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Abstract

This two-part paper discusses robustification methodologies for linear-iterative distributed algorithms for
consensus and coordination problems in multicomponent systems, in which unreliable communication links may
drop packets. We consider a setup where communication links between components can be asymmetric (i.e.,
component; might be able to send information to componeénbut not necessarily vice-versa), so that the
information exchange between components in the system is in general described by a directed graph that is
assumed to be strongly connected. In the absence of communication link failures, each compaaietdins
two auxiliary variables and updates each of their values to be a linear combination of their corresponding
previous values and the corresponding previous values of neighboring components (i.e., components that send
information to node:). By appropriately initializing these two (decoupled) iterations, the system components
can asymptotically calculate variables of interest in a distributed fashion; in particular, the average of the initial
conditions can be calculated as a function that involves the ratio of these two auxiliary variables. The focus
of this paper to robustify this double-iteration algorithm against communication link failures. We achieve this
by modifying the double-iteration algorithm (by introducing some additional auxiliary variables) and prove that
the modified double-iteration converges almost surely to average consensus. In the first part of the paper, we
study the first and second moments of the two iterations, and use them to establish convergence, and illustrate
the performance of the algorithm with several numerical examples. In the second part, in order to establish the
convergence of the algorithm, we use coefficients of ergodicity commonly used in analyzing inhomogeneous
Markov chains.
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. INTRODUCTION

The design of protocols and algorithms for distributed computation and control/decision tasks has
attracted significant attention by the computer science, communication, and control communities (e.qg.,
[1], [2], [3], [4], [5], [6], [7] and references therein). For example, given i) a collection of robots
moving in the plane, ii) a collection of sensors in a sensor network, or iii) a collection of distributed
energy resources in an electrical grid, the components may be interested in, respectively, i) agreeing
on a common direction to follow (this common direction could be provided by a leader robot), ii)
measurement averaging (with each sensor providing a local measurement of a global quantity), or iii)
collectively providing a predetermined total amount of active power subject to the constraints of each
distributed resource. In the control literature, the first and second problems are respectively known as
consensus and average consensus (see, e.g., [2]), whereas the third problem can be considered as
distributed resource coordination problem [8], [9].

In this two-part paper, we consider multicomponent systems in which each component can exchange
information with other components in its neighborhood in order to compute, in a distributed fashion,
some quantity of interest. In our setup, communication links between components (nodes) can be
asymmetric (i.e., componeritmight be able to send information to componénbut not necessarily
vice-versa), a situation that arises in a wireless setting if the transmission power available to different
nodes are also different. In this setting, the information exchange between components in the system
can be described by a directed graph which is assumed to be strongly connected. Through an iterative
process, nodes in the network are required to compute (using only information made available by their
neighbors) the quantity of interest. In particular, we study linear-iterative algorithms in which each node
j maintains a value (or a set of values) that is updated to be a weighted linear combination gsnode
own previous value and the previous values of its neighboring nodes (i.e., nodes that transmit information
to nodej). The main focus of the paper is to develop strategies to robustify the linear-iterative algorithms
described above against communication links that may drop packets.

In the context of consensus and average-consensus problems, an extensive literature in the control
community focuses on the linear-iterative algorithms described above (e.g., [7], [10], [2], [11], [12],
[13], [14] and references therein). These works have revealed that if the network topology satisfies
certain conditions, the weights for the linear iteration can be chosen so that all the nodes asymptotically
converge to the same value (even if the network connections are time-varying). Additionally, if the
interconnection topology is invariant and bidirectional (i.e., if ngdean send information to node
then node can send information to nodg, simple techniques can be used to choose the weights of the
linear iteration so as to ensure that, after running the linear iteration, the nodes will asymptotically reach
consensus to the average of their initial values [2], [11], [12]. Other works have looked at the consensus
and average-consensus problems when the interconnection topology is describelidayed graph.

In particular, the authors of [15] focus on continuous-time linear iterations and state necessary and
sufficient conditions for a network of integrators to asymptotically reach agreement to a common value
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(but not necessarily the average of their initial values). Similarly, the authors of [12] consider discrete-
time iterations, and provide necessary and sufficient conditions on the weights that allow the nodes to
asymptotically reach consensus to the average of their initial values. Additionally, the work in [16],
[17] discusses how average-consensus can be reached asymptotically with linear-iterative algorithms in
which the nodes use fixed weights in their linear updates and also develops linear-iterative algorithms
where the nodes adapt their weights in a distributed fashion so that asymptotically average-consensus
is reached. In the context of resource coordination, there is some recent work [18], [8], [9] that also
focuses on linear-iterative algorithms, similar to those used to address consensus and average-consensu
problems. Other recent work has addressed the related problem of achieving consensus and average
consensus in a multicomponent system where some nodes can exhibit malicious behavior [19], [20].
These works assume fault-free communication links, but are related to what we do in this paper in the
sense that they can be used to handle unreliable nodes (as opposed to links).

In our development, we adopt a very general model for the communication modality between nodes,
which allows asymmetric information structures, in the sense that if h@de transmit information to
another node, it is not necessarily true that nogecan transmit information to node We only require
that each node, apart from seeing incoming transmissions sent to it by neighboring nodes, knows the
number of nodes that it can transmit information to, which in graph-theoretic terms is referred to as the
out-degree of that node. In fact, in the proposed algorithm, each node will broadcast the same quantity to
all receiving nodes, which simplifies the communication scheme between sending and receiving nodes
(as it is not necessary for each sending node to separately communicate with each receiving node).

When the communication network is perfectly reliable (no packet drops), the collective dynamics of
the linear iterations can be described by a discrete-time transition system with no inputs in which the
transition matrix is column stochastic and primitive. Then, each node will run two identical copies of
the linear iteration each of which, however is initialized differently depending on the problem to be
solved.In this paper we mostly focus on the average consensus problem. Under proper initialization,
it can be shown that each node will asymptotically calculate the desired value as a function of the
outcomes of the two iterations. The details of these double-iteration approach are provided in [16],
[17] for the average consensus case and in [8], [9] for the resource coordination problem. For the
average-consensus problem, the double-iteration algorithm is a particular case of the algorithm in [21]
(which is a generalization of the algorithm proposed in [22]), where the matrices describing each linear
iteration are allowed to vary as time evolves, whereas in our setup (for the ideal case when there are
no communication link failures) the transition matrix is fixed over time.

The focus of this paper is to robustify the double-iteration algorithm (informally described above and
formally described in Section Il) so that it can tolerate failures in communication links and converge
to the average value. Our communication link reliability model assumes that at each time step, a
communication link is unavailable with some probability. In other words, a packet containing information
from nodei to nodej is dropped with some probability. Next we informally describe our robustification
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approach. Consider two nodeésand j, and assume that receives information from node but not
necessarily vice-versa. Let us refer tas the receiving node (or receiver) ands the sending node
(or sender). An important requirement is for the graph describing the communication network to be
strongly connected, which implies every node must be able to act both as a sender and as a receiver.
Then, for each of the two iterations each node performs, rniodee sender) will keep track of the
following quantities of interest: i) its own internal state (as captured by the state variables maintained in
the double iteration scheme of [21], [18]; ii) the total mass broadcasted so far (to be described in detalil
soon); and iii) the total received mass from each nbdeat sends information to node Similarly,
for both iterations, each nodg (the receiver) updates the value of its internal state to be a linear
combination of its own previous internal state value (weighted by the inverse of the number of nodes
that havej as a neighbor) and the difference between the two most recently received mass values from
each of its neighbors (also weighted by the inverse of the number of nodes that aa\e neighbor).
At time instantk, the total broadcasted mass by ngde the sum up to (and including) time stépof
the sequence of values of nogls internal value, weighted by the inverse of the number of nodes that
receive values from nodg. Additionally, nodej updates the value of the received mass from each node
[ that sends information to nodeas follows: the received mass from nodés the total broadcasted
mass sent by nodeup to timek if the communication link from nodéto nodej is available at time
stepk; otherwise, the received mass remains the same as the most recently received mass from node
[. An implicit assumption here is that messages broadcasted by lnade tagged with the sender’s
identity so that the receiving nodecan determine where different packages have originated from.
Recent work that has addressed the consensus and average-consensus problems in the presence
unreliable communication links [23], [24], [25] has employed a communication link availability model
similar to ours. The work in [23] assumes that the graph describing the communication network is
undirected and that when a communication link fails it affects communication in both directions.
Additionally, nodes have some mechanism to detect link unavailability and compensate for it by rescaling
their other weights (so that the resulting transition matrix remains column stochastic). Following this
strategy, the authors show asymptotic convergence to the average of initial conditions and also calculate
the rate at which the variance of the total deviation from the average converges to zero. The work in
[24] does not require the graph describing the communication network to be undirected and proposes
two compensation methods to account for communication link failures. In the first method, the so-called
biased compensation method, the receiving node compensates for the unavailability of an incoming link
by adding the weight associated to the unavailable link to its own weight (so that the resulting matrix
remains row stochastic). In the second method, called the balanced compensation method, the receiving
node compensates for link unavailability by rescaling all the incoming link weights so that the resulting
matrix remains row stochastic. The key in both methods is the fact that at each time step, the resulting
weight matrix is row stochastic; the authors show that the nodes converge almost surely to the same
value, but this value is not necessarily the average of the initial conditions. The work in [25], which does
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not require the communication graph to be undirected, proposes a correction strategy that corrects the
errors in the quantity (state) iteratively calculated by each node, so that the nodes obtain the average of
their initial values. This correction strategy is based on each node maintaining some auxiliary variable
that accounts for the amount by which nodehanges its state due to the updates from its neighbors,

i.e., the nodes that can send information to nadeor their strategy to work and ensure that the nodes
converge almost surely to the average consensus, the authors rely on the nodes sending acknowledgmer
messages and retransmitting information an appropriate number of times.

In [21], the authors proposed a gossip-based algorithm for average-consensus ver a directed graph
where the transition matrices describing the nodes’ collective dynamics change at every iteration step
(depending on which node awakes). This scheme requires the node that is awake to perform an
internal state update and send its internal state (weighted by the corresponding out-going link weight)
to its neighbors. This approach results in generates a sequence of column stochastic matrices (not
necessarily primitive) with the property that all the diagonal entries remain positive. The authors
prove that by running two such iterations in parallel, one of them initialized with the values on
which the average operation is to be performed and the other with the all-ones vector, each node
will asymptotically achieve average consensus by taking the ratio of the two values in maintains. A
key premise in their proof is that column stochasticity of the transition matrix is maintained over time,
which requires sending nodes to know the number of nodes that are listening. This suggests that i) either
the communication links are perfectly reliable, or ii) there is some acknowledgment and retransmission
mechanism that ensures messages are delivered to the listening nodes at every round of information
exchange. In this paper, we remove such assumptions and robustify the double-iteration algorithm against
unreliable communication links using a pure broadcast-message model without any requirement for an
acknowledgment/retransmission mechanism. Thus, despite the reliance of our algorithm on the ratio of
two linear iterations, it is different both in the communication model we assume—a broadcast model
in our case—and also in the nature of the protocol itself—our focus is on ensuring convergence in the
presence of communication link failures.

An additional assumption made in [21] is that the diagonal entries of the transition matrix (at every
step) remain positive. In our model, we originally consider that nodes do not drop self-packets. However,
to ease the analysis, we remove this assumption and consider the case where self-packet drops are als
allowed at every time step, which i) allows us to handle intermittent faults in the node processing
device, and ii) removes the assumption that all diagonal entries must be positive at every step. Finally,
the analysis machinery in [21] is quite different from the one used in this paper. We employ moment
analysis of the two iterations to establish that they are linearly related as the number of steps goes to
infinity, while [21] relies on establishing weak ergodicity of the product of the transition matrices as
the number of steps goes to infinity. Finally, as it will be shown in the second part of this paper, our
algorithm can be re-casted into a similar framework as the one in [21] by augmenting the dimension
of the vector describing the collective dynamics to account for the packets that get dropped once there
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is a communication failure. Note, However, that the resulting matrices will be column stochastic but
will not necessarily have strictly positive entries on their diagonals. In the second part of the paper, we
provide an analysis framework to establish the convergence of our algorithm and generalizes the ideas
in [21] to the case when the matrices describing the system collective dynamics do not have strictly
positive diagonals. In this regard, we will show that even in the case where self-packet drops are not
allowed, the resulting transition matrices might still have zero diagonal entries.

The remainder of this paper is organized as follows. Section Il provides background on graph theory,
introduces the communication model, and briefly describes the non-robust version of the double-iteration
algorithm we use in this work. Section IIl describes the proposed strategy to robustify the double-iteration
algorithm against communication link failures and illustrates the use/performance of the algorithms via
several examples. The convergence analysis of the robustified double-iteration algorithm is provided in
Section V. Concluding remarks are presented in Section VI.

[I. PRELIMINARIES

This section provides background of graph-theoretic notions that are used to describe the communica-
tion network and the distributed consensus/coordination setup, introduces the basic communication link
availability model, and reviews a previously proposed two-iteration algorithm that can be used to solve
the class of problems addressed in this paper when the communication network is perfectly reliable.

A. Network Communication Model

Let discrete time instants be indexéd= 0, 1,...; then, the information exchange between nodes
(components) at each time instaintcan be described by a directed gra@k] = {V,£[k|}, where
V ={1,2,...,n} is the vertex set (each vertex—or node—corresponds to a system component), and
E[k] €V x Vs the set of edges, whefg, i) € £[k] if node j can receive information from nodeat
instantk. It is assumed thaf[k] C £, Vk > 0, where€ is the set of edges that describe all possibly
available communication links between nodes; furthermore, the gnaph) is assumed to be strongly
connected. All nodes that can possibly transmit information to nodee called its in-neighbors, and
are represented by the skt = {i € V: (j,i) € £}. Note that there are self-loops for all nodesdn
(i.e., (j,j) € € for all 7 € V). The number of neighbors gf (including itself) is called the in-degree
of j and is denoted b, = |N;7|. The nodes that havg as neighbor (including itself) are called its
out-neighbors and are denoted A" = {I € V : (I, j) € £}; the out-degree of nodgis D; = |N|.

The existence of a communication link from nod® node;j can be described in probabilistic terms
as follows. At instant;, let z;;[k|, Vi, j € V be an indicator variable that takes value 1 with probability
g and takes value zero with probability— ¢, i.e.,

Pr{x;i[k] = m} = { ¢ Mm=L (1)

1—gq, if m=0.
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Then, for allk > 0, the existence of a communication link between nodasd j can be described be
another indicator variablé;[k] defined as

| xulk], 0 i) €€
fj"[k]_{ 0, if (j,4i)¢E.

It follows that £[k] contains the elements &f for which ¢;;[k] = z;;[k] = 1.

(2)

B. Double-Iteration Algorithm Formulation in Perfectly Reliable Communication Networks

When the communication network of a multi-component system is perfectly reliabléi{é,;[k] =
1} =1, V(4,7) € €, Vk > 0, it was shown in [17], [9] that the components of the multi-component
system can asymptotically solve average consensus and resource coordination problems in a distributec
fashion by running two separate appropriately initialized linear iterations of the form

ylk+ 1= 3 —ouilh] 3)
ieN; !

Sl 1= 3 ooalk) @
ieN; !

where D;.L (D;) is the out-degree of nodg (). A requirement in all cases is that the underlying
communication graphg, £) is strongly connected.

1) Average Consensus Problem: In this problem, the nodes aim to obtain the average of the values
vj, 7 =1,...,n, they each posses. In [17], it was shown that if the initial conditions in (3) (referred
to as iteration 1) are set tg,[0] = v;, and the initial conditions in (4) (referred to as iteration 2) are
set toz;[0] = 1, then the nodes can asymptotically calculate= > 7, v;/n as

7 = lim ;K]
k=00 2;[k]

: ®)

by running the two iterations in (3) and (4).
2) Resource Coordination Problem: In this problem, each nodg¢ can contribute a certain amount
m; > 0 of a given resource, which is upper and lower bounded by known capacity lirfiits and
w;.m'” respectively. The challenge is to coordinate the components so that they collectively provide a
pre-determined total amoupf = Z;.‘zl w; of the resourckas specified by an external “leader.” In [9],
it was shown that i) if the initial conditions in (3) are setid0] = pq/m — 77" if j is an out-neighbor
of the leader (wheren > 1 is the number of nodes contacted initially by the external leader) and
y;[0] = —=7*" otherwise, and ii) if the initial conditions in (4) are set4d0] = #7"** — x7*", then the
In the development in [18], [9], it is assumed t@t?:l 7r']'-’”'" < pa < Z;;l w;"**; this is not a restrictive assumption because in the

proposed algorithms, all nodes will be able to knowif< >°7_, 7 orif pg > >_j— ™" (which means that no feasible solution
exists).
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nodes can asymptotically calculate their own resource contributjcrs

. : min y[k]
T = klgglo (7rj + m

max min _ _min Pd — E?:l 71-lmm max min
(7Tj - Ty )) =T, + E;LZI 0 ( g T T ), (6)
which satisfies

min max .
i <y <t v,

ZWJ = pd- (7)

In this paper, we start with a double iteration of the form in (3)—(4) that is used for either aver-
age consensus or coordination, and develop systematic methodologies to handle packet drops in the
communication links.

[Il. ROBUSTIFICATION OF DOUBLE-ITERATION ALGORITHM

In this section, the algorithm described in Section II-B is modified so as to make it robust against
communication link failures. As in (3)—(4), each node will run two iterations (which we refer to as
iterations 1 and 2) to calculate quantities of interest and eventually solve the average consensus or
coordination problems.

Consider the setup described in the previous section: we are given a (possible directed) strongly
connected graphg, £) representing a multicomponent system and its communication links between its
components. For the sake of generality, let us refej &5 the receiving node (or receiver) ahas
the sending node (or sender). For each of the two iterations, hfitie sender) will calculate several
qguantities of interest, which we refer to as: i) internal state; ii) total broadcasted mass; and iii) total
received mass from each in-neighbaf node:, i.e., for each nodé< N,. For both iterations 1 and 2,
each node updates the value of its internal state to be a linear combination of its own previous internal
state value (weighted by the inverse of the number of nodes thatjhase neighbor, i.el/D;F) and
the sum (over all its in-neighbors) of the difference between the two most recently received mass values.
At instant timek, the total broadcasted mass is the sum up to (and including)kstéghe weighted
value of nodej’s internal state (used to update the internal state of ngdadditionally, nodej (the
receiver) updates the value of the received mass from htmlee either the total broadcasted mass sent
by node: if the communication link from to j is available at instant, or the most recently received
mass value from nodg otherwise. An implicit assumption here is that messages broadcasted by node
1 are tagged with the sender’s identity so that the receiving nodan determine where messages
originated from.

For iteration 1, lety;[k] denote nodej’s internal state at time instarit, s;[k] denote the mass
broadcasted from nodg to each of its out-neighborks (this is a single value ad it is the quantity is
the same for each out-neighbbiof nodej, i.e., for eachl € Nj), andv;[k] denote the total mass
received at nodg from nodei € N;". Similarly, let z;[k] denote nodg’s internal state takes at time
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instant, o;;[k] denote nodg’s broadcasted mass for each out-neighbot € V", and7;[k] denote
the total mass received from node N;". Then, the progress of iteration 1 is described by

ylk 1= Seylhl + 3 (alk] — walk — 1), k>0,
J iEN;

k
(k] = pulk — 1] + D+yg Z yg 1, k>0, ®)
J i=0
where
] = piilk), if (4,4) € E[k], k>0,
7! viilk — 1], if (4,4) ¢ E[k], k>0.

Recall that’D;.r (D;") is the number of nodes that nogdd:) can transmit information to. Similarly, the
progress of iteration 2 is described by

Sl 1) = sl + 3 (uldd - mlk~ 1), k20

iEN;
1 "1
oulk] = oyl — 1] + (k] = > oralil, k20, (9)
J 1=0 J

where

] — ojilk], if (j,1) € E[k], k>0,
NS ko i G g €L k>0

As mentioned earlier, for solving the average consensus problem, the initial conditions in (8) are
set toy,[0] = v;, whereas the initial conditions in (9) are set4g0] = 1. Similarly, for solving the
resource coordination problem, the initial conditions in (8) are sgf[th = pd/m—ﬂ';”m if 5 is initially

contacted by the leader ang[0] = —=7"" otherwise, whereas the initial conditions in (9) are set to
z[0] = 7" — 77" > 0. In both the average consensus and coordination problefis;1] = 0 and
v;i[—1] =0 for all (5,7) € £, andoj;[—1] =0 and7;;[—1] =0 for all (j,7) € £.

Main Result: We shall argue that with the proposed robustification strategy, despite the presence of
unreliable communication links (at each time step, each (k) € &, fails independently from other
links and independently between time steps, with some probalbility;;;), nodes can asymptotically
estimate the exact solution to the average consensus by calculating, wheneyéf > 0 the ratio

y;lk]/z k], i.e

L
k=00 2;[k]

, (10)
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wheneverz; [k > 0]. Similarly, exact solution to the resource coordination problem can be obtained as

min + yj_W(ﬂ_mam o ﬂ_min))7 (11)

m; = lim (7T i ;

k—o0 J Zj [k‘]
whenever;[k] > 0. In both cases, we run the iterations in (8) and (9) and using the corresponding initial
conditions as outlined above. In particular, we will show that, for every;[k] — %%[k] — 0
ask — oo almost surely. Additionally, we will show that;[k] > 0 occurs infinitely often.

A. Examples

We now illustrate how the proposed algorithm works for the case of average consensus in the
presence of packet-dropping communication links. We start with the rather small network shown in
Fig. 1 and assume that the packets on each link (including the self-links which are not drawn in the
figure?) can be dropped with probability— ¢, independently between different links and independently
between different iterations. We also assume that the initial values of the five nodes are given by
v=[-4,56,-3,1]T, with their average equal tb. Thus, in the iterations (8) and (9)

y[0] = [~4,5,6,—3,1]", andz[0] = [1,1,1,1,1]",

with pj;[—1] = v;i[—1] = 0j[—1] = 7;5[—1] = 0 for all (j,4) € £.

We run the iterations in (8) and (9) and plot the ra%}% as a function of the iteration stépfor each
nodej (j = 1,2,3,4,5). Figure 2 shows the typical behavior that we observegfer 0.99 (i.e., for a
probability of a packet drop equal t01). As can be seen in the figure, the ratio at each node quickly
converges to the correct average, though the individual valueg,fflor and z;[k| do not converge.

In Figs. 3 and 4 we show typical behaviors of the same multicomponent systegn=fo0.5 and
q = 0.1. The behavior remains similar to the one observed before: even thglighand z;[k| do not

2\We make this assumption later in the paper for the purposes of simplifying notation.

Fig. 1. Small directed graph used for illustration of theaaigorithm for obtaining average consensus in the presence of packet-dropping
communication links.



COORDINATED SCIENCES LABORATORY TECHNICAL REPORT UILU-ENG1-2207 (CRHC-11-05) 11

y at Each Node vs lterations z at Each Node vs lterations Ratio at Each Node vs Iterations

y at Each Node

S R T - - N - S R R SR
|
|
at Each Nod

Ratio at Each Node
A b N ko kN w s o o

0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50 o 5 10 15 20 25 30 35 40 45 50
Number of Iterations Number of Iterations Number of Iterations

(@) (b) ()

Fig. 2. Evolution of the values of;[k] (left), z;[k] (middle) and v (k] (right) for ¢ = 0.99.
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Fig. 3. Evolution of the values of;[k] (left), z;[k] (middle), andZﬁ:} (right) for ¢ = 0.5, j = 1,2,3,4, 5.

converge (in fact, they seem to behave more radically with decreagirige ratio Z; Hj does converge

to the average of the initial values. Note that the plot of the ratio in Fig. 4 is quite different than the
rest: in this casegq is small enough so that;[k] (and simultaneously,k|) can take the value zero

(e.g., when all packets destined to nodare dropped at iteratioh); thus, the ratio in such cases is

not defined and is not plotted, resulting in a discontinuous set of points in the plot. Nevertheless, we
can see that when packets are received (which happens frequently enough for each node), the ratio has
the correct value. This is a point addressed later in the paper.

An example of what happens in larger graphs is shown in Fig. 5. Here we consider a graplo with
nodes, randomly generated by choosing a directed edge from:nmdeodej, 1 < i,j < 50, i # 7,
independently with probability /2, and ensuring that the resulting graph is strongly connected. As can
be seen the behavior remains similar to what we observed for the smaller graph: t@?{%at@verges
quickly to the average even though the individyglk] and z;[k] do not converge. For this particular
plot, we used; = 0.1, which also justifies the fluctuation in the valuesyofk] and z;[k].
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Fig. 4. Evolution of the values of;[k] (left), z;[k] (middle), and“% (right) for ¢ = 0.1, j = 1,2, 3,4, 5.
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Fig. 5. Evolution of the values of;[k] (left), z;[k] (middle), and {:} (right) for ¢ = 0.1 for a 50-component system.
J

[V. FIRST AND SECOND MOMENT ANALYSIS

In this section, we obtain recurrence relations that describe the first and second moment of the
iterations after (8) and (9); this analysis is used in Section V to establish the claims in (10) and (11). In
order to ease the moment calculations, the expressions in (8)—(9) will be rewritten more compactly in
vector form. Also, in order to facilitate notation, we will allow each ngd® drop the packet carrying
its own previous value when updating its value. This way, npdendles its own value in the same
way as its neighbors’ values and notation is simplified significantly.

A. Vectorized Description of Double-Iteration Algorithm

Using the definition for the indicator variablg;[%] given in (1) and the resulting indicator variable
¢;;[k] given in (2), which describes the successful transmission of information from ntm@ode
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over an existing, unreliable communication link, iterations (8) and (9) can be rewritten as

puilk — 1)+ gry;lkl, ifle N, k>0,
k] =4 e (12)
0, if l¢ N, k>0,
viilk] = pjilklagi k] + vk — 1(1 — zj[k]), if ie Ny, k=0, (13)
7 0, if i g N7, k>0,
yilk + 11 = (viilk] —viilk = 1]), k>0, (14)
=1
and
o zilk], ifleN, k>0,
O'[j l] D+ ][ ] . i (15)
if 1¢ N7, k>0,
T — 0-.72 x]l _'_ T]Z[k - 1](1 - x,?l[k])7 If i S '/\/;'_7 k 2 07 (16)
silk 0, ific N, k>0,
gilk +1] =" (rulk] — 7k = 1]), k>0, (17)
i=1

Where,ulj[—l] = I/ji[—l] = O'lj[—l] = Tji[—l] = 0, VJ,Z
Let Ao B denote the Hadamard (entry-wise) product of a pair of matricesd B of identical size.
Then, for allk > 0, iteration (12)—(14) can be rewritten in matrix form as

M, = M,_{ + Pdlag(yk), (18)
Ni, = My, 0 Xj + Ny 0 (U — Xy), (19)
Yk+1 = (Nk — Nk_l)e == [(Mk — Nk—l) (¢] Xk} €, (20)

where P = [p;;] € R™", with p;; = D+, Vj € N;" andp;; = 0 otherwise;M_; = N_; = 0; yi = y[k];

U e R™", with [U;] =1, Vi,7; dlag(yk) Is the diagonal matrix that results by having the entries of
yr on the main diagonal; and= [1,1,..., 1]’ (note thatU = ec?). Similarly, for & > 0, (15)—(17) can

be rewritten in matrix form as

Sk = Sk—l + Pdiag(zk), (21)
T :SkOXk—l—Tk_lO(U—Xk), (22)
21 = (T — Th—1)e = [(Sk —Ty—1)o0 Xk]& (23)

whereS_; =T, =0, 2z, = z[k], and diagz;) is the diagonal matrix that results by having the entries
of z; on the main diagonal.
By defining A, := M, — Ny_, and B, := S, — T)_1, iteration (18)—(20) can be rewritten more
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compactly as

A, =A,_10 (U — Xk—l) + Pdlaka), k>1, (24)
Yrs1 = (Ap o Xple, k>0, (25)

and iteration (21)—(23) as

B, =DB,_;0 (U — Xk—l) + Pdlag(zk), k>1, (26)
Zk+1 = (Bk o Xk)ﬁ’, k 2 0, (27)

where Ay = My — N_; = Pdiag(y,), and By = Sy — T = Pdiag z).

For analysis purposes, each matrix in (24)—(25) and (26)—(27) will be rewritten in vector form by
stacking up the corresponding coluninghen, (24)—(25) and (26)—(27) can be rewritten in vector
form as follows. LetF = [I,, I,, ... I,] € R™"* wherel, is then x n identity matrix, andP =
[E\PT E,PT ... E,PT]" e R"**", whereE; € R"*" hasF;(i,i) = 1 and all other entries equal zero.
[The entries of; PT € R (PE! = PE;) are all zero except for thé" row (column) entries, which
are those of thé"" row (column) of matrixP” (P).] Then, (24)—(25) can be rewritten as

ar = ap—1 0 (u— xp_q1) + ]-:’yk, kE>1, (28)
Yk+1 = F(ak (¢] .Z’k>, ]{7 2 0, (29)

wherea;, € R, 2. € R", andz,_; € R™ result from stacking the columns of matricds, X, and
Xi_1, respectively. Similarly, (26)—(27) can be rewritten as

by =by_10(u—ap1)+ Pz, k>1, (30)
Zk+1 = F(bk o [L’k), k Z 0, (31)

whereb;, € R™ results from stacking the columns of mats,.

Remark 1: It is important to note that matriced4, and B,,, and their corresponding vectodg and
bx, have some entries that remain at zero forkalt 0. Specifically, the(j, i) entry of matrices4, and
By, (and their corresponding entries an andb;) remain zero if there is no communication link from
nodei to nodej, i.e., (j,7) ¢ £. The reason we keep these entries (despite the fact they are zero and do
not play a role in the analysis) is because they facilitate matrix notation and calculations in subsequent
developments. O

Since it will appear later at several points of the analysis, it is worth noting that when premultiplying
P by F, we recover the matri®, i.e.,

P=FP. (32)

%If we let A = [A;;] € R™", thena = [A11,Ao1,..., An1, A1z, Asa, ... Ao, ..., A, Ao, ..., Ann]T. Vectors defined by
stacking the columns of a matrix will be denoted with the same small letter as the capital letter of the corresponding matrix.
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B. First Moment Analysis

In this section, we describe the first moment dynamics of (28)—(31) via discrete-time transition systems
with no inputs, where (as shown below) the corresponding transition matrices (which are obtained from
P andq) are column stochastic and primitive. In both iterations, the sum of the entries of the first
moment vectors fog,, and z; is shown to remain constant over time and be respectively equal to the
sum ofg >, yo(i) andgq >, z(7). Furthermore, both first momenKy;| andE[z;] are shown to reach
a steady-state value @sgoes to infinity. The above discussion is formalized in the following lemma.

Lemma 1. Letay, by, yi, andz, be described by the recurrence relations in (28)—(29), and (30)—(31)
respectively. Let the first moments of, v, bx, andz; (i.e., E[ax], E[yx], E[bs], andE[z;]) be denoted
by @, 7, br, andz; respectively. Then the evolution af, 7,, by, andz,, Vk > 1, is governed by

= [¢PF + (1 — q) 1] @1, (33)
Yrt1 = [qP—l— (1—gq In]@ (34)
B = [¢PF + (1= q) L] Bps (35)
Zh+1 = [CIP + (1 — Q)In] 2k (36)

where1,, is them x m identity matrix, witha, = Py, 7, = ¢Pyo, by = Pz, andz, = qPz,.

Proof: Since the development for obtainimg and 7, is parallel to that for obtaining, and z;,
our analysis focuses on the first case. Eor 0 in (28)—(29), by taking expectations of both sides and
noting that packet drops at time stép= 0 are independent of the initial values fay, it follows that

a0 - Py07 (37)
¥, = qFay. (38)
Substituting (37) into (38), we obtaip, = ¢F Py, = ¢P7,.

For £ > 1 in (28)—(29), noting that packet drops at time stepre independent of previous packet
drops and the initial values af,, it follows, by taking expectations on both sides, that

ap = Qp_1 © (u — l’k_l) + ISyk = Qp_1 0 (u — sz—l) + Pyk = (1 — q)ak_l + ﬁyk, (39)
ka = F(ak o {L'k) = F(Ek o Tk) = qFak. (40)

Substituting (40) into (39), we obtain

ar = (1 — )1 + qPFay_, (41)
= [qPF 4 (1 — q) L2 a1, (42)
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Similarly, substituting (39) into (40), we have

Upp1 = (1 — Q)qF a1 + ¢F Py, (43)

= (1 — )y, + ¢F Py, (44)

= [¢P + (1 = ¢)L.]yy, (45)

where,, is then x n identity matrix. [ |

C. Second Moment Analysis
In the order to calculate the second moment dynamics for (28)—(31), we utilize in the following
lemma.
Lemma 2: Letz, c andd be random vectors of dimensian Furthermore, assume that the entries of
are Bernoullii.i.d. random variables such thBi{z; = 1} = g andPr{z; =0} =1—¢,Vi=1,2,...n,
and are independent fromandd. Then
S:=E[(cox)(zod)’] = ¢*Elcd"] + ¢(1 — ¢) E [diag(cd")], (46)
T:=E[(cox)((u—x)od)] = q(1—q)Elcd"] — ¢(1 - q) E [diag(cd")), (47)
where diagcd?) is a diagonal matrix with the same diagonal as matX.
Proof: The (i,7),7 # j, entry of S can be obtained as follows:

Sij =E [Cillfidjl’j} . (48)

Sincez; andx; are pairwise independent, and independent froamd d, it follows that

E [Cillfidjl’j} = q2 E [Cidj} . (49)
For i = j, observing thalE[z;z;] = E[x;] = ¢, Vi = 1,...,n, we obtain the corresponding entry &f
as

In (49), it is easy to see tha [¢;d;] is the (i, j) entry of E[cd”]. Similarly, in (50), it is easy to see
that E [¢;d;] is the (i, 1) entry of E[cd”]. From these observations, the result in (46) follows.
Similarly, the (i, j),7 # j, entry of T' can be obtained as follows:

Sincez; and(1 — z;) are independent, it follows that

E [ciz;d;(1 — ;)] = E [cid;] E [2:(1 — 2;)] = q(1 — q) E [cidj]. (52)
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For i = j, and observing thak[z;(1 — x;)] = 0, Vi = 1,...,n, the corresponding entry df can
obtained as follows;

Ty = E [ciwidi(1 — 2;)] = E [¢;d] B [2;(1 — 2)] = 0. (53)

The result in (47) follows from (52) and (53). [ ]

The following lemma establishes that the evolutionEifi,al], E[b,bL], and E[a,bl], and can be
expressed as linear iterations with identical dynamics but different initial conditions. Similarly, the
evolution of E[y,yi], Elz:2}], and E[y,z]] can also be expressed as linear iterations with identical
dynamics but different initial conditions.

Lemma 3: Consider the second moments @f, yx, by, and z;, and letE[azal], Elyyl], E[bib]],
E[z:2]], Elaxbl], and E[y,21]) be denoted by, ®;, Uy, Ay, =5, and T respectively. Then, the
evolutions ofl[', @, V., A, =, Tk, VE > 1, are described by the following iterations (where All
denoten? x n? identity matrices):

Ty = [¢PF + (1 = Q)I|T 1 [¢PF + (1 — )I]" + q(1 — g)[I — PF)diagTx_1)[I — PF]”, (54)

Oy = F[¢°T + q(1 — g)diag(Ty)| F7, (55)
Uy = [qPF + (1 = )I|W 4y [¢PF + (1 — g)1]" + q(1 — )l — PFdiag(W,_,)[I — PF|", (56)
Ak = F[@* Vi + q(1 — g)diag W) | F7, (57)
Sk = [qPF + (1 — )15 1 [¢PF + (1 — )] + ¢(1 — ¢)[I — PF]diag=x_1)[I — PF]”, (58)
Tri1 = F¢°Zx + q(1 — g)diagZ,) | F7, (59)

with initial conditions

Lo = Pyoyg P, (60)
O, =771 +q(1 - q)Fdiag Pyoys P7)F7, (61)
Wy = Pzl PT, (62)
A= §1§1T +q(1— q)Fdiaquozg]ST)FT, (63)
o = Pyozg P7, (64)
T, = @12{ +q(1— q)Fdiaqpyozng)FT. (65)

Proof: The derivation of (54), (55), (60), and (61), is the same as the derivation of (56), (57), (62),
and (63), thus the developments in the proof will only address the formerk Eof), it follows from
Lemma 1 and (28) that, = Py,. Then,

Iy = E[aoag] = pE[yoyg]]-:’T = ]Syoyg]ST, (66)
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and
®, =E[yy]] = E [F(ao o xg)(xg 0 aO)TFT} =FE [(ao o xg)(xg 0 aO)T] FT. (67)
Applying the results in Lemmas 1 and 2 to (67), it follows that
P, = ¢’F E [aoa] | F" + ¢(1 — q)F E [diag(aga )| F”

= (qF Pyo)(qF Pyo)™ + q(1 — q)F E[diag( Pyoys PT)|F"

= (¢Pyo)(qPyo)" + q(1 — q)Fdiag Pyoys P")F"

= 7,91 +q(1 — g)Fdiag Pyoy; PT)FT, (68)
where we used the fact th&P = P (refer to Eqg. (32).

For k > 1, and taking into account thai, = F'(ay_1 o zx_1), it follows that
E [(ar—10 (u—zp_1) + Pyk) (ak—10 (u— 1) + Pyk)T]
=E [(ak 10 (u— xR )) (ak 10 (u— xk_l))T} +E [(ak_l o(u— xk_l)) (pyk)T]
+ B [(Py) (a1 0 (u—241)) " |+ E [(Pye) (Pyi) ']
(

'y =

=E [(ak_l o(u— $k—1)) (ak_l o(u— xk_l))T} +E [(ak_l o(u— $k—1)) (Clk—1 o xk_l)T} FTpT
+ PFE [(ak_l ©) ajk—l) (ak—l e} (u — Ik_l))T] + pFE [(ak_l ©) «rk—l) (ak_l ©) ,I‘k_l)T] FTPT.
(69)
Then, from Lemma 2, (69) can be rewritten as
Fk :(1 — q)2 E [CLk_lCLZ_J + Q(l — q) E [dia(‘:(ak_lag_l)]

+q(1 —q) B [ay_1af | FTP" — q(1 - q) E [diag(ax_1af_,)]F" P"

+q(1—q)PFE [a_1af_,| — q(1 — q)PF E [diag(as_1a}_,)]

+ *PFE [ak_lackr_l}FTpT +q¢(1—q)PFE [diag(ak_la}f_l)]FTPT. (70)

By re-arranging terms in (70) and observing that; = E [a;_1a]_,] and diagl',_;) = E [diag(a;_1af_,)].
the result in (54) follows.
Additionally, from Lemma 2, it follows that
¢ =E [yk+1yg+1] =FE [(ak o xg)(Tk 0 “k)T} Fr
_F [(f E [aal] +q(1—q)E [diag(aka{)}] FT
= F[¢°Tx + q(1 — g)diag(Ty,)| . (71)
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To obtain the iterations foE, and T, the developments are very similar to the ones above. For
k=0,

—_
—

Zo = E [agby | = PE[yozl|PT = Py, P, (72)
and

T: =E[yi2{] = E [F(ag o zo)(zg 0 by) " F'] = FE [(ag o ) (o 0 by)" | F”
= (qF Pyo)(¢F Pz)" + q(1 — ) F E[diag Pyozg P")|F"
= (qPyo)(q¢P2)" + q(1 — ) Fdiag Pyozj P")F"
=752 + q(1 — q)Fdiag Pyozl P*)FT, (73)
where again we used the fact thaf®> = P (refer to Eq. (32).

For £ > 1, from Lemma 2 and (28), and taking into account that, =
F (b o xy), it follows that

= = [(ak 10 (u—mxp_q) —i—Pyk) (bk 10 (u—mxp_q) —i—sz)T]
=E [(ak vo (u—ap)) (bior o (= 21-0)) ]+ B [(ar-1 0 (u = 20)) (Poi) ']
E [(Pyx) (bk vo(u—m-1))' ] +E[(Pyy) (Pa)']
=E [(ak yo(u—zp1)) (bero(w—2x1))" ] +E [(a5_1 0 (u— a4 1)) (b1 0mp ) | FTPT
+ PFE [(ak_l o :L'k_l) (bk_l o(u— xk_l))T} + PFE [(ak_l o a?k_l) (bk_l o xk_l)T] FTpT
=(1 =) E [ar1bj_1] + ¢(1 — ¢) E [diag(ax1b;_,)]
+q(1 — ) E [ag_1bi_ | FTP" — ¢(1 — q) E [diag(a),_b}_, )| F* P"
+q(1— q)pFE [ak_lbfkr_l} —q(1— q)PFE [diaQak_lb}f_l)]
+¢*PFE [aj_1b]_|F"P" + q(1 — q)PF E [diag(ay_b]_, )| FT P".

F(ay o zy) and zp4q =

(74)
By re-arranging terms in (74) and observing that; = E [ak_lb}f

_,] and diag=;_,) = E [diag(a,_1b]_,)],
the result in (58) follows. Finally,
Tit1 = E [yer1211] = FE [(ay, 0 zp) (w0 b)) T | FT
_F [q2 E [a:b!] + q(1 - ) E [diag(akb;{)}] FT
= F[¢°Z) + q(1 — g)diag =) F7, (75)
which completes the proof.

[
Although omitted in the statement of Lemma 3, it is easy to kae the dynamics of\; = E[b.a] |
and©, = E[z,yl] can also be obtained by noting thaf, = ¥ and©, = T7.
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V. CONVERGENCEANALYSIS OF ROBUSTIFIED DOUBLE-ITERATION ALGORITHM

The previous Section established that the iterations governing the evolutibp, df, and =, are
identical except for the initial conditions. We will show next that the steady-state solutions of these
iterations are also identical up to a multiplicative constant. To see this, we will rewrite (54), (56),
and (58) in vector form using Kronecker products. For given matricesA, and B of appropriate
dimensions, the matrix equatiadih = AX B (where X is an unknown matrix) can be rewritten as a set
of linear equations of the formiB” ® A)z = ¢, wherez andc are the vectors that result from stacking
the columns of matriceX andC respectively, and> denotes the Kronecker prodficif matrices [26].

Let +, be the vector that results from stacking the columng pfand 5, the vector that results from
stacking the columns of diéb,). Then, it can be easily seen that (54) can be rewritten as

Vi :[[qu +(1—-q)]® [qu +(1-— q)]]]vk_1 + [q(l —q)[I — pF] ® [I — pFH%—l, k> 1.
(76)

Let G be a diagonal matrix with entrieS ((I — 1)n*+1, (I — 1)n*+1) = 1, VL =1,2,...,n?% and zero
otherwise. Then, the second term on the right hand side of (76) can be written as

q(1=q)([I = PFI@ [l = PF))Ak1 = q(1 — q)([l = PFI® [[ = PF])Gy1, k=1,  (77)
which leads us to
Y= [[aPF + (1= )] ® [qPF + (1 —q)I]+ q(1 — ) ([ = PF]1® [l — PF])G|y_1, k> 1. (78)

Let ¢, and&;, andd, be the vectors that result from stacking the column& gf=, andA, respectively.

Then, it is easy to see that the same recurrence relation as in (78) governs the evolytioanadfs,.
Theorem 1: Let P € R™*" be a column stochastic and primitive weight matrix associated with a

directed graptg = {V, &}, with V = {1,2,....n} andE CV x V. Let F = [I,, I, ... I,] € R"™",

where I,, is the n x n identity matrix, andP = [E,PT E,PT ... E,PT]T € R"*" where each

E; e R 4 € {1,2,...,n}, satisfiesE;(i,7) = 1 and has all other entries equal to zero. Then, for

anyq, 0 < ¢ <1, the matrixII defined as

= [¢PF+(1—q)I]®[qPF + (1 —q)I]+q(1 —q)([I — PF]®[I — PF])G (79)

is column stochastic, and it has a single eigenvalue of maximum magnitude at value one.
Proof: We show first column stochasticity of matik Let C' = qPF +(1—¢)I andD = I — PF,
so thatll = C®C'+¢q(1—q)(D® D)G. We will establish that @ C' is column stochastic and also show

“The Kronecker product of matrice$ = [a;;] € R™*™ and B = [b;;] € RP*4 is defined (see, e.g., [26]) as the block matrix
auB e alnB
A®B:= : € R™MPX,

amiB ... amn B
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that the column sums dP® D are all zero. By construction, the entries of tHecolumn of P € R™**"

are all zero, with the possible exception of the ones indexec@(’oyL )n + 7, z’), ,j=1,2,...,n,
each of which corresponds to tiig i) entry of matrix P. Then, it follows thatZ?jl P; = > Pi=
1,Vi = 1,2,...,n% The matrix PF € R"*" is also column stochastic by construction, as it results

from horizontally concatenating times the matrixP, i.e., PF = [P P ... PJ; therefore, the matrix'
is also column stochastic. The kronecker produofofiith itself, results in am* x n* block matrix of
the formC @ C' = [Cy Cy... C,2], whereC; = [c1;CT c;,CT ... ¢,2;,CT]". Then, it follows that the
sum of the entries of thé&" column of C; is ZZ; Ci(m,l) = (Z;il cz-j)(Zf; Crt). Sincezgi1 Cij
and Efil ¢, are the sum of the entries of th& and!" columns ofC' = ¢PF + (1 — q)I,+ (which is
column stochastic), it follows thaEZf:1 Cj(m,1) = 1, therefore,C' ® C' is also column stochastic.
Since PF is column stochastic, the column-sumsof= I — PF are zero. The kronecker product
of D with itself is of the formD ® D = [Dy Dy ... D,:], whereD; = [d;D" dy; DT ... d,2;DT]".
Using similar arguments as above, it follows tBaf’_, D;(m,1) = (32", di;)(32™, d,y) = 0, which
implies that the column-sums dP ® D are zero. The only thing left to establish tHatis column
stochastic is to show that all entries Of are nonnegative (from where it immediately follows that
II =C®C+q(l—q)(D® D)G is column stochastic). We argue nonnegativitylbfas follows:
due to the sparsity structure 6f in (79), the only nonzero entries 0D @ D)G will be in columns
(k—1)n?+k, k=1,2,...,n? thus except for entries in these columns, the entrid$ will be identical
to the corresponding entries @® C. From the structure oP F, entries ofC' @ C' andq(1—¢)(D® D)
can, respectively, take one of the following three forms:

(apij + (1 = @) (gpim + (1 = 0)), (80)
q(1 = q)(1 = pi ) (1 = pim), (81)

or
apij (apim + (1 — q)), (82)
—q(1 = @)pi;(1 = pim), (83)

or
quijplma (84)
q(1 — @)pijpim, (85)

wherep;; > 0 andp,, > 0 are the(s,j) and (/,m) entries of matrix”. For (80) and (81), the
corresponding entry ol is of the form

(gpi; + (1 = @) (qpum + (1 = @) + a(1 = @) (1 = piy)(1 = pum) = qpipim + (1 —q),  (86)
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and satisfie® < gp;;pim + (1 —¢) < 1 For (82) and (83), the corresponding entryIbfis of the form

api; (qpim + (1 = @) — a(1 — Q)pij (1 — Pum) = qpiDim, (87)

and satisfie® < gp;;pi,,, < 1. For (84) and (85), the corresponding entryldfis of the form

@*pijpim + 4(1 — Q)PijPim = qPijPim, (88)

and satisfie® < gp;;pi, < 1.
To prove the second assertion, we will show first that maftiX can be written via a permutation
of its indices in the form

u v

0o W\’ (89)

whereU is an irreducible column stochastic matrix dind,,_... W* = 0. SincePF is column stochastic,
we can assume that it corresponds to the weight matrix of some graphV, £}. We will show that
this graph has a single recurrent class plus a few transient states, from which the decomposifion of
in (89) follows. Let

V=1{(1,1),(2,1),...,(n,1),(1,2),(2,2),...,(n,2),...,(n,n — 1), (1,n),(2,n),...,(n,n)}. (90)

From the structure o F, it follows that for any node, j) € V, one-step transitions out @f, ;) are
to nodes of the form(m, i), with i € N, where,, is the set in-neighbors of node in the graph
G (with weight matrix P). From the structure ofF, it also follows that there are possibly several
rows of PF with all entries equal to zero, which means that a ntidg) that is associated with such
row cannot be reached from any other node; however, as already argued, from nodes of thejform
it is possible to reach nodes of the forfm, ), wherei € N/, . Clearly, the nodes corresponding to
rows with all entries being zero are transient. Note that the possibility of individual nodes that cannot
be reached from any other node being disconnected is ruled out as it is easy to see the only nonzero
diagonal entries o F' correspond to diagonal entries 8f which are strictly smaller than one.

Next we will show that from a nodg, j) whose corresponding row iRF has some nonzero entries
one can reach any other no¢ie, /) whose corresponding row iR F' has some nonzero entries. This
means that all non-transient nodes form a single recurrent class (as already argued all nonzero diagonal
entries are strictly smaller than one which means there cannot be absorbing nodes). This follows from
the fact that the graply is strongly connected, which means that for gny < V, there exists a path
betweenj and!. Let iy, 1, ...,7; denote the nodes traversed along the path betwesrd (. We will
show next that for any two non-transient nodesj), (r,1) € V there exists a path. As already argued,
from (i, 7) one can reach in a single hop any node of the fonm:), wherem is a neighbor of node
in the graphG. Sincei, is the first node traversed in the path betwgemd!, it follows that(i;,7) € %
can be reached in one step frqm;). By repeatedly using this argument, it follows that the sequence
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of nodes(iy, i), (i2,41), - - ., (i, %1), (1, 3;) forms a path betweefi, j) and(r,[), which means that any
non-transient node can be reached by any other non-transient node; thus, the set of non-transient node:
forms a single recurrent class. Clearly, the vertexisean be decomposed into a single recurrent class
and possibly several transient nodes. By re-ordering the nodes, it follow®fiatan be rewritten as

in (89) (see, e.g., [27, p. 126]). Furthermore, sinte (89) is irreducible, it follows thagQ + (1 —¢)I
(where is the identity matrix) is primitive. It follows that€' = ¢PF + (1 — ¢)I has a unique largest
eigenvalue of value one, i.e\; =1, and1 > |Ay| > -+ > |\2]. Let o(C) = {1, Ao, ..., Au2}. Then,
c(CeC)={N);, i=1,...,n, j=1,...,n}, including algebraic multiplicities in both cases [26,
p. 245]. Since\; = 1 is unique (multiplicity one) and\;| < 1, i = 2,...,n? it follows that the
eigenvalue olC' ® C' = [¢PF + (1 — ¢)I] ® [¢PF + (1 — ¢)I] of largest magnitude also takes value 1
and is unique. Sinc€ ® C' is column stochastic andl, = 1 is unique, we know that either' @ C' is
also primitive or it can be decomposed following a permutation of indices to the form [27, p. 126]:

[L M] | o1)

where L is a primitive matrix andimy_,., N* = 0.

We will show next thatll = C ® C' + ¢(1 — ¢)(D ® D)G has exactly the same nonzero entries as
C ® C and therefore can be decomposed following the same permutation of indices to the form in (91).
As argued before, due to the sparsity structuré/ah (79), the only nonzero entries 6D @ D)G will
be in columnsk — 1)n? + k, k=1,2,...,n% thus except for entries in the aforementioned columns,
the nonzero entries dil will be the same as those i ® C. For all other columns idl (that include
nonzero entries i D ® D)G), it was shown in (86)—(88) that the nonzero entriesllofire strictly
positive, from where it follows thall has the same sparsity structure@s C, which means thall
can also be decomposed in the form of (91) (for some matiicek/’, N’), and the resulting upper-right
block is also a primitive matrix. Therefor&l has a unique largest eigenvalue at one. [ |

The following two lemmas establish that the first and secondhemds ofa, andb,, andy, and z,
converge to the same solution up to a scalar multiplicatign. These two lemmas will be used to show

Ej:l 20(7)

that ask — oo, the random vector, = z, — ay;, for a = , Will converge almost surely to

Zr?/:]_ yO(])
v = 0. This suggests that, ds— oo, and whenevet;, is non]zero, each nodecan obtain an estimate
of a = Ziizwi by calculating the ratiay(7)/2x (7). We will also show that, in factz, will be larger

i=1 yO(j
than some threshold infinitely often.

Lemma 4. The first moments of;, and b, (also y, and z, asymptotically converge to the same
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solution up to scalar multiplication:

lim z, = o lim 7, (92)
k—o0 k—o0
lim b, = « lim @y, (93)
k—o0 k—o0
wherea = M
Zj:l Yo(J)

Proof: In Lemma 1, it was shown tha,,, = [¢P+(1—¢)I]7;, andZps1 = [¢P+(1—q)I]Zx with
7, = qyo, andz; = gz. SinceP is column stochastic and primitive, it follows thgt+(1—¢)!] is also
column stochastic and primitive. Thusny, o, Zx = alimg_, 7., Where from the column stochasticity
property it follows thats™"_, Z.(j) = ¢(1, (7)) and 37, 7,(j) = a( X, wo()), ¥k > 1; this
implies thata = % which establishes (92).

By noting thata, = Py,, andby, = Py, and using the fact thaP is column stochastic, it follows
that 37, @) = S5 @(i) = Sy w() and S5, B() = 5o Boli) = iy 20(9)- Since
qPF + (1 —q¢)I (i.e., the matrix that governs the dynamicsafand b;) is column stochastic and, as
shown in the proof of Theorem 1, has a single largest eigenvalue at value 1, a similar development to
the one above can be used to show (93). [ |

Lemma 5: Definew, = b, — aa; and denote by, the vector that results from stacking the columns
of X}, := E[wyw}]. Then, it follows that

Xk = X1, (94)

with xo = %o + o*v0 — (& + ) and 27:41 Xo(l) = 0.

Proof: Since X := Ewyw}| = E[bxbl] + o Elagal] — a(Elaxbl] + E[bral]) = ¥y + Ty —
a(Zx + Ayp), it follows that x, = ¥, + oy — a(& + 6). From (78) and subsequent discussion, it
follows that~y, = Ily,_1, ¥, = Hp_1, & = 11&,_1, andéy, = I16,_q, thusy;, = yy,_; + o?Ily,_; —
a(T1&_1 + M0y 1) = (W1 + @?yp_1 — (€1 + 0k_1)) = Hxp_1.
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In Lemma 3, it was shown thdt, = Pyoyl P”, Uy = Pz2f PT, andZ, = Pyozl PT = Al. Since
Y0, Yo, &0, @anddg result from stacking the columns of, ¥, =y, and A, it follows that

Z%(l) ZZFOZJ (Zyo >7 (95)

=1 j=1

> do(l) = ZZ‘I’O@J) = (

o)
Scen=$:3 - (o) (50)
‘)

i=1 j=1
(Zyo ) 97)

D 00 =D Aolig) = (
=1
where the last equality is obtained by taking into account that i) matriss column stochastic by

i=1 j=1
construction, and ii) for any, b € R, we have thad ", >>"_, ab” (i,5) = (3°, ) (32, br). Since

S0 it follows that 77, xo(l) = Sois (4n(0) + 0%70(1) — a(6o(l) + (1)) = 0. o

Theorem 2: Lety, andz; be the random vectors that result from iterations (28)—(29) and (30)—(31).
Define v, = z, — ayg, Wherea = %L : OE] — 0 almost surely. Furthermore, for every
J,» ve(j) = 0 ask — oo almost surely (i.e., for every, limy_,,, vx(j) = 0 with probability one).

Proof: The result follows from the first Borel-Cantelli lemma [28, Theorem 7.3.10]. Fokt &l0
and alle > 0, define the event,(¢) = {||vk|l.c > €}. We will first establish an upper bound on
S, Pr{Ex(e)} by noting thatPr{Ey(e)} = Pr{|lugllc > ¢} < Bl thus S°7° Pr{Es(e)} <
e o Ellluellee] < 3500 Efllvkll]. Note thatE [[Juglls] = (E[vf i)'/ = (trac&E[vw(]))!/? =
(tracdE[z.2{]) + aztraCE(E[ykyk]) — 2atraceE[y, 2L ])!/2. We will next show thafE [||vg||2] — 0 as
k — oo geometrically fast. Using Lemma 3, it can be establishedfhatv! | = E[z;.21 ]| +a? E[yyl | —
a(Elyrzl] + Elziyf]) = F[¢*Xe-1 + (1 — g)diag Xy—1)]| FT where X;_; = E[w,w}] as defined in
Lemma 5, thus the evolution & |v, v} ] is governed by the evolution of;,_; or by y;._; (the vector that
results from stacking the columns &f. ;). In Theorem 1, we showed that has a unique eigenvector
(with all entries strictly positive) associated to the largest eigenvalue 1. Then, the solution of (94) is
unique and equal to this eigenvector (up to scalar multiplication). Sinisea column stochastic matrix,
and Lemma 5 established thE}ﬁl xo(l) = 0, it follows that E;ﬁl xx(l) = 0,k > 0, and therefore
limy o xx({) = 0, VI. Additionally, it is well-known that the convergence of (94) is geometric with a
rate of convergence given by the eigenvalyeof I1 with the second largest modulus, which satisfies
|A2] < A\ = 1 (see, e.g., [27]). Thus, we have established thdi) — 0, VI, geometrically fast,
from where it follows that all the entries &[v;v}] go to zero also geometrically fast. Therefore, the
tracgE[v,v]]) also goes to zero geometrically fast, so thdt|v;||»] also goes td) geometrically fast.

It immediately follows that);”  E [||lvg]ls] < oo and therefored )~ , Pr{|v]| > €} < co. Then,
from the first Borel-Cantelli lemm&r{||v |l > € infinitely often} = 0 (or Pr{||v|/«c > € i.0.} = 0).

(96)

o =
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Finally, since, for everyj, ||vk|l > |vx(j)|, then, for everyj, Pr{||vk||s > €} > Pr{|ux(j)| > €}, and

thus, for everyj, > 7 Pr{|u.(j)| > €} < co. Then, by Theorem 7.2.4.c of [28], for evetyuvy(j) — 0

almost surely. ]
Theorem 2 has established that, in the limit as the numbeeddtionsk becomes large, the values

of vectorsy, and z, will be perfectly aligned so that, — ay, = 0 with probability one. Thus, in this

limiting case, each nodg can calculate the value ¢f by taking the ratiozzgg, as long as z,(j) # 0.

Note that, as also evidenced by the simulations provided for the small network of Fig. 1 (e.g., the plots

on the left and in the middle for Figure 3), the vectgrsand z;, do not converge in any wayhowever,

the valuesgy, andz, become perfectly aligned (with probability one), allowing each nptte calculate

é = Z:—gg The only problem here arises whep(;j) and z(j) have both value zero, which does not

constitute a violation o, — ay, = 0, but clearly does not allow nodgto calculate the desired value

é. This is evidenced also in the simulations provided for the small network of Fig. 1: for example, in

the plots in Fig. 4, the values of.(7) and z.(j) often go to zero (simultaneously) leaving their ratio

undefinec® The next two theorems essentially establish thaf), j = 1,2, ..., n, will be greater than

zero (in fact, greater than a constantthat will be specified) infinitely often. Note that, in subsequent

developmentsz(j) is denoted withz;[k] in order to remain close to the notation in (15)—(17).
Theorem 3: Consider a (possibly directed) strongly connected grépk (V,€) and the iteration

in (15)-(17), wherex;;[k], (j,i) € €, k = 0,1,2,..., are independent identically distributed (i.i.d.)

indicator R.V's as defined in (1), i.ex;;[k] = 1 with probability ¢ and z;;[k] = 0 with probability

1 — g, independently betweefy,:) € £ and independently for differerit. For everyj = 1,2,...,n,

define the event] = {zlkn] = C}, k > 1, where C' = i, Dif = max;ey{D] },

n = |V|, andm = |£|. Let (] denote the indicator of the evet], £ > 1, i.e,, ({ = 1 whenever

E,Z;, k > 1 occurs, anct“,g = 0 otherwise. Then, whatevek, (s, ..., (x,_1, We have that
Pr{z[(k+1)n] > C | ¢.¢_\,....d} > ¢", Vi (98)

Proof: Note that the iteration in (15) to (17) involves nonnegative quantities: since for gyery
z;[0] > 0, ¥y, it follows from (30)—(31) that, for every, z;[k] > 0, k£ > 0. Then, it is not hard to
establish that the total mdsd 1, in the system, defined as

n

My =Y 2l + 1+ > (ogilk] = malk — 1)(1 — 2[k]) | (99)

J=1 (4)e€

®Earlier, we established that, for largethe quantitiese[yx], E[zx], Elyryf ], Elzx2L] and E[y, 2] | converge, but this does not imply
any convergence for the values @f or zy.

®Since in the simulations for the plots in Fig. 4, each packet (including self-packets) can be dropped with prabahjliaf iteration
k, there is a nonzero probability that all packets destined for jodéll be dropped, causing both of its values at the next iteration
(yr+1(4) and zx11(5)) to be zero. For instance, in the simulation of Fig.z4(1) will be zero with probability at leastl — ¢)* = 0.81
because nodé will have value zero if both packets destined for it (including the self-packet) are dropped.

"This notion is discussed in great detail in Part Il of this paper.
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satisfies
Mpii=n, forall k=0,1,2,....

[This follows from the fact that\, = >

-1 %[0] = n and the observation that

n

Misr = Dzl +1]+ Y (05lk] = 7k — 1)) (1 — wy[k])

Jj=1 (§i)e€
= > (ogilk] = malk — Maglk] + Y (o5lk] = 7lk — 1)(1 — 253[k))
(J)e€ (JR)e€
= > (ogilk] = malk — 1])
(J)e€
= > (sz‘[k‘ — 1]+ %Zj[k‘] — ojilk — Vajilk = 1] = 75k = 2](1 — 25k — 1]))
(§i)e€ J
= Y [k + (0jilk = 1] = 75k = 2])(1 — zi[k — 1]) ,
Jj=1 =

which is equal taM,.]

The definition of M, in (99) involves the summation of + m nonnegative quantities, namely,
zilk+1] for j =1,2,...,n andmy;[k+ 1] := (0;i[k] — 5[k — 1]) (1 — x;;[k]) for (j,7) € £. We can think
of these quantities as follows; [k + 1] is the mass at nodg whereasn;;[k+ 1] is the mass waiting to
get transferred to nodgfrom node:. Since all of these quantities are nonnegative, at least one of them
is larger or equal to. .. Regardless of whether this quantity is associated with a node (sayjnpde
or a link (say link(j*,i*)), this mass has at least one way of reaching any rnaufeinterest in graph
G via a path of length at most — 1 (because the grapf is strongly connected): in particular, there
is at least one path of length at most- 1 from node;* to node: and all the links in this path have
weight at IeastD%. If all these links are activated, which occurs with probability! (¢” in the case

max

of link (j*,7*) because the mass needs to first transfef*Jpthen a fraction(ﬁ)"‘1 of the mass
will transfer to node; in at mostn steps. Then, since for every z;[k] > 0, k£ > 0, independently of
the values ofz[in], I = 1,2,...,k, Pr{z[(k+1)n] > C | ¢, ¢_,,...,¢]} > ¢* obtains, whatever
(1, G, - - -5 G- Finally, for everyj , Priz[(k+1)n] > C | ¢, ¢G_,, ..., 0} =1—Pr{z[(k+1)n] <
Cl¢L Gy Y <1=Pr{zl(k+1)n] =0 ¢ ¢y, ..., ¢} < 1—¢" , whereD; is the in-degree
of nodej. [ ]
Given a sequence of events, F, ..., F,,... defined on some probability space, the next theorem
(which we do not prove) states the 1912 Borel criterion for establishing whether the event that infinitely
many of theE), occur, denoted by F}, i.0}, will occur with probability one or zero (see, e.g., [29],
[30]). This result, together with the result in Theorem 3 will be used to establish that, for gviry
eventE; = {z;[kn] > C}, k > 1 occurs infinitely often.
Theorem 4: Let{E,}, kK =1,2,..., be a sequence of events defined on some probability space. Let
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(x be the indicator function of the eveh},. Let Pr{Ey.1 | (x, (x—1, - - -, (1} denote the conditional prob-
ability of the eventE; given the outcome of previous trials.df< pj, < Pr{Eji1 | (& Cee1,-- -, G} <
py, for everyk, whatever(;, (s, . .., ¢, then i)Pr{E} i.o.} = 0if > 72 p} < oo, and ii)Pr{E; i.0.} =1
if > k1 Pk = 00

Theorem 5: Consider a (possibly directed) strongly connected grépk (V,€) and the iteration
in (15)—(17). For every; = 1,2,...,n, define the evenE,{ = {zj[kn] > C}, k > 1, whereC =
R Dj . = maxjep{D; }, n = [V|, andm = |€]. Then,Pr{E} i.0.} = 1. |

Proof: Theorem 3 established that, for everyPr{z;[(k + 1)n] > C | ¢, {_1,--., G} > q™

Define pj, = ¢", then it follows that)",”, p, = oo, and by the second assertion in Theorem 4, we
conclude that, for every, Pr{E} i.0.} = 1. u

The final piece is to establish that whenewgk] > C, which occurs infinitely often, each node will
be able to calculate an estimatewby calculating the ratiay;[%k|/z;[k] and this estimate will converge
to 1/« ask goes to infinity.

Theorem 6: For eachy, letk =4, 1,,... be an increase sequence of time steps for whjot > C.
Then, almost surely

ity 1
lim |4l L (100)
n—oo | zZj[tn] o
Proof: Sincez;[k] > C for k = t,,t,, ..., it follows thati’fjm ~-1< %{/ﬂ[t] Also, in the proof
jlin

of Theorem 3, we established that, = n,k > 0, from where it follows thatz;[t,] < n, therefore
wlin] 1> awslinl =zl 1y Theorem 2, we established thaty;[k] — z;[k]| — 0 almost surely, which

zj[tn] a —

implies that the subsequengey;|t,| — z;[t,]| — 0 almost surely, then sinc€ < n, we have that

ay;tn] — z[tnl
aC

yilta] 1

< lim

T n—oo

lim =0 (101)

almost surely. ]

VI. CONCLUDING REMARKS

In this paper, we proposed a method to ensure robustness of a class of linear-iterative distributed
algorithms against unreliable communication links that may drop packets. We used statistical-moment
analysis and the Borel-Cantelli lemmas to establish the correctness of the proposed robustified algorithm.
In Part Il of this paper, we establish similar convergence properties by recasting the problem as a finite
inhomogeneous Markov and using coefficients of ergodicity commonly to used in analyzing this type

of Markov chains.
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