ∈ ∂Ωk̄} . (22)

Then #K, the cardinality of K, is the number of patches that share τi,j,k;
in this situation we associate to τi,j,k a single collocation equation as shown
below. Note moreover that, since the space Vh,g is continuous a priori, there
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holds implicitly #K− 1 gluing conditions, namely

uh|Ωk1
(τi,j,k) = uh|Ωk2

(τi,j,k) = . . . = uh|Ωk#K
(τi,j,k), for k1, k2, . . . , k#K ∈ K.

Considering Section 3.3.1 and the rules above, it is easy to check that the final
number of collocation equations corresponds to the size of the discrete space
Vh,g.

Considering then τi,j,k ∈ ∂Ωk\ΓD, we now derive the collocation equation,
passing to the limit in (20). Many possibilities arise, some of them are

I) point τi,j,k is on the boundary of a single patch, τi,j,k ∈ ∂Ω and it is not
a corner;

II) point τi,j,k is on the boundary of a single patch and τi,j,k is a corner of Ω;
III) point τi,j,k belongs to the common boundary of two patches Ωk and is not

a corner of both of them (and therefore is inside Ω);
IV) point τi,j,k is a common corner of two or more patches Ωk;

and are represented in Figure 3.

Fig. 3. Example of collocation point types according to Table 1.

The collocation equations in these cases are reported in Table 1, and are
derived by the following general approach. Given τi,j,k, K as defined in (22)
and any k̄ ∈ K, for ε sufficiently small the curve ∂Ωk̄ ∩ supp(δεi,j,k) can be
divided into two C0-connected components E ′k̄ and E ′′k̄ such that

∂Ωk̄ ∩ supp(δεi,j,k) = E ′k̄ ∪ E
′′
k̄ , E ′k̄ ∩ E

′′
k̄ = τi,j,k . (23)
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Case Equation

I) τi,j,k ∈ ∂Ω not a corner point
(
Ck∇S(uh) · nk − h

)
(τi,j,k) = 0

II) τi,j,k ∈ ∂Ω a corner point, K = {k}
(
Ck∇S(uh) · n′k − h′

)
(τi,j,k) +

(
Ck∇S(uh) · n′′k − h′′

)
(τi,j,k) = 0

III) τi,j,k ∈ ∂Ωk ∩ ∂Ωk̄, τi,j,k /∈ ∂Ω, K = {k, k̄} (Ck∇S(uh|Ωk
) · nk)(τi,j,k) + (Ck̄∇S(uh|Ωk̄

) · nk̄)(τi,j,k) ≡
[[
C∇S(uh) · n

]]
(τi,j,k) = 0

IV) on the boundary:

τi,j,k ∈ ∂Ωk ∩ ∂Ωk̄, τi,j,k ∈ ∂Ω, K = {k, k̄}
(
Ck∇S(uh) · n′k − h

)
(τi,j,k) +

(
Ck̄∇S(uh) · n′

k̄
− h

)
(τi,j,k)

+
[[
C∇S(uh) · n

]]
(τi,j,k) = 0

IV) internal to the domain:

τi,j,k ∈
⋂
`∈K

∂Ω` a corner point,
∑

`∈K(C`∇S(uh|Ω`
) · n′`)(τi,j,k) + (C`∇S(uh|Ω`

) · n′′` )(τi,j,k) = 0

τi,j,k /∈ ∂Ω, K = {k, k̄, k̃}
Table 1
Some examples of the boundary equations, i.e., assuming τi,j,k ∈ ∂Ωk with τi,j,k 6∈
ΓD. We refer to Figures 3 and 4 for a graphical representation of the tabulated
examples. The symbol [[ ]] stands for the standard jump operator with n indicating
a unit normal to ∂Ωk ∩ ∂Ωk̄. The first and second cases are examples of Neumann
boundary conditions. The third case represents a gluing condition between two
patches (here τi,j,k is not a corner), while the fourth and fifth are a mix of the
above. A description of the different cases is presented in the text.

Note that for simplicity of exposition we have left implicit the dependence of
E ′k̄, E

′′
k̄ on ε. Multiplying (20) by the positive parameter ε yields, for sufficiently

small ε,

−ε
∑
k̄∈K

∫
Ωk̄

(
div Ck̄∇S(uh) + f

)
δεi,j,k + ε

∑
k̄∈K

∫
∂Ωk̄

(
Ck̄∇S(uh) · nk̄ − h

)
δεi,j,k = 0 .

(24)

Due to Lemma A.1 in the appendix, for all k̄ ∈ K the integral
∫

Ωk̄

(
divCk̄∇S(uh)+

f
)
δεi,j,k is bounded independently of ε. Therefore the first term in (24) vanishes

in the limit ε → 0. Regarding the second term in (24), recalling (23) for all
k̄ ∈ K we can write

ε
∫
∂Ωk̄

(
Ck̄∇S(uh) · nk̄ − h

)
δεi,j,k

= ε
∫
E′

k̄

(
Ck̄∇S(uh) · nk̄ − h

)
δεi,j,k + ε

∫
E′′

k̄

(
Ck̄∇S(uh) · nk̄ − h

)
δεi,j,k .

(25)
Note that, if τi,j,k is a corner point, the two (outward) normal vectors at τi,j,k
are different for E ′k̄ and E ′′k̄ . We therefore indicate with n′k̄ the unit outward
(with respect to Ωk̄) normal to E ′k̄ calculated in τi,j,k. Analogously, we indicate
with n′′k̄ the unit outward normal to E ′′k̄ calculated in τi,j,k (see Figure 4).
Similarly, since the datum h is allowed to jump at τi,j,k, we define h′ and h′′

as the limit values of h at τi,j,k obtained respectively for E ′k̄ and E ′′k̄ .
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Taking the limit and using Lemma A.2 thus yields

lim
ε→0

ε
∫
E′

k̄

(
Ck̄∇S(uh) · n′k̄ − h′

)
δεi,j,k = Cδ

(
Ck̄∇S(uh) · n′k̄ − h′

)
(τi,j,k) , (26)

and the analogous result holds for E ′′k̄ . Combining all the previous arguments,
taking the limit in (24), using (25), (26) and dividing the result by Cδ, finally
gives

∑
k̄∈K

[(
Ck̄∇S(uh) · n′k̄ − h′

)
(τi,j,k) +

(
Ck̄∇S(uh) · n′′k̄ − h′′

)
(τi,j,k)

]
= 0 . (27)

Equation (27) enforces the Neumann boundary condition on ΓN and the nor-
mal stress continuity at the inter-patches boundaries.

3.3.3 Final system of equations at the collocation points τi,j,k

The summary of the equations at the collocation points τi,j,k is reported in
Table 2.

The final linear system reads as usual

Ku = F, (28)

where K denotes the global stiffness matrix, F incorporates the body force
(f) and inhomogeneous Dirichlet (g) and Neumann (h) boundary conditions
(see [25]), and u is the unknown vector of control variables associated to the
discrete displacement (uh). It is convenient to compute (28) by assembling
the contributions from the various patches. Indeed, for all τi,j,k ∈ ∂Ωk, k =
1, 2, ..., N , equation (28) is nothing but the sum of the contributions from each
different patch. This implementation aspect is also discussed in Section 5.3.

Position Equation

τi,j,k ∈ Ωk

(
div Ck∇S(uh) + f

)
(τi,j,k) = 0

τi,j,k ∈ ∂Ωk , τi,j,k /∈ ΓD
∑

k̄∈K

[(
Ck̄∇S(uh) · n′

k̄
− h′

)
(τi,j,k) +

(
Ck̄∇S(uh) · n′′

k̄
− h′′

)
(τi,j,k)

]
= 0

τi,j,k ∈ ΓD uh(τi,j,k) = g(τi,j,k), included in the def. of Vh,g

Table 2
Equations at the collocation points τi,j,k, for k = 1, 2, ..., N and i = 1, ..., nk, j =
1, ...,mk. The set K is defined in (22). We recall that h = 0 in Ω̄\ΓN , and that for
coinciding points (τi,j,k = τī,j̄,k̄, k 6= k̄) the collocation equation is included in the
global system only once.

Remark 3.1 In order to apply the above arguments, we assumed that the
data f ,h are piecewise C0 and that C is piecewise C1 and globally C0 on Ω.
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Fig. 4. Example of some collocation points with associated normals.

This continuity conditions on the data h, f and on C are introduced only for
simplicity of exposition and can be made weaker. In more general cases, an
averaged value of the problem equation at the collocation point needs to be
considered.

Remark 3.2 One can use the same equations listed in Table 2 in the three
dimensional case. A variational justification similar to the one we have pre-
sented in 2D can be developed also for this case.

4 Explicit time integration for elastodynamics

In this Section we consider and discuss the extension of our collocation for-
mulation to the elastodynamic case, as well as the explicit predictor multi-
corrector algorithm that we employ for time integration.
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4.1 Problem description and its algebraic formulation

The elastodynamic problem reads, in variational form,


Find u(t) ∈ Vg such that ∀t ∈ [0, T ]∫

Ω
C∇S(u(t)) : ∇S(v) +

∫
Ω
ρ

(
∂2

∂t2
u(t)

)
· v =

∫
Ω
f · v +

∫
ΓN

h · v ∀v ∈ V0.

(29)
where ρ denotes the material mass density. The equation is the analogue of
(15). Discretizing by collocation in space, as detailed in Section 3 for the static
problem, we are led to the semidiscrete system of equations

Ku + M
∂2

∂t2
u = F

where u = u(t) is the vector of displacement control variables of the discrete
(in space) displacement uh(t, ·), M denotes the mass or collocation matrix,
K the stiffness and F the forcing vector (load plus boundary conditions of
Dirichlet and Neumann type) in compact matrix form. Viscous effects may be
included as well.

Initial conditions

u|t=0 = u0,
∂

∂t
u|t=0 = v0

are assigned. See [25] for further details.

4.2 Time integration algorithm

We consider the following explicit predictor multi-corrector time integration
algorithm (see [25]): given the acceleration aexpln = an, velocity vexpln = vn and
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displacement uexpln = un at time t = n∆t, we compute for r ≥ 1



a
(0)
n+1 = 0,

v
(0)
n+1 = vn + ∆t(1− γ)an,

u
(0)
n+1 = un + ∆tvn + (1− 2β)

∆t2

2
an,

for i = 0, . . . , r − 1

Mexpl∆a(i) = F−Ma
(i)
n+1 − Ku

(i)
n+1,

a
(i+1)
n+1 = a

(i)
n+1 + ∆a(i),

v
(i+1)
n+1 = v

(0)
n+1 + γ∆ta

(i+1)
n+1 ,

u
(i+1)
n+1 = u

(0)
n+1 + β∆t2a

(i+1)
n+1 ,

end

(30)

where Mexpl denotes the lumped mass matrix. Assuming, for the sake of sim-
plicity, a constant density ρ, due to the partition of unity property of NURBS
the lumped mass matrix becomes Mexpl = ρ I, I being the identity matrix. The
load vector F is evaluated at time t = (n + 1)∆t. We refer to r as the num-
ber of corrector passes. The algorithm produces, after r passes, the following
approximations at time t = (n+ 1)∆t

aexpln+1 = a
(r)
n+1,

vexpln+1 = v
(r)
n+1,

uexpln+1 = u
(r)
n+1.

(31)

From (30) we derive

a
(i+1)
n+1 = a

(i)
n+1 + ∆a(i) = (I− (Mexpl)−1M)a

(i)
n+1 + (Mexpl)−1(F− Ku

(i)
n+1)

= (I− (Mexpl)−1(M + β∆t2K))a
(i)
n+1 + (Mexpl)−1(F− Ku

(0)
n+1).

(32)

Iterating, and using (I−A)−1v =
∑r−1
i=0 A

iv+O(‖Arv‖∞) (where ‖·‖∞ denotes
the vector maximum norm), and recalling Mexpl = ρ I,

aexpln+1 = a
(r)
n+1 =

r−1∑
i=0

(I− (Mexpl)−1(M + β∆t2K))(i)(Mexpl)−1(F− Ku
(0)
n+1)

= (M + β∆t2K)−1Mexpl(Mexpl)−1(F− Ku
(0)
n+1)

+O(‖(I− (Mexpl)−1(M + β∆t2K))r(Mexpl)−1(F− Ku
(0)
n+1)‖∞)

= (M + β∆t2K))−1(F− Ku
(0)
n+1)

+O(‖(I− ρ−1(M + β∆t2K))rρ−1(F− Ku
(0)
n+1)‖∞).

(33)
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The Newmark algorithm can be written in a similar way: setting aNmkn = an,
vNmkn = vn and uNmkn = un, the time step is



a
(0)
n+1 = 0

v
(0)
n+1 = vn + ∆t(1− γ)an

u
(0)
n+1 = un + ∆tvn + (1− 2β)

∆t2

2
an

(M+β∆t2K)∆a(0) = F− Ku
(0)
n+1

aNmkn+1 = a
(0)
n+1 + ∆a(0)

vNmkn+1 = v
(0)
n+1 + γ∆t∆aNmkn+1

uNmkn+1 = u
(0)
n+1 + β∆t2∆aNmkn+1 .

(34)

Observe that from (34) we get

aNmkn+1 = (M + β∆t2K))−1(F− Ku
(0)
n+1). (35)

In what follows we present a study whose aim is to obtain some indication of
the behavior of the explicit scheme (30).

It is well known that the Newmark algorithm is second-order accurate in time
when γ = 1/2 (see [25]) and as accurate with respect to h as the discretization
scheme in space allows. Therefore, for the purpose of investigating the order
of the algorithm (30), we compare the solutions of (30)–(31) and (34)–(35)
assuming that uNmkn = uexpln = un, vNmkn = vexpln = vn, aNmkn = aexpln = an.
From (33) and (35) we evaluate a sort of truncation error

‖aNmkn+1 − aexpln+1‖∞
∆t

=
1

∆t
O(‖(I− ρ−1(M + β∆t2K))rρ−1(F− Ku

(0)
n+1)‖∞)

=
1

∆t
O(‖Brρ−1(F− Ku

(0)
n+1)‖∞),

(36)

where the matrix

B = (I− ρ−1M)− ρ−1β∆t2K = ρ−1
(

(Mexpl −M) − β∆t2K
)
. (37)

Recalling definitions (30), (31) and (34), we also get

||uNmkn+1 − uexpln+1||∞
∆t

= β∆t||aNmkn+1 − aexpln+1||∞ = ∆tO(‖Brρ−1(F− Ku
(0)
n+1)‖∞),

(38)

In principle, due to the structure of B shown in (37), we expect the vector Brw
to converge to zero for (h,∆t)→ (0, 0), at least when the vector w represents
a regular vector field. Moreover, the larger is the exponent r, the higher the
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convergence rate expected. Therefore, for sufficiently large values of r, the
explicit method is expected to behave like the Newmark method. Numerical
tests in the next section will show that two passes, i.e., r = 2, are in general
sufficient to obtain an optimal behavior of the error in h, at least for the cases
when p ≤ 5.

5 Numerical tests: statics

In this section we present the numerical results relative to several 2D plane-
strain elasto-static problems, all exploiting the proposed collocation approach,
addressing different aspects such as Dirichlet versus Neumann boundary con-
ditions, single-patch versus multi-patch problems, etc. The investigated prob-
lems are organized as follows:

• clamped quarter of an annulus, testing a single-patch solution and Dirichlet
boundary conditions;
• traction test for a single material, testing a single-patch solution and mixed

boundary conditions;
• traction test for a composite material, testing a multi-patch solution and

mixed boundary conditions.

In the following we discuss in details each problem.

5.1 Clamped quarter of an annulus

We consider a quarter of an annulus, as sketched in Figure 5, with internal
and external radii equal to R1 = 1 and R2 = 4, respectively. The domain is
exactly represented by a single NURBS patch.

The whole domain boundary is assumed to be clamped and we assign a man-
ufactured solution in terms of displacement components (in the following in-
dicated as exact), reading:{

u = (x2 + y2 − 1)(x2 + y2 − 16) sin(x) sin(y),

v = (x2 + y2 − 1)(x2 + y2 − 16) sin(x) sin(y).
(39)

The manufactured solution satisfies the prescribed boundary conditions and
the load is computed starting from the manufactured solution and imposing
equilibrium.

In Figure 6 we present the results in terms of relative solution error in the
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Fig. 5. Clamped quarter of an annulus. Problem geometry.

L2-norm versus the square root of the total number of control points used,
reporting as a reference the convergence rates discussed in [3], i.e., p and p−1
for even and odd degree p, respectively.
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Fig. 6. Clamped quarter of an annulus. Error plot versus the square root of number
of control points for different degree NURBS.

5.2 Single-material single-patch traction test

We now consider a square domain Ω of side L = 1, subjected to uniform
traction, as shown in Figure 7. Accordingly, we specify the following boundary
conditions

u = 0 for x = 0 and v = 0 for y = 0,
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while we assume a uniform traction q for x = L and traction-free conditions
for y = L. The domain consists of a single material and it is represented by a
single NURBS patch.

Such a problem allows us to test the proposed numerical scheme for Neumann
boundary conditions, described by Equation (27). It is worth emphasizing that
it is necessary to explicitly impose not only traction boundary conditions (as
in classical Galerkin methods) but also traction-free ones (which are instead
naturally satisfied in typical Galerkin methods). Moreover, the problem under
investigation is also characterized by a corner (point A in Figure 7) with a
combination of traction boundary condition in one direction and traction-free
in the other direction, which corresponds to the second case reported in Table
1.

Fig. 7. Single-material single-patch traction test. Problem geometry and boundary
conditions.

The analytical problem solution is homogenous and governed by the following
set of equations



ε11

ε22

ε33

ε12


=

1

E



1 −ν −ν 0

−ν 1 −ν 0

−ν −ν 1 0

0 0 0 1− ν





σ11

σ22

σ33

σ12


. (40)

Being in a plane-strain situations, enforcing ε33 = 0, it is possible to express
σ33 in terms of σ11 and σ22 and then, requiring σ22 = σ12 = 0, it is possible to
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compute the solution as 
ε11 =

1− ν2

E
σ11,

ε22 = − ν
E

(1 + ν)σ11.

Assuming a distributed load per unit length q = 10 and material constants
E = 1000 and ν = 0.25, the displacement components of point A are then

uA = 9.375× 10−4 , vA = 3.125× 10−4.

Such an analytical solution is reproduced up to machine precision by the
numerical one computed using a single element, illustrating the good behavior
of the proposed numerical scheme for the case under investigation.

Figure 8 shows the horizontal and vertical displacement fields (obtained using
p = q = 2 and 3× 3 control points, i.e., one element), which are linear in the
two coordinate variables, as expected.

Fig. 8. Single-material single-patch traction test. Horizontal and vertical displace-
ment fields.
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5.3 Two-material two-patch traction test

We now consider a rectangular domain Ω, as sketched in Figure 9, again
subjected to uniform traction. However, the domain is now assumed to consist
of two material subdomains.

Fig. 9. Two-material two-patch traction test. Problem geometry and boundary con-
ditions.

The problem under investigation is of interest with respect to the previous
example, since it introduces a boundary point (point B in Figure 9) with a
combination of a traction-free boundary condition and an interface between
different materials.

Similarly to what has been done in the previous example, the idea is to repro-
duce a solution homogeneous in the y direction (and piece-wise homogeneous
in the x direction), such that the numerical results should be able to exactly
reproduce the analytical solution. However, to obtain such a solution, it is nec-
essary to properly calibrate the elastic constants. Accordingly, recalling that
Equations 40 are valid for each material, we require the transverse strain (i.e.,
the strain in the transverse direction with respect to the traction direction) to
be the same in both materials, obtaining the following relation

E1

E2

=
ν1 (1 + ν1)

ν2 (1 + ν2)
,

where the subscripts indicate the material numbers.

For the problem under investigation we assume ν1 = 0.2, ν2 = 0.25 and E2 =
1000, resulting in E1 = 768. With these material properties, the displacement
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of point A (indicated in Figure 9) is then

uA = 2.1875× 10−3, vA = 3.125× 10−4.

We solve the problem numerically, using two NURBS patches (i.e., a patch
for each material). The analytical solution is matched up to machine precision
by the numerical one computed using a single element per patch, illustrat-
ing the good behavior of the proposed numerical scheme for the case under
investigation.

Figure 10 shows the horizontal and vertical displacement fields (obtained using
p = q = 2 and 3×3 control points per patch, i.e., one element per patch), which
are linear in the two coordinate variables within each material, as expected. We
also highlight that, as desired, a perfectly homogeneous solution is obtained
in the y direction.

We also notice that the management of a conforming multi-patch situation
is very simple in the proposed collocation method, since it is based on con-
structing the discrete equilibrium relation for each patch and, then, summing
the equations associated to collocation points shared by multiple patches.

5.4 Pressurized thick-walled cylinder test

We now consider an infinitely long and internally pressurized thick-walled
cylinder. We take advantage of the symmetry, considering only a quarter of the
cylinder, reducing to the geometry of Figure 5 under plane-strain condition.
We impose the following boundary conditions

u = 0 for x = 0 and v = 0 for y = 0,

and assume a radial pressure load P , uniformly distributed at the inner radius.

For the problem under investigation the exact solution in terms of radial dis-
placement is

ur(r) =
PR2

i

E (R2
o −R2

i )

[
(1− ν) r + (1 + ν)

R2
o

r

]
,

where r is the radial coordinate, Ri and Ro are the internal and the outer
radii, and E and ν are the Young’s modulus and Poisson’s ratio.

Setting Ri = 1 and Ro = 4, E = 1 and ν = 0, the solution becomes

ur(r) =
P

15

(
r +

16

r

)
.
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Fig. 10. Two-material two-patch traction test. Horizontal and vertical displacement
fields.

Imposing P = 15/8, results in

ur(1) =
17

8
= 2.125 , ur(4) = 1.

In Figure 11 we plot the displacement magnitude obtained using 40 × 40
control points and p = q = 4; note the point-wise (up to machine precision)
circumferential symmetry of the solution. In Figure 12 we present the relative
solution error in the L2-norm versus the square root of the total number of
control points.
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Fig. 11. Pressurized thick-walled cylinder test. Displacement magnitude.
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Fig. 12. Pressurized thick-walled cylinder test. Error plot versus the square root of
number of control points for different degree NURBS.

6 Numerical tests: dynamics

To solve elastodynamic problems, we employ the explicit predictor multi-
corrector algorithm discussed in Section 4. In particular, we present the nu-
merical results of the following two tests:

• a clamped rod, excited by an initial velocity distribution;
• a clamped plane-strain quarter of an annulus, excited by a time-dependent

body load and an initial velocity distribution.
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6.1 Dynamics of a clamped rod

We consider the 1D elasto-dynamic problem of a rod in a domain [0, 1], gov-
erned by the wave equation

ü(x, t)− u′′(x, t) = 0 ∀x ∈ (0, 1),∀t ∈ (0, T ), (41)

where u = u(x, t) is the unknown displacement in terms of the axial coor-

dinate x and time t, while ˙(·) and (·)′ represent time and space derivatives,
respectively.

We consider the following initial conditions

u(x, 0) = 0, u̇(x, 0) = 2π sin(2πx), ∀x ∈ (0, 1), (42)

and boundary conditions

u(0, t) = u(1, t) = 0, ∀t ∈ (0, T ), (43)

such that the exact solution is

u(x, t) = sin(2πx) sin(2πt). (44)

In Figure 13 we present the relative solution error in the L2-norm at the
final time T (T = 7/4 in our simulations), plotted versus the total number
of control points. Such numerical solutions are obtained using the explicit
predictor multi-corrector algorithm with two corrector passes. We remark that,
since the adopted algorithm is only second-order in time, in order to manifest
the expected high-order convergence rates in space, the time step and spatial
mesh-size must be selected such that the space discretization errors dominate
the time discretization errors.

6.2 Dynamics of a clamped plane-strain quarter of an annulus

We consider a 2D plane-strain elastodynamic problem where a clamped quar-
ter of an annulus (whose geometry is described in Figure 5) is excited by a
time-dependent body force and an initial velocity distribution such that the
exact solution is{

u = (x2 + y2 − 1)(x2 + y2 − 16) sin(x) sin(y) sin(2πt),

v = (x2 + y2 − 1)(x2 + y2 − 16) sin(x) sin(y) sin(2πt).
(45)
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Fig. 13. Dynamics of a clamped rod. Error plot versus number of control points for
different degree NURBS.

In Figure 14 we present the relative solution error in the L2-norm at the final
time T (T = 7/4 in our simulations), plotted versus the square root of the total
number of control points. Again, such numerical solutions are obtained using
the explicit predictor multi-corrector algorithm with two corrector passes. The
numerical results are consistent with those obtained in the 1D case. Also
here, the time step and spatial mesh-size are selected in order that the space
discretization errors dominate the time discretization errors.
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Fig. 14. Dynamics of a clamped plane-strain quarter of an annulus. Error plot versus
the square root of number of control points for different degree NURBS.
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7 Conclusions

In this paper we have developed IGA collocation formulations applicable
to multi-patch NURBS configurations, investigated the treatment of various
boundary and patch interface conditions, and extended the methodology to
explicit dynamics. We have argued that the procedures are stable, robust,
higher-order accurate and efficient in the sense that they involve a minimum
number of quadrature points, and we have presented numerical results to sup-
port our claims.

We believe that the new methods have the potential to offer a superior alterna-
tive to existing finite element technology based on one-point Gaussian quadra-
ture bilinear quadrilateral and trilinear hexahedral elements. However, much
research still remains to be done. We believe that the focus of this work should
be on fully nonlinear problems, shell formulations, three-dimensional solids,
industrial scale calculations, and extension to hierarchically refined NURBS
and T-splines, which we hope to pursue in the future.

A Appendix: Construction of δεi,j,k

We do not show the proof of the following classical result.

Lemma A.1 Let f, g be real valued functions defined on a neighborhood of
τi,j,k in Ω. Let f be integrable and continuous in τi,j,k, and let g be in L∞.
Then

lim
ε→0

∫
supp(f)

f δεi,j,k = f(τi,j,k) ,∫
supp(g)

g δεi,j,k ≤ C ∀ ε ∈ (0, 1] ,
(A.1)

with C a constant independent of ε.

Moreover, the following result is easy to prove.

Lemma A.2 Let γ be a C1 curve originating at τi,j,k. Let f be an integrable
real valued function defined on the curve, continuous in τi,j,k. Then

ε lim
ε→0

∫
γ
f δεi,j,k = Cδ f(τi,j,k) , (A.2)

with Cδ a constant independent of f, ε, γ.
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