REPORT DOCUMENTATION PAGE Form Approved OMB NO. 0704-0188

The public reporting burden for this collection of information is estimated to average 1hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
24-01-2012 Conference Proceeding -

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

CSRI Summer Proceedings 2010 WO11INF-08-1-0141

5b. GRANT NUMBER

5¢c. PROGRAM ELEMENT NUMBER
622618

6. AUTHORS 5d. PROJECT NUMBER

Eric C. Cyr, S. Scott Collis
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 8. PERFORMING ORGANIZATION REPORT

State University of New York (SUNY) at Buffalc NUMBER

Sponsored Projects Services
The Research Foundation of SUNY on behalf of Univ at Buf

Buffalo, NY 14260 -
9. SPONSORING/MONITORING AGENCY NAME(S) AND 10. SPONSOR/MONITOR'S ACRONYM(S)
ADDRESS(ES) ARO

U.S. Army Research Office 11. SPONSOR/MONITOR'S REPORT

P.O. Box 12211 NUMBER(S)

Research Triangle Park, NC 27709-2211 52962-EG.10

12. DISTRIBUTION AVAILIBILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department
of the Army position, policy or decision, unless so designated by other documentation.

14. ABSTRACT

This report was prepared as an account of work sponsored by an agency of the

United States Government. Neither the United States Government, nor any agency thereof,

nor any of their employees, nor any of their contractors, subcontractors, or their employees,

make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed,

15. SUBJECT TERMS

Mathematics; Computer Science

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 15. NUMBER [19a. NAME OF RESPONSIBLE PERSON
a. REPORT [b. ABSTRACT |c. THIS PAGE ABSTRACT OF PAGES Surajit Sen

uu uu uu uu 19b. TELEPHONE NUMBER
716-907-4961

Standard Form 298 (Rev 8/98)
Prescribed by ANSI Std. Z39.18

Report Title
CSRI Summer Proceedings 2010
ABSTRACT

This report was prepared as an account of work sponsored by an agency of the

United States Government. Neither the United States Government, nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed,
or represent that its use would not infringe privately owned rights. Reference herein to

any specific commercial product, process, or service by trade name, trademark, manufacturer,
or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government, any agency thereof, or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily state or reflect
those of the United States Government, any agency thereof, or any of their contractors.

Conference Name: CSRI Summer 2010
Conference Date: August 01, 2010

CSRI SUMMER PROCEEDINGS 2010

The Computer Science Research Institute
at Sandia National Laboratories

Editors:

Eric C. Cyr and S. Scott Collis
Sandia National Laboratories

December 17, 2010

Computer Science Research Institute

ﬁa?dial \
ational /’1
Laboratories AasC

SAND2010-8783P

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of
Energys National Nuclear Security Administration under contract DE-AC04-94AL85000.

il

CSRI Summer Proceedings 2010

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process dis-
closed, or represent that its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name, trademark, manufacturer,
or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government, any agency thereof, or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily state or reflect
those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the
best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports @adonis.osti.gov

Online ordering: http://www.doe.gov/bridge

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd

Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders @ntis.fedworld.gov

Online ordering: http://www.ntis.gov/ordering.htm

E.C. Cyrand S.S. Collis iii

Preface

The Computer Science Research Institute (CSRI) brings university faculty and students to
Sandia National Laboratories for focused collaborative research on computer science, com-
putational science, and mathematics problems that are critical to the mission of the laborato-
ries, the Department of Energy, and the United States. CSRI provides a mechanism by which
university researchers learn about and impact national- and global-scale problems while si-
multaneously bringing new ideas from the academic research community to bear on these
important problems.

A key component of CSRI programs over the last decade has been an active and produc-
tive summer program where students from around the country conduct internships at CSRI.
Each student is paired with a Sandia staff member who serves as technical advisor and men-
tor. The goals of the summer program are to expose the students to research in mathematical
and computer sciences at Sandia and to conduct a meaningful and impactful summer research
project with their Sandia mentor. Every effort is made to align summer projects with the stu-
dent’s research objectives and all work is coordinated with the ongoing research activities
of the Sandia mentor in alignment with Sandia technical thrusts and the needs of the NNSA
Advanced Scientific Computing (ASC) program that has funded CSRI from its onset.

Starting in 2006, CSRI has encouraged all summer participants and their mentors to con-
tribute a technical article to the CSRI Summer Proceedings, of which this document is the
fifth installment. In many cases, the CSRI proceedings are the first opportunity that students
have to write a research article. Not only do these proceedings serve to document the re-
search conducted at CSRI but, as part of the research training goals of CSRI, it is the intent
that these articles serve as precursors to or first drafts of articles that could be submitted to
peer—reviewed journals. As such, each article has been reviewed by a Sandia staff member
knowledgeable in that technical area with feedback provided to the authors. Several articles
have or are in the process of being submitted to peer-reviewed conferences or journals and
we anticipate that additional submissions will be forthcoming.

For the 2010 CSRI Proceedings, research articles have been organized into the follow-
ing broad technical focus areas — computational mathematics and algorithms, uncertainty
quantification and sensitivity analysis, meshing and optimization, computational applica-
tions, architectures and networking, and visualization and software engineering — which are
well aligned with Sandia’s strategic thrusts in computer and information sciences.

We would like to thank all participants who have contributed to the outstanding technical
accomplishments of CSRI in 2010 as documented by the high quality articles in this proceed-
ings. The success of CSRI hinged on the hard work of 36 enthusiastic student collaborators
and their dedicated Sandia technical staff mentors. It is truly impressive that the research
described herein occurred primarily over a three month period of intensive collaboration.

CSRI benefited from the administrative help of Dee Cadena, Deanna Ceballos, Denis
Laporte, Mel Loran, and Bernadette Watts. The success of CSRI is, in large part, due to their
dedication and care, which are much appreciated. We would also like to thank those who
reviewed articles for this proceedings — their feedback is an important part of the research
training process and has significantly improved the quality of the papers herein. Finally,
we want to acknowledge the ASC program for their continued support of the CSRI and its
activities which have benefited both Sandia and the greater research community.

Eric C. Cyr
S. Scott Collis

December 17, 2010

v

CSRI Summer Proceedings 2010

E.C. Cyr and S.S. Collis A

Table of Contents

Preface

EC.Cyrand S.S. Collis i ii
Computational Mathematics and Algorithms

E.C.CyrandS.S. Collis 1
The Nonlocal Cattaneo-Vernotte Equation

N.J. Burchand R.B. Lehoucq 3
Discontinuous Velocity Least Squares Finite Element Methods for Improved Mass

Conservation

J. Lai, P. Bochev, L. Olson, K. Peterson, D. Ridzal, and C. Siefert 15
Application of a Discontinuous Petrov-Galerkin Method to the Stokes Equations

N.V. Roberts, D. Ridzal, P.B. Bochev, L.D. Demkowicz, K.J. Peterson, and

C.M. Siefert e e e 32
An Investigation of Block preconditioners for Unsteady Navier-Stokes

E.G. Phillips, E.C. Cyr, and J.N. Shadid 47
Efficiently Computing Tensor Eigenvalues on a GPU

G. Ballard, T. Kolda, and T. Plantenga 59
Uncertainty Quantification and Sensitivity Analysis

EC.Cyrand S.S. Collis i 77
Stochastic Galerkin FEM

R. Tipireddy, E.T. Phipps and R.G. Ghanem 79
Uncertanity Quantification of a Radiation Damaged Bipolar Junction Transistor

C.W. Miller, R.S. Tuminaro, E.T. Phipps, and H.C. Elman 91
Krylov Recycling for Climate Modeling and Uncertainty Quantification.

K. Ahuja, M.L. Parks, E.T. Phipps, A.G. Salinger, and E. de Sturler 103
Stability of ODEs with Colored Noise Forcing

TJ. Blass and L.A. Romero 112
Comparison of Sensitivity Analysis Methods for Nuclear Reactor Neutronics

W. C. Proctor, B. M. Adams, C. Rabiti and H. S. Abdel-Khalik 124
Meshing and Optimization

EC. Cyrand S.S. Collis 139
Quadratic Element Mesh Untangling and Shape Optimization via the Target-Matrix

Paradigm

N. Voshell, P. Knupp, and J. Kraftcheck 141
A New Strategy for Untangling 2D Meshes

JW. Franks and P. Knupp 152
Mesh Vertex Reordering for Local Mesh Quality Improvement

JParkand PKnupp e e e e e 166
Multifractal Dimensions using Maximal Simplices and Python Extensions to TEVA-

SPOT

J. Berwald, D. Day, S. Mitchell and A. Zomorodian 178
Benders Decomposition in Pyomo

P Steele and J. Watson 196
Stochastic Optimization of an Energy Model

K. Hunter, J. DeCarolis, S. Sreepathi, J. Watson 206
An ACRO Implementation of the Hybrid Optimization Algorithm EAGLS

JW. Orsiniand G.A. Gray e 214

Computational Applications
E.C.Cyrand S.S. Collis i 219

vi

CSRI Summer Proceedings 2010

An Electron Force Field Study of Shocked Polyethylene

P.L. Theofanis, T.R. Mattsson and A.P. Thompson 221
Flux-Corrected Transport Algorithm for the Remapping step of a FEM-ALE method

A. Lopez Ortega and G. Scovazzi v v v i v i i i 233
Molecular Dynamics Study of Single Conjugated Polymer Nanoparticle

S. Maskey, F. Pierce, D. Perahia, S.J. Plimpton and G.S. Grest 250
Charge Traps and Local Atomic Relaxations in Amorphous Silicon Dioxide

N.L. Anderson, PA. Schultz, and A. Strachan 258

Development of algorithm for nanoparticle collision simulation using Molecular
Dynamics method

Y. Takato, J.B. Lechman, and S. Sen 272
Numerical Simulation of the Performance of a Resonant Tunneling Diode

A.S. Costolanski and A.G. Salinger 284
Architecture and Networking

E.C.Cyrand S.S. Collis i 295
A Lightweight, GPU-Based Software RAID System

M.L. Curry, H.L. Ward, A. Skjellum, and R.B. Brightwell 297
Super-Scale Real-Time Network Simulation on the Cray XT

Nathanael Van Vorst, Kevin Pedretti, Ron Oldfield 309
Application Support for Resilience in Exascale Systems

M.R. Varela and K.B. Ferreira and R. Riesen 320
Statistical Analysis of HPC Alerts and Developments in Root Cause Analysis

J.M. Vaughan, J.R. Stearley, S.A. Mitchell, and G. Michailidis 331
Techniques for Managing Data Distribution in NUMA Systems

AM. Merritt and K.T. Pedretti, 343
Integrating Router Power Models into the Structural Simulation Toolkit

K.D. Thompson, A.F. Rodrigues, and M. Hsieh 354
Process Layers for Discrete Event Simulation of Computer Systems

C.D. Kersey and A.F. Rodrigues 361
Reliability Simulation for Structural Simulation Toolkit

A.S. Williams and A.F. Rodrigues 371
Visualization and Software Engineering

EC. Cyrand S.S. Collis i 377
Information Visualization using VisTrails Technology

W.B. Silva and J.F. Shepherd 379
Comparison of Open Source Visual Analytics Toolkits

JR. Harger and P.J. Crossno i vii i iii e 389
Optika: A GUI Framework for Parameterized Applications

K. Nusbaum and M. A. Heroux 401
Epetra/AztecOO and related to Tpetra/Stratimikos and related: A Conversion Guide

K.F. Fermoyle and M.A. Heroux 410

Testing Engineering Software: Development and Testing of the Cubit Program
B.J. Hardy and BW. Clark, 422

E.C. Cyr and S.S. Collis 1

Computational Mathematics and Algorithms

Articles in this section focus on development of numerical algorithms and novel compu-
tational models. This includes discretization techniques, preconditioning methodologies, and
implementation of numerical algorithms on novel architectures.

Burch and Lehoucq discuss the nonlocal Cattaneo-Vernotte equation for anomalous dif-
fusion, introducing nonlocal boundary conditions. The effects of relaxation and nonlocality
are studied with a finite element formulation. Lai et al. present a new least squares finite el-
ement formulation for the Stokes equations that has improved mass conservation. To achieve
this, the formulation utilizes a novel discontinuous approximation of the velocity. Results
demonstrating the usefulness of this approach are given. Roberts et al. develop a discon-
tinuous Petrov-Galerkin method for the Stokes equations. There study and the numerical
experiments exposed several interesting avenues for future study. Phillips et al. investigate
block preconditioners for the unsteady Navier-Stokes equations. The authors perform numer-
ical experiments comparing several techniques for approximate the pressure Schur comple-
ment. Ballard et al. present an efficient implementation of the shifted symmetric higher order
power method for computing tensor eigenvalues. They show that a 70x speedup over a serial
implementation can be achieved when implemented on a GPU.

E.C. Cyr
S.S. Collis

December 17, 2010

CSRI Summer Proceedings 2010

CSRI Summer Proceedings 2010 3

THE NONLOCAL CATTANEO-VERNOTTE EQUATION

NATHANIAL J. BURCH* AND RICHARD B. LEHOUCQ'

Abstract. We introduce the nonlocal Cattaneo-Vernotte equation by including a relaxation effect in the nonlocal
diffusion equation, both of which are models for anomalous diffusion. This equation has two different interpretations:
as a generalization of Fick’s first law in terms of a nonlocal flux and memory kernel and as an equation arising from
the generalized master equation for a continuous time random walk. Both interpretations are discussed and the latter
describes a scaling of relaxation time and nonlocality. A relationship to fractional diffusion equations in the limit
of vanishing relaxation time and nonlocality is also established. The main contribution of this paper is to introduce
nonlocal boundary conditions for the nonlocal Cattaneo-Vernotte equation, and the ensuing variational and finite
element formulations. Examples are given where the effects of relaxation time and nonlocality are studied.

1. Introduction. The classical Cattaneo-Vernotte equation
T
W + Ewtt = AWxx, (L.1)

where 7/2 > 0 is the relaxation time and a > 0 is the diffusion coefficient, is a model for
diffusion that admits finite speeds of propagation, specifically v2a/r. When w is a tempera-
ture field, (1.1) is a model of hyperbolic heat conduction [14]. Further, (1.1) arises from the
classical balance law, w,(x, t) = —¢g.(x, t), and a generalization of Fick’s first law in which the
flux is given by a convolution of the gradient of the field w and a relaxation kernel [12],

"2 =1
q(x,t) = —af —exp (—)wx(x, r)dr. (1.2)
0T T/2
The assumption (1.2) also takes the more familiar form of Cattaneo’s equation [7],
q+ %q, = —awy. (1.3)
The classical diffusion equation
Wp = QWi (1.4)

yields an infinite speed of propagation because its fundamental solution, i.e., the solution to
(1.4) with an initial condition given by the Dirac delta function, is

1 (x2)
exp|——|,
4nat dat

which is positive for all x, for any arbitrarily small ¢. This property has been referred to in the
literature as “unphysical” since disturbances are instantaneously propagated. Moreover, (1.4)
is incapable of capturing transient dynamics of the field in situations involving short times,
high frequencies, and short wave lengths [14]. One approach to remedy these issues is to
introduce a relaxation time [12] and a special case of this is the classical Cattaneo-Vernotte
equation (1.1), which overcomes the unphysical properties associated with infinite speeds of
propagation present in (1.4).

The diffusion equation (1.4) may be derived by combining the classical balance law
w; = —¢, and Fick’s first law

w(x, t) =

q = —awy. (1.5)

*Colorado State University, burch@math.colostate.edu
fSandia National Laboratories, rblehou @sandia. gov

4 The Nonlocal Cattaneo-Vernotte Equation

When the diffusion process is anomalous, e.g., does not obey Fick’s first law (1.5), other
models have been proposed. Examples include the fractional diffusion equation

v = —c(=A)"?v, 0<a<2, (1.6)

which includes (1.4) as the special case @ = 2 and ¢ = a, and the nonlocal diffusion equation

1
we) = 1 fR Uy, 1) — x, D)B(x = y) dy. (1.7)

The equation (1.7) has a probabilistic interpretation as a generalized master equation for a
continuous time random walk (CTRW). The rate of diffusion associated with u(x, f) depends
upon points y # x, e.g., the rate of diffusion is the difference in the rate at which u enters x
at time 7, 17! fR u(y, 1) ¢(y — x) dy, and the rate at which u departs x at time ¢, 1~ u(x,). The
mean wait-time between steps is A and, given the radial probability density ¢, the diffusion
coefficient is given by

1
). s*¢(s) ds.
Like (1.4), both (1.6) and (1.7) give rise to infinite speeds of propagation. We note (1.7) has
been used as a model for peridynamic heat conduction [4] and variations of it have appeared
in numerous applications [2, 6, 10].
This paper focuses on the nonlocal Cattaneo-Vernotte equation

(X, 1) + = (x,1) = ! f(”()’,) = u(x, 1)) ¢p(x — y)dy, (1.8)
2 B Jr

where ¢ is a radial probability density function, § is the mean wait-time between steps, and
7/2 > 0 is again the relaxation time. In (1.8), the diffusion coefficient is

%}Lsch(s)ds.

In the spirit of (1.7), (1.8) has replaced the second-order spatial derivative in (1.1) with the
nonlocal integral operator and, consequently, is a model for anomalous diffusion. With the
introduction of nonlocal boundary conditions, following [5], (1.8) becomes a model for non-
local hyperbolic heat conduction on bounded domains. The nonlocal Cattaneo-Vernotte equa-
tion (1.8), like (1.7) has a probabilistic interpretation. Thus, (1.8) is a model for anomalous
diffusion that can be derived from a CTRW framework.

The contribution of this paper is to investigate the effect of a nonzero relaxation time by
comparing solutions of nonlocal boundary value problems corresponding to (1.7) and (1.8).
The former was studied extensively in [5] and a conforming finite element method, which
depends on the variational framework presented in [11], to approximate solutions to these
nonlocal boundary value problems is used. We demonstrate a relationship between relaxation
time and nonlocality and the solutions of (1.8) converge to those of (1.6), as both relaxation
time and nonlocality vanish. Consequently, a relationship between (1.6)—(1.8) in the limit of
vanishing relaxation time and nonlocality is established.

The rest of this paper is organized as follows. Section 2 demonstrates how (1.8) arises
from a generalization of Fick’s first law in which the flux is given by a convolution of a mem-
ory kernel and a nonlocal spatial operator acting as the gradient of the field, in contrast to
(1.2). The relationships between (1.6)—(1.8) are also reviewed. Section 3 relates the nonlo-
cal Cattaneo-Vernotte equation to a continuous time random walk via the generalized master
equation. Nonlocal boundary conditions for (1.8) are reviewed in Section 4, as is the varia-
tional formulation and ensuing finite element method. Section 5 provides numerical examples
to illustrate the effects of nonzero relaxation time and nonlocality.

N.J. Burch and R.B. Lehoucq 5

2. Generalization of Fick’s first law and a nonlocal flux. In this section, we demon-

strate (1.8) arises via the classical balance law, u, = —o,, and a generalization of Fick’s first
law,
"2 r—1r\(1
1) = - - —p(x,t')|dr, 2.1
o(x, 1) foTeXp(7/2)(ﬁp(x)) (2.1)
where

1
plx,0) == —% f f (u(x + (1 = D)z,) — u(x — Az, 1))z¢(z) dA dz.
R JO

Differentiating (2.1) with respect to ¢ and rearranging reveals

T 1
o == 2.2
o+ S0 ﬁp, (2.2)
and so
1 T 1 T
U = _Bpx + Eer = _pr - Eutt (2.3)
Noll’s Lemma I [15, 18] implies that
1 1
——Pﬁxf)=—LfOKX+Lf%-M&fDM@dL (2.4)
B B Jr

and so (1.8) is established.

We now demonstrate a formal relationship between (1.8) and (1.1) in the presence of van-
ishing nonlocality. Fix 7 > 0, let 8 = &2, where & > 0, and define the symmetric probability
density

1
be(s) := g¢(s/e), (2.5)

where the given symmetric density ¢ satisfies'

fs2k¢(s)ds <oo, k=0,1,2....
R

As e — 0, ¢.(x — y) weights points nearby x more heavily, relative to points further away.
Necessarily, by specifying the second moment appropriately, the Fourier transform of ¢ has
an expansion of the form

36 =1 —algl? + o), a>0.

With ¢, in place of ¢ and assuming a formal Taylor expansion is valid for sufficiently small
&,

1 1 o o 1 Fulx, 0
Bp(x,t)——ELL ;[MX(X,I)Z +;Ez W ¢£(Z)d/ldz

1 o & u(x,n 1 o
=—aux(x,t)+gz ppeT (2k—1)!fRZ $:(2) dz
k=2

P u(x, f) 24D

= —au(x,1) + — fzzk(lﬁ(z) dz
kzz;‘ Ox*=1 2k -1)! Jr

I The assumption of symmetry of ¢ implies that the odd moments are zero.

6 The Nonlocal Cattaneo-Vernotte Equation
and, utilizing (2.2), we obtain an approximation of (1.3),
T 2
o+ EQ, = —au, + O(&”). (2.6)

Thus, in the absence of nonlocality, the nonlocal Cattaneo-Vernotte equation (1.8) reduces to
the classical Cattaneo-Vernotte equation (1.1). The effect of the density ¢, with 8 = &% as &
decreases is to “localize” the diffusion of (1.8). Indeed, taking ¢(x—y) = d(x—y)+ad”’ (x—y)
in (1.8) recovers (1.1). Moreover, if T = O(&?), (2.6) reduces to

0 = —au, + O(&?), Q2.7)

approximating (1.5). Thus, in the absence of both relaxation time and nonlocality, the nonlo-
cal Cattaneo-Vernotte equation (1.8) reduces to the classical diffusion equation (1.4).

Finally, we establish a relationship to the fractional diffusion equation (1.6). Suppose ¢
is a symmetric probability density function with the expansion

&) =1-clél” +o("). 0<a<2 (2.8)
for ¢ > 0, so that, defining ¢, via (2.5),

$o(&) = 1 = ce”|E]" + o(s71E]%).

Assuming 8 = &%, the Fourier transform of (1.8) gives

—~ — I~ —
&0 + S0 = — (3.6~)&
&

1 _
= ;(—ca‘llfl” + o(e” €|)ulé, »
= —clé|"uté, 1) + O("|€]"),

implying that u, in a formal sense, is approximately given by the fractional Cattaneo-Vernotte
equation

V(6 1) + %v,,(x, 1) = —c(=A)v(x, 1). (2.9

Further, if 7 = O(g%), u is approximately given by the fractional diffusion equation (1.6),
where equality can be shown in special cases of this limit via characteristic function tech-
niques. Evidently, the nonlocal boundary value problems corresponding to (1.8) are then
related to those of the fractional Cattaneo-Vernotte equation (2.9) and fractional diffusion
equation (1.6) in this limit.

3. The Nonlocal Cattaneo-Vernotte Equation and CTRWs. Another perspective of
the nonlocal Cattaneo-Vernotte equation (1.8) comes from CTRWs. We consider a separable?
continuous time random walk with a wait-time density w and a radial step-length density ¢.
One form of the generalized master equation, which is an equation for the time evolution of
the joint probability density function for the state of the CTRW, is

u(x, 1) = \fo Air-1) f (u(y,t') — u(x, t'))p(x — y)dydt’, (3.1)
R

>The assumption of separable simply states that wait-times and step-lengths are independent.

N.J. Burch and R.B. Lehoucq 7

where the Laplace transform of the memory kernel A is determined by that of w via

sw(s)
T—a(s)

We refer the reader to [3, 16] for a derivation and thorough discussion of (3.1). The memory
kernel A captures potential memory effects due to the wait-times. In fact, only when A(f) «
6(1) is the underlying CTRW Markovian, i.e., wait-times are exponentially distributed and are
therefore memoryless.

Literature demonstrating the use of (3.1) in the modeling of diffusion processes is plen-
tiful. For instance, taking A(?) = %60) gives rise to the nonlocal diffusion equation (1.7).
If ¢ is a weighted average of Dirac measures on an integer lattice, then (3.1) describes the
probability density of the CTRW on thqg lattice; see [13]. Moreover, see [16, 17], subdiffusive
processes have been studied by taking A(s) = s'™, u € (0, 1). The following lemma provides
conditions for (3.1) to yield (1.8).

Lemma 3.1. The nonlocal Cattaneo-Vernotte equation (1.8) is obtained from (3.1) by
taking

A(s) = (3.2)

, _lg _t—t’
A(t—t)—ﬁTexp(T/Z) 3.3)

and imposing the restriction B > 2t1. The assumption (3.3) is tantamount to

ﬁexp(—%t), p =11,
w(t) = 2 W
m eXp (T) sinh [ﬁT

Proof. First, (3.4) is implied from (3.2) and (3.3) via Laplace transform techniques and,
in the process, we find § > 27 if and only if w(f) > O for all ¢ > 0, which is necessary for w
to be a probability density. Insertion of (3.3) into (3.1) and differentiating with respect to ¢
yields

(3.4)
t], B> 2t.

2 12
uy(x,1) = —;uf(x, 1)+ Bt f (u(y,) — u(x,))p(x — y) dy
R

and thus, upon rearranging, (1.8). 0

The special case 8 = 27 implies W ~ Gamma(2, 7), where W is the wait-time random
variable. For the duration of the paper, we restrict’ ourselves to 8 > 27 so that we have
an interpretation from a CTRW perspective. This restriction has appealing consequences as
well, e.g., positivity of solutions and conservation of mass. We note

w(s) =

Z E(Wk — Bs +o(s),

prs? + 2ﬁs +2 L

which shows that the mean wait-time is indeed 8. Recalling also (2.8), we compute the so-
called pseudo mean square displacement [17] of a random walker,

th]/a
f Xulx,t)dx ~ 212,

_th]/a

3This restriction is necessary for a CTRW interpretation, but might be relaxed in other contexts.

8 The Nonlocal Cattaneo-Vernotte Equation

which is the mean square displacement on a bounded interval that grows in size with . When
a €(0,2),2/a > 1and (1.8) is thus a model for anomalous superdiffusion [17]. One considers
a pseudo mean square displacement in this situation, since the true mean square displacement
is infinite for any a € (0, 2). In the special case when « = 2, the diffusion is not anomalous.

4. The Nonlocal Cattaneo-Vernotte Equation on Bounded Domains. The results in
[11] provide a variational formulation for nonlocal boundary value problems for (1.8). This
follows closely to that presented for the nonlocal diffusion equation (1.7) in [5]. Before giving
these variational formulations and describing the ensuing finite element method, we establish
some notation.

We consider the bounded domain Q = (0, 1). Define the bilinear form

1
Bi(u,v) := 3 ff(u(y, 1) — u(x, 1))(v(y) — v(x)) p=(x — y) dy dx, 4.1)
1 J1

t{hfdx<a%,
1

and V; denote possible choices for the subspaces of test and trial functions, with

1 1
1% |]R\(0,1)= 0} and V((),l) = {V (S V((),l) ’ ‘fo vdx = L upy dx},

where u(x, 0) = up(x) is a given initial density.
The nonlocal homogeneous Dirichlet (I = R) and Neumann (I = (0, 1)) boundary value
problems for (1.8) are presented together: Find u € V; x (0, o0) such that

where I € {R, (0, 1)}. Let V; = L*(I), where

LZ(I) = {v

VRZZ {VGVR

u(x, 1) + %un(x, 1) = é fl (u@, 1) —u(x,0))p(x —y)dy, x€(0,1),

u(x,0) = up(x), x€(0,1),
u(x,0) =0, x € (0,1).

4.2)

We present a useful result from [9].
THEOREM 4.1 (Emmrich and Weckner (2006)). Suppose

1 pl
Ko = esssup,; |[Ko(x)] < 0o and «:= f f |K(x, y)I” dydx < co.
0 Jo
For a given uy € V;, there is a unique mild solution u € C*([0,T1; V) to

1
%uz(x,)+ uy(x, 1) = f K(x, y)u(y, 1) dy — Ko(x)u(x, 7).
0

We remark that existence and uniqueness of solutions to (4.2) follows from Theorem 4.1
with

2 2
K(x,y):= —¢(x—y) and Ko(x) = f —¢(x —y)dy.
8 1B
The variational formulations to (4.2) are: Find u € V; x (0, o0) such that

| |
1

f uvdx + If uvdx + =By(u,v) =0, YvevV,
0 2 Jo B

u(x,0) = up(x), x€(0,1),
u(x,0) =0, x€(0,1).

4.3)

N.J. Burch and R.B. Lehoucq 9

We refer the reader to [5, 11] for more details concerning the variational formulations.

The nonlocal Dirichlet boundary condition constrains the field # on R \ (0, 1), which
is analogous to the classical Dirichlet boundary condition that does so on {0, 1}. For the
nonlocal Neumann boundary condition, the integral in (4.2) is only over (0, 1) rather than
all of R. This constrains diffusion to occur only inside (0, 1), i.e., density neither enters nor
exits (0, 1), which is analogous to the classical Neumann boundary condition. Further, since
B,1)(u, 1) = 0, the compatibility condition necessary for the Neumann problem to possess a
solution is

1
f u(x,t)ydx :=ug, Vt>0, “4.4)
0

which is a statement that the integrated quantity u is conserved for all time.

THEOREM 4.2. Let u € C*([0,T1; V) be the unique solution to (4.2). Then, u,(x,t) —=0,
as t — oo, for almost every x € (0, 1).

Proof. Multiply (4.2) by u,(x, t), integrate over x € (0, 1), and then integrate in ¢ to obtain

T

I \f;u,z(x, tHydx = # (B (ug, ug) — By(u, u)) — \f(; ﬁu?(x, s)dxds

and thus
! !
Bi(uo, uo) = By(u,u) + 2B f f u?(x, s)dxds > 28 f f u?(x, s) dx ds.
0 JI 0 JI

Since B;(ug, ug) < oo, u,(x,t) € L*(I) for all ¢ and
e, Dy = f, 2(x, 1) dx —> 0.

The completeness of LX(]) implies that u,—g with [|g|l;2;) = 0, 1.e., g = 0 almost everywhere
and, thus, u, — 0 for almost every x € (0, 1). O
A stationary solution to (4.2), uy € V;, solves

fl‘(us(y) —us(x)p(x —y)dy =0, ¥x € (0,1).

The results in [8, 11] demonstrate that the unique stationary solution of the homogeneous
Dirichlet problem is u; = 0 and that of the homogeneous Neumann problem is u; = up.
Consequently, a simple corollary to Theorem 4.2 is u(x,t) — uy(x) as t — oo for almost
every x € (0, 1).

4.1. A Semi-discrete Finite Element Formulation. To formulate the finite element
method, we partition (0, 1) into n subintervals Q; and let y;(x) be the indicator function for
Q;. We denote the space of piecewise constant functions on the subintervals €; by V('f) b Note

any u, € V!

o1 X (0, 00) can be written

(6,0 = D ().

J=1

The discrete variational problem is then: Find u;, € V(% 1y X (0, o0) such that

My + %Mj’/ - —Ay,

10 The Nonlocal Cattaneo-Vernotte Equation

where M and A are the mass and stiffness matrices defined by

ffzﬁg(x ydydx, i#}

M;; = Q| and Alj
f ¢e(x —y)dydx, i=.
Q; JI\Q;

For the Neumann problem, in light of (4.4), u;, € V" = x (0, o) is extracted by enforcing that

0,1)

n
PRZGIE
j=1

5. Numerical Experiments and Examples. In this section, we present two examples
to demonstrate various properties of numerical solutions of the nonlocal Cattaneo-Vernotte
equation on bounded domains. In each example, ¢, is defined in (2.5) and we use the scaling

B =21 =ce”, (5.1

where @ and ¢ are given in (2.8), so that we have both the probabilistic interpretation in
Section 3 and a relationship to fractional diffusion established in Section 2.

The first example examines a nonlocal Cattaneo-Vernotte equation with homogeneous
Neumann boundary conditions that admits an analytic solution for any initial condition. We
demonstrate that solutions can be viewed as perturbations of solutions to the corresponding
nonlocal diffusion equation (1.7) and we investigate the effects of a nonzero relaxation time.
In Example 2, we consider the discontinuous initial condition

0. 0<x<05,
_ 52
to () {L 05<x<l. (5-2)

and investigate the effects of vanishing relaxation time and nonlocality, i.e., letting e—0, on
the solutions to a nonlocal Dirichlet boundary value problem. We use Lévy stable densities
of various stability indices to illustrate the relationship to classical and fractional diffusion in
this limit.

Example 1. Consider the nonlocal homogeneous Neumann Cattaneo-Vernotte equation

&2 6 1
U+ iy = — f (u(y, 1) — u(x, 1))pe(x — y)dy, x€(0,1),
24 82 0 5 3
u(x,0) = up(x), x€(0,1), (5-3)
u;(x,0) =0, x€(0,1),

where
Pe(s) = X (- ss)(s) e>1,

so that @ = 2, ¢ = 1/6, and, consequently, 5 = £2/6 and T = £2/12. The goal of this example
is to consider the case of increasing ¢, e.g., increasing nonlocality.

In this example, since € > 1 and supp(¢(x — y)) contains (0, 1) for all x € (0, 1), (5.3)
reduces to an ordinary differential equation whose solution can be given as a convex combi-
nation of the initial condition uy(x) and the constant 1,

ue(x, 1) = uo(l = £o(7)) + Le(Duo(x), (5.4

N.J. Burch and R.B. Lehoucq 11

() =¢e 12t ! sinh 12 1 ! t|+ cosh 12 1 ! t
(1) =exp|—-— Sa— _\, - — —4[1==—t]].
; P g2 1—% g2 2¢e &2 2¢e

The function £.(#) € (0, 1] is a strictly decreasing function that tends to zero as t — co. If
up(x) = up for some x € (0, 1), then x is a fixed point, i.e., u(x,t) = up(x), for all ¢+ > 0.
Also, the monotonicity of £, implies u(x,t) , up if up(x) < up and, likewise, u(x, 1) \, up
if up(x) > up as t —> 0. As & —> o0, {.(t) — 1 for any fixed # < co. Thus, u.(x,) can be
well-approximated by uy(x) for arbitrary large finite time by choosing & sufficiently large.

In [5], it was shown that the solution of (1.7) with homogeneous Neumann boundary
conditions,

where

6 1
U = ; f(; (u(y, 1) — u(x, l))(ﬁg(x —-y)dy, x€(0,1),

(5.5)
u(x, 0) = up(x), x€(0,1),
for the same ¢, as in (5.3), is also given by a convex combination of u,(x) and u,
ug(x, 1) = up(l = £4(@) + La(®uo(x), (5.6)

where
3
Lat) = exp (——3r) :
&
Thus, solutions of (5.3) can be given by

ue(x, 1) = ug(x, 1) + (L(t) = La())uo(x) — uo),

the sum of the solution to (5.5) and a perturbation (£.(¢) — £4(¢))(uo(x) — up) due to a nonzero
relaxation time. Since uo(x) and u are fixed for a given initial condition, we study the differ-
ence u.(x,t) — ug(x,) simply by investigating £.(t) — £4(?).

In Fig. 5.1, we plot £.(f) — {4(¢) for t € [0,3] and € € [1,3]. As t—=oc0, £ (1) — {4(t)—=0,
but more slowly for increasing &. This reflects agreement of stationary solutions for the two
problems. For small values of ¢, {.(f) > {,(#), which is an effect of the nonzero relaxation
time. After this short time frame, {.(r) — {4(t) = O, i.e., the solutions agree exactly at some
point in time ¢ > 0, and then {.(f) < {(¢) for the duration of time. These observations hold
for all &, but are less dramatic as & increases.

0.08 0.08]
0.06) 0.06]
0.04 0.04

0.02 0.02]

—0.02
0.07)

05 1 15 2 25 3 0.5 1 1.5 2 2.5 3

(a) e=1landt€[0,3] (b) e €[1,3]and t € [0, 3] (c) e=5/4andt € [0,3]

FiG. 5.1. The vertical axis is {(t) — £4(t) in all three panels. In panels (a) and (c) the horizontal axis is t € [0, 3].

12 The Nonlocal Cattaneo-Vernotte Equation

0.5 {—s 0.5]
— \'\\\\ T

’\ \

0 0 o

0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
(a) a=2,e=1/4 b) a=2,e=1/8) a=2,e=1/16

0 02 04 0.6 08 1 0 02 04 0.6 08 1 0 02 04 0.6 0.8 1

(d) a=3/2,e=1/4 (e) a=3/2,e=1/8) a=3/2,e=1/16

0.5]
()
0 02 04 0.6 0.8 1 0 02 04 0.6 08 1 0 02 04 0.6 08 1
(g)a=1,e=1/4 (h)y a=1,6=1/8 (i) a=1l,e=1/16
1 —_— 1 e 1
N
0.5] 0.5] 0.5
0 0 U
0 02 04 0.6 08 1 0 02 04 0.6 08 1 0 02 04 0.6 08 1
§)a=1/2,e=1/4 k) a=1/2,e=1/8 1) a=1/2,e=1/16

FiG. 5.2. Each panel shows solutions to the nonlocal homogeneous Dirichlet problem for different « and €. The
density ¢% is used, where ¢* is a Lévy stable density with index of stability a. Since ¢ = 1, we take 2t = &*. The
vertical axis in each panel is the value of up(x,t) and the horizontal axis is x. The ten different solution profiles in
each panel correspond to the solutions at ten different times, t € [0,0.25].

Example 2. The fractional diffusion behavior of boundary value problems for (1.8) is exam-
ined by choosing ¢ = ¢“ to be a symmetric and centered Lévy stable density with stability
index @ € {2,3/2,1,1/2}. As explained in Section 2, a represents the fraction of the Lapla-
cian in the equations (1.6) and (2.9). Such Lévy stable densities, normalized so that ¢ = 1,
are characterized, via the Lévy-Khintchine representation, through their Fourier transforms,

N.J. Burch and R.B. Lehoucq 13

ie.,

¢"(s) = F ' (exp (—I€1") (), (5.7)

see [1, §§ 1.2.5]. We use (2.5) to define ¢ and the cases @ = 2, 1 yield closed-form expres-
sions for ¢Z:

1\ 5
=
€ &

m(s? + &2)’

which are Gaussian and Cauchy densities, respectively. Although other values of o do not
admit a closed-forms for ¢Z(s), they can be estimated by approximating (5.7). Regardless of
a, ¢* is symmetric and unimodal. For @ < 2, the second moment is infinite and for a < 1, all
moments are infinite.

Fig. 5.2 plots the time-evolutions of the approximate solutions to the nonlocal homoge-
neous Dirichlet boundary value problem described in (4.2) given by the finite element method
with mesh spacing 7 = 5-10™* and ¢ € [0, 0.25]. We consider a € {2,3/2, 1, 1/2} and various
&. The solutions of with ¢2 behave asymptotically, with respect to &, as solutions to the clas-
sical diffusion equation (1.4). However, the asymptotic behavior of solutions of with ¢2*? is
given by a fractional Laplace parabolic equation (1.6). Consequently, the magnitude of the
jump discontinuity in the initial data decays more slowly in these latter cases.

REFERENCES

[1] D. Applebaum. Lévy Processes and Stochastic Calculus, volume 93 of Cambridge studies in advanced math-
ematics. Cambridge, 2004.
[2] G. L. Aranovich and M. D. Donohue. Eliminating the mean-free-path inconsistency in classical phenomeno-
logical model of diffusion for fluids. Physica A: Statistical Mechanics and its Applications, 373:119-141,
2007.
[3] K. Barmak, M. Emelianenko, D. Golovaty, D. Kinderlehrer, and S. Taasan. Towards a statistical theory of
texture evolution in polycrystals. SIAM Journal on Scientific Computing, 30(6):3150-3169, 2008.
[4] F. Bobaru and M. Duangpanya. The peridynamic formulation for transient heat conduction. International
Journal of Heat and Mass Transfer, 53(19-20):4047-4059, 2010.
[5] N. Burch and R. B. Lehoucq. Classical, Nonlocal, and Fractional Diffusion Equations. International Journal
for Multiscale Computational Engineering, 2010. To appear.
[6] C. Carrillo and P. Fife. Spatial effects in discrete generation population models. Journal of Mathematical
Biology, 50(2):161-188, 2005.
[7] C. Cattaneo. Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena, 3(3):21, 1948.
[8] E.Chasseigne, M. Chaves, and J. D. Rossi. Asymptotic behavior for nonlocal diffusion equations. Journal de
mathématiques pures et appliquées, 86(3):271-291, 2006.
[9] E. Emmrich and O. Weckner. The peridynamic equation of motion in non-local elasticity theory. In III
European Conference on Computational Mechanics. Solids, Structures and Coupled Problems in Engi-
neering, Lisbon, Springer, volume 19, 2006.
[10] G. Gilboa and S. Osher. Nonlocal operators with applications to image processing. UCLA CAM Report, pages
07-23, 2007.
[11] M. Gunzburger and R. B. Lehoucq. A nonlocal vector calculus with application to nonlocal boundary value
problems. Multiscale Modeling and Simulation, 2010. To appear.
[12] D.D. Joseph and L. Preziosi. Heat waves. Reviews of Modern Physics, 61(1):41-73, 1989.
[13] V. M. Kenkre, E. W. Montroll, and M. F. Shlesinger. Generalized master equations for continuous-time
random walks. Journal of Statistical Physics, 9(1):45-50, 1973.
[14] G. Lebon, D. Jou, and J. Casas-Véazquez. Understanding Non-equilibrium Thermodynamics: Foundations,
Applications, Frontiers. Springer Verlag, 2007.
[15] R. B. Lehoucq and O. Anatole von Lilienfeld. Translation of Walter Noll’s “Derivation of the Fundamental
Equations of Continuum Thermodynamics from Statistical Mechanics”. Journal of Elasticity, 100:1-20,
2010.

14

The Nonlocal Cattaneo-Vernotte Equation

[16] F. Mainardi, M. Raberto, R. Gorenflo, and E. Scalas. Fractional calculus and continuous-time finance II:

the waiting-time distribution. Physica A: Statistical Mechanics and its Applications, 287(3-4):468-481,
2000.

[17] R. Metzler and J. Klafter. The random walk’s guide to anomalous diffusion: a fractional dynamics approach.
Physics Reports, 339(1), 2001.

[18] W. Noll. Die Herleitung der Grundgleichungen der Thermomechanik der Kontinua aus der statistischen

Mechanik. Indiana Univ. Math. J., 4:627-646, 1955. Original publishing journal was the J. Rational

Mech. Anal. See the English translation [15].

CSRI Summer Proceedings 2010 15

A DISCONTINUOUS VELOCITY LEAST SQUARES FINITE ELEMENT METHOD
FOR THE STOKES EQUATIONS WITH IMPROVED MASS CONSERVATION

JAMES LAIY, PAVEL BOCHEV!, LUKE OLSON!, KARA PETERSON** DENIS RIDZAL'l AND CHRIS
SIEFERT*

Abstract. Conventional least squares finite element methods (LSFEM) for incompressible flows conserve mass
approximately. In some cases, this can lead to an unacceptable loss of mass and unphysical solutions. In this report
we formulate a new, locally conservative LSFEM for the Stokes equations which computes a discrete velocity field
that is point-wise divergence free on each element. To this end, we employ discontinuous velocity approximations
which are defined by using a local stream-function on each element. The effectiveness of the new LSFEM approach
on improved local and global mass conservation is compared with a conventional LSFEM employing standard C°
Lagrangian elements.

1. Introduction. Least-squares finite element methods (LSFEMs) have been applied
to incompressible flows with varying success. The key issue is that LSFEMs are residual
minimization schemes and hence conserve mass only approximately. For some problem con-
figurations, this can lead to an unacceptable loss of mass and unphysical solutions. A locally
conservative mimetic LSFEM has been defined for the Stokes equations in [4] and [3, Sec-
tion 7.7] using compatible finite element spaces. However, the mimetic LSFEM requires
non-standard boundary conditions specifying the normal velocity and the tangential vorticity
on the domain boundary. So far, it has not been extended to the more common and practically
important velocity boundary condition and it is not clear whether or not this can be done.

Mass conservation in least squares methods for the Stokes equations with the velocity
boundary condition has been studied extensively in literature [6, 9, 10, 13, 14, 15]. Loss
of mass in LSFEMs can be countered by mesh refinement [13], high order elements [16],
modifying the least-squares functional [15], weighting the continuity equation more strongly
[10], or by enforcing it on each element by Lagrange multipliers [9]. However, neither one
of these approaches can be deemed completely satisfactory.

Mass conservation does not improve proportionally with mesh refinement—leading to
an impractical alternative. High order elements require an increased amount of storage and
computation and the improvements to mass conservation are not commensurate with the ad-
ditional cost [13, 15]. Modifying the least squares functional with terms that promote mass
conservation has proven to be very successful [15], however, it is an ad hoc way of improving
mass conservation and may depend on the problem on hand. Another alternative is to enforce
element-wise mass conservation using Lagrange multipliers [9]. While this approach yields
exact mass conservation on each element, it also results in a saddle-point system, thereby
negating the main reason one may want to consider LSFEMs.

An idea that has not been explored much in the context of LSFEMs is the use of dis-
continuous elements. Discontinuous LSFEM can be viewed as generalizations of LSFEMs
for transmission and mesh-tying problems; see [1], [3, Section 12.10] and [8], from a fixed
number of subdomains to an arbitrary number of subdomains.

In this report we formulate, in two stages, a new locally conservative LSFEM for the
Stokes equations with the velocity boundary condition by using discontinuous velocity ap-
proximations. Our starting point is a weighted L? least-squares formulation [2] employing

$University of Illinois at Urbana-Champaign, Department of Computer Science, jhlai2 @illinois.edu
ISandia National Laboratories, ppboche @sandia.gov
IUniversity of Tllinois at Urbana-Champaign, Department of Computer Science, lukeo@illinois.edu
**Sandia National Laboratories, kjpeter @sandia.gov
fSandia National Laboratories, dridzal @sandia. gov
*¥Sandia National Laboratories, csiefer@sandia. gov

16 Discontinuous Least Squares Finite Element Methods

conventional C° elements and the velocity-vorticity-pressure (VVP) form of the Stokes equa-
tions. The first stage relaxes the continuity of the velocity field only and adds new terms
which penalize the normal and the tangential jumps of the velocity across the element inter-
faces. We show that by adjusting the relative importance of the normal and tangential jump
terms this intermediate discontinuous velocity LSFEM can lead to noticeable improvements
in the mass conservation. However, the weights required for improved mass conservation
differ from problem to problem, thereby making this formulation insufficiently robust for
practical problems.

At the second stage, we proceed to define the discontinuous velocity field on each el-
ement as the curl of a local stream-function. This guarantees that the velocity is pointwise
divergence free on each element. Thus, our approach can be interpreted as implementation
of the intermediate discontinuous velocity LSFEM using locally divergence free basis for the
velocity. This idea bears some similarity with the discrete LSFEM in [7] with two crucial dis-
tinctions. First and foremost, the method in [7] is not a discontinuous formulation; in order to
cope with the discontinuity in the approximating space this method replaces the differential
operators by weak discrete versions defined using integration by parts. The second distinc-
tion is that we eliminate completely the velocity and work directly with the stream function,
whereas [7] retains the original fields.

The resulting discontinuous stream-function-vorticity-pressure (SVP) LSFEM is locally
conservative and offers a much improved global and local mass conservation compared to its
parent LSFEM employing C” elements. We demonstrate the usefulness of the new formula-
tion through a series of numerical examples.

1.1. Notation. For simplicity we restrict attention to two space dimensions and bounded,
simply connected regions Q c R? with Lipschitz-continuous boundary. In what follows we
use the standard notation H*(€) for the Sobolev space of all square integrable functions which
have square integrable derivatives of orders up to k. The norm and inner product on H* are
| - |lx and (-, -)x, respectively.

As usual, when k = 0 we write L*(Q), (-,-) and | - [lp. The symbol H/(€2) denotes a
subspace of H'(Q) of functions whose trace vanishes on 9Q and Lg(Q) is the subspace of L?
fields with vanishing mean. The dual of Hé (Q) is the space H~'(Q) with norm

oy = sup 222 (1.1)
veH)(Q) Vil
Vector valued fields and their associated function spaces are denoted by bold face sym-
bols, e.g., w = (u;,u») is a vector field in two dimensions and H'(Q) is the Sobolev space of
vector fields with components are in H'(Q). In two dimensions, the curl is defined for scalar
and vector functions as

wa=[_‘2], VXu=uy —uy. (1.2)

We use K to denote a partition of Q into finite elements K. In two dimensions K can be a
quadrilateral or a triangle and the interface between two elements is an edge e. The sets of all
interior and boundary edges in the mesh are denoted by &(Q) and &(I'), respectively. Finally,
E=E(Q) U EN) is the set of all edges in the mesh.

The standard C° finite element spaces of degree r > 0 on quadrilateral and triangular
grids are denoted by Q, and P,, respectively. We will also need their discontinuous versions
[O,] and [P,]. When the type of the element is not important we write R, and [R,] with the
understanding that R, = Q, on quadrilaterals and R, = P, on triangles.

J. Lai, P. Bocheyv, L. Olson, K. Peterson, D. Ridzal, and C. Siefert 17

Discontinuous finite element methods require various jump terms on element interfaces.
Let K, and K_ be two adjacent elements that share edge ¢ and denote the velocities on each
element by u* and u~ respectively. Define the jump in normal and tangential components
across e as

+ —

[u-nj=u"n"+u 'n", [uxnl=u"xn"+u xn. (1.3)

where n* and n~ are the outer normals on K" and 0K~ respectively. The jump of a scalar
function is defined as usual by the difference

Wl=y" -y~ (1.4)

2. The continuous prototype least-squares method. In this section we review the
weighted L? least-squares method for the Stokes equations which is the prototype for the
discontinuous, locally conservative LSFEM. In terms of the primitive variables the governing
equations assume the form

-Au+Vp =f onQ
2.1)
V-u =0 onQ

where u and p are the velocity and the pressure, respectively, and f is a given vector func-
tion specifying the body force. The system (2.1) is augmented with the velocity boundary
condition

u=0 onodQ 2.2)

and the zero mean pressure constraint

LdeZO. 2.3)

The first equation in (2.1) governs conservation of momentum while the second (continuity
equation) governs conservation of mass.

Least-squares methods for (2.1), (2.2) and (2.3) are usually defined using an equivalent
first-order form of the Stokes equations. This eliminates the need for globally H>-conforming
finite elements which require C! continuity and are difficult to construct. There are several
first order formulations of the Stokes equations to choose from, the most common being the
velocity-vorticity-pressure formulation in which the vorticity

w=Vxu (2.4)
is introduced as a new variable. Using the identity,
VxVxu=-au+V(V-u) (2.5)

and the continuity equation, we arrive at the velocity-vorticity-pressure (VVP) first order
formulation of the Stokes equations

VXxw+Vp =f onQ
w—-Vxu =0 onQ (2.6)
V-u =0 onQ

The VVP system is augmented with the velocity boundary condition (2.2) and the zero mean
constraint (2.3).

18 Discontinuous Least Squares Finite Element Methods

2.1. Weighed L? least-squares method. LSFEMs define unconstrained minimization
problems via residual minimization over an appropriate Hilbert space. Thus, the LSFEM
solution is given by the solution to the minimization of a norm-equivalent functional devised
using the squares of the residuals of each equation of the partial differential equation in the
appropriate norm. The resulting discretized system that minimizes the functional over the
finite element subspace is guaranteed to be symmetric and positive definite.

One can show that for the VVP system with velocity boundary conditions, the negative
norm functional

I, piH) = IVxw+Vp—fI2, + VX u-olf+IV-ull; 2.7

is norm equivalent on X_; = [Hé (] x LX(Q) x L(%(Q). A least squares principle for (2.6) is
to minimize (2.7) over X_.

The negative norm (1.1) admits the following characterization [3].

Tueorem 2.1. For any u € H'(Q)

el = fJ=2)""ulf; 2.8)

This theorem reveals that the negative norm is not easily computable because it requires
inversion of the Laplace operator. Therefore, to obtain a practical LSFEM it must be approx-
imated. The diagonal operator

(=2)""2 v hT (2.9)

gives a simple, yet sufficiently accurate for our purposes approximation of the negative norm
[3]. Using (2.9) the first term of (2.7) is approximated by

IVxw+Vp—fl}, ~ B IVxw+Vp -1l (2.10)
We arrive at the following discrete version of (2.7)
Jﬁl(uh,(uh, Ph,f) -

2.11
A P S L R
where (1", ", p") € X" = [R(Q) N Hé(Q)]2 XR_1(QNH Q) XR_ N L%(Q), r>1. We
refer to (2.11) as the weighted L, method' since it is composed of L, norms of the squares
of the residuals of each equation scaled by an approximate mesh weight. In what follows we
restrict attention to the lowest-order admissible space, i.e., r = 2.

One can show that (2.11) is well-posed and optimally convergent formulation [3]. In
particular, the following theorem holds [3].

THEOREM 2.2. Let (", ", p") € Xg be a solution to (2.11), and (u, p, h) € X be the exact
solution to (2.6), such that u € H}(Q), w € HX(Q) and p € H*(Q). There exists a constant
C > 0 such that

lu = w|f} + [l = ||, + [lp = P]l, < € (huls + llwlls + 1pll) - (2.12)

!For simplicity, in our implementation of the weighted method the one dimensional nullspace of the pressure
is eliminated by setting the pressure on the boundary to zero at one point instead of enforcing (2.3). These two
approaches to handling the one dimensional nullspace of the pressure are equivalent; however, the choice affects the
convergence of the iterative method used to solve the system. A comparison can be found in [3].

J. Lai, P. Bochev, L. Olson, K. Peterson, D. Ridzal, and C. Siefert 19

From Theorem 2.2, we see that using a quadratic/biquadratic approximation for the ve-
locity and linear/bilinear approximations for the vorticity and pressure result in optimal con-
vergence rates. Nonetheless, for simplicity we work the equal-order version of the finite
element space

X;’ = (Ry(Q) N HY(Q))* X Ro(Q) N H'(Q) X Ry N L(Q). (2.13)
We use (2.11) as a basis for our discontinuous velocity LSFEM.

2.2. Mass conservation in the weighted L’ least-squares method. Theorem 2.2 as-
serts that the weighted L? method is optimally accurate for all sufficiently smooth exact so-
lutions of the Stokes equations. This means that asymptotically ||V - u|| — 0, as h — 0.
However, on a given fixed mesh size this term cannot be guaranteed to be as small as may
be required, nor could its convergence to zero be assured for insufficiently smooth velocity
fields. In this section we show that these concerns are not unfounded and that in some cases
mass loss in the weighted least-squares method can be significant.

To this end we consider two standard test problems: the backward-facing step flow,
shown in Fig. 2.1, and a channel flow past a cylinder, shown in Fig. 2.2. For the backward-
facing step problem the domain is the rectangle [0, 10] x [0, 1] with a reentrant corner at
(2,0.5). The velocity boundary condition is specified as follows. On the inflow (x = 0) and
outflow (x = 10) walls

w, = [S(y - 0-3)(1 —y)} and u,, = [y(lo— y)] ’ (2.14)

respectively. Along all other portions of the boundary u,,,; = 0 is enforced.

The geometry of the second test problem is given by the rectangle [—1, 3] x[—1, —1] with
a disk of radius r = 0.6 centered at (0, 0), removed from the domain. The velocity boundary
condition for this problem is set as follows. On the inflow (x = —1), outflow (x = 3), top
(y = 1) and bottom (y = —1) sides

(I =y +y)

Wi = Woyr = Wyt = [0 . (2.15)

and on the surface of the “cylinder” u.,; = 0. Therefore, velocity is set to zero on all parts of
the boundary except for the inflow and the outflow portions of JQ.

Note that in both test problems specification of the velocity boundary condition is com-
patible with V - u = 0 because fluid enters and leaves the domain only through the inflow and
the outflow boundaries, respectively and

f ui,,-ndé’:f U, - hdl (2.16)
Lin Lou

To assess the mass conservation properties of the least-squares methods considered in this
report we measure the total mass flow across several vertical surfaces connecting the top and
the bottom sides of the computational domains. The lines marked by “S” in Figures 2.1-2.2
show two typical examples of such surfaces for the two test problems. Because the greatest
mass loss for the backward-facing step is expected near the reentrant corner we always place
one of the surfaces at x = 2. For the second test problem we always measure the flow across
the surface at x = O where the domain narrows due to the cylindrical cutout.

Because for both test problems velocity is zero on all parts of the boundary except I';,
and I',,,, from the divergence theorem it follows that

fu-nind€=fu'n5d€. (2.17)
T s

20 Discontinuous Least Squares Finite Element Methods

10 Uwall

Uin
0.5 S Uout

2.0 Uwall 10.0
FiG. 2.1. Geometry of the first test problem: backward-facing step.
1.0 Uwall
Ucyl
. Y
Ugn Uout

-1.0 Uywall 3.0

FiG. 2.2. Geometry of the second test problem: flow past a cylinder.

Therefore, mass conservation can be quantified by the precent mass loss across the surface S,

defined as follows:
f u~n,-,1d€—fu-nsd€
Ly N

fu'n,-nd{’
r

in

(2.18)

Mipss =

To assess mass conservation properties of the weighted L? formulation we solve the two
test problems using the following modified version of the weighted L? least-squares func-
tional

J®, o, pli gt = 019,
RV x o+ Vp" £+ |V x =] + |V} '

implemented using the equal order space (2.13). This modification has been proposed in
[10] as a way to improve mass conservation in least-squares methods. By increasing u we
increase the relative importance of the residual of the continuity equation, thereby promoting
mass conservation. In our study we use u = 1, u = 10 and u = 20.

Our results are summarized in Figure 2.3. We see that for u = 1 the least-squares solution
of the backward-facing step problem experiences severe mass loss in excess of 50% of the
total mass near the reentrant corner. Increasing u does improve conservation, however, mass

J. Lai, P. Bochev, L. Olson, K. Peterson, D. Ridzal, and C. Siefert 21

mu=1

—20

% mass loss
% mass loss

FiG. 2.3. Percent mass loss of (2.19) for the backward-facing step (left panel) and the flow past a cylinder (right
panel) test problems.

loss remains unacceptably high even for u = 20. We note that significant increase of yu is
not recommended as this will reduce the accuracy of the other terms in the functional and
compromise, e.g., conservation of momentum. Indeed, by increasing the weight of a single
term in the least squares functional, it is in effect decreasing the weight of the other terms.
Thus, by choosing a large weight for ¢ to promote mass conservation, we are effectively
demoting conservation of momentum. The mass loss in the second test problem is not as
severe but still significant at 7%. In this case, setting u = 20 helps to bring down the loss of
mass across the narrowings to about 2%.

RemARK 1. Exact element-wise mass conservation with C° elements has been achieved
in the so-called restricted least-squares method [9]. In the restricted LSFEM mass conserva-
tion on each element is added as an explicit constraint leading to the following constrained
minimization problem:

. hoh ho .
min JI, (", W, pi)
X

' (2.20)
subject to f (V . uh) dK =0, VKe¥K
K

Although (2.20) returns a solution with exact element-wise mass conservation, the system
is typically solved using Lagrange multipliers and results in a saddle-point system which
negates the advantages of using least-squares in the first place. The constrained optimization
problem can also be solved by a penalty approach, in which case one is led back to a for-
mulation similar to (2.19) with a very large u. Because the penalty must be strong enough
to enforce the constraint accurately, the penalty formulation of (2.20) suffers from the same
disadvantages as (2.19).

In the next section we explore an alternative approach to improve mass conservation in
least-squares methods based on allowing discontinuous velocity spaces in the formulation.

3. Discontinuous velocity least-squares finite element method. Numerical results in
the last section show that least-squares methods with C° elements can suffer from severe
mass loss which in some cases may exceed 50% of the total mass. Furthermore, the remedies
available to counter this loss are not satisfactory: weighting strongly the continuity equation
residual as in (2.19) reduces conservation of momentum, while using the restricted formula-
tion (2.20) leads to a saddle-point problem and negates the advantages of least-squares.

The option of using div-conforming elements to achieve exact mass conservation in least-
squares methods has been explored in [4]. However, the resulting mimetic LSFEM requires

22 Discontinuous Least Squares Finite Element Methods

non-standard boundary conditions for the Stokes equations, and its extension to the practically
important velocity boundary condition is not clear.

Consequently, in order to improve mass conservation in LSFEMs for the Stokes equation
with the velocity boundary condition we propose to employ a discontinuous finite element ap-
proximation of the velocity, while retaining C° elements for the rest of the variables. In so
doing we achieve two objectives. First, we keep the growth of the degrees of freedom to a
minimum, compared to a fully discontinuous formulation. Second, relaxation of the interele-
ment continuity of the velocity space allows a greater flexibility in the choice of the local
finite element approximation of that variable. In particular, it becomes possible to consider
locally divergence-free spaces which would have been impractical if the global velocity space
had to be H'-conforming.

Following these ideas we develop a discontinuous velocity least-squares finite element
method based on the well-posed formulation (2.11) in two stages. At the first stage we allow
discontinuous finite elements for the velocity in (2.11), i.e., we set

X! = ([R1,)* X Ryoy X R,y . 3.1)

This necessitates some changes in the least-squares functional, namely, the last two terms
have to be broken into element sums to deal with the loss of conformity in the velocity space:
Jh b, " ph) =
2 h h_ ehl|2 h_ |2 h||2 (3.2)
h ”VX‘” +Vp'-f ”0+ Z (”qu -w “0,K+HV'u ”0,1()
KeK
Furthermore, to obtain a well-posed formulation with a unique solution, we need to recover
some of the H'-conformity qualities of the velocity. Therefore, constraints on the jumps in
normal and tangential components of the velocity are introduced.
Recall that &(Q) is the set of all interior edges in the mesh. It is easy to see that the
weighted L? least-squares method (2.11) is equivalent to the following constrained minimiza-
tion problem

- Thoh ho o h.h
rryth_l(u,a),p,f)

’ (3.3)
subject to f [u"-n;]dt =0 and f [u" xn]dt =0 Ve; € EQ)

The constrained system can be solved by Lagrange multipliers in which case the resulting
minimization problem becomes

min max J*, (o, ", ' 1) = " A f [u; - nilde -)" 2 f [u; x n;]d¢ (3.4)
X RO ccE@) Ve cee Ve
Of course, similar to (2.20), this formulation is a saddle-point system that gives rise to an
indefinite algebraic system.
Instead of using Lagrange multipliers we will encourage H' conformity by a penalty
approach-by adding residuals of the interelement jumps to the least-squares functional. This
gives rise to the following discontinuous velocity functional:

E](ull7 wh’ Ph; fh) =

RV xof + =2+ Y (V< u =+ [V wl)
KeK

+h! Z (CY]f[ll‘ni]zd€+azf[uxni]2d£)

;€8(Q)

(3.5)

J. Lai, P. Bochev, L. Olson, K. Peterson, D. Ridzal, and C. Siefert 23

where @, @, > 0 are penalty parameters. The values of these constants can be used to adjust
the relative importance of normal vs. tangential continuity.

Based on analogies with div-conforming elements, one could argue that strengthening
the normal continuity of the velocity field should lead to improved mass conservation in
the finite element solution of (3.5). If this were the case, then the discontinuous velocity
formulation (3.5) with a; > a; should be able to take care of the mass losses in our two test
problems. To test this hypothesis we implement (3.5) using the equal-order discontinuous
velocity, continuous vorticity and pressure finite element space

[X3] = ([Ra])? X Ry X R, (3.6)

and solve the two test problems with two different choices for @ and a,. The first choice is
to set a; = @, = 100, in which case we expect® to see mass losses comparable to that in the
C° formulation. The second set of weights is a; = 100, a; = 0.01 emphasizes normal over
tangential continuity. If our hypotheses were correct, this set of weights would lead to a much
improved mass conservation.

Unfortunately, the results shown in Fig. 3.1 refute our seemingly logical hypothesis. The

60r %0
——~co

—— 100, 100 [
——— 100,001 80

70F

T

—Co
100, 100
100,0.01

a
g

% mass loss
% mass loss

—

1/

201

Fic. 3.1. Percent mass loss in the discontinuous velocity least-squares method (3.5) for the backward-facing
step (left panel) and the flow past a cylinder (right panel) test problems. Green line corresponds to @) = a3 = 100,
red line corresponds to ay = 100, s = 0.01 and the blue line gives the reference mass loss by the C° least-squares
method (2.11). The legend values are read as «y, az with (2.11) as reference labeled (Cy).

left panel in the figure shows that for the backward-facing step problem the second weight
combination does lead to a significant improvement in the mass conservation by reducing the
mass loss from over 50% to just a bit over 3%. However, for the flow past a cylinder the
situation is completely reversed. Now the choice 1 = 100, a, = 0.01 leads to a significant
deterioration of the mass conservation and increases mass loss from 7% in the C° formulation
to nearly 90%! These results clearly indicate that the discontinuous velocity formulation (3.5)
cannot be reliably counted on to always reduce the mass loss with the same choice of weights,
i.e., its mass conservation properties are problem dependent. This is an undesirable feature
that we shall deal with at the second stage of the formulation of our new method.

To motivate this stage we note that while discontinuous velocity does allow for improve-
ments in mass conservation, the least-squares formulation (3.5) does not enforce exact mass
conservation on each element. At the same time, considering that the velocity space is not

2This is because in the limit as @; — oo and @y — 0, (3.5) recovers the C” solution of the weighted L> LSFEM
method.

24 Discontinuous Least Squares Finite Element Methods

subject to any interelement continuity, it is obvious that we have a greater flexibility in choos-
ing the velocity representation on each element than in the C setting. In particular, we can
take advantage of this flexibility by choosing the velocity to be pointwise divergence free on
each element by setting

wx =V xylx VKeK, (3.7)

where ¥ € [R], is a discontinuous stream function. Therefore, at the second stage we replace
the velocity field in (3.5) with the field defined in (3.7). Note that when defining u” in this
way, V-u” = 0 is automatically satisfied and hence the residual of the continuity equation can
be dropped from the least-squares functional. However, a term that penalizes the jump of the
stream function must be added to the functional. Furthermore, because velocity is eliminated,
the velocity boundary condition must be implemented through the stream function. It is easy
to see that n- V X ¢ involves only tangential derivatives of y. Therefore, a Dirichlet boundary
condition on the stream-function specifies the normal component of the velocity. We specify
the tangential component of the velocity weakly by adding another least-squares term to our
functional. As a result, we arrive at the following discontinuous stream function-vorticity-
pressure (SVP) least-squares functional:

7 W o, ph ey =
n* ||V x o + Vp" - f"||g + Z [V xVxy"- a)h“g’K

KeK
Y (aq f [(Vx ¢ - ndE + f [(V x ¢) x mde (3.8)
2,€8(Q) ¢i Ci
+h! Z I(V x ") x ni2de + 1™ Z f [W"2de
e8I e e8(Q) Ve

The weight for the last term of (3.8) is determined by a scaling argument assuming that
W € H? and hence its trace is in H>>. The jump of the stream-function is necessary for
elements not adjacent to the boundary since constraining only [n - V X ¢] and [n X V X ¢/]
specifies ¢ only up to a constant. Once (3.8) is solved, the velocity is recovered through
formula (3.7), i.e., on each element

u'x = Vxy. 3.9)

We can view the discontinuous SVP formulation (3.8) as a special case of the discontin-
uous velocity formulation (3.5) with a specific choice of a divergence-free basis. We choose
to define this basis through a stream function as in (3.7) primarily because of the simplicity of
this choice; however, it should be clear that our approach can easily accommodate any choice
of a divergence-free velocity basis.

It is worth pointing out that the discrete least-squares method for the Darcy flow in two-
dimensions [7] uses a discontinuous finite element space for the flux defined in a similar
manner by

Vi =v(EShHevxE$h, (3.10)

where S ’b and S f‘v are standard C? finite element spaces constrained by zero on the Dirichlet
and Neumann portions of the boundary. The key difference is that our approach deals with the
discontinuity of the approximating space by including appropriate jump terms and retaining
the original differential operators, whereas [7] retains the global inner products but switches
to weak discrete differential operators defined using integration by parts.

J. Lai, P. Bochev, L. Olson, K. Peterson, D. Ridzal, and C. Siefert 25

The use of stream functions is not a novel idea, and has been applied to the Stokes equa-
tions [11], however, most research on the SVP formulation is done using finite differences
because of the presence of the second derivative. However, in the discontinuous framework,
it is not necessary to construct a global H*(Q)-conforming finite element space as V x V X i
is only needed locally.

4. Implementation. All of the above methods are implemented using Intrepid [5] and
solved using the KLU solver of Amesos [17], both packages of Trilinos [12]. Intrepid is
a local framework that implements basis functions for H', H(curl), and H(div). Since our
formulations are discontinuous, it suffices to choose basis functions to be H' on each element
and implement the jump terms.

It is easy to convert least squares functionals to an implementable weak form by setting
the first directional derivative to zero. For example, the weak form that minimizes (3.5) is to
find (u”, ", p") € X", such that

(VX o+ VphVx s+ Vg + Z(quh — " VXV = Mok
KeK

+ Z (f[uh~n][vh-n]d£’+f[uhxn][vhxn]d€ = (f,V x s"+ Vg,

e;€8(Q)

“.1)

for all (v,s5,9) € [Hy(Q)]* x H'(Q) x L3(Q). The weak form for all other least squares
functionals can be obtained in a similar way.

Since u = (u’l’, u’;) is a vector valued function, each component has separate degrees of
freedom and in the cases where u” is discontinuous, each element has its own set of degrees
of freedom for u” and u’.

4.1. Transformations. All basis functions are defined on the reference element, thus,
it is necessary to use the correct transformation. Intrepid provides implementations for the
most common transformations; however, non standard transformations such as V X w (curl of
a scalar field in two-dimensions) and (for the SVP formulation) V X V X i are not straightfor-
ward. V X w is the curl of a scalar function and hence is an element of H(div). Thus we use
HDIVtransformVALUE for curls of scalar functions. In two dimensions, using the identity,

VXV XY=~ — Yy 4.2)

it follows that on a reference element, we can compute V X V X ¢ by using OPERATOR D2
which computes all second derivatives of . Once V X V X ¢ is computed for the reference
element, it is necessary to transform to the physical element. This is done by noting that
V x ¢ € H(div), and V X v, for a vector valued function v, is a rotated divergence and hence
HDIVtransformDIV transformation is used.

4.2. Boundary conditions. In all of our tests, we use the velocity boundary condition
where u|sn = up is specified on the entire boundary. We set the pressure to O at a single point
on the boundary. Since the basis in Intrepid is interpolatory, the boundary conditions are set
strongly by specifying

u(x)up(x;)) VYx; € 0Q
P(x0)0

This is done by defining a vector i that is zero for all degrees of freedom corresponding to
interior points and equal to up at the boundary degrees of freedom. We then set

b < b - Auy 4.4)

(4.3)

Each row and column of A corresponding to a boundary degree of freedom is set to zero and
the diagonal is set to 1.

26 Discontinuous Least Squares Finite Element Methods

60

—Co
——svp

a0 /

30r /

% mass loss
% mass loss

20/

_ L L L L L L L L L , L L L L L L L ,
0 1 2 3 4 5 6 7 8 9 10 -1 -05 0 0.5 1 15 2 25 3

Fic. 5.1. Comparison of mass loss of for the backward-facing step (left panel) and the flow past a cylinder
(right panel) test problems. Blue line represents weighted L? formulation (2.19), green line is SVP formulation (3.8).

5. Numerical examples. Because the discontinuous SVP formulation (3.8) does not
include the velocity some care must be exercised in setting the velocity boundary condition
for our two test problems. In the case of the backward step, recall that the boundary condition
is given by (2.14). Because on I';, and I',,, velocity is only a function of y, the u; component
is integrated to obtain an equivalent boundary condition on the stream function:

_ 85 2 vy
Yin ==y +6y" —4y+Ci, You=%5-7T+C (5.1
3 2 3
The constants C; and C, are chosen so that u;,(0.5) = u,,;(0) and u;,(1) = u,,;(1). The
top and bottom walls are then chosen to be constants equal to u;,(1) and u;,(0.5) respectively.
Likewise, the equivalent stream function boundary conditions for the second domain, Figure

2.2, with velocity boundary conditions (2.15) are

3
Yy
Yin = Your = Ywail =y — ? (5.2)
However, setting the boundary conditions in this way enforces only the normal component of
the velocity. In our test cases, the tangential velocity vanishes on all boundaries. We set the
tangential velocity weakly by including

Inx VXYl pr ~h " Inx VX ylge=h" Z f Inx V x y|2dt (5.3)
e eEI) Ve

in the least squares functional (3.8).

The resulting mass loss for (3.8) is summarized in Figure 5.1 and it is seen that mass
conservation is significantly improved. Indeed, for the backward facing step, the maximum
mass loss is less than 1.09% with most of the mass loss centralized at the reentrant corner. On
the rest of the domain, the solution is basically conserved over any closed subdomain. This
is a dramatic improvement compared to (2.19). For the channel flow with cylinder cutout,
the mass conservation is also improved with a slight mass gain of 0.34% at the opening of
the cylinder. Compared with (3.5), the stream function formulation is able to achieve better
mass conservation than (2.19)-recall that no matter how «@; and @, were chosen, the mass
conservation could not improve past the weighted L? formulation.

The velocity fields of each formulation are visualized in Figures 5.2 and 5.5 and in the
case of the backward facing step, the mass loss for (3.5) is clearly visible. For the SVP

J. Lai, P. Bochev, L. Olson, K. Peterson, D. Ridzal, and C. Siefert 27

formulation, the propagation of the parabolic profile of the inflow is clearly seen throughout
the domain. In the case of the weighted L?> formulation, the parabolic profile diminishes—
symbolic of the 50% mass loss. From the additional figures (5.3-5.8), it can also be seen that
the pressure and vorticity are more accurately captured with the stream function formulation.

FiG. 5.2. Velocity plot of C° (2.19) (top) and SVP (3.8) (bottom) for the backward-facing step.

Fig. 5.3. Pressure plot OfC0 (2.19) (top) and SVP (3.8) (bottom) for the backward-facing step.

0.5

0 1

0.5

0 |
0 0.5

We considered using divergence free bases on each element, because of the necessity to
choose the correct weights a; and @, in (3.5). However, it was not possible to choose a single
set of weights that is optimal for all test cases. In the case of (3.8), only one set of weights is
used and proved to be effective.

6. Conclusion. In this report we have formulated new discontinuous velocity LSFEMs
for the Stokes equations as a means to improve mass conservation. These new methods were
compared with a provably optimal norm equivalent weighted L? least squares formulation.
The immediate discontinuous velocity formulation was found to not be robust as depending
on the problem, different weights were required. As a result, a local divergence free basis for
the velocity was introduced with the use of a stream function. The stream function approach

28 Discontinuous Least Squares Finite Element Methods

4
2
0
-2
ks W
-6
1 4
2
0.5 0
-2
-4
0 -6

Fic. 5.4. Vorticity plot of C° (2.19) (top) and SVP (3.8) (bottom) for the backward-facing step.

\

o

(=]

DN
\

T T T T T
YAV L TR LN

I

o

=)
LI

Fic. 5.5. Velocity plot of C° (2.19) (top) and SVP (3.8) (bottom) for the cylinder channel.

proved to be robust as only one set of weights, derived from Sobolev theory, allowed the
resulting solution to be almost entirely mass conservative.

The proposed approach is very flexible and can be easily applied to other LSFEMs based
on the VVP or other first-order Stokes systems. For example, it is trivial to extend (3.8) to
a discrete negative-norm method, or to a method which uses velocity gradient, velocity and
pressure as dependent variables.

J. Lai, P. Bochev, L. Olson, K. Peterson, D. Ridzal, and C. Siefert

1
05
0
-05
X -05 0 05 1 15 2 25 3
1
05
0
05
4 05 0 05 1 1.5 2 25 3

FiG. 5.6. Pressure plot of C° (2.19) (top) and SVP (3.8) (bottom) for the cylinder channel.

1 T
0.5
0
-0.5
-1
-1 -0.5 0 0.5 1 1.5 2 25 3
! T——
|
0.5
0
-0.5
-1
-1 -0.5 0 0.5 1 1.5 2 25 3

Fic. 5.7. Vorticity plot ofC0 (2.19) (top) and SVP (3.8) (bottom) for the cylinder channel.

29

30 Discontinuous Least Squares Finite Element Methods

;

0.5

1

0 0.5

1 1.5 2 2.5 3 3.5 4 4.5 5
;
' 15
05 1
05
0
-05
- -1
-15
X -05 0 05 1 15 2 25 3

FiG. 5.8. Stream function for backward step (top) and cylinder channel (bottom).

1 1

0

Future work in the area includes theoretical studies of the well-posedness of discontinu-
ous formulations and an implementation of (3.8) using cubic elements for the stream function.
This allows the velocity, the curl of the stream function, to be quadratic—satisfying the mini-
mal degree requirement of the parent C° least-squares formulation.

REFERENCES

[1] P. BocHev anp D. Day, Analysis and computation of a least-squares method for consistent mesh tying., J.
Comp. Appl. Math, 218 (2008), pp. 21-33.
[2] P. BocHEV AND M. GUNZBURGER, Analysis of least-squares finite element methods for the Stokes equations,
Math. Comp., 63 (1994), pp. 479-506.
, Least-squares finite element methods, Springer, 2009.
, A locally conservative mimetic least-squares finite element method for the Stokes equations, in Pro-
ceedings of LSSC 2009, I. Lirkov, S. Margenov, and J. Wasniewski, eds., vol. 5910 of Springer Lecture
Notes in Computer Science, 2009, pp. 637-644.
[5] P. Bochev, D. RipzaL, anp K. PETERSON, Intrepid: Interoperable Tools For Compatible Discretizations.
http://trilinos.sandia.gov/packages/intrepid/, 2010.
[6] P. Borron AND R. THATCHER, On mass conservation in least-squares methods, J. Comput. Phys., 203 (2005),
pp. 287-304.
[7] Z. Car anp B. SHIN, The discrete first-order system least squares: the second-order elliptic boundary value
problem, SIAM J. Numer. Anal., (2002), pp. 307-318.
[8] Y. Cao aNnD M. GUNZBURGER, Least-squares finite element approximations to solutions of interface problems,
SIAM J. Numer. Anal., 35 (1998), pp. 393—405.
[9]1 C. Cuang aND J. NELSON, Least-squares finite element method for the Stokes problem with zero residual of
mass conservation, SIAM J. Numer. Anal., 34 (1997), pp. 480—489.
[10] J. DEaANG AND M. GUNZBURGER, Issues related to least-squares finite element methods for the Stokes problem,
SIAM J. Numer. Anal., 35 (1998), pp. 878-906.
[11] U. Guia, K. GHia, anp C. SHIN, High-re solutions to incompressible flow using the Navier-Stokes equations
and a multigrid method, J. Comput. Phys., 48 (1982), pp. 387—411.
[12] M. Heroux, R. Bartrert, V. HowLg, R. HoeksTrA, J. Hu, T. KoLpa, R. Lenoucq, K. Long, R. PawLowski,
E. Purpps, A. SALINGER, H. THORNQUIST, R. TUuMINARO, J. WILLENBRING, AND A. WILLIAMS, An Overview of
Trilinos, Tech. Rep. SAND2003-2927, Sandia National Laboratories, 2003.
[13] J.Heys, E. Leg, T. MANTEUFFEL, AND S. McCormick, On mass-conserving least-squares methods, SIAM J. Sci.
Comput, 28 (2006), pp. 1675-1693.

[3]
[4]

J. Lai, P. Bochev, L. Olson, K. Peterson, D. Ridzal, and C. Siefert 31

[14]

, An alternative least-squares formulation of the Navier-Stokes equations with improved mass conser-
vation, J. Comput. Phys, 226 (2008), pp. 994-1006.

[15] J. Heys, E. Leg, T. MANTEUFFEL, S. McCormick, AND J. RuGe, Enhanced mass conservation in least-squares
methods for Navier-Stokes equations, SIAM J. Sci. Comput., 31 (2009), pp. 2303-2321.

[16] J. Pontaza anND J. REDDY, Space-time coupled spectral/hp least-squares finite element formulations for the
incompressible Navier-Stokes equations, J. Comput. Phys., 197 (2004), pp. 418-459.

[17] M. Sara, K. StanLEY, AND M. HEROUX, Amesos: A set of general interfaces to sparse direct solver libraries, in
Proceedings of PARA’06 Conference, Umea, Sweden, 2006.

CSRI Summer Proceedings 2010 32

APPLICATION OF A DISCONTINUOUS PETROV-GALERKIN METHOD TO THE
STOKES EQUATIONS

NATHAN V. ROBERTS#, DENIS RIDZALSY, PAVEL B. BOCHEV!, LESZEK D. DEMKOWICZ!, KARA J.
PETERSON** AND CHRISTOPHER M. SIEFERT'"

Abstract. The discontinuous Petrov-Galerkin finite element method proposed by L. Demkowicz and J. Gopalakr-
ishnan [5, 6] guarantees the optimality of the solution in what they call the energy norm. An important choice that
must be made in the application of the method is the definition of the inner product on the test space. In this paper,
we apply the DPG method to the Stokes problem in two dimensions, analyzing it to determine appropriate inner
products, and perform a series of numerical experiments.

1. Introduction. Recently, L. Demkowicz and J. Gopalakrishnan have proposed a new
class of discontinuous Petrov-Galerkin (DPG) methods [5, 6, 7, 10, 3], which compute test
functions that are adapted to the problem of interest to produce stable discretization schemes.
An important choice that must be made in the application of the method is the definition of the
inner product on the test space. In this paper, we apply the method to the Stokes problem in
two dimensions, analyzing it to determine appropriate inner products, and perform numerical
experiments to test these inner products.

Whereas traditional Galerkin methods use the same space for test and trial spaces, Petrov-
Galerkin methods allow the test and trial spaces to differ. The DPG approach computes test
functions that are optimal, in a sense that we make precise in Section 2. One consequence
of this choice of test functions is that the stiffness matrix for a continuous, weakly coercive
variational formulation is symmetric (hermitian, for complex-valued problems) and positive
definite. Of course, the determination of test functions is an extra step compared with tradi-
tional methods; it is important that these can be determined cheaply. By using discontinuous
Galerkin (DG) formulations, DPG achieves this, reducing the computation of the test func-
tions to a local problem. Our method bears some resemblance to the MDG method [9] in that
a local problem is solved on each element. The key difference with that paper is that in MDG
the local problem is restriction of the original equations whereas in DPG the local problem
is implied by the selected test space inner product. Furthermore, in MDG the local problem
is used to express DG degrees of freedom in terms of continuous degrees of freedom, i.e., to
effect static condensation on the element.

Our primary goal is the application of the method to the Stokes problem in two dimen-
sions. The strong form of the problem is

—2uV-e+Vp=f in Q, (1.1)
V-u=0 in Q, (1.2)
u=gp on 0Q, (1.3)

where Q ¢ R?, yu is viscosity, € = V¥™u is strain, p is pressure, u velocity, and f a vector
forcing function.

The paper is structured as follows. In Section 2, we give an introduction to the basic
features of the DPG method. In Section 3, we derive the weak formulation of the problem.

The University of Texas at Austin, nroberts @ices.utexas.edu
§Sandia National Laboratories, dridzal @sandia. gov
ISandia National Laboratories, pbboche @sandia.gov
IThe University of Texas at Austin, leszek @ices.utexas.edu
**Sandia National Laboratories, kjpeter @sandia.gov
fSandia National Laboratories, csiefer@sandia. gov

N.V. Roberts, D. Ridzal, P.B. Bochev, L.D. Demkowicz, K.J. Peterson, and C.M. Siefert 33

In Section 4, we motivate the choice of inner product on the test space with reference to
an argument for the continuity of the bilinear form. In Section 5, we present the numerical
results. We conclude in Section 6.

2. DPG Method. Here, we sketch some of the main features of the DPG method. For
details, we refer the reader to a series of papers by Demkowicz et al., in particular the second
ICES Report [6], from which most of this section is derived. We begin with theoretical
definitions and results, and then describe the approach to practical realization. Consider the
abstract variational boundary-value problem:

Findu e U : b(u,v) =1(v) VYvelV. 2.1)
We take U and V to be real Hilbert spaces. We assume b(-, -) is continuous, i.e.
b, v)I < M lully [IVIly (22)
for some real M. We assume also that b(-, -) is weakly coercive, that is

inf sup b(u,v) >y, (2.3)

lllly =1 1, =1
for some y > 0. If we additionally assume that
{veV:bu,v)y=0 VYueU}={0}, 24

then it is well known that the problem (2.1) has a unique solution provided that / € V’, the
dual of V.

2.1. Energy Norm. We define an alternate norm, called the energy norm, on the trial
space U by

lully £ sup blu,v). (2.5)

[vlly=1

This norm is the one in which the optimality is guaranteed by the selection of optimal test
functions. It is an equivalent norm to the standard norm on U, i.e.

Ylully < llullg < Mlully Yu e U. (2.6)

2.2. Optimal Test Functions. We are now prepared to give a definition of the optimal
test functions. Define amap 7 : U — V from the trial space to the test space by: Foru € U,
define Tu, the optimal test function corresponding to u, as the unique solution to

(Tu,v)y = b(u,v) YveV.

By the Riesz representation theorem, 7 is well-defined. Note that

1
llullg = sup b(u,v) = sup (Tu,v)y = ———(Tu,Tu)y = ||Tully .
Ivlly=1 ly=1 1 Tully

Thus the energy norm is generated by the inner product on V, i.e.
(u,w)gp = (Tu, Tu)y. @.7)

In practice, we approximate 7 by a discrete operator 7, described in Section 2.4.

34 Stokes with DPG

2.3. Optimal Test Space for U,. Take a finite-dimensional trial space U, C U. Define

the optimal test space for U, as V,, = span{Te; : j=1,--- ,n}, where the ¢; form a basis for
U,.
Solve the discrete problem
Find u,, € U, : b(u,,v) = I(v) Yv € V,. (2.8)

Then the error is the best approximation error in the energy norm,

”M - un”E = inf ||M - Wn“E s (29)
wpeU,

n

and this is the sense in which the test space is optimal.

2.4. Practical Realization. The method involves two steps: first, find the optimal test
functions; second, use the optimal test functions to solve the discrete problem 2.8. The op-
timal test functions are not in general polynomials. In practice, we approximate them with
an “enriched” polynomial space — a space of polynomials of slightly higher degree than the
trial space. This is done to provide a higher-fidelity approximation to the continuous space
of optimal test functions. The best choice for the amount of “enrichment” is determined
experimentally for each problem.

In general, we apply the following procedure:

1. Given a boundary value problem, develop mesh-dependent b(-,-) with test space
V that allows inter-element discontinuities (hence Discontinuous Petrov-Galerkin).
We develop this in Section 3.

2. Choose trial space U, (in particular the norm of interest in U,), and the inner product
on V, which will be motivated by the choice of trial space. We detail this process for
the Stokes problem in Section 4.

3. Compute optimal test functions. Approximate 7" by T, : U, — V, C V. We use an
enriched space of piecewise polynomials for V. Defining t; = T,,e;, we solve

(tj,&)v = b(e;, &)
for t;, where the &; form the basis for \7,,.

4. Use the optimal test functions to solve the problem on U, x V,. We note that the
stiffness matrix here is symmetric positive definite (hermitian, for a complex-valued
problem),

b(ej, ;) = (Thej, ti)v = (Tnej, Tre))y = (Tyei, Thej),
= (Tyei,), = b(e;, t)).
Also, note that this means that we may compute the stiffness matrix in terms of the
inner product on the test space V, without explicit recourse to the bilinear form.

3. Stokes Formulation. Our general approach to variational formulation in DPG is as
follows. First, rewrite the strong form of the problem as a system of first-order partial differen-
tial equations. Then, multiply by test functions and integrate by parts, moving all derivatives
to the test functions. We thus arrive at the ultra-weak form of the problem, a formulation in
which all solution variables are in L.

Starting with the strong formulation defined in equations (1.1)-(1.3), introduce stress o
and vorticity w by

o =2ue—-pl

1
W= z(Vu —vul)

N.V. Roberts, D. Ridzal, P.B. Bochev, L.D. Demkowicz, K.J. Peterson, and C.M. Siefert 35

so that equation (1.1) becomes simply =V - o = f. We also have

1
€= —(o+ pl).

Since € = V¥™u = Vu — w, the entire system is

1
—(0+ph-Vu+w=0
2u— "7 - -

-V.a=f
V-u=0
u=4gp

in Q,
in Q,
in Q,
on 0Q.

Note that the antisymmetric part of the first equation recovers the definition of w, so that it
need not enter the system separately. Define scalar w = wy; = %(ul,z — uy1). Our strong

formulation is

i(0'11+p) Vu|+(0) 0
2u\ o5 w
i g2 w -0
2u 0'22+p 0)
_V.(O—ll):fl
021
_v.(o_lz):fz
on
V-u=0
u=2gp

in Q,

in Q,

in Q,

in Q,

in Q,
on 0Q.

Multiplying the first two equations by vector test functions ¢; and the following three by
scalar test functions v;, and integrating by parts over an element K, we obtain

LG Q) [
LG) () o Lo
L)
L) e

)

2

—fﬁlql'v =0

oK

—f’u\zqzﬂ/ =0
oK

—f TV Y =ff1V1
oK K

—f TV Y =ff2V2
oK K

+f uvs v =0,
oK

where the “hatted” variables (i}, e.g.) are the fluxes introduced by relaxing the continuity
requirement at element boundaries. These differ from the numerical fluxes that appear in other
DG methods, in that they are not constructed a priori, but simply enter the variational problem
as additional unknowns. We solve for them at the same time as we solve the rest of the
unknowns. As in other DG methods, the fluxes will approach the corresponding “unhatted”
solution variables as the latter approach the exact solution.

36 Stokes with DPG

4. Inner Product Determination. As discussed in Section 2, the optimality proof de-
pends on the continuity and weak coercivity of the bilinear form. In this section, we use
continuity to motivate a particular choice of inner product on V.

We seek to show that [b(U, v)| < M ||U||y |[vlly, for some constant M, for spaces U and V
to be specified. The norm on U should be specified in such a way that minimizing the error
in this norm will produce the results we want. We define

2

) D (uill,o)? < ||Fi|'H‘/2(OQ) 3 '|Fi||yfl/2(as))
R] B e D e
i=1 @i i=1 i i=3 i

2

where u; and u, are as above, us = o1, Uy = 013 = 021, Us = O, U = w, and uy = p, i*:, is
the flux corresponding to the ith equation (that is, Fi=u.Fr=1,F3=01 - v,F, =02V,
and Fs = u - v), and the «; and @; are positive weights that allow us to emphasize specific
components. The reason we use the H'/? norm on the fluxes corresponding to H(div) test
functions is that ¢ € H(div) = tr(q) € H~"2. Thus for fag Eqi - v to make sense mathe-

matically, we require F; € H'2. A similar argument establishes that the fluxes corresponding
to H' test functions should lie in H~'/2. Let us consider the first equation of our bilinear form,

autp
bl(U’V):f(U7]2H).ql—{-fulv-ql—f 'i[lql.v
Q 7+u) Q oQ

2
_(0'11+P

021
= ,q11 +(—+w,Q12) + W, V-q)o— U1, q-v)
o)Q 2 , Q P

Now, by the Cauchy-Schwarz inequality, we have

1 1
b(U,v)| <— + +|— +
b1 (U, v)l 2#(”0'11”0 l1pllo) llgi1ll (2ﬂIIUzlllo Ilwllo)llqullo
+learllo 1V - gilly + [[#1]| 12 50 191 V12000 @.1)
Applying the finite-dimensional Cauchy-Schwarz inequality, we have

1
ol (lpllo)* . (lloaillo\? 2
|b1<U,v>|s((2,,,0) +(2#0) + 2ﬂ° + el + e llg + iz ||

/2

1/2
2 2 2 2
(g1 + ligrally + 1V - i1l + ligs - 712 50

Note that for a particular choice of weights, namely a3 = @4 = a7 = l, g =a) =a; = 1,

2u
we then immediately have

1/2
b1 (U < N0y (llgnllg + ligially + 1V - qilly + gy - V-1 50,)

motivating a norm

1/2
2 2 2 2
llgilly, = (llguilly + lgially + 1V - qullg + ligs - Vi3 -1ngg)) -

However, one of our purposes in defining a weighted norm ||U|| was to gain some control over
scale equivalence in computation of the test space inner product, and the argument above in
providing a tight bound has separated the weights from the test space terms. Instead, let us

N.V. Roberts, D. Ridzal, P.B. Bochev, L.D. Demkowicz, K.J. Peterson, and C.M. Siefert 37

return to the inequality (4.1), and note that by the definition of |||/, lluill) < @i llUlly;

<@ Uy fori = 1,2 and HF“H < @ Ul for i = 3,4,5. Thus

similarly, ||F’l”
H —I/Z(Q)

(@)
we have

a3 + a7y

b1 (U] g(-

@y
+|—+a
llgilly (2# 6)||qn||o
+ a1 IV - gilly + @1 g1 - Vllgzaey) 101l

motivating the norm

3+ ag

a:
llgilly, =——%—

a4 —
0 llgilly + 2 + ag|llgi2lly + a1 IV - qilly + @1 ligy - Vilgzpg) -

For convenience, we implement a similar norm given by

2 2
ot [3 + Q7 ay
lgilly, =(T) ||qu||é+(5+a6) lgiallg + o7 IV - qull

-~ 2
+) llq1 - V||L2(Q) .

Similarly, for g, we implement

2 2
2 der[Q4 > as 2 2 2
llg2lly, = (ﬂ + a6) llg21lly + (Z + 017) llg22llg + @3 IV - qallg

—~2 2
+a, llg> - V”LZ(Q) .

b3(U,v)=f0'1-Vv1—f oY
Q a0
=f(u3)-Vv1—f Fsvl.
o \la aQ

Ib3(U, V)| < [[U]| (H(Zj) LV

For b3(U, v), we have

Thus

+ a3llvy ||H1/2(ag)) ,
0

and the norm we implement for v; is

o || v ||
2 def 92 1 2 1 —2 2
vy, = a3 ||— —|| +az|vill -
[villy, = a3 ax o T By |, 31villy
Similarly,
: |7 o ||
2 def 2 2 2 -2 2
Vo =y ||| tas||—]| +ayllv
vally, = o4 ax o T oy I, 1 lvallg
and
s |2 avs |I?
2 def 9 3 2 3 —2 2
willy. = a7 ||=—|| +a5||—=—| +aslvallg-
lvslly, = a; ax o T 2oy I, 51vally

38 Stokes with DPG

Now, we can define a general norm on the test space by

I(qis- - qrivis. ..oyl =
L
[(av : qi)z + Z((bilqil)z + (bizqiz)z)
i=1 i=i
S avl (9v,- 2 M
’ ; [(C’l ox a_y)]+ Z;(divi)z] “2)
L
+ f (Z(Ezqz V) + Z(fv,]
o\ P

Based on the analysis above, we require

a) =ay, ay = @)
b11=m, b12:%+a6
2u 2u
by = 22 + ag, by = B0
2u 2u

¢ = as, Clo = @y 4.3)
1 =y €0 = s

a1 = ay =

di=0

e =aj, e = fi=as, b=, fs =0s.

4.1. Choice of o values. How do we determine appropriate weights «; and @; for the
norm of U? Our choice is motivated by considerations of norm equivalence arising, for
instance, in the least-squares finite element literature, see [1, Sec. 4.5]. For simplicity, we
apply a similar guideline, which we call scale equivalence. Let us consider a mesh with
elements of size h. In a least-squares method, one would motivate the choice of weights by
examining the factors of & entering the stiffness matrix through derivatives in the bilinear
form. One would then select weights so that each term of the bilinear form had the same /-
factor, thereby ensuring that no single term dominates the least-squares functional as 7 — 0.

Recall that in DPG the optimality is expressed in terms of the energy norm in equation
(2.9), which in turn is defined by the inner product on V in equation (2.7). As in least-squares
methods, there is an underlying optimization principle (equations (2.9) and (2.5)), and thus it
makes sense to have all terms in the test space inner product equally weighted in the discrete
setting. In this section, therefore, we aim to determine weights «; and @; that will allow this.

Computing the optimal test functions involves the solution of a problem of the form

(t;, ey = b(ej, &),

where the &; form the basis for the enriched polynomial space V,, used to represent the test
functions, and ¢; is the optimal test function corresponding to e; € U. Thus the matrix for
determining the optimal test functions is generated by computing inner products (&, &;)y. The
goal is to keep the summands entering this matrix of the same order of magnitude in A.

We assume a partition of Q into quadrilateral elements. Since the various components
(e.g. q; and q») of the test function do not interact, we can examine each separately. Suppose

N.V. Roberts, D. Ridzal, P.B. Bochev, L.D. Demkowicz, K.J. Peterson, and C.M. Siefert 39

that the element has dimensions (h, h) and ¢q; = (;;) Then

2
X
(q1,9))v = f (a%(yz +2xy + 2% + (b3, + b%z)xzyZ) + f & ((y) v)
K ok \\XY
= O35 + 1213 + hy) + (B2, + By + U hS + 1h2))

Clearly, no choice of weights will make all summands of the same order in both %, and h;;
the best we can do is to make the 4; and h, orders of each summand differ by no more than
2, and make the sum of the &; and /h, orders the same across all summands. This can be
accomplished by setting a% =hh,, b%l = bfz =1, and e% = Vhih,.

The computation with ¢, is identical. Now, consider v; = xy. We have

2 2.2 2. 2 2,22
(Vlsvl)V:L(clly + o’ + dia’y? ff

= O(ctyuh3 + chyhhy + (b3, + dDih3 + L (hih3 + h3))

Again, we cannot choose the coefficients to get each summand to have the same order in both
hy and h,, but here at least the ¢, and ¢ coeﬂicients can be chosen so that their respective
terms match precisely. We Would like to have ¢, = h3, 2, = hi,d? = 1, and f? = Vhiho,
and similarly for v,, we’d like c21 = h2 etc. This cannot be fully achleved because of the way
the a; enter the inner product; speciﬁcally, a4 = c1p = ¢21. Instead, we arrive at the following
weights:

) =Qap = \/hlhz (44)

a3 =h 4.5)
4 = h1h2 (46)
as = /’12 (47)
Qe = Q7 = 1 (48)
@; = hihy . (4.9)

We detail numerical results for this inner product in Section 5.3. In Section 5.4, we present a
version where a3 = a4 = @5 = 1, with very similar results.

5. Numerical Results. We solve the Stokes problem on the domain (-1, 1) X (-1, 1),
with 4 = 1. We follow the choice of manufactured solution employed in a paper by Cockburn
et al. [4], in which they apply the LDG method to Stokes. We compare our convergence
rates to theirs; the L? error measurements are not strictly comparable because they employ a
triangular mesh, whereas we use a quadrilateral mesh. As stated in Section 2.4, the space for
V is an “enriched” polynomial space. The numerical results presented below were produced
with test functions of degree one higher than that of the trial space.

Although the differences between our meshes and those in Cockburn et al. mean that
our error measurements are not strictly comparable, we still would expect to attain similar
rates of convergence, and for the [? error values in each component to be within an order
of magnitude or so. The rates of convergence we would expect in a velocity-stress-pressure
(VSP) least-squares context would be k + 1 for the velocity components u; and u,, and k for
the pressure p, where k denotes the polynomial degree of the trial space [1, p. 269]. We have
yet to carry out the convergence analysis for DPG.

40 Stokes with DPG

Following Cockburn et al., we use

uy = —e*(ycosy +siny)
up = e*ysiny

p = 2ue*siny

as our manufactured solution. We impose the constraint p(0,0) = po in order to establish the
uniqueness of the solution.

We try four inner products, the first two as baselines, and the latter two as suggested by
our analysis. As expected, the choice of the inner product makes a great deal of difference to
the rate of convergence.

5.1. Generic Inner Product. As a baseline to show the importance of a good inner
product on the test function space, the results in this section are produced using a test space
inner product unrelated to our analysis. In the general form of the norm specified in equation
(42),leta;=b;jj=cj=di=e = fi=1.

As can be seen in Table A.1, although our convergence rates generally start out near the
asymptotic rates predicted, they fall off quickly. The rate for pressure with quadratic elements
is particularly poor. The L? error values in u are perhaps not too bad, within an order of
magnitude or so of the LDG results. However, the pressure error values are extremely poor,
off by up to three orders of magnitude.

As an experiment, we tried enriching the fluxes, using polynomials of degree k + 1 to rep-
resent the solution fluxes; at the same time, we enriched the test function space further, using
polynomials of degree k£ +2. As shown in Table A.2, this uniformly reduces the error, particu-
larly in the pressure, and improves the convergence rate observed in the pressure for quadratic
elements. Although cubic elements also saw uniformly reduced error, the convergence rates
observed were somewhat worse.

5.2. “All Ones” Inner Product. In Section 4.1, we derived weights for the inner prod-
uct so as to weight all terms in the determination of the optimal test functions equally. To
see the impact of our choice of those weights in relief, we try an inner product in which
@; = @; = 1. Compared with the generic inner product employed in the previous section, this
inner product takes account of the continuity argument.

As can be seen in Table B.1, with this choice of inner product, DPG performs slightly
better than with the generic inner product, but the rates of convergence in p are quite poor,
especially for quadratic elements. For the 64 X 64 mesh, we even see regression in the p error
compared with the 32 X 32 mesh, suggesting that some terms in the inner product dominate
as h — 0, preventing convergence.

Asin Section 5.1, we tried enriching the fluxes, using polynomials of degree k+ 1 to rep-
resent the solution fluxes; at the same time, we enriched the test function space further, using
polynomials of degree k +2. As shown in Table B.2, this uniformly reduces the error, particu-
larly in the pressure, and improves the convergence rate observed in the pressure for quadratic
elements. Although cubic elements also saw uniformly reduced error, the convergence rates
observed for pressure were somewhat worse.

5.3. Mesh-Dependent Inner Product. In this inner product, we choose the @; values
as derived in Section 4.1 and specified in equations (4.4)-(4.9). There, we aimed to achieve
scale equivalence in the determination of the optimal test functions while selecting an inner
product that allowed our argument for the continuity of b(-, -) to remain intact.

As can be seen in Table C.1, with this inner product, we have far superior convergence
compared with either of the previous two inner products we have considered. Here, the

N.V. Roberts, D. Ridzal, P.B. Bochev, L.D. Demkowicz, K.J. Peterson, and C.M. Siefert 41

convergence rates for both velocity and pressure are very close to those predicted by theory,
and the L? error for u is within a factor of 3 of the LDG results. However, our L? error in
pressure remains more than an order of magnitude worse than that LDG was able to achieve.

We again tried enriching the flux space; the results are in Table C.2. Here, however,
the results are merely comparable to those in the enriched flux space experiments using the
previous two inner products. With cubic elements, enriching the fluxes made for slightly
worse results, perhaps due to round-off errors. All told, it appears that whatever is lost to
scale inequivalence in the previous two inner products is regained through higher-fidelity flux
approximation.

5.4. Mesh-Dependent Inner Product, Least-Squares Compromise a3 = a4 = a5 = 1.
Finally, we tried an inner product with weights just as in Section 5.3, except @3 = @4 = @5 =
1. The rationale was that, in the norm of U, these weights are applied to the tensor o, which
is a derivative, so the natural norm for U in a least-squares approach (arising from concern
for scale equivalence of terms within the form b(:,-)) would have an extra factor of & on u;
and u, compared to the components of o

As can be seen in Table D.1, the results are almost identical to those reported in the
previous section. The only exception is the error in the pressure on a cubic, 64 X 64 mesh, for
which the present inner product produced an error about half that produced by the previous
inner product.

We again tried enriching the flux space; the results are in Table D.2. The enriched fluxes
again give us lower error, but as we refine, the advantage this gives us appears to become less
significant; for cubic elements, the error values for the 32 x 32 mesh are nearly identical to
those we attained for this inner product without enriching the fluxes.

6. Conclusions and Future Work. A robust application of the DPG method requires
a test space inner product that simultaneously allows a proof of coercivity and continuity of
the variational form and achieves scale equivalence in both the inner product matrix used to
compute the optimal test functions, and in the stiffness matrix used to compute the solution.
In this paper, we have applied the DPG method to the Stokes problem, comparing several
inner product choices. The two inner products that did not account for scale equivalence
within the inner product matrix both demonstrated substantially poorer performance; while
those that did account for it achieved optimal convergence rates.

The fact that our L? errors in pressure were substantially worse than those for the LDG
method suggests that there may be a better choice of inner product; it may be that an ex-
amination of coercivity (here absent) would suggest a better choice. The strategy we intend
to employ in the future is to use test norms motivated by examining the optimal test norm
studied in previous DPG efforts (see [10, Sec. 2]); this is a norm on the global test space for
which |||z = [Ily-

Enriching the flux space erased most of the distinctions between our various inner prod-
ucts, and greatly reduced the errors observed in the pressure. It appears that the benefit of
using a better inner product is that we can save the computational cost associated with the
enriched flux space!

In the future, we plan to investigate the hp-adaptive solution of Stokes equations using
DPG, which offers stability independent of discretization parameters. We also plan to use
DPG to solve Stokes on polygons and polyhedra.

The work presented here was completed using L. Demkowicz’s hp-adaptive code; we
are presently implementing a DPG framework using Intrepid [2] and Trilinos [8].

42

(1]
[2]
[3]

[4]
[5]
[6]
[7]
[8]

[9]

[10]

Stokes with DPG

REFERENCES

P. B. BocHEV AND M. D. GUNZBERGER, Least-Squares Finite Element Methods, vol. 166 of Applied Mathemat-
ical Sciences, Springer, 2009, pp. 114-128.

P. B. Bocuey, R. C. Kmwry, K. J. PerersoN, anp D. RipzaL, Intrepid project,
http://trilinos.sandia.gov/packages/intrepid/.

J. Cuan, L. DEmxowicz, R. MoSEgRr, AND N. RoBERTS, A new discontinuous Petrov-Galerkin method with optimal
test functions. Part V: Solution of 1D Burgers’ and Navier-Stokes equations, ICES Technical Report,
(2010).

B. CockBurN, G. KanscHat, D. Scuotzau, aND C. ScuwaB, Local discontinuous Galerkin methods for the
Stokes system, SIAM Journal on Numerical Analysis, 40 (2003), pp. 319-343.

L. DEmkowicz AND J. GOPALAKRISHNAN, A class of discontinuous Petrov-Galerkin methods. Part I: The transport
equation, Computer Methods in Applied Mechanics and Engineering, 199 (2010), pp. 1558 — 1572.

L. D. DEmkowicz AND J. GOPALAKRISHNAN, A class of discontinuous Petrov-Galerkin methods. Part II: Optimal
test functions., ICES Technical Report, (2009).

L. D. Demkowicz, J. GOPALAKRISHNAN, AND A. Niewmr, A class of discontinuous Petrov-Galerkin methods. Part
1II: Adaptivity, (2010).

M. A. Heroux, R. A. BartLETT, V. E. HowLE, R. J. HoEKSTRA, J. J. HU, T. G. KoLpa, R. B. LEnoucq, K. R. Long,
R. P. Pawrowski, E. T. Puaipps, A. G. SaLiNnGer, H. K. THorNqQuisT, R. S. TumiNarO, J. M. WILLENBRING,
A. WiLLiams, AND K. S. STaNLEY, An overview of the Trilinos project, ACM Trans. Math. Softw., 31
(2005), pp. 397-423.

T. J. HucHes, G. Scovazzi, P. B. BocHEV, AND A. BUFrA, A multiscale discontinuous Galerkin method with the
computational structure of a continuous Galerkin method, Computer Methods in Applied Mechanics and
Engineering, 195 (2006), pp. 2761 —2787.

J. Zrreruy, 1. Muca, L. Demkowicz, J. GOPALAKRISHNAN, D. Parpo, aND V. Caro, A class of discontinuous
Petrov-Galerkin methods. Part IV: Wave propagation, (2010).

N.V. Roberts, D. Ridzal, P.B. Bochev, L.D. Demkowicz, K.J. Peterson, and C.M. Siefert

Appendix

A. Numerical Results: Generic Inner Product.
TaBLE A.1

L? error and h-convergence rates for generic inner product selected without reference to continuity

argument, as defined in Section 5.1: comparison with LDG [4].

L? error and h-convergence rates for generic inner product selected without reference to continuity
argument with enriched fluxes (kg = k + 1,k = k + 2), as defined in Section 5.1: comparison with

Quadratic Elements
DPG Error LDG Error DPG Error LDG Error
Mesh Size u rate u rate p rate p rate
2X2 3.6e-2 - - - 5.9e-1 - - -
4x4 5.1e-3 | 2.82 - - 2.0e-1 | 1.58 - -
8% 8 8.1e-4 | 2.73 | 2.0e-4 - 1.7e-1 | 0.92 | 5.1e-4 -
16 x 16 1.6e-4 | 2.59 | 2.4e-5 | 3.06 | 9.6e-2 | 0.81 | 1.2e-4 | 2.09
32 %32 3.9e-5 | 246 | 2.9e-6 | 3.05 | 5.1e-2 | 0.81 | 3.0e-5 | 2.04
64 x 64 9.8¢-6 | 2.36 - - 2.6e-2 | 0.83 - -
Cubic Elements
DPG Error LDG Error DPG Error LDG Error
Mesh Size u rate u rate p rate p rate
2X2 2.7e-3 - - - 2.7e-1 - - -
4x4 1.7e-4 | 3.97 | 5.8e-5 - 2.8¢-2 | 3.27 | 2.4e-4 -
8% 8 1.2e-5 | 3.88 | 3.6e-6 | 401 | 3.8¢-3 | 3.08 | 3.9¢e-5 | 2.62
16 x 16 1.0e-6 | 3.79 | 2.2e-7 | 4.02 | 5.1e-4 | 3.01 | 5.3e-6 | 2.75
32 %32 1.0e-7 | 3.68 - - 7.1e-5 | 2.96 - -
64 x 64 1.3e-8 | 3.55 - - 3.6e-5 | 2.67 - -
TaBLE A.2

LDG [4].
Quadratic Elements - Enriched Fluxes
DPG Error LDG Error DPG Error LDG Error
Mesh Size u rate u rate p rate p rate
2X2 3.5e-2 - - - 7.6e-1 - - -
4x4 4.4e-3 | 3.01 - - 1.4e-1 | 248 - -
8% 8 S5.4e-4 | 3.02 | 2.0e-4 - 1.9e-2 | 2.67 | 5.1e-4 -
16 X 16 6.6e-5 | 3.03 | 2.4e-5 | 3.06 | 3.5¢-3 | 2.61 | 1.2¢e-4 | 2.09
32 x32 8.2e-6 | 3.02 | 2.9e-6 | 3.05 | 7.0e-4 | 2.54 | 3.0e-5 | 2.04
Cubic Elements - Enriched Fluxes
DPG Error LDG Error DPG Error LDG Error
Mesh Size u rate u rate p rate p rate
2X2 2.6e-3 - - - 3.2e-2 - - -
4x4 1.6e-4 | 3.96 | 5.8e-5 - 9.4e-3 | 1.78 | 2.4e-4 -
8x8 1.0e-5 | 4.00 | 3.6e-6 | 401 | 1.2e-3 | 2.35 | 3.9¢e-5 | 2.62
16 x 16 6.0e-7 | 4.02 | 2.2¢-7 | 4.02 | 1.6e-4 | 2.58 | 5.3e-6 | 2.75
32 x32 3.7e-8 | 4.02 - - 3.3e-5 | 2.57 - -

44 Stokes with DPG

B. Numerical Results: “All Ones” Inner Product.
TasLE B.1
L? error and h-convergence rates for an inner product for which «; = @; = 1 (i.e. with weights
selected without concern for scale equivalence) as defined in Section 5.2: comparison with LDG [4].
Quadratic Elements
DPG Error LDG Error DPG Error LDG Error

Mesh Size u rate u rate p rate p rate
2x2 3.6e-2 - - - 5.6e-1 - - -
4x4 5.0e-3 | 2.84 - - 1.7e-1 | 1.70 - -

8% 8 7.7e-4 | 2.77 | 2.0e-4 - l.4e-1 | 1.00 | 5.1e-4 -
16 X 16 1.5e-4 | 2.64 | 2.4e-5 | 3.06 | 8.2e-2 | 0.87 | 1.2e-4 | 2.09
32 x32 34e-5 | 2.51 | 2.9e-6 | 3.05 | 4.3e-2 | 0.85 | 3.0e-5 | 2.04
64 x 64 8.5e-6 | 2.40 - - 2.2e-2 | 0.86 - -
Cubic Elements
DPG Error LDG Error DPG Error LDG Error
Mesh Size u rate u rate p rate p rate

2x2 2.7e-3 - - - 2.7e-1 -
4x4 1.7e-4 | 3.99 | 5.8e-5 - 2.7e-2 | 3.30 | 2.4e-4 -
8% 8 1.2e-5 | 3.92 | 3.6e-6 | 4.01 | 3.7e-3 | 3.09 | 3.9e-5 | 2.62

16 X 16 9.2e-7 | 3.84 | 2.2e-7 | 4.02 | 4.8e-4 | 3.03 | 53e-6 | 2.75

32 x32 9.0e-8 | 3.73 - - 6.3e-5 | 2.99 - -

64 x 64 1.4e-8 | 3.55 - - 2.8e-4 | 2.25 - -

TasLe B.2
L? error and h-convergence rates for an inner product for which a; = @; = 1 (i.e. with weights
selected without concern for scale equivalence) with enriched fluxes (kg = k + 1,kiey = k +2), as
defined in Section 5.2: comparison with LDG [4].
Quadratic Elements - Enriched Fluxes
DPG Error LDG Error DPG Error LDG Error

Mesh Size u rate u rate p rate p rate
2x2 3.5¢e-2 - - - 7.6e-1 - - -
4x4 4.4e-3 | 3.00 - - 1.3e-1 | 2.50 - -

8 x 8 5.4e-4 | 3.02 | 2.0e-4 - 1.9e-2 | 2.66 | 5.1e-4 -
16 X 16 6.6e-5 | 3.02 | 2.4e-5 | 3.06 | 3.6e-3 | 2.60 | 1.2¢-4 | 2.09
32 x 32 8.2e-6 | 3.02 | 2.9e-6 | 3.05 | 7.1e-4 | 2.53 | 3.0e-5 | 2.04
Cubic Elements - Enriched Fluxes
DPG Error LDG Error DPG Error LDG Error
Mesh Size u rate u rate p rate p rate

2x2 2.5e-3 - - - 3.5e-2 -

4 x4 1.6e-4 | 3.95 | 5.8e-5 - 8.6e-3 | 2.02 | 2.4e-4 -

8 x 8 1.0e-5 | 3.98 | 3.6e-6 | 401 | 1.2e-3 | 2.46 | 3.9e-5 | 2.62
16 X 16 6.1e-7 | 401 | 2.2e-7 | 4.02 | 1.5e-4 | 2.65 | 5.3e-6 | 2.75
32 x 32 3.7e-8 | 4.02 - - 3.3e-5 | 2.59 - -

N.V. Roberts, D. Ridzal, P.B. Bochev, L.D. Demkowicz, K.J. Peterson, and C.M. Siefert

C. Numerical Results: Mesh-Dependent Inner Product.

L? error and h-convergence rates for a mesh-dependent inner product with weights as specified in
equations (4.4)-(4.9) and discussed in Section 5.3, an inner product that represents our best compromise
between the continuity argument and concerns for scale equivalence in the determination of the optimal

TasLe C.1

test functions.: comparison with LDG [4].

L? error and h-convergence rates for a mesh-dependent inner product with weights as specified
in equations (4.4)-(4.9) and discussed in Section 5.3, with enriched fluxes (kg = k + 1, ke = k + 2):

comparison with LDG [4].

Quadratic Elements
DPG Error LDG Error DPG Error LDG Error
Mesh Size u rate u rate P rate p rate
2X2 3.6e-2 - - - 5.6e-1 - - -
4x4 4.7e-3 | 291 - - 1.1e-1 | 2.39 - -
8% 8 6.0e-4 | 2.94 | 2.0e-4 - 2.8¢-2 | 2.15 | 5.1e-4 -
16 x 16 7.6e-5 | 2.96 | 2.4e-5 | 3.06 | 7.3e-3 | 2.07 | 1.2e-4 | 2.09
32 x32 9.5¢-6 | 297 | 2.9¢e-6 | 3.05 | 1.8e-3 | 2.05 | 3.0e-5 | 2.04
64 x 64 1.2e-6 | 2.98 - - 4.3e-4 | 2.04 - -
Cubic Elements
DPG Error LDG Error DPG Error LDG Error
Mesh Size u rate u rate P rate p rate
2X2 2.7¢-3 - - - 2.7e-1 - - -
4 x4 1.6e-4 | 4.06 | 5.8e-5 - 24e-2 | 347 | 2.4e-4 -
88 9.9e-6 | 4.04 | 3.6e-6 | 4.01 | 3.1e-3 | 3.22 | 3.9e-5 | 2.62
16 x 16 6.1e-7 | 403 | 2.2e-7 | 4.02 | 3.9e-4 | 3.13 | 5.3e-6 | 2.75
32 x32 3.8¢-8 | 4.02 - - 4.9e-5 | 3.08 - -
64 x 64 2.4e-9 | 4.02 - - 4.3e-6 | 3.13 - -
TasLe C.2

Quadratic Elements - Enriched Fluxes
DPG Error LDG Error DPG Error LDG Error
Mesh Size u rate u rate P rate)4 rate
2X2 3.5e-2 - - - 7.6e-1 - - -
4 x4 4.4e-3 | 3.00 - - 1.2e-1 | 2.62 - -
8§ %8 5.4e-4 | 3.01 | 2.0e-4 - 1.9e-2 | 2.64 | 5.1e-4 -
16 X 16 6.7¢-5 | 3.01 | 2.4e-5 | 3.06 | 4.7e-3 | 2.46 | 1.2e-4 | 2.09
32 x32 8.4e-6 | 3.01 | 2.9e-6 | 3.05 | 1.1e-3 | 2.35 | 3.0e-5 | 2.04
64 x 64 1.0e-6 | 3.01 - - 2.8e-4 | 2.27 - -
Cubic Elements - Enriched Fluxes
DPG Error LDG Error DPG Error LDG Error
Mesh Size u rate u rate 4 rate P rate
2X2 2.5e-3 - - - 3.5e-2 - - -
4 x4 1.6e-4 | 3.99 | 5.8¢e-5 - 5.4e-3 | 2.70 | 2.4e-4 -
8§ x8 1.0e-5 | 3.99 | 3.6e-6 | 4.01 | 6.1e-4 | 2.92 | 3.9e-5 | 2.62
16 x 16 6.2¢-7 | 4.00 | 2.2e-7 | 4.02 | 1.3e-4 | 2.74 | 5.3e-6 | 2.75
32 x32 3.8¢-8 | 4.00 - - 2.5e-5 | 2.63 - -

46 Stokes with DPG

D. Numerical Results: Mesh-Dependent Inner Product, Least-Squares Compro-
mise.
TasLe D.1
L? error and h-convergence rates for an inner product with weights as described in Section 5.4,
an inner product that brings concern for scale equivalence in the stiffness matrix into our compromise
between the continuity argument and concerns for scale equivalence in the determination of optimal
test functions: comparison with LDG [4].
Quadratic Elements
DPG Error LDG Error DPG Error LDG Error
Mesh Size u rate u rate P rate p rate
2X2 3.6e-2 - - - 5.6e-1 -
4 x4 4.6e-3 | 2.97 - - 1.2e-1 | 2.23 - -
8§ x 8 5.8e-4 | 297 | 2.0e-4 - 2.7e-2 | 2.19 | S.1e4 -
16 x 16 T.4e-5 | 2.97 | 2.4e-5 | 3.06 | 6.6e-3 | 2.14 | 1.2e-4 | 2.09
32 x 32 9.4e-6 | 297 | 2.9e-6 | 3.05 | 1.7e-3 | 2.10 | 3.0e-5 | 2.04
64 x 64 1.2e-6 | 2.98 - - 4.1e-4 | 2.07 - -
Cubic Elements
DPG Error LDG Error DPG Error LDG Error
Mesh Size u rate u rate p rate)4 rate
2x2 2.7e-3 - - - 2.7e-1 -
4 x4 1.6e-4 | 4.10 | 5.8e-5 - 24e-2 | 347 | 24e-4 -
8% 8 9.7e-6 | 4.05 | 3.6e-6 | 4.01 | 3.1e-3 | 3.22 | 3.9e-5 | 2.62
16 x 16 6.1e-7 | 4.03 | 2.2e-7 | 4.02 | 3.9e-4 | 3.12 | 5.3e-6 | 2.75
32 x 32 3.8e-8 | 4.02 - - 4.9e-5 | 3.08 - -
64 x 64 2.4e-9 | 4.02 - - 2.3e-6 | 3.26 - -

TasLE D.2
L? error and h-convergence rates for an inner product with weights as described in Section 5.4,
an inner product that brings concern for scale equivalence in the stiffness matrix into our compromise
between the continuity argument and concerns for scale equivalence in the determination of optimal
test functions, with enriched fluxes (kg = k + 1, kiesy = k + 2): comparison with LDG [4].
Quadratic Elements - Enriched Fluxes
DPG Error LDG Error DPG Error LDG Error

Mesh Size u rate u rate p rate p rate
2x2 3.5e-2 - - - 7.6e-1 - - -
4x4 4.2e-3 | 3.08 - - 4.2e-2 | 4.18 - -

8 x 8 5.2e-4 | 3.04 | 2.0e-4 - 1.0e-2 | 3.11 | 5.1e-4 -
16 X 16 6.5e-5 | 3.02 | 2.4e-5 | 3.06 | 2.7e-3 | 2.64 | 1.2¢-4 | 2.09
32 x 32 8.2e-6 | 3.02 | 2.9e-6 | 3.05 | 7.3e-4 | 2.40 | 3.0e-5 | 2.04
Cubic Elements - Enriched Fluxes
DPG Error LDG Error DPG Error LDG Error
Mesh Size u rate u rate p rate p rate

2x2 2.5e-3 - - - 3.5e-2 -

4 x4 1.5e-4 | 4.06 | 5.8e-5 - 4.5¢-3 | 2.96 | 2.4e-4 -

8§ x 8 9.5e-6 | 4.04 | 3.6e-6 | 4.01 | 2.0e-3 | 2.07 | 3.9e-5 | 2.62
16 x 16 59e-7 | 4.02 | 2.2e-7 | 4.02 | 3.6e-4 | 2.10 | 5.3e-6 | 2.75
32 x32 3.7e-8 | 4.02 - - 4.9e-5 | 2.26 - -

CSRI Summer Proceedings 2010 47

AN INVESTIGATION OF BLOCK PRECONDITIONERS FOR UNSTEADY
NAVIER-STOKES

EDWARD G. PHILLIPS*, ERIC C. CYRY, AND JOHN N. SHADID#

Abstract. In this paper we investigate block upper triangular preconditioners for the saddle point system gen-
erated by discretizing the unsteady Navier-Stokes equations. We focus on Schur complement approximations used
within the block structure of these preconditioners. We consider Schur complements generated by Neumann series
approximations based on various approximations of the convection-diffusion operator. We also consider improve-
ments upon these approximations using a sparse approximate inverse (SPAI) algorithm and a structured probing
algorithm. The preconditioners are compared based on numerical results.

1. Introduction. In this paper, we consider the numerical solution of the unsteady
Navier-Stokes problem for the flow of viscous Newtonian fluids: Given an open bounded
domain Q c RY with boundary 0Q, time interval [0, 7], and data f, find a velocity field
u = u(x, 7) and a pressure field p = p(x,) satisfying

Z—l;—vAu+(u-V)u+Vp=f on Q x [0, T1, (I.D

V-u=0 onQx[0,T], (1.2)
subject to inital and boundary counditions, where v is the kinematic viscosity, A is the Lapla-
cian, and V is the gradient.

Time discretization is applied to this system along with a Newton or Picard linearization.

Then spatial discretization using finite differences or finite elements results in large, sparse
saddle-point systems of the form

(5 %3)-(5) 05

Ax = b, (1.4)

or

where u and p are the discrete velocity and pressure, F is the discrete transient convection-
diffusion operator for velocity, BT is the discrete gradient, B is discrete divergence, C is a
stabilization matrix, and f and g account for forcing and boundary conditions. If the dis-
cretization is LBB stable (see [5] Chapter 5), then no stabilization is required, and C = 0. For
a detailed description of the linearization and discretization of (1.1) and (1.2) see [5] Chapter
7.

In order to efficiently solve equation (1.3), a preconditioned Krylov method is often used.
Many preconditioners employ the block LU factorization

I 0 F BT
ﬂ:(BF“ 1)(0 —S) (1.5)

where
S=C+BF'B’ (1.6)

“Department of Applied Mathematics and Scientific Computation, University of Maryland, eg-
phillips@math.umd.edu

Sandia National Laboratories, eccyr@sandia.gov

Sandia National Laboratories, jnshadi @sandia.gov

48 Block Preconditioners for Unsteady Navier-Stokes

is the pressure Schur complement. For fast convergence of a Krylov method right-preconditioned
by P, the operator AP~ should have few distinct eigenvalues. As noted in [9], if we let P
be the upper block triangular factor, then AP~ is the lower block triangular factor and has

a single eigenvalue of 1. Building on this idea, we let # be an approximation to this block
factor

r T
p:(g]—9_@) (1.7)

where F and S are approximations for F and S respectively (see [4] for a more general dis-
cussion of approximate block factorization preconditioners). To apply !, only the action of
the inverses of # and § is required. F~! is often well approximated by a multi-grid precondi-
tioner as argued in [5] Chapter 8 and [14], so we set F = F and focus on approximations for
the Schur complement.

The aim of this paper is to investigate the quality of various Schur complement approx-
imations. The immediate goal is not an efficient block preconditioner but an increased un-
derstanding of how Schur complement approximations impact preconditioning. We consider
how each Schur complement approximation affects the convergence of a Krylov method ap-
plied to the exact Schur complement and how this compares to the effect when the approxima-
tion is used in the block preconditioner (1.7) for the saddle point system (1.3). For Schur com-
plement approximations which are based on approximations of F~!' we also want to compare
the effect of the F~! approximation as a preconditioner for F. We are particularly interested
in how the performance of these preconditioners scales with CFL and Reynolds number as
finding good, inexpensive approximations to S is difficult for large CFL or Reynolds number
[1].

The remainder of this paper is structured as follows. In Section 2 we introduce sev-
eral Schur complement approximations based on Neumann series approximations of F~!.
In Sections 3-4 we consider two ways to improve upon these approximations: the sparse ap-
proximate inverse algorithm and structured probing. Section 5 describes another approximate
block factorization preconditioner, the least-squares commutator, for comparison. Section 6
contains some computational results for assessing the various preconditioners. Finally, con-
clusions are drawn in Section 7.

2. Neumann series approximations. In considering approximations for the Schur com-
plement, we first investigate those produced by approximating F~! by some F~!. The Schur
complement is then approximated through the explicit product

S=Cc+BF'B. 2.1

The Neumann series is a simple polynomial approximation for the inverse of a matrix (see
[10] Section 12.3.1 for a brief discussion). Given a nonsingular matrix F' and a preconditioner
M, if p(I = FM™") < 1, the following expansion holds

F'l=Mm" Z([—~FM™Y. (2.2)
i=0
Truncating this series gives the approximation

K-1

Fl=m! Z([—-FM™Y, 2.3)
i=0

E.G. Phillips, E.C. Cyr, and J.N. Shadid 49

the K term Neumann series preconditioned by M. Since we require p(I — FM~') < 1, a good
choice for M is an easily invertible approximation for . Note that the 1 term Neumann series
is equal to the preconditioner M~ itself.

The choice of M is then very important. A good choice of M will lead the Neumann
series to converge and will produce a good approximation for the Schur complement. An
important issue for efficient computing is the sparsity of . Since we do not alter S beyond
the approximation of F~!, it is important that ! is constructed to be sparse. Consequently
M should be chosen to be sparse, and since the density of F~! increases as the number of
Neumann terms increases, K should be kept small. For M we consider the following sparse
approximations to F or F~!.

SIMPLE
SIMPLE approximates F' by its diagonal.

SIMPLEC
SIMPLEC approximates F by a diagonal matrix, where the ith diagonal entry M;; is
the sum of the absolute values of the row F.. This expands on the idea of SIMPLE
by attempting to incorporate more data from F into the diagonal.

Block(k)
Given a whole number £, the block Jacobi approximation preserves the block diag-
onal of F composed of k X k blocks. This expands on SIMPLE by preserving data
off of the diagonal. Naturally, k should be taken modestly so M is sparse. We have
considered k = 2,3, and 4, and k = 1 gives SIMPLE. We consider systems where
the x and y velocities are split so u” = (ul, uyT). In this case, the blocking accounts
for the influence of closely indexed spatial nodes on each other. The effect of this
blocking approximation will then be largely contingent on index ordering and flow
direction.

ILU(0)
ILU(0) is the incomplete LU factorization with no fill-in. It computes the LU de-
composition of F only filling in according to the sparsity pattern of F. M~ is then
given by U~'L~!. See [10] Section 10.3.2 for an algorithmic description of ILU(0).
This approximation is used mostly as a benchmark since it produces denser approx-
imations than desired.

ILUT(7)
ILUT is the incomplete LU factorization with threshold. Given a threshold 7, ILUT
computes the LU decomposition, but does not fill in for any element of F' whose
magnitude is less than 7 times the norm of its row. See [10] Section 10.4.1 for an
algorithmic description.

SPAI
SPAI is a sparse approximate inverse. M~' is computed to minimize the norm
|IF(M™"),; — eill, within a tolerance for each column of M~', subject to a constraint
on the number of nonzeros allowed per column. SPAI begins minimization for each
column in the direction of the corresponding identity column. Nonzeros are itera-
tively added to the search direction based on the residual until either the tolerance or
the maximum number of nonzeros is reached. For precise algorithmic details, SPAI
is described as the Approximate Inverse Algorithm in [2]. We used the MATLAB
SPAI implementation SPAI2 [7].

We will refer to a K term Neumann series preconditioned by any of these choices of
M as (preconditioner_name)_K (i.e. a 3 term Neumann series with a 2 X 2 block Jacobi
preconditioner will be referred to as Block(2)_3).

50 Block Preconditioners for Unsteady Navier-Stokes

3. Other uses for SPAIL In addition to approximating F~!, SPAI can be used in other
ways to construct an approximate Schur complement. First, it can be used to approximate
the product F -1gT by a matrix X. This can be accomplished by minimizing ||FX.,; — B,-T*Hz for
each column of B with the SPAI algorithm. Once X is computed, S can be approximated by
S = BX. Because X has fewer columns than M this requires less work than the application of
SPAI defined above. This second use of SPAI will be referred to as SPAIb. Note that SPAIb
cannot act as a preconditioner for a Neumann series approximating F~'.

Another use of SPAI is to apply it to the entire Schur complement approximation. Note
that in practice we do not explicitly require the matrix $ for preconditioning. We merely need
the action of $~'. If we approximate S and end up with a matrix which is denser than we
would like, we can obtain a sparse approximation of §~! by applying SPAL.

4. Structured probing. Another method which can be used to produce a sparse ap-
proximation of the Schur complement is structured probing, as defined in [13]. Structured
probing approximates a matrix A € R™" according to a chosen sparsity pattern represented
in a matrix H € {0, 1}”". A matrix of p probing vectors X € {0, 1} is then constructed
via graph coloring techniques such that if A were already of the desired sparsity pattern, the
entries of A would be preserved in the matrix AX. The entries of AX are then mapped into an
approximation of A according to the sparsity pattern of H. We use the MATLAB version of
the Structured Probing Toolkit [12] to implement probing.

We regard the sparsity of a 1 term Neumann series with a diagonal preconditioner as a
benchmark. In this case, if C = 0, then S has the same sparsity pattern as BB”. To measure
the sparsity of a Schur complement approximation, we appeal to the ratio of nonzeros in §
to nonzeros in BBT. If this ratio is much greater than 1 for a good S, then we can attempt to
preserve the convergence properties of § and reduce its density by probing it to the sparsity
structure of BBT. When probing is applied to the Schur complement approximation in this
way, we refer to the resulting method as (original_method_name)_P (i.e. a 3 term Neumann
series with a 2 X 2 block Jacobi preconditioner which has been probed will be referred to as
Block(2)_3_P).

5. Theleast-squares commutator. The least-squares commutator (LSC) preconditioner,
closely related to the BFBt preconditioner [6], is a popular preconditioner developed for
Navier-Stokes systems. It is fast and does not require any data beyond what is needed to
construct the problem. Consequently, it makes a good benchmark with which to compare the
preconditioners studied here. The idea of LSC, as described in [5] and [3], is to commute
the discrete velocity convection-diffusion operator F with the discrete gradient operator BT
so that

BF™'B" ~ BM,'B"F,'M, (5.1)

where M, is the velocity mass matrix, M, is the pressure mass matrix, and F, is the discrete
pressure convection-diffusion operator. So that /', need not be constructed explicitly, it is
obtained by solving the least squares problem

min (|[M; ' FM;'B"]; - M;'B" M, ' [F Il (5.2)
for each column j of F),. This defines
F, = M,(BM,'B"y""(BM,' FM;'B") (5.3)
so we let

S =BM;'B"(BM;'FM;'B")"'(BM; ' BT). (5.4)

E.G. Phillips, E.C. Cyr, and J.N. Shadid 51

This approximation requires only the velocity mass matrix which is required to build F. M;!
is commonly replaced by its diagonal. Then the BM ' BT terms are scaled discrete Laplacian
operators for which there exist efficient solvers. The action of § ! is then easy to compute.

6. Computational results. The test problem considered is a regularized lid driven cav-
ity on a 32 x 32 grid, using Q2 — P1 stable elements and a Picard linearization. The problem
is generated with IFISS [15] using its standard time-stepping procedure (TR-AB2, described
in [8]) with v = 1/100 to a time of 0.4. The time-step is then adjusted to produce a given
CFL. The domain is [-1, 1] X [-1, 1] so Re = 2/v. The next matrix system is used to test the
preconditioners. The Krylov method used is GMRES [11] with a stopping tolerance of 10~°
and zero initial guess. This very tight criteria may favor the more robust preconditioners. We
assess the effect of the preconditioners on the entire saddle point system, ‘A, by solving (1.3)
and the effect on S and F by solving the explicitly generated equations

-Sp=g-BF'f, (6.1)
and
Fu=f-B'p (6.2)

respectively, as these equations produce the same solution as (1.3). For (6.1) we use S as
preconditioner and for (6.2) we use F. We will use GMRES iteration counts and total com-
putation time as measures of performance. We note that the MATLAB codes used may not be
highly optimized, but computation time can give an indication of the relative performance of
the preconditioners studied. The computation times for probing and SPAI may be particularly
inflated by their MATLAB implementations.

We begin by considering the performance of Schur complement approximations based on
single term Neumann series approximations for F~!: SIMPLE_1, SIMPLEC_1, Block(2)_1,
ILU(0)-1, ILUT(0.25)-1, and SPAI_1. We use Block(2) because Block(3) and Block(4) give
very similar results with slightly higher density. We found that the choice of 7 = 0.25 for
ILUT gives a good balance between density and efficiency. We also compare SPAIb and LSC
for which Neumann series on F do not apply. For both SPAI and SPAIb we use the default
stopping tolerance of 0.4 and a maximum of 50 non-zeros per column. Initially our results
will be based on setting Re = 200. Iteration counts and computation time are compared
as functions of CFL for A in Figure 6.1, for S in Figure 6.2, and for F in Figure 6.3. The
first thing to notice is that iteration count for every preconditioner has the same relationship to
CFL.: it is moderate and approximately constant for CFL up to about 5, then begins to increase
for CFL greater than 5. Because of this dependence on CFL, performance of preconditioners
will be judged largely on the right-hand tail in these figures.

In general, the growth rate of iteration count is very similar between A, S, and F, but we
see an interesting effect with Block(2)_1. Notice that for F', Block(2)-1 performs worse than
SIMPLEC_1 at the largest CFL, with iteration count as large as that of SIMPLE_1. But for
S and A, Block(2)_1 has a lower iteration count than SIMPLEC_1 at this CFL. We can also
see that the difference in iteration count between SIMPLE_1 and SIMPLEC_1 is dramatically
greater for S and A than for . These observations show that the performance of a Schur
complement approximation using F~! is not entirely contingent on the performance of F~!
on F. On the other hand, it seems that the performance of a block preconditioner using
Schur complement approximation $ relies heavily on the performance of § preconditioning
S. Similar trends are seen in computation time. Note that computation time is large for
SPAI_I because of the extra work involved during minimization. An investigation of the
large computation time for SPAIb at low CFL is deferred until density information in Table
6.2 is presented.

52 Block Preconditioners for Unsteady Navier-Stokes

Neration Counts: for 4 Computation Timas lor A
T, - - - B0 - -
w— SIMPLE 1 — SPLE_1
aoap| = SIMPLEC 1 by —SEAPLEC 1
— Black(2)_1 = Block(2)_1
500 @)1 B0 L)1
§ — [LUT{0.25)_1 E — ILUT(0.28)_1
s SPAL1 = 50 SPAL1
E — 5PAR ==t
= - —
§>* 0
1=
o i)
= 20
1o 0
e plE =
o 10 1o 0 16l 10 10’ 10
CFL

FiG. 6.1. Iteration count and computation time for various single Neumann term preconditioners applied to A.

Haration Counts for & Computation Time for 5
BOD - - T 120 - -
— SIMPLE 1 e SHAPLE 1
TOOf | = SIMPLEC_1 e SEAPLEC_1
— Black(Z]_1 1o o BinckZ)_1
BOO ILLE)_1 U1
— [LUT{0.25)_1 E B0 —— ILUT[0.28]_1
500 SPAL T = SPALY
5 — SPAR = 5PA
i | i - = =LSC
g
300
o G 49
200
bl _,._.—-—'—A =
a ~ereeaae | o e
W 107 1o’ o' 1 1o W 107 1o’ ' 10" 1o’
CFL CFL

FiG. 6.2. Iteration count and computation time for various single Neumann term preconditioners applied to S .

We now turn to higher order Neumann series approximations for F~'. To avoid exces-
sive density in the Schur complement approximation, we add more Neumann terms only to
the sparsest preconditioners: SIMPLE, SIMPLEC, and Block(2). We observed that itera-
tion count improved for each preconditioner when a second Neumann term was added, but
SIMPLEC was the only preconditioner for which three or more Neumann terms improved
iteration count for all CFL. This effect is well explained by considering the spectral radius
p(I = FM™"), as shown in Table 6.1. For SIMPLE and Block(2), the spectral radius is much
greater than 1 for large CFL. As a result, iteration count degrades for large CFL when Neu-
mann terms are added. The spectral radius for SIMPLEC is close to 1 for all CFL considered.
Although it slightly exceeds 1 for larger CFL, this is good enough to see iteration count im-
provement with up to 6 Neumann terms for F and up to 5 for S and A, as shown in Figures
6.4 — 6.6. The slope of iteration count decreases for each Neumann term added in each of the
3 systems. The same sort of decrease is apparent in computation time, with the exception of
the third Neumann term, until SIMPLEC_5 is comparable to ILU(0)_1.

CFL | 0.01 005 0.1 05 1 5 10 50 100 500 1000
SIMPLE 0.7 08 07 06 05 07 10 30 55 253 50.2
SIMPLEC 0.9 09 09 08 07 07 09 1.0 1.1 1.3 1.3
Block(2) 0.7 07 07 05 04 05 07 12 21 34 6.6
TaBLE 6.1
Values of p(I — FM™") for 3 choices of M.

E.G. Phillips, E.C. Cyr, and J.N. Shadid 53

leeasion Counss for F Computation Time lor F
60O — - - - ™ - ~ —
——SBIMPLE 1 —SIMPLE 1
—BIMPLEC_ 1 o | = SIMPLEC_1
00T | — Biockiz) 1 — Bock(2)_1
—— ILLH) 1 50 ILLKO)_t
A0 —— LAUTiD25) 1 E = LUT{025)_1
SPAL 1 = SPAI
ai
: g
w
g
L &

Fic. 6.3. Iteration count and computation time for various single Neumann term preconditioners applied to F.

Neration Counts: for A Computation Timae for A
250 — — — 5 - ~ —
— STMPLEC_1 e BIMPLEC_1
— SIMPLEC_2 ~— SIMPLEC_2
200} | = SMPLEC 3 20} | = SIMPLEC 3
- SHAPLEC_4 SIMPLEC 4
—— SMPLEC_8 E —— SIMPLEC_§
150 SIMPLEC_& - SIMPLEC_ &
5 —— RIRHL1 — L1
i
£ 100
o &
50

FiG. 6.4. Iteration count and computation time for Neumann series preconditioned by SIMPLEC applied to A.

Neration Counts for §

300 — - ~
——SIMPLEC_1
— BIMPLEC. 2
20F | — smarLeC 3
— SIMPLES 4
soop| —smarLEc 5
SIMPLEC 6
3 — ILLI{3)_1
e '¥
w
. 3
54

Fic. 6.5. Iteration count and computation time for Neumann series preconditioned by SIMPLEC applied to S .

Although adding Neumann terms improves iteration count and computation time, it also
increases the density of §. This increase in density can be seen in Table 6.2. The ratio of non-
zeros in § to non-zeros in BB” is constant over CFL for the Neumann series preconditioned by
SIMPLEC, increasing with each term. The ratio is also constant over CFL for ILU(0)_1, but
is much greater. Having comparable computation time and lower density makes SIMPLEC_5
more favorable than ILU(0)_1 for larger problems. ILUT(0.25)_1 and SPAI_1 grow in density

54 Block Preconditioners for Unsteady Navier-Stokes

Herason Counss for F Computation Time lor F

506 T - - Vi T -
—— SMPLEC 1 ——SIMPLEC 1
——SIMPLEC 2 14} | — SIMPLEC 2

apof [—swrLec 3 —— SIMPLEC 3
—— GMPLEC 4 12b ——SIMPLEC 4
— SIMPLEC S g ——SIMPLEC 5

W SIMPLEC & = SIMPLEC &

5 — LI 3 — LKD) 1
]
g 200
o d
100

FiG. 6.6. Iteration count and computation time for Neumann series preconditioned by SIMPLEC applied to F.

as CFL increases, while SPAIDb, in contrast, decreases in density for larger CFL. This explains
the large computation times seen with SPAIb for low CFL in Figures 6.1 and 6.2. In this case,
the SPAI algorithm ran longer for low CFL, adding more non-zeros, without reaching its
tolerance.

CFL | 0.01 0.05 0.1 0.5 1 5 10 50 100 500 1000
SIMPLEC_1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
SIMPLEC_2 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6
SIMPLEC_3 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.8
SIMPLEC_4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4
SIMPLEC5 | 103 103 103 103 103 103 103 103 103 103 10.3
SIMPLEC6 | 133 133 133 133 133 133 133 133 133 133 133

ILU@)-1 | 31.6 316 316 316 316 316 316 316 316 31.6 316
ILUT(0.25)-1 1.0 1.0 1.0 1.0 1.0 1.0 1.1 35 72 211 24.9

SPAI_I 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.4 1.6 2.0 2.6
SPAIb 2.5 2.5 2.5 1.3 1.0 1.0 1.0 1.0 1.0 1.0 1.0
TaBLE 6.2

Ratio of non-zeros in 8 to non-zeros in BB .

To assess the performance of probing, we apply it to the Schur complement approxi-
mations defined by ILU(0)_1 and the SIMPLEC Neumann series with up to 5 terms. For
this problem, using the sparsity pattern of BBT, 27 probing vectors are required. Iteration
counts and computation time are compared with the original non-probed preconditioners in
Figures 6.7 and 6.8. For the SIMPLEC preconditioners, probing only slightly increases iter-
ation count. Computation time is much greater for probing in this size problem due to the
expensive graph coloring process, but grows slower with CFL. ILU(0)_1 sees a much greater
deterioration in iteration count when probing is applied. This can be attributed to the higher
density of ILU(0)_1 as compared to the SIMPLEC preconditioners. More information is lost
from ILU(0)_1 when probed to the sparsity pattern of BB .

Given what we have seen, the preconditioners of most interest are ILU(0)_1, ILUT(0.25)_1,
SPAIb, SIMPLEC_S, and SIMPLEC_5_P. Although dense, ILU(0)_1 is consistently the best
in terms of both iteration count and computation time. ILUT(0.25)_1 grows in density as
CFL increases but is competitive in iteration count and computation time. SPAIb may have
larger iteration counts than SPAI, but the decrease in its density with growing CFL and the
need for fewer minimization procedures make it a much faster preconditioner for large CFL.
SIMPLEC.S is the best of the higher order Neumann series preconditioners considered, and
SIMPLEC_5_P performs almost as well in iteration count while being 10.3 times sparser.

E.G. Phillips, E.C. Cyr, and J.N. Shadid

Noration Counts for A

Computation Timae for A

55

250 -~ 25 ~ - -
= = = SWPLEC 2 = = = SBPLEC 2
—SIPLEC 2 P —SMPLEC 2 P
200 SWMPLEC_3 0 SMPLEC 3
BIMPLEC 3_P - SIMPLEC_3_P
- = = SIMPLEC_4 I | B
150} | —SMPLEC 4_P = i5j — SMPLEC_4_P
B SIMPLEC 5 - - - sMPLEC 5
o BMPLEC _5_P SMPLEC 5 P
tEl: joak | == =mikti_t o | == = LU
2 — KB 1P & — LU0} _1_P 2
v
0 st o
F s
...... L__. e s g S
. FoEEcEmoennenpenifa-"
o o — A —- e)
] 1 1o’ o' 1o’ w o w' 1’ 10’ 10" 10’
CFL CFL
FiG. 6.7. Iteration count and computation time for probed preconditioners applied to A.
Noration Counts for 5 Computation Tima lor 5
250 -~ 25 - - -
== =BIMPLEC 2 == =SIMPLEC 2
=— BIMPLEC 2 P ——SIWMPLEC 2 _P
200 SIMPLEC 3 ¢ 20k |- - ~SMPLEC 3
SIMPLEC 3_P b f ——SIMPLEC 3 P
== = BIMPLEC_4 24 E = = ~SIMPLEC 4
150 ——SIMPLEC_4_P A = gk | —SIMPLEG 4 P
5 -BIMPLEC_5 ¥ - SIMPLEC S
o -BIMPLEC_§_P b SIMPLEC & P
tEl: woakl= = =iLum_1 /_{ {1+1 3 Sl MY 10} ;
z — L 1_P 3 —RKD)_1_F .

FiG. 6.8. Iteration count and computation time for probed preconditioners applied to S .

We assess these preconditioners further by showing how their performance scales with
Reynolds number and mesh size. The Reynolds number is modified by changing the value
of v. The scaling of iteration count with Reynolds number is plotted in Figure 6.9. Observe
that ILU(0)_1 and ILUT(0.25)_1 degrade with an increase in Reynolds number, as they do
not converge for very high Reynolds number when coupled with large CFL. The other 3
preconditioners scale similarly with Reynolds number and are comparable to LSC for Re =
20000.

We compared the performance of the 5 best preconditioners with 2 finer meshes: 64 x 64
and 128 x 128. Iteration counts and computation time for these preconditioners on the three
meshes with Re = 200 are plotted in Figures 6.10 — 6.12. The detriment of ILU(0)_1’s
density is clear on the 128 x 128 grid as MATLAB, running on 1 gb of RAM, ran out of
memory. ILUT(0.25)_1 was also too dense to run at CFL = 1000. Keep in mind that the
Schur complement approximation is explicitly computed. In practice, matrix free multi-grid
methods could be used to avoid constructing it on the finest grid. Otherwise, we do not see
much change in iteration count . But as far as computation time, it appears that the probing
graph coloring algorithm as implemented gets more expensive with mesh refinement, making
SIMPLEC_5_P very slow on the 128 x 128 mesh. Ultimately, SPAIDb fairs the best with mesh
refinement obtaining the lowest computation times for large CFL on the finest mesh, owing
to its sparsity and accurate approximation of S.

56 Block Preconditioners for Unsteady Navier-Stokes

Woration Counts foar ILLYD)_1 Memtion Counts for ILUTID.25)_1

i - - r] - - ™

=——fg = =—fg =2

— Py = 20 — Ay = 20

e Pl = 200
P = 2000

= Py = 20000

GMAES Nevaticns
GMAES Nevaticens
g,

77
"

o i e i i gy oS i i)
1w+ 10 10’ 10 10’ w o’ 10’ 10" 10 10’ '
CFL CFL
\ Heration Courts for SPAR . Reraiion Coinis for SIMPLEC S
10 1o
— — =2
e iy = 2 —— R = 2
— Pl = 200 —— Ao = 200
- Pl = 2000 —— g = 2000
§Iu’r‘_“’='m §|u’-—m.m
5 5
it -1 B
% n'p % '
&)

10 10 10 10’ 10 10
CFL
o heraticn Counts for SIMPLEC 5 P o Ieratcn Courss dor LSC
—FA#=2 —
——R# =20
—— Ry = 200

~—— Ao = 2000
—— e = 20000

GMAES Nevaticns
GMAES Nevaticens

10 w0

Fig. 6.9. [teration count for the best preconditioners as it scales with Reynolds number on A. Note
that ILU(0)-1 did not converge for Re = 20000,CFL = 1000. ILUT(0.25)_1 did not converge for Re =
2000,20000, CFL = 500, 1000.

7. Conclusion. This paper presented a number of preconditioners for saddle point prob-
lems arising from discretizations of the unsteady Navier-Stokes equations. The approach is
based on an approximate block triangular factorization, focusing on approximating the Schur
complement. We considered Schur complement approximations based on Neumann series
approximations of F~!. These rely heavily upon the spectral radius p(I — FM~"). But the
efficiency of an approximation F~! as a preconditioner for F is not directly analogous to the
efficiency of a block preconditioner using F~! to approximate S. Structured probing can be
employed to reduce the density of a Schur complement approximation without increasing
iteration count much, but the graph coloring procedure involved proves very expensive. A
competitive Schur complement approximation for larger problems is developed by adapting
a sparse approximate inverse algorithm to approximate F~'B”. It will be valuable to study

E.G. Phillips, E.C. Cyr, and J.N. Shadid

lsranor Counts on 32052 G

Compeitafion Tims on 3352 Grd

57

250 — e — —) — — —
——iLuT(R25)_1 —LLiT{0 25
|l —GFAR
21401
—— SBMFLEC_S oo —— SIMPLEC_5
B —— SRAPLEC % P i ——ZIPLEC_ 4|
3 o .
CRET | e () o — Lt !
a
- § a0 1
§ £
=0 1
—
—
v 4 o " ¥ ¥
1] 10 {81] 14 {11] [r]
CFL
FiG. 6.10. Iteration count and computation time for the best preconditioners on a 32 X 32 grid for A.
iimianon Counts on B4x8d. Gd Comguitation Tims on (Lafd Grid
&0 — e —_ — B — o —— —
— g UTI0251 — T2
B00F | ——rcpar —PAl
—CPLEC _§ —EaaPLEC 4
P |]
g Nl—swmiec s F | 2wonf—secsre
2 aqgpl—muE y: -—; =) 1
i F g ————
w1 g
E 5 500
1004 -
b
a 1 ¥ i ¥ 1 o i i 1]
i 10 1 10 1 10 18 10
oFL

Fic. 6.11. Iteration count and computation time for the best preconditioners on a 64 X 64 grid for A. Note that
ILUT(0.25)-1 did not converge for CFL = 1000 and SPAIb did not converge for CFL = 500, 1000.

Haraon Cownts on 120158 G

Computaton Tims on F28cT28 Grid

&0, — — — — 3000, — — — —_
={LLIT[2%]_1 =—=jLUm[025)_1
H m— L sl ——= i
300 SFAIL ; 4500 TFAl -/4
— CIPLEC /! H—siumEC s
#4501 G 1 —_— EC
£ SIMPLEC 4 P £ 2000 SIMFLEC 5 F P
8 200 =
B &
w1 g
g .
sak
L

FiG. 6.12. Iteration count and computation time for the best preconditioners on a 128x128 grid for A. ILU(0)_1
consumed too much memory to be run. ILUT(0.25)_1 also ran out of memory for CFL = 1000.

the robustness of the preconditioners presented here by applying them to other domains and
using stabilized finite elements. It is also important to note that in practice a direct solver will
not be used to invert the Schur complement approximation. Keeping this in mind, it would
be of interest to study how these Schur complement approximations interact with multi-grid
methods.

58

(1]
[2]
[3]
[4]

[3]
[6]

[7]
[8]

[9]

[10]
(1]

[12]
[13]

[14]

[15]

Block Preconditioners for Unsteady Navier-Stokes

REFERENCES

M. Benzi AND M. A. OrsHaNsKI, An augmented lagrangian-based approach to the oseen problem, SIAM
Journal on Scientific Computing, 28 (2006), pp. 2095-2113.

E. CHow aND Y. SaAD, Approximate inverse techniques for block-partitioned matrices, SIAM Journal on Sci-
entific Computing, 18 (1995), pp. 1657-1675.

H. Erman, V. E. Howtg, J. SHapp, R. SHUTTLEWORTH, AND R. TuMINARO, Block preconditioners based on
approximate commutators, SIAM Journal on Scientific Computing, 27 (2006), pp. 1651-1668.

H. Erman, V. E. HowLE, J. SHADID, R. SHUTTLEWORTH, AND R. TUMINARO, A faxonomy and comparison of par-
allel block multi-level preconditioners for the incompressible navier-stokes equations, Journal of Com-
putational Physics, 227 (2008), pp. 1790-1808.

H. Erman, D. SivesTER, AND A. WATHEN, Finite Elements and Fast Iterative Solvers: With Applications in
Incompressible Fluid Dynamics, Oxford University Press, Oxford, 2005.

H. C. ELmaN, Preconditioning for the steady-state navier-stokes equations with low viscosity, SIAM Journal
on Scientific Computing, 20 (1996), pp. 1299-1316.

M. D. HucHhes anp K. CHEN, SPAI2.

D. A. Kay, P. M. GresHo, D. F. GrirritHs, AND D. J. SILVESTER, Adaptive time-stepping for incompressible flow
part ii: Navier-stokes equations, STAM Journal on Scientific Computing, 32 (2010), pp. 111-128.

M. E. Murpny, G. H. GoLu, AND A. J. WATHEN, A note on preconditioning for indefinite linear systems, SIAM
Journal on Scientific Computing, 21 (2000), pp. 1969-1972.

Y. Saap, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, 2 ed., 2003.

Y. Saap anp M. H. Scuurrz, Gmres: A generalized minimum residual algorithm for solving nonsymmetric
linear systems, STAM Journal on Scientific and Statistical Computing, 7 (1986), pp. 856-869.

C. SiererT, Structured Probing Toolkit.

C. Sterert AND E. DE STURLER, Probing methods for saddle-point problems, Electronic Transactions on Nu-
merical Analysis, 22 (2006), pp. 163—-183.

D. Swvester, H. Etman, D. Kay, ano A. WatHeN, Efficient preconditioning of the linearized navier-stokes
equations, Journal of Computational and Applied Mathematics, 128 (1999), pp. 261-279.

D. SivesTer, H. ELMAN, AND A. RaMAGE, IFISS: Incompressible Flow Iterative Solution Software.

CSRI Summer Proceedings 2010 59

EFFICIENTLY COMPUTING TENSOR EIGENVALUES ON A GPU

GREY BALLARD*, TAMARA KOLDA', AND TODD PLANTENGA

Abstract. The tensor eigenproblem has many important applications, and both mathematical and application-
specific communities have taken recent interest in the properties of tensor eigenpairs as well as methods for com-
puting them. In particular, Kolda and Mayo [3] present a generalization of the matrix power method for symmetric
tensors. We focus in this work on efficient implementation of their algorithm, known as the shifted symmetric
higher-order power method, and on how a GPU can be used to accelerate the computation up to 70X over a sequen-
tial implementation for an application involving many small tensor eigenproblems.

1. Introduction. The tensor eigenproblem has many important applications, and both
mathematical and application-specific communities have taken recent interest in the proper-
ties of tensor eigenpairs as well as methods for computing them. In particular, Kolda and
Mayo [3] present a generalization of the matrix power method for symmetric tensors. We
focus in this work on efficient implementation of their algorithm, known as the shifted sym-
metric higher-order power method (SS-HOPM).

The main motivating application for this work involves detection of nerve fibers in the
brain from diffusion-weighted magnetic resonance imaging data. In this application, data
is gathered for millions of cubic millimeter sized voxels. Determining the number and di-
rections of nerve fiber bundles within each voxel requires solving a small tensor eigenvalue
problem. Because each voxel can be resolved independently, the computations are amenable
to parallelism, and we focused our implementation on a graphics processing unit (GPU) using
the Compute Unified Device Architecture (CUDA) programming framework.

We review the definition of the tensor eigenproblem as well as the SS-HOPM algorithm
from [3] in Section 2. All of the tensors discussed here are symmetric, and exploiting symme-
try is the foremost sequential optimization we use to gain performance. Symmetric matrices
can be stored in half the space and symmetric matrix computations often require only half
the flops of their nonsymmetric counterparts; exploiting symmetry in tensors can save stor-
age and computation by much larger factors. In Section 3 we discuss a symmetric tensor
storage format and how this compressed format is used in the main computational kernels of
SS-HOPM.

Instead of attempting to write an algorithm that offers high parallel performance for com-
puting eigenpairs of tensors of general order and dimension, we focus the GPU implementa-
tion on small tensors, as in our motivating application. Because of the inherent parallelism
in the problem, we can run many independent threads concurrently on the hardware, and we
facilitate efficiency of each thread with careful memory management. We offer an overview
of GPU computing in Section 4, describe the motivating application in Section 5, and give
the details and results of our implementation in Section 6.

The main contributions of this work are (1) the introduction of a symmetric storage for-
mat and means of exploiting symmetry to avoid redundant computation, and (2) a parallel
implementation of SS-HOPM. While the implementation is tailored to a specific application,
we believe it will be widely applicable to high performance computations with symmetric
tensors.

2. Symmetric Tensors and Tensor Eigenpairs. We formally introduce the notion of a
symmetric tensor which is invariant under any permutation of its indices. Let R be the set

“UC Berkeley, ballard @cs.berkeley.edu
Sandia National Laboratories, tgkolda@sandia.gov
Sandia National Laboratories, tplante @sandia.gov

60 Efficiently Computing Tensor Eigenvalues on a GPU

of real-valued order-m tensors where each mode has dimension 7.
DerNtTION 2.1 (Symmetric tensor [1]). A tensor A € R is symmetric if

Qiryigy = Qiyiy, Jorall iy, . iy €{1,...,n}and w € 11,

where 11, is the set of permutations of the set {1,...,m}.

The main computational kernels in the shifted symmetric higher-order power method
will be instances of the following definition of symmetric tensor-vector multiply.

DerFiNtTION 2.2 (Symmetric tensor-vector multiply [3]). Let A € RU™" be symmetric and
x € R". Then for 0 < p < m — 1, the (m — p)-times product of the tensor A with the vector X
is denoted by AX"P € RIP" and defined by

(AX")iy, = Z i,y Xy 00 Xi, forall 1 <iy,....0, <n. 2.1

Note that there is ambiguity in defining a tensor times the same vector in some subset of
modes, but due to symmetry the choice of indexing below yields the same result as any
other valid definition. Also note that the result of a symmetric tensor-vector multiply is also
a symmetric tensor, because any permutation of the indices of the result tensor (iy---ip)
on the left hand side of Equation 2.1 corresponds to a permutation of the first p indices of
the symmetric input tensor entries in the summation on the right hand side which remains
invariant.

We recall the definition of a tensor eigenpair used in [3]. There are other definitions of
eigenvalues and eigenvectors in the literature, but the relationships between the definitions
and the many interesting properties of tensor eigenvalues are beyond the scope of this work.

DEerINITION 2.3 (Symmetric tensor eigenpair [3]). Assume that A is a symmetric m"-order
n-dimensional real-valued tensor. Then A € C is an eigenvalue of A if there exists x € C"
such that

AxX" ' = ax and ||, = 1. (2.2)

The vector X is the corresponding eigenvector, and (A, X) is called an eigenpair.

Finally, we present the shifted symmetric higher-order power method (SS-HOPM) from
[3] as Algorithm 1. This algorithm is a generalization of the matrix power method where the
operation Ax""! generalizes the matrix-vector product and Ax™ generalizes the Rayleigh
quotient for a unit vector. Algorithm 1 includes the shift parameter @ which is chosen to force
the underlying function to be convex (@ > 0) or concave (@ < 0).

The symmetric higher-order power method (with no shift) was introduced in [2, 4], and
convergence of the method was proved for certain types of tensors. While the symmetric
higher-order power method does not converge in general, choosing a sufficiently large (in
absolute value) shift @ guarantees convergence of SS-HOPM. The convergence properties of
a given eigenpair are characterized in [3], but there are still many open problems regarding
choice of starting vector, choice of shift, and finding eigenpairs with certain properties.

3. Exploiting Symmetry.

3.1. Symmetric Tensor Storage. Let A € R""! be a symmetric tensor. In general, A
has n™ entries, but since it is symmetric, many of the entry values are repeated and need not
be stored redundantly. We define an index as anumber i € {1,...,n}, we define a tensor index
as an array of m indices corresponding to one entry of the tensor, and we define an index class
as a set of tensor indices such that the corresponding tensor entries all share a value due to
symmetry. For example, for m = 3 and n = 2, the possible indices are 1 and 2, and the tensor
indices [1, 1,2] and [1, 2, 1] are in the same index class since a;2 = ay2;.

G. Ballard, T. Kolda, and T. Plantenga 61

Algorithm 1 Shifted Symmetric Higher-Order Power Method (SS-HOPM) [3]
Given a tensor A € R,
Require: @ € R, xo € R" with [[xo|| = 1. Let 4o = AXxJ'.

1: fork=0,1,... do

: if @ > 0 then

2

3 Xis] & .AXZH + ax;

4 else

5: Xis] & —(.AX;(n_l + axXy)
6: end if

7 Xir1 < Xeet /|1l

8: As1 < AXY

9: end for

We can find a unique representative of an index class by choosing the tensor index whose
indices are in nondecreasing order. We define this nondecreasing tensor index as the index
representation of the index class.

The index classes of A can also be characterized by the number of occurrences of each
index i € {1,...,n} in the tensor indices of the index class. Thus, we can define the monomial
representation of an index class as an array of n integers where the i’ entry in the array corre-
sponds to the number of occurences of the index i in the index class. Following the example
given above, the index class that includes [1, 1,2] and [1, 2, 1] has monomial representation
[2, 1] since there are two 1’s and one 2 in every tensor index in the class.

In order to avoid redundant storage, we store only the unique values of the tensor (i.e.
one value per index class). The following property gives the number of unique values of a
dense symmetric tensor.

ProPERTY 3.1. The number of unique values of a symmetric tensor A € R is given by
the binomial coefficient

m
(m e 1) =2 s omm.

m m!

Proof. Each index class corresponds to a unique value. Counting the number of possible
monomial representations of length m with n possible values is equivalent to counting the
number of ways to distribute m indistinguishable balls into n distinguishable buckets, where
the balls correspond to the indices of the tensor index and the buckets correspond to the
possible index values. By a “stars and bars” argument,' this number is

(m+n—1): (n+m—1)-~(n+1)n:;_":Jro(nm—l)

m m!

as claimed. O

Assuming A is dense, we can impose an ordering on the unique entries and avoid storing
any index information. We choose to use a lexicographic order of the index classes, increas-
ing with respect to the index representation and decreasing with respect to the monomial

representation. That is, the index class with index representation [iy, i3, ..., i,] is listed be-
fore [1, jo,-.-» Jml if iy < jyorifi; = j; and iy < j», and so on. Equivalently, the index
class with monomial representation [k, k, . . ., k,] is listed before [I}, >, ...,1,] if k; > [} or

ISee Theorem 2 in Section 4.6 of [9], for example.

62 Efficiently Computing Tensor Eigenvalues on a GPU

index monomial
1 1 1 13 0 0 O
2 1 1 212 1 0 0
3 1 1 312 0 1 0
4 1 1 412 0 0 1
5 1 2 21 2 0 0
6 1 2 3}1 1 1 0
7 1 2 411 1 0 1
8 1 3 3|1 0 2 0
9 1 3 411 0 1 1
i1 4 411 0 0 2
1m|12 2 210 3 0 0
1212 2 3]0 2 1 0
312 2 4,10 2 0 1
412 3 3]0 1 2 0
5712 3 410 1 1 1
6|12 4 4,0 1 0 2
713 3 3|10 0 3 0
813 3 410 0 2 1
1913 4 410 0 1 2
2004 4 410 0 0 3
TasLE 3.1

gi341

Set of index classes in lexicographic order.

if k; = [; and k, > 5, and so on. This corresponds to an ordering on monomials in a given
polynomial ring (the origin of the terminology). In this case, the index classes correspond
to monomials which all have total degree m. See Table 3.1 for an example of lexicographic
ordering for both representations in the case m = 3 and n = 4.

While the lexicographic ordering makes storing index information for every unique value
unnecessary, it will be important to compute index information during computations. Since
the index representation requires m integers and the monomial representation requires n inte-
gers and we expect n > m for most problems, we store the index representation and compute
monomial representation values implicitly. Note that while the monomial representation will
be sparse when n > m, even a compressed format would require at least m integers.

3.2. Computational Kernels. The two most computationally intensive kernels in Algo-
rithm 1 are computing the scalar Ax" and the vector Ax"~!, where A € RI"" is symmetric
and x € R". Both of these are instances of the symmetric tensor-vector multiply given in
Definition 2.2, with p = 0 and p = 1, respectively.

3.2.1. Tensor times same vector in all modes. Consider the case p = 0:

n n

Ax" = Qi i Xiy ** o X (3.1
Dl i,

i=1 in=1

For a nonsymmetric tensor, this summation requires at least one multiplication for each term
(corresponding to each entry of A), yielding at least n™ flops. However, we can exploit
symmetry to reduce the computational complexity. Note that the tensor index matches the
indices of the x vector entries for each term in the summation. Since the product of a set of
numbers is also invariant under permutation, all of the terms in the summation corresponding
to the same index class will have the same value.

For example, for m = 3 and n = 2, the term in the summation corresponding to the
tensor index [1, 1,2] is given by a1 - x1 - X1 - xp = amx%xz, and the term in the summation

G. Ballard, T. Kolda, and T. Plantenga 63

corresponding to the tensor index [1,2, 1] is given by ajz1 - X1 - X2 - X} = amx%xz. Any tensor
index with monomial representation [2, 1] will yield this value.
We can avoid recomputing the redundant value by instead computing the number of times
each unique term appears in the summation, which is given by the following property.
PRrOPERTY 3.2. The number of tensor indices of a symmetric tensor A € R in the index
class with monomial representation [k, ks, ..., k,] is given by the multinomial coefficient

m B m!
kivkay .o kel kil k! - k!

Proof. Consider the monomial representation [k, ks, ..., k,]. Counting the number of
tensor indices in this class is equivalent to counting the number of ways one can distribute m
distinct balls into n distinct bins such that the i bin has k; balls. Here the balls correspond to
the (ordered) indices of the tensor index and the bins correspond to the possible index values.
One way to solve this problem is to count the number of ways of filling the first bin (given by
the binomial coefficient (,’:}‘)), followed by the number of ways of filling the second bin (given

by (’"];k‘)), and so on. Using the product rule and after much cancellation, we have

m m— ky m— (ki +ky+ -+ k,_q) _ m!
ki ky ky T klk! e k!
as claimed. 0

We can thus rewrite Equation 3.1 as

m
AX" =) (k koo k)“ SRR (3.2)
IEJ[m'n] 15 K255 Ky
where I is the set of index classes for a symmetric tensor in R, and [k, ..., k,] and
[i1,...,in] are the monomial and index representations of the index class I, respectively.

Equation 3.2 yields Algorithm 2, which assumes the unique values of A are stored in lex-
icographic order. For each unique value, the algorithm computes the monomial coefficient
and index array associated with the tensor entry and adds the contribution of that term to the
accumulating result.

3.2.2. Tensor times same vector in all modes but one. Now consider computing the
vector Ax""!, the case p = 1 in Definition 2.2:

('Axm_l)il _ i . i Ajy iy Xiy * X, (3-3)

=1 in=1

Note that the j component of Ax"~! does not depend on every tensor entry, only those tensor
entries whose index representation starts with index j. Because of symmetry, Equation 3.3
can be rewritten with 7} appearing as any index in the tensor index of the tensor value.

As in the case of computing Ax™, we can exploit symmetry to avoid performing the more
than »” multiplications required to compute all entries of the output vector if we followed
Equation 3.3. As before, if a tensor value contributes to the summation for index k of the
output vector, its symmetric counterparts will contribute the same value to the sum. Following
the example given before, where m = 3 and n = 2, both a;;» and aj;; will contribute to the
computation of (.Ax'"‘l)], and each will contribute the value a;;, - x1 - xo. Note that a,;; will

not contribute to the summation for (.Ax'"‘l)], because its first index is not 1.

64 Efficiently Computing Tensor Eigenvalues on a GPU

Algorithm 2 Compute y = Ax" via Equation 3.2, where A € R g symmetric, X € R”,
andyeR
Require: A stores the unique entries of A in lexicographic order

1: function y = SyMMETRICTENSORVECTORMULTIPLYO(A, X)

2: y=0

3: I=1[1,...,1] > use index representation (length 1)
4: for j=1to ('"J'r:’,_l) do > iterate over unique entries
5: X=xp Xy, xp, > compute monomial value
6: C = NumOcc0(1) > compute number of occurrences
7: y=y+C-A;-% > accumulate sum
8: I = UppateInpex(]) > See Algorithm 4
9: end for

10: end function

Require: 7 has length m with entries in nondecreasing order
11: function C = NumOccO(I)

12: div=1 > divisor of (, ",)
13: curr = —1 > current index value
14: mult = -1 > multiplicity of current index value
15: for j=1tomdo

16: if /; # curr then

17: mult = 1

18: curr = I;

19: else > repeated index
20: mult = mult + 1

21: div = div - mult > only update divisor if mult > 1
22: end if

23: end for

4. C=m!/div setC=(, ",)

25: end function

Computing the number of tensor indices in an index class that will contribute to a given
entry of the output vector is a variation on Property 3.2. Consider an index class that con-
tributes to the j” entry of the output vector (i.e., an index class whose index representation
includes an index j). Let [ky, ko, ..., k,] be the monomial representation, so that k; > 0. In
the context of assigning m balls to n bins with appriopriate multiplicities, we can assign the
first ball to the j™ bin (enforcing that the tensor index starts with j). Then we have m — 1
more balls to assign to the 7 bins, but only k; — 1 more will be assigned to the j" bin. Using
the approach given in the proof of Property 3.2, we see that the number of tensor indices that

will contribute the same value to the j” element is given by the multinomial coefficient

m-—1
kiyooooki—1,.. k)

Now we can rewrite Equation 3.3 as

_ m—1 k-1

.AXml = iyeei koo R kn 34

(ax"), I;M(kl, .,kj—l,...,kn)a' C I G4
Ekj>0

G. Ballard, T. Kolda, and T. Plantenga 65

where 9" is the set of index classes for a symmetric tensor in R, and [k, ..., k,] and
[i1,...,i,] are the monomial and index representations of the index class I, respectively.
Equation 3.4 yields Algorithm 3.

Algorithm 3 Compute y = Ax""! via Equation 3.4, where A € R™" is symmetric, and
X,y € R”
Require: A stores the unique entries of symmetric tensor A in lexicographic order

1: function y = SYMMETRICTENSORVECTORMULTIPLY 1 (A, X)

2: y=0

3: I=[1,...,1] > use index representation (length m)
4: for j=1to (’"J:Z_l) do > iterate over unique tensor entries
5: for unique i € 7 do > skip repeated indices in /
6: X=xp -xp,xp, | X > compute monomial value (excluding x;)
7: C = NumOccl(l, i) > compute number of occurrences
8: yi=yi+C-A;-% > accumulate sum
9: end for

10: I = UppateInpex(]) > See Algorithm 4
11: end for

12: end function

Require: 7 has length m with entries in nondecreasing order
13: function C = NumOccl(Z, i)

4 div=1 > divisor of (, 77})
15: curr = —1 > current index value
16: mult = -1 > multiplicity of current index value
17: for j=1tomdo

18: if j # first index of i in / then > ignore one occurence of i
19: if I; # curr then

20: mult = 1

21: curr = I;

22: else > repeated index
23: mult = mult + 1

24: div = div - mult > only update divisor if mult > 1
25: end if

26: end if

27: end for

28 C=(m—1)!/div ssetC=(, 171 L)

29: end function

3.2.3. Index array calculations. We can compute the index representation of an index
class quickly by exploiting the lexicographic ordering and computing each index represen-
tation from the previous one. That is, given any index representation we want to compute
the next larger index representation in the lexicographic order, under the conditions that the
indices within the index representation are nondecreasing and range between 1 and n.

To find the next representation, we seek to increment the least significant possible index
(i.e., the rightmost index not equal to 7). In the example given in Table 3.1, the successor of
[1,1,1] is [1,1,2] (the last index is incremented). More generally, suppose the k™ index is

66 Efficiently Computing Tensor Eigenvalues on a GPU

the least significant index not equal to n, so that the index class is [iy, ..., i, 7, ..., n]?. Thus,
this is the largest representation with prefix [iy, ..., i,...], so the successor must have prefix
[i1,....ix+1,...]. The smallest such representation that satisfies the nondecreasing condition

18
[il,...,ik+1,ik+1,...,ik+1].

For example, again from Table 3.1, the successor of [2,4,4] is [3, 3, 3]. See Algorithm 4 for
the implementation. In this way, we can store index information in an array of m integers,
and under the lexicographic ordering, and updating the index information for each term in the
summation requires O(m) operations.

Algorithm 4 Update index representation of unique entry in symmetric tensor A € R

Require: 7 has length m with entries in nondecreasing order
1: function Uppatelnpex ()

2: Jj=m

3: while /; == n do > find least significant index # n
4: j=j-1

5: end while

6: Ii=1;+1 > increment least significant index # n
7: fork=j+ 1tomdo > update less significant indices
8: I, = Ij

9: end for

10: end function
Ensure: [is the successor in lexicographic ordering (restricted to nondecreasing)

3.2.4. Computing number of occurrences. The number of occurrences of each index
class is given by a multinomial coefficient in terms of the monomial representation of the
index class. Since we store the index representation and not the monomial representation, we
compute the multinomial coefficient implicitly. We can do this by computing the denominator
with one pass over the array storing the index representation. The numerator is constant over
all index classes and can be precomputed (either m! or (m — 1)! for the two computational
kernels).

In the case of computing AXx™, the task is to compute for each index class the product
ki!---k,!, where [ki,...,k,] is the monomial representation which is not stored explicitly.
Note that k; is the number of occurrences of index i in the index representation which is
stored in memory. Since the index representation is nondecreasing, repeated occurrences of
an index will be contiguous. Thus, as we pass over the index array, we can multiply the
accumulated product by 1 for the first occurrence of an index, by 2 for the second occurrence,
and so on. For example, given the index representation [1,2,2,5,5,5, 5], the accumulated
product willbe 1-1-2-1-2-3-4 =1!-2!-4! This approach yields the function NumOccO
in Algorithm 2.

In the case of computing Ax" ™", we take the same approach to compute the denominator,
but we ignore one occurrence of the index corresponding to the entry of the output vector
being computed. Following the preceding example, in the case of computing the 5" element
of Ax" !, the index representation [1,2,2,5,5,5,5] would yield to the accumulated product
1-1-2-1-2-3=1!-2!-3! This approach yields the function NumOccl in Algorithm 3.

m—1

2Note that there may be no instances of index n in the index class, in which case k = m, the index class is
[i1,...,i], and the successor is [if, ..., i + 1].

G. Ballard, T. Kolda, and T. Plantenga 67

In order to avoid redundant computation (at the expense of extra storage), we can pre-
compute the multinomial coefficient (k1 kzm ¢) for each index class. This is the coefficient
used in the computation of Ax™, and the coeflicients needed in the computation of Ax"-!

can be obtained by dividing the stored value by m and multiplying by k; for appropriate ;.

3.2.5. Computational costs. All the computations in the main loop of Algorithm 2 are
done in O(m) operations (floating point and otherwise). Thus, the computational complexity
of computing Ax™ is O (m : %) =0 ((m"fnl),)

There are nested loops in Algorithm 3, and the inner loop requires m iterations in the
worst case. All the computations in the inner loop are done in O(m) operations (floating

point and otherwise), so the computational complexity of computing Ax"~! is O (m2 . %) =

0 (@)

4. GPU Computing Overview. Graphics processing units (GPUs) were originally de-
veloped and optimized to offload and accelerate graphics rendering computations from the
more general purpose microprocessor or “central processing unit” (CPU) on a host computer.
Graphics processing consists largely of data parallel computations, and GPU hardware is
designed to exploit this data parallelism via single instruction/multiple data (SIMD) instruc-
tions. GPUs also exploit instruction level parallelism: instruction streams for several threads
of execution are pipelined in order to hide the latency of memory operations for each thread
(this requires that the threads be mutually independent).

GPU architecture is rapidly developing to meet the demands of new applications and
users. Many of these applications require high graphics rendering performance, but a grow-
ing number of users are interested in exploiting the computing power of GPUs for many other
purposes including scientific computing. To this end, nVidia has invested in the development
of Compute Unified Device Architecture (CUDA) which is used for general purpose pro-
gramming of GPUs. Most programmers use CUDA as an extension of the C language which
gives access to a set of virtual instructions for accessing the memory spaces and functional
units on a GPU.

Along with making CUDA freely available, nVidia also offers a software development
kit including programming guides, example programs, and other documentation for program-
mers. Much of the information in the following sections is available in more detail in the
CUDA documentation, particularly [5, 6].

4.1. Physical Hardware Model. Both the computational units and the memory hier-
archy on GPUs are fundamentally different from CPU architectures. See Figure 4.1 for a
graphical representation of the physical hardware model.

Computational Units. The functional units on a GPU are organized into groups which
concurrently execute SIMD instructions. In nVidia terminology, each functional unit is
known as a “processor” or “core”, and each group of processors resides on a “streaming
multiprocessor.” On the GeForce 9800 GT used in our experiments, there are 14 multipro-
cessors (see Figure 4.1(a)), each with 8 processors (see Figure 4.1(b)). Thus eight operations
can simultaneously execute the same instruction on different data on a multiprocessor. The
GPU we used is capable of only single precision floating point operations, but newer models
can execute double precision operations.

Memory Hierarchy. GPUs have a complicated memory hierarchy with several differ-
ent physical and logical memory spaces. Note that the memory hierarchy discussed here is
only representative of nVidia GPUs of Compute Capability 1.x; newer architectures of Com-
pute Capability 2.x have fundamental differences. The largest memory is known as “device
memory” and is accessible to all multiprocessors on the GPU (see Figure 4.1(a)). It is also

68 Efficiently Computing Tensor Eigenvalues on a GPU

GPU

Dewice Memory

T |
| anal an] w a a sl a a s

(a) GPU card with device memory and set of stream-
ing multiprocessors (SM). Memory on each SM shown
in (b).

Streaming Multiprodesior

Teubars Cachs Comtan Cac b

Sharvd blermiory

Meghten

(b) Streaming multiprocessor with on-chip mem-
ories and SIMD functional units (P). Each SM has
access to device memory as shown in (a).

Fic. 4.1. GPU Hardware Model

accessible from the host device (CPU) and is the means through which the CPU and GPU
communicate data. Except for “integrated” cards, this memory resides on the graphics card
itself. The memory access latency for device memory to one of the GPU’s computational
units is two orders of magnitude greater than the latency of the on-chip memory.

There are four types of on-chip memory: registers, shared memory, constant cache, and
texture cache (see Figure 4.1(b)). The set of registers, or “register file,” is relatively large
but must be divided up among all threads resident on the multiprocessor; it has the smallest
memory access latency (one or two cycles). The shared memory is the next fastest mem-
ory. It is smaller than the register file but can be shared among threads in a thread block.
Shared memory can be dynamically allocated and can be used as a local store (i.e. there is no
hardware-managed caching system).

Some of device memory can be statically allocated as “constant” memory, and accesses
to constant memory will be cached by the hardware. Constant memory is read-only for a
given GPU kernel function but can be written by the host CPU between kernel calls. A
“texture”” can be bound to an array in device memory such that the result of a texture “fetch”
will be cached. The texture caches on a GPU are shared by two or three multiprocessors. The
texture caching system is designed to exploit 2D spatial locality, and texture fetches include
other features designed to improve the performance of certain relevant graphics operations.
See Table 4.1 for the sizes of the on-chip memory for the GeForce 9800 GT card.

4.2. CUDA Programming Model. The simplest CUDA programming model treats the
GPU as a coprocessor to the host CPU. That is, a single thread of execution works on the CPU
sequentially until it calls a “kernel” function on the GPU which is run by many CUDA threads
in parallel, and after the kernel returns, the single CPU thread resumes execution until it calls
another kernel or terminates. Multiple CPU threads can be used in order to overlap CPU

G. Ballard, T. Kolda, and T. Plantenga 69

Register file 8192 registers
Shared memory 16 KB
Texture cache 6-8 KB
Constant cache 8 KB
TaBLE 4.1

On-chip memory sizes per multiprocessor for GeForce 9800 GT (Compute Capability 1.1)

and GPU computation, but we only consider one CPU thread in this work. Kernel functions
may call other functions to be run on the GPU (which will also run in parallel); these other
functions cannot be called from host code. When a kernel function is launched from the host
code, the host specifies the number of thread blocks, the number of threads per block, and
optionally the amount of shared memory to allocate to each thread block (all of which can be
determined at run time).

Thread blocks are groups of threads which are all run on the same multiprocessor. They
have a common memory space residing in the physical shared memory through which the
threads can communicate and synchronize. Thread blocks are logical entities and the number
of threads per block is unrestricted up to a certain maximum; however, threads are physically
grouped into warps (the physical unit of SIMD instructions) during execution, so the number
of threads per block should be a multiple of the warp size (typically 32).

The logical memory hierarchy is tightly coupled to the physical memory. Registers are
local to threads, shared memory is restricted to threads within a thread block, and global
memory (which resides in “device” memory) is accessible by all threads and by the host
code. Communication between thread blocks using global memory is possible but rare be-
cause thread blocks may be scheduled on any multiprocessor in any order. Textures and
constant memory are also globally accessible and are read-only; textures are accessed via
special texture fetches. Another memory space known as “local” memory is logically local
to each thread, but the name is misleading because local memory physically resides in device
memory. In general, local memory is used to handle register spilling.

5. Detecting Nerve Fiber Direction in the Brain. We next discuss an application well-
suited for computation on a GPU. It involves many independent problems that can be solved
in parallel, and each problem involves an amount of data that is small enough to reside in the
on-chip memories of the multiprocessors.

Diffusion-weighted magnetic resonance imaging (DW-MRI) is a tool used to detect nerve
fibers in the brain. It is a non-invasive procedure that uses magnetic resonance to measure
how quickly water diffuses in a certain direction. Water diffuses more quickly along the
longitudinal axis of nerve fiber bundles than in any transverse or axial direction. DW-MRI
measurements are taken from many different orientations for a discrete set of voxels in the
brain. For each voxel, a diffusion function D : ¥ — R which maps an orientation to its rate of
diffusion (here X denotes the unit sphere in R?) is approximated using the measurement data.
For a unit vector g, D(g) is known as the “apparent diffusion coefficient” (ADC) [10].

When a voxel includes only one fiber orientation, the longitudinal direction should (glob-
ally) maximize D (it will exhibit the largest ADC). When a voxel includes more than one fiber
orientation (in the case of crossing fibers), each fiber orientation should correspond to a local
maximum of D.

According to [7, 8, 10], acommon way to approximate the diffusion function is as a finite
sum of spherical harmonic functions (which form a basis for complex functions on the unit
sphere). The 2" order series (with 6 terms) corresponds to a quadratic form

D(g) ~ g' Mg

70 Efficiently Computing Tensor Eigenvalues on a GPU

where M is a symmetric positive definite 3 X 3 matrix. In this case, at least six measurements
are required to determine the unique entries in the matrix M (or the six coefficients of the
first spherical harmonic functions). In the case of a voxel with one principal fiber orienta-
tion, this approach is usually sufficient for resolving the correct orientation. However, in the
case of fiber crossings or other complications such as bending or fanning fiber bundles, the
approximation is often unable to resolve the fiber directions.

In order to handle such cases, more accurate measurements and approximations are nec-
essary. The approach is to use higher order spherical harmonic series approximations which
can be represented not as quadratic forms, but more generally as homogeneous forms. The
homogeneous forms correspond to higher order tensors:

D(g) ~ Ag"

for some symmetric tensor A € RI™3. Note that m must be even since D(g) is a positive
physical quantity for all g (if m is odd then A(-g)" = —Ag"). More DW-MRI measure-
ments are required to determine the greater degrees of freedom in tensors of order m > 2, and
the higher order polynomial can better approximate the true diffusion function. Orders m = 4
and m = 6 are most commonly used (m = 8 requires 120 measurements). The correspon-
dence between coefficients of spherical harmonic functions with the entries in the associated
symmetric tensor are given in [10].

As described in [3], the critical points of the function f(x) = Ax™ and their function
values are exactly the eigenpairs of the tensor A (satisfying Equation 2.2). Thus, in order
to determine the principal fiber orientations in a given voxel, we can compute the principal
eigenvectors of the associated tensor.

Note that specific instances of Properties 3.1 and 3.2 for n = 3 appear in the DW-MRI
literature. See Equations 17 and 19 in [7], for example.

6. Implementation Details. The computation problem for the nerve fiber data is to take
as input a three dimensional array of symmetric tensors and output one or more eigenpairs
for each tensor. The three dimensional array corresponds to the set of voxels which discretize
the volume of a brain. The entries of each tensor correspond to the coefficients of the ho-
mogeneous polynomial which approximates the diffusion function for a given voxel. The
eigenpairs which define local maxima of the approximate diffusion function correspond to
principal nerve fiber directions within the voxel.

In order to find multiple eigenpairs, Algorithm 1 must be executed with different start-
ing vectors. Because there is not much theory to direct the choice of starting vectors to find
all eigenpairs corresponding to local maxima, we use many randomly chosen starting vec-
tors in order to get reasonable coverage of the unit sphere. We choose random vectors by
independently selecting each vector entry uniformly from [—1, 1] and then normalizing. Al-
ternatively, one could use a deterministic approach and pick starting vectors evenly spaced
about the sphere.

The computational problem consists of executing Algorithm 1 with many different ten-
sors and many different starting vectors each. Since the voxel size for DW-MRI is on the
order of one cubic millimeter, the number of voxels in a data set for a human brain can be
in the millions. In order to cover the sphere, we use somewhere between 32 and 128 starting
vectors for each tensor. With this much inherent parallelism in the problem, we can easily
saturate the computational units on a GPU. The main data structures involved in the com-
putation include the unique entries of each tensor, an array of randomly generated starting
vectors, an array of output eigenvectors, and an array of output eigenvalues.

6.1. Synthetic Test Set. We experimented with a synthetic test set provided by the Sci-
entific Computing and Imaging Institute at the University of Utah. It consists of 1024 tensors

G. Ballard, T. Kolda, and T. Plantenga 71

corresponding to a 2D array of voxels which includes some with one and some with two
principal fiber directions Each tensor is 4" order, so each has 81 total entries with 15 unique
values. We chose to use 128 starting vectors for each tensor in the hope of reasonably cov-
ering the sphere in R? and also because it is a multiple of 32, the physical warp size on the
GPU. We used a shift of @ = 0 as it yielded correct results for the tensors in this synthetic
set. Note that @ = 0 implies that SS-HOPM is the same algorithm as the one given in [2, 4].
Although the performance of the implementation will not vary much with «, choosing an
appropriate shift for real data will balance a tradeoff between guarantees of convergence and
time-to-completion. To find local maxima, a nonnegative shift must be used.

6.2. Thread Organization. Because of the number of independent problems, we are
able to map the computation to the GPU in a straightforward way with minimal synchroniza-
tion. We organize the CUDA threads in the following way: assign a thread block to each
tensor and assign each thread in a thread block to a different starting vector. Since the number
of starting vectors is greater than the warp size, each thread block will utilize all the proces-
sors on its multiprocessor. Similarly, as long as the number of tensors is at least 50 or so, all
of the multiprocessors will be utilized with three or four thread blocks each (multiple thread
blocks are necessary to fill the instruction pipelines).

6.3. Data Structures. Because of the small size of the tensors and vectors in this prob-
lem, we can fit all the data for each thread block in the on-chip memory and minimize the
accesses to device memory. Let 7 be the number of tensors, U be the number of unique
entries in each tensor, and V be the number of starting vectors. Recall that for this problem,
m=4,n=3,T =1024, U = 15, and V = 128. For real data, we expect T to grow into
the millions but the rest of the parameters will remain constant, though V could be varied
experimentally. The tensor data is of size T - U, the array of starting vectors is n X V, the array
of output eigenvectors is n X (T - V), and the array of output eigenvalues is of size T - V. Note
that every thread block can use the same set of starting vectors, but each has its own set of
output vectors.

In addition to the main data structures, we pre-compute and store the index and multino-
mial coeflicient information required in Algorithms 2 and 3. The index information is stored
as an array of size mx U and can be shared by all threads. We store the multinomial coefficient
(k ’’’’’ .) for each unique tensor value, where [k, ..., k,] is the monomial representation of the
index class of the unique entry. In this way, ﬁndlng the number of occurrences of an entry
in Algorithm 2 is just a look-up, and computing the related multinomial coefficients used in

ml B) for some 7, can be done by reading the stored

ssssss

value, multiplying by k; and dividing by m.> Thus the array of multinomial coefficients is of
size U. All threads can share this information.

6.4. Memory Management. We use both the shared memory and constant cache to
minimize the memory accesses to device memory. Because the index array and multinomial
coeflicients are read only and can be shared by all the threads in the computation, we designate
them as constant memory which resides in global (device) memory. However, because that
information can fit into the constant cache of each multiprocessor, they will be read from
device memory to the cache only once per multiprocessor for the entire computation. Because
the tensor entries can be shared by the threads within one thread block, we store them in the
shared memory. In this way, the tensor entries are read from device memory to the on-chip
shared memory only once per thread block.

30ne might consider storing the “coefficient” (]’"'k) so that only one multiply is needed to update the stored

value for each kernel, but note that this value is not an integer in general.

72 Efficiently Computing Tensor Eigenvalues on a GPU

yl = Avals[0] * x1 * x1 * x1 + \
Avals[1] * 3 * x1 * x1 * x2 + \
Avals[2] * 3 * x1 * x1 * x3 + \
Avals[3] * 3 * x1 * x2 * x2 + \
Avals[4] * 6 * x1 * x2 * x3 + \
Avals[5] * 3 * x1 * x3 * x3 + \
Avals[6] * x2 % x2 % x2 + \
Avals[7] * 3 * x2 * x2 * x3 + \
Avals[8] * 3 * x2 * x3 * x3 + \
Avals[9] * x3 * x3 * x3;

Fi6. 6.1. Unrolled computation of the first entry of the vector Ax"~', for A € RI*3). The variables x1, x2, x3
are register variables which store the input vector and the Avals array is in shared memory.

Finally, we store the input and output vectors, which are private to each thread, in shared
memory. Although this data will not be shared with other threads in the thread block, we use
the shared memory because it is the only on-chip memory that can be dynamically allocated
and overwritten. There are two main drawbacks from using shared memory this way. First,
allocating 2n words of shared memory per thread requires a lot of memory per thread block,
and since the physical shared memory is shared by all thread blocks on a multiprocessor,
fewer thread blocks can be scheduled simultaneously on each multiprocessor. The amount
of oversubscription (known as “occupancy” in nVidia’s terminology) allows for pipelining
instruction streams and hiding memory latency. Second, the register file is faster to access
than shared memory. Since the number of thread blocks per multiprocessor is limited by the
shared memory requirements, the size of the register file is not being exploited.

6.5. Loop Unrolling. For a given order and dimension, we can unroll the loops within
the two main computational kernels. This enables us to exploit the register file for storing the
input and output vectors by statically allocating register variables corresponding to input and
output vector entries. Not only does this expose instruction-level parallelism to the compiler,
it also removes the indirection in accessing input and output vector entries. This is possible
for small problems, but to scale to larger problems we would need a blocked approach. See
Figure 6.1 for an example of an unrolled loop in the case m = 4 and n = 3. The Avals array
stores the unique tensor entries in lexicographic order, the input vector entries are stored in
static variables, and the multinomial coefficients are stored as constants in the instruction
stream. In this case, the number of terms in the summation for Ax™ is 15, and each of the
three summations for the entries of the output vector Ax”~! have 10 terms.

Without unrolling the loops, each access to an input or output vector requires two mem-
ory operations. For example, if the index information is stored in an array called index, then
accessing entries to the input vector x take the form x[index [k]]. This indirection prevents
the compiler from pipelining instructions within one thread and degrades performance even
if index and x are both on-chip (see Section 6.6).

Note that the arithmetic intensity (ratio of flops to bytes involved in the computations) is
high for both kernels. In the case m = 4 and n = 3, there are 15 unique tensor entries and
two vectors each with three entries, so the number of bytes in single precision is 84 while
the number of flops in computing Ax"~! is 140. Another possible optimization would be to
use common subexpression elimination on the unrolled summations. For example, the code
shown in Figure 6.1 computes x% three times.

6.6. Results. The processor used for these results is a quad-core Intel Bloomfield (Core
i7). The GPU used is an nVidia GeForce 9800 GT which nVidia classifies as Compute Capa-

G. Ballard, T. Kolda, and T. Plantenga

(a) Flop rates in Gflops/s and speedup of loop unrolling

General Unrolled | Unrolled speedup
CPU seq 0.24 1.86 7.86
CPU par 0.92 6.85 7.41
GPU 5.95 131.73 22.15

(b) Relative performance, normalized to se-
quential implementations

73

General Unrolled
CPU seq 1.00 1.00
CPU par 3.90 3.67
GPU 25.08 70.66
TaBLE 6.1

Performance results for six different implementations on all 1024 tensors

bility 1.1. The parallel CPU code was run with four threads using OpenMP. All computations
were done in single precision (the only precision available on GPUs of Compute Capability
1.1), and we use 128 starting vectors in all cases.

We report on six different implementations. We benchmarked a completely sequential
implementation, using one core on the quad-core CPU; a parallel CPU implementation, using
all four cores of the processor; and our GPU implementation. In each case, we benchmarked
both the general version of the code and the loop-unrolled version which is specialized to
tensors of order 4 and dimension 3. Note that no memory hierarchy optimizations were used
in the CPU implementations.

Table 6.1 shows the performance results for all six implementations computing the eigen-
pairs for all 1024 tensors. Table 6.1(a) shows the absolute performance and gives the speedup
observed for each implementation by unrolling the loops. Comparing the unrolled code to
the general implementations, we see that unrolling yields over 7x speedup for both CPU im-
plementations and a 22X speedup for the GPU implementation. In Table 6.1(b) the relative
performance values are normalized to the sequential CPU implementations to show parallel
speedups. We observe that the GPU implementation achieves a speedup of 20x over the par-
allelized CPU implementation. Although the CPU implementation was not optimized for the
memory hierarchy, we believe that because of the large number of independent problems in
this application, the GPU implementation will outperform the best multi-core implementation
for this test set. Future research will explore which architecture is better suited for computing
eigenpairs of larger tensors or tensor applications with less inherent parallelism. In either
case, developing high performing code for general orders and dimensions will require an
efficient blocking strategy to allow for loop unrolling and the use of register variables.

Figure 6.2 shows performance results for four different implementations for subsets of
the 1024 tensors in our test set. Note that the loop unrolling makes a significant difference
in the GPU performance for all problem sizes. Because of the independence of the tensor
eigenproblems, the parallel CPU implementation requires only a slight modification of the
sequential code using OpenMP pragmas and we observe close to perfect parallel scaling for
sufficiently large problems.

7. Conclusions. In this paper we present an implementation of SS-HOPM targeted for a
GPU. We describe how to save both storage and computation in the two main computational
kernels of the algorithm, and for the case of solving many small tensor eigenproblems we
show how to map the computation onto a GPU. For our experimental data set, we achieved

74 Efficiently Computing Tensor Eigenvalues on a GPU

10° /-F" -
y
/
/!
GPU-unrolled
== GPU-general
CPU-par-unrolled
| CPU-unroll
]
5 10!
e L R A T NP T SR
/.—" : ¢] = '
10" . . ; . "
200 400 BOO B0 1000

Number of Tensors

Fic. 6.2. Performance results for running SS-HOPM on sets of 4" order 3-dimensional tensors with 128
starting vectors each. Note the y-axis is a log scale.

parallel speedups of up to 70x over a sequential code using the same low-level optimizations
(but no memory hierarchy optimizations).

We believe that the techniques for exploiting symmetry may be extended to other com-
putations involving symmetric tensors, but many open questions remain about how to write
sequential or parallel implementations of the computational kernels that scale to higher or-
der and higher dimension tensors. We are also interested in how to map these computations
onto different computing platforms, including more recent GPUs which offer fundamentally
different hardware features.

Acknowledgments. We would like to thank Fangxiang Jiao, Yaniv Gur, and Chris John-
son of the Scientific Computing and Imaging Institute at the University of Utah for the moti-
vating application and for providing the sample data.

REFERENCES

[1] P. Comon, G. Gorus, L.-H. Lim, axp B. MOURRAIN, Symmetric tensors and symmetric tensor rank, SCCM
Technical Report 06-02, Stanford University, 2006.

[2] E. Korpis aNDp P. A. REGALIA, On the best rank-1 approximation of higher-order supersymmetric tensors,
SIAM Journal on Matrix Analysis and Applications, 23 (2002), pp. 863-884.

[3] T. G. Korpa anp J. R. Mavo, Shifted power method for computing tensor eigenpairs. arXiv:1007.1267v1
[math.NAJ, July 2010.

[4] L. D. LATHAUWER, B. D. MoOR, AND J. VANDEWALLE, On the best rank-1 and rank-(r[sub 1],r[sub 2],. . .,r[sub
nj]) approximation of higher-order tensors, SIAM Journal on Matrix Analysis and Applications, 21
(2000), pp. 1324-1342.

[5] NVbia, NVIDIA CUDA programming guide version 3.0.

[6] , PTX: Parallel thread execution ISA version 2.0.

[7] E.Ozarsian anp T. H. Marect, Generalized diffusion tensor imaging and analytical relationships between dif-
fusion tensor imaging and high angular resolution diffusion imaging, Magnetic Resonance in Medicine,
50 (2003), pp. 955-965.

, Generalized scalar measures for diffusion mri using trace, variance, and entropy, Magnetic Reso-

nance in Medicine, 53 (2005), pp. 866—876.

[8]

G. Ballard, T. Kolda, and T. Plantenga 75

[91 K. H. Rosen, Discrete mathematics and its applications (2nd ed.), McGraw-Hill, Inc., New York, NY, USA,
1991.
[10] T. Scuurrz anp H.-P. SEipEL, Estimating crossing fibers: A tensor decomposition approach, IEEE Transactions
on Visualization and Computer Graphics, 14 (2008), pp. 1635-1642.

76

CSRI Summer Proceedings 2010

E.C. Cyr and S.S. Collis 77

Uncertainty Quantification and Sensitivity Analysis

Uncertainty quantification and sensitivity analysis attempt to quantify the effect of varia-
tion in model parameters has on a physical model. The algorithms for computing these effects
can be computationally intensive and require the development of novel numerical methods for
efficient solution. Even given an efficient algorithm, the development and application appro-
priate methodologies for sensitivity analysis is still an area of active research. The articles
in this section touch on both efficient solution methods and methodological application and
development.

Tipireddy et al compare a number of preconditioners for stochastic Galerkin methods.
The performance of these methods are compared against results for nonintrusive stochastic
Galerkin methods. Miller et al. apply the stochastic collocation method to the drift-diffusion
equations for semiconductor modeling. Using the results of the collocation method, a sensi-
tivity analysis is performed gaining insight into the global sensitivity of the response function
to the parameters. Ahuja et al. develop Krylov recycling methods that appropriate for rapidly
converging linear systems. The performance of these methods is demonstrated on both ice
modeling problems and embedded uncertainty quantification methods. Blass and Romero
develop a method to analyze the stability of a stochastically forced ordinary differential equa-
tion. The approach utilizes analytic expressions for the eigenvalues and functions of a second
order differential operator to determine the stability. Proctor et al. consider a sensitivity anal-
ysis for a linear neutronics model for nuclear reactors. This work compares the performance
of adjoint-based local and global sensitivity analysis.

E.C. Cyr
S.S. Collis

December 17, 2010

78

CSRI Summer Proceedings 2010

CSRI Summer Proceedings 2010 79

A COMPARISON OF SOLUTION METHODS FOR STOCHASTIC PARTIAL
DIFFERENTIAL EQUATIONS

RAMAKRISHNA TIPIREDDY §, ERIC T. PHIPPS!, AND ROGER G. GHANEM !

Abstract. Several solution methods for stochastic Galerkin discretization of partial differential equations (PDEs)
with random input data are compared. Less intrusive approaches based on Jacobi and Gauss-Seidel mean itera-
tions are compared with more intrusive Krylov-based approaches. A set of preconditioners for the Krylov-based
iterative methods to accelerate convergence are also examined, including mean-based, Gauss-Seidel, approximate
Gauss-Seidel and approximate Jacobi mean preconditioners. All of these methods are compared to a non-intrusive
stochastic collocation approach applied to a canonical stochastic diffusion problem. For this problem, the Krylov-
based approach using approximate Gauss-Seidel and Jacobi preconditioners is found to be most effective. Sandia’s
Trilinos software is used to implement all the above algorithms.

1. Introduction. Real life physical problems are often modeled as partial differential
equations (PDEs) where input data are treated as random to represent uncertainty in this data.
Monte Carlo techniques are popular methods to solve these problems as they only require
solutions to the PDE for a given set of realizations of the input data. More recently however,
the stochastic finite element method [6, 3] has become a popular choice for solving these
problems because of its advantages over Monte Carlo methods. These methods compute
statistical properties of the solution more efficiently than Monte Carlo methods.

Stochastic finite element methods are either intrusive stochastic Galerkin methods ([13,
11, 4, 8]) or non-intrusive stochastic collocation methods ([15, 18, 10, 2]). Both exploit so-
lution regularity to achieve higher convergence rates than Monte Carlo methods. The first
approach translates the stochastic PDE into a coupled set of deterministic PDEs while the
second samples the stochastic PDE at a predetermined set of collocation points, resulting in
a set of uncoupled deterministic PDEs. The solution at these collocation points is then used
to interpolate the solution in the entire random input domain. Extending legacy software to
support stochastic collocation methods is simpler than supporting SGMs. Moreover, intrusive
SGMs require specialized linear solvers. However, the resulting set of PDEs in the stochastic
Galerkin system is much smaller in number than that in the collocation method. For a canon-
ical random diffusion problem, it is shown [9] that SGM using iterative Krylov-based linear
solvers and mean-based preconditioning [12] is more efficient than the non-intrusive sparse
grid collocation method.

While the stochastic Galerkin method is often considered to be a fully intrusive method,
there are in fact a variety of solver approaches for the stochastic Galerkin method that are
less intrusive. In this work, less intrusive Gauss-Seidel and Jacobi mean solver methods are
compared to more intrusive Krylov-based techniques. We consider these methods to be less
intrusive than the Krylov-based methods as they allow reuse of existing deterministic solvers.
Moreover preconditioning techniques for Krylov-based methods based on Gauss-Seidel and
Jacobi ideas are also explored and compared to traditional mean-based preconditioning. All
of these techniques are then compared to the non-intrusive stochastic collocation method ap-
plied to a canonical random diffusion problem. These comparisons demonstrate a trade-off in
computational cost versus intrusiveness with the Krylov-based methods using an approximate
Gauss-Seidel or Jacobi mean preconditioner being the most efficient.

This paper is organized as follows. In section 2, the model random diffusion problem is
formulated. Two models of the input random field are developed in section 3 which dictate

$Department of civil engineering at University of Southern California, tipiredd @usc.edu
ISandia National Laboratories, etphipp@sandia.gov
IDepartment of civil engineering at University of Southern California, ghanem @usc.edu

80 A comparison of solution methods for stochastic partial differential equations

very different behavior for the stochastic solution methods considered next. Section 4 de-
scribes the stochastic Galerkin method, and various solver and preconditioning methods are
introduced. The sparse grid collocation method is then reviewed in section 5. In section 6,
numerical experiments are carried out to compare the efficiency of the various solver and pre-
conditioning methods that have been introduced. Finally section 7 provides the concluding
remarks.

2. Problem Statement. In this work a stochastic steady state elliptic diffusion equation
with zero Dirichlet boundary conditions [9] is used as a test problem for various stochastic
PDE solution methods. Let D be an open subset of R” (for this work we assume n = 2) and
(€, %, P) be a complete probability space with sample space €, o-algebra X and probability
measure P. Assume a(x,w) : D X Q — R is a random field that is bounded and strictly
positive, that is,

O<ag <alx,w)<a,<oo ae. in DxQ. 2.1)

We wish to compute a random field u(x,w) : DX Q — R, u € H'(D) ® L,(Q) such that the
following holds P-almost surely (P-a.s.):

=V - (a(x, w)Vu(x,w)) = f(x,w) inD X Q, 2.2)
u(x,w) =0 ondD x Q. (2.3)

Let Hé(D) be the subspace of the Sobolev space H'(D) that vanishes on the boundary 0D and
is equipped with the norm ||u|| HI(D) = [fD |Vu|2dx]%. Problem 2.2 can then be written in the
following equivalent variational form [7]: find u € H(‘)(D) ® L,(Q) such that

b(u,v) = I(v), Vve H)(D)® Ly(Q), (2.4)

where, b(u, v) is the continuous and coercive (from assumption 2.1) bilinear form given by
b(u,v) = E [f aVu - Vvdx] , Yu,ve Hé(D) ® L,(Q), 2.5
D
and [(v) is the continuous bounded linear functional given by

Iv)=E [f fvdx} , Yve HyD)® Ly(Q). (2.6)
D

Here E[-] denotes mathematical expectation. From the Lax-Milgram lemma, Eq. 2.4 has
unique a solution in Hj(D) ® L(Q).

3. Input random field model. For computational purposes, the diffusion coefficient
a(x, w) must be discretized in both the spatial and stochastic domains. To this end, it is often
approximated with a truncated series expansion that separates the spatial variable x from the
stochastic variable w resulting in a representation by a finite number of random variables. For
this representation, second order information such as the covariance function of the random
field is required. In the present problem, two cases of random field models are considered.
In the first case, the random field is assumed to be uniformly distributed and is approximated
through a truncated Karhunen-Loeve expansion. In the second case, the random field is
assumed to have a log-normal distribution, that is a(x, w) = exp (g(x, w)) where g(x, w) is a
Gaussian random field, and is approximated by a truncated polynomial chaos expansion.

R. Tipireddy, E.T. Phipps and R.G. Ghanem 81

3.1. Karhunen-Loeéve expansion. Let C(xy,x;) = E[a(x;,w)a(x,,w)] be the covari-
ance function of the random field a(x, w). Then a can be approximated through its truncated
Karhunen-Loeve (K-L) expansion [6] given by

M
a(x, w) = a(x,&w)) = ap(x) + Z Vaiai(xéw), 3.D
i=1

where ag(x) is the mean of the random field a(x, w) and {(4;, a;(x))};>; are solutions of the
integral eigenvalue problem

f C(x1, x2)ai(x2)dxy = Aja;(x1). (3.2)
D

The eigenvalues A; are positive and non-increasing, and the eigenfunctions @;(x) are orthonor-
mal, that is,

fai(x)aj(x) = 0y}, (3.3)
D

where ¢;; is the Kronecker delta. In Eq. 3.1, {§,~}f.‘;’ , are uncorrelated random variables with
zero mean. As a first test-case, the diffusion coefficient a(x, w) is modeled with an exponential
covariance function

C(x1,x2) = o exp(=|lx; = x2ll1 /L) (3.4)

and uniformly distributed random variables &;(w). We further assume the random variables
are independent.

3.2. Polynomial chaos expansion. The K-L expansion above approximates a random
field by a linear combination of a finite set of random variables. To maintain positivity
of the random field, such a representation is only appropriate if the random variables are
bounded [16]. For unbounded random variables (e.g., log-normal) a nonlinear polynomial
chaos representation is more appropriate. The polynomial chaos expansion [6, 17] is used
to approximate a random field in terms of multi-variate orthogonal polynomials. Let & =
(&1, ,&u)T be the random variables from a truncated K-L expansion of a given random
field g(x, w), that is

M
20,) ~ Z0x, £)) = go(x) + Y VAigi(0éi(w). (3.5)
i=1

Assume a(x, w) is then given by a nonlinear transformation of g(x, w). Then a(x, w) can be
represented through nonlinear functionals of the random variables &;(w). It has been shown
in [17, 6] that this functional dependence can be expanded in terms of multi-dimensional
orthogonal polynomials, called polynomial chaos, as

a(x,) = ay(x) + Y 4, ONE @)+ Y Y 4T @), Ex@) +o- (3.6)

i1=1 i1=1ir=1

where I',(&;,,- -+ ,&;,) is the multi-dimensional polynomial chaos of order n in random vari-
ables (&;,,--- ,&;,). A one-to-one mapping of polynomials {I';} to a set of polynomials with

82 A comparison of solution methods for stochastic partial differential equations

ordered indices {;(§)} can be introduced [6]. After substituting {i;} in Eq. 3.6 and truncating
the series to finite number of terms N, the random field a(x, w) can thus be approximated as

Ne
a(x,) ~ alx, €)= ag(x) +) a((8). (3.7)

i=1

The polynomials {¢;(£)} are orthogonal with respect to the inner product defined by expecta-
tion in the stochastic space,

W),y j(6) = fg YiG()Y j(§(w)dP(w) = 6ij. (3.8)

As a second test-case, the diffusion coefficient a(x, w), is modeled as a log-normal ran-
dom field [5] where a(x, w) = exp(g(x, w) and g(x, w) is a Gaussian random field with expo-
nential covariance (3.4) and approximated with a truncated K-L expansion (3.5). In this case
the random variables ¢&; are standard normal random variables and thus are independent. It
also can be shown that the polynomials {i;} are tensor products of one-dimensional Hermite
polynomials. For a given total polynomial order p, the total number of polynomials {i;(£)} is

_ (Mip)!
Ne+ 1= S50,

4. Stochastic Galerkin method. In the stochastic Galerkin method, we seek the solu-
tion of the variational problem 2.4 in a tensor product space X, ® Y, where, X}, C H(‘) (D) is
finite dimensional space of continuous polynomials corresponding to the spatial discretiza-
tion of D and Y, C L,(Q) is the space of random variables spanned by polynomial chaos [6]
of order up to p. Then the finite dimensional approximation uy,y, (x,) of the exact solution
u(x, w) on the tensor product space X;, ® Y, is given as the solution to

blux,y,,v) = (V) ¥ve X, ®Y,. “.1)

In Eq. 4.1 the random field a(x, w) in the bilinear form b(ux,,yp, v) can be approximated
using either a K-L expansion or a polynomial chaos expansion depending on the either linear
or nonlinear dependence of the random field on the input random variables. The resulting set
of coupled PDE:s are then discretized using standard techniques such as the finite element or
finite difference methods. In the former case, a trial function, uy,y, can be written as

ux,y,(x, &) = Z u;iN; (W (), 4.2)

ij

where {N;(x)} and {;(£)} are the finite element shape functions and polynomial chaos poly-
nomials respectively. Substituting the trial function uy,y, (x, £) and the test function v(x, §) =
Ni(x)(€) in Eq. 4.1, the discretized equations can be written as

Ne P
Z Z ciiKij = fi, k=0, Ng, 4.3)
=0 i=0

where fi = E{f(x,EW}, and c;jx = E{&y) and P = M when a is approximated by a
truncated K-L expansion, or ¢;x = E{y iy} and P =]\7§ when a is approximated by a

polynomial chaos expansion. Here {K; € RN*XN*};'; o are the polynomial chaos coefficients of
the stiffness matrix (section (3.4) of [12])

(K)im = fa,-(x)VN,(x)~VNm(x)dx, i=0,....,P, Lm=1,...,N,, “4.4)
D

R. Tipireddy, E.T. Phipps and R.G. Ghanem 83

N,
and {u; € RN }j:EO are the polynomial chaos coefficients of the discrete finite-element solution
vector

uj = [ugjs...,un 1", j=0,..., N 4.5)
{Ki}}zo and {Ki}{’: , are symmetric positive definite and symmetric indefinite matrices respec-

tively. Equation 4.3 can be written in the form of a global stochastic stiffness matrix of size
((Ng + 1) X Ny) by (N: + 1) X N,) as

KOO ROl ... KON u fi

Kl,O Kl,l KI’NE up f2 (4 6)
. . . X - = N '

KNeO gNel ... gNeNe Uy, e

where Ki* = ¥° ¢, K;. We will denote this system as Kit = f. In practice it is prohibitive
to assemble and store the global stochastic stiffness matrix in this form, rather each block of
the stochastic stiffness matrix can be computed from the {K;} when needed.

4.1. Solution methods for stochastic Galerkin systems. In this section, various solver
techniques and preconditioning methods for solving the linear algebraic equations arising
from stochastic Galerkin discretizations (4.3) are described. The solver methods discussed
are: a Jacobi mean method, a Gauss-Seidel mean method, and Krylov-based iterative meth-
ods [14]. Also various stochastic preconditioners used to accelerate convergence of the
Krylov methods are discussed, including mean-based [12], Gauss-Seidel mean, approximate
Gauss-Seidel mean and approximate Jacobi mean preconditioners. In Jacobi and Gauss-
Seidel methods, mean splitting is used rather than traditional diagonal block splitting as it
allows use of the same mean matrix K for all inner deterministic solves (and thus reuse of
the preconditioner Py = Kj).

Jacobi mean algorithm. In this method, systems of equations of size equal to that of
the deterministic system are solved iteratively by updating the right-hand-side to obtain the
solution to the stochastic Galerkin system of equations (4.3):

Ne P
Ckk()K()MZeW = ﬁ(- Z Z CiijiI/lild, k= O, e, Né:. (47)
j=0 i=1
The above system of equations are solved for k = 0,---, N¢ using any solution technique

appropriate for the mean matrix K,. Thus existing legacy software can be used with min-
imal modification to solve the stochastic Galerkin system. In this work, Krylov-based it-
erative methods with appropriate preconditioners will be used. One cycle of solves from
k=0,---,Ng is considered one Jacobi outer iteration, and after each outer iteration, the right
hand side in Eq. 4.7 is updated replacing {u‘]fld } with the new solution {u;few }. These outer itera-
tions are continued until the required convergence tolerance is achieved. Note that for a given
outer iteration, all of the right-hand-sides for k = 0, - - - , N are available simultaneously, and
thus their solution can be efficiently parallelized. Moreover block algorithms optimized for
multiple right-hand-sides may be used to further increase performance. Finally this approach
does not require a large amount of memory to compute the solution. The disadvantage of the
method is it may not converge or converge very slowly.

84 A comparison of solution methods for stochastic partial differential equations

Gauss-Seidel mean iterative method. The Gauss-Seidel method considered is similar
to the the Jacobi method above, except the right-hand-side in Eq. 4.7 is updated after each
deterministic solve with the newly computed u;". Symbolically this is written

k-1 P Ne P
new new old
Ckk()Kouk = fk — Z Z c,-ij,-uj - Z Z ciij,-uj s k= 0, ey, Ng. (48)
Jj=0 i=1 Jj=k i=1

As before, one cycle of solves from k = 0,---, N is considered one outer iteration of the
Gauss-Seidel method, and these outer iterations are repeated until the required convergence
tolerance is achieved. Often this method converges in fewer iterations than the Jacobi method,
at the expense of no longer having all of the right-hand-sides available simultaneously. This
requires recomputing needed matrix-vector products K1 for each k, which adds additional
computational cost, or storing them as they are computed, which adds additional memory
requirements. In both the Jacobi and Gauss-Seidel methods, the left hand side matrix is the
mean matrix for all inner deterministic problems and only the right hand side changes. In
such cases recycled Krylov basis methods can be explored to increase performance.

Krylov based iterative methods with matrix-free operations. Krylov based iterative
methods [14] such as the conjugate gradient (CG) method and the generalized minimal resid-
ual (GMRES) method can be used to solve the stochastic Galerkin system (4.3) in which
matrix vector products ¥ = Kii are computed using “matrix free” operations:

Ne P
Vi = Z Z Ciij[uj, k= 0, te ,Nf. (49)
j=0 i=0

If the matrix vector products are computed from Eq. 4.9, it is not required to assemble the full
stochastic Galerkin stiffness matrix, drastically decreasing memory requirements. However
if a large number of iterations of a Krylov method such as GMRES are required, allocation of
the Krylov basis may still require a very large amount of memory. Thus good preconditioning
strategies for the stochastic Galerkin system are required, several of which will be discussed
below.

Mean-based preconditioner. The mean-based preconditioner [12] is given by P =
diag{Py, - -- ,Po} where Py ~ Kj is a preconditioner for the mean. The mean-based pre-
conditioner is very efficient to compute and apply, since it only must be generated once from
a matrix that is of the size of the deterministic system. However it doesn’t incorporate any
higher-order stochastic information, thus its performance degrades as the stochastic dimen-
sion, polynomial order, or random field variance increases [16].

Gauss-Seidel preconditioner. One or more outer iterations of the Gauss-Seidel mean
algorithm can be used as a preconditioner to the Krylov based iterative methods. An ad-
vantage of this method is that the cost of applying the preconditioner can be controlled by
adjusting the tolerance of the inner deterministic solves and number of outer iterations. De-
creasing this tolerance and increasing the number of outer iterations will reduce the number
of iterations in the Krylov method, but make the preconditioner more expensive to apply,
and thus these must be balanced to minimize overall computational cost. Generally we have
found the cost of the preconditioner to be dominated by solving the mean systems, and thus
the best choice was a very loose inner solver tolerance (i.e., 0.1) and only one Gauss-Seidel
iteration. However to prevent stagnation of the outer Krylov solver, a flexible variant of the
Krylov method (e.g., FGMRES) was necessary.

R. Tipireddy, E.T. Phipps and R.G. Ghanem 85

Approximate Gauss-Seidel preconditioner. The process of increasing the inner solver
tolerance can be taken to its extreme of replacing the inner mean solves by application of
the mean preconditioner. As with the Gauss-Seidel preconditioner above, we found exper-
imentally that this approach worked best with only one Gauss-Seidel iteration, and adding
additional iterations did not improve the quality of the preconditioner. We also found the cost
of the preconditioner was reduced dramatically if only the first-order terms in the expansion
for the stiffness matrix are used in the preconditioner and using higher-order terms did not
improve performance. We refer to this as the approximate Gauss-Seidel preconditioner.

Approximate Jacobi preconditioner. Similar to the approximate Gauss-Seidel precon-
ditioner, Jacobi iterations can be used using a preconditioner in place of the mean stiffness
matrix. In this case we used two outer Jacobi iterations, since the first iteration is equivalent
to mean-based preconditioning (i.e., the additional terms on the right-hand-side of Eq. 4.7 are
zero). Increasing the number of outer iterations did not improve the efficiency of the overall
solver. We refer to this as the approximate Jacobi preconditioner.

5. Sparse grid collocation method. In the collocation method, the solution to the PDE
is sampled at a pre-selected set of points called collocation points, @ = (£, --- M), The
stochastic solution is constructed by interpolating at these collocation points,

N

u(x,€) ~) (DL€ 5.

k=0

where {L;(§)} are Lagrange interpolatory polynomials defined by & (Ly(&)) = Ox) and uy is
the solution of following deterministic PDE,

—V.(a(x, EOVu(x) = f(x,£P) inD, (5.2)
u(x) =0 on dD. 5.3)

The collocation points can be chosen as tensor products of 1-D Gaussian quadrature points
and the interpolating polynomials as tensor products of 1-D Lagrange interpolating functions.
However the number of collocation points then grows exponentially with the number of ran-
dom variables. An alternative method is to use Smolyak sparse grid quadrature ([15, 10])
where collocation points that do not increase asymptotic accuracy are removed from the ten-
sor product grid. This results in many fewer collocation points but still more than the number
of stochastic degrees of freedom in the stochastic Galerkin method. This method is fully
non-intrusive and is easy to implement with existing legacy software (once the sparse grid is
generated) [1].

6. Numerical illustration. To compare the performance of the different solvers and
preconditioners discussed above, the 2-D stochastic diffusion problem presented in section 2
is solved using both the stochastic Galerkin and stochastic collocation methods from sec-
tions 4 and 5. For both solution approaches, the random field is treated as both a uniform
random field discretized using a truncated K-L expansion (section 3.1) and a log-normal ran-
dom field discretized using a truncated polynomial chaos expansion (section 3.2). In the first
case, the orthogonal polynomials used in the stochastic Galerkin method are tensor products
of 1-D Legendre polynomials whereas the collocation points used in the sparse grid stochas-
tic collocation method are built from Gauss-Legendre points, and in the second case tensor
products of Hermite polynomials and Gauss-Hermite quadrature points are used. The Dakota
package [1] is used to generate the resulting sparse stochastic collocation grids. The spa-
tial dimensions are discretized using a five-point finite-difference stencil on a 32 x 32 grid

86 A comparison of solution methods for stochastic partial differential equations

in the domain D = [0, 1] X [0, 1], resulting in a total number of spatial degrees of freedom
N, = 1024. For simplicity a constant unit force f(x,w) = 1 is used as the right-hand-side in
Eq. 2.2. The corresponding stochastic Galerkin linear system is constructed using the Stokhos
and Epetra packages in Trilinos. For the Jacobi solver, Gauss-Seidel solver, Gauss-Seidel pre-
conditioner, and stochastic collocation method, the linear systems are solved via multi-grid
preconditioned GMRES provided by the AztecOO and ML Trilinos packages. For a con-
sistent comparison of all of the preconditioning methods, FGMRES provided by the Belos
Trilinos package is used as the outer Krylov solver, with ML providing the preconditioner in
the mean-based and approximate Gauss-Seidel and Jacobi preconditioners. GMRES Krylov
methods are employed instead of CG for generality and the numerical implementation of the
boundary conditions resulted in unsymmetric matrices K;.

The solution time for these solvers and preconditioning techniques as a function of the
standard deviation of the input random field, stochastic dimension, and polynomial order are
tabulated in Tables 6.1-6.6. In the tables, MB, AGS, AJ and GS are the mean-based, approx-
imate Gauss-Seidel, approximate Jacobi, and Gauss-Seidel preconditioners respectively for
the FGMRES Krylov method. GS; and GS, are Gauss-Seidel solvers where GS | refers to
the Gauss-Seidel algorithm in which the matrix vector products K;u; are saved in an array for
reuse in later iterations of the “k” loop, whereas GS, refers to the variant where these prod-
ucts are recomputed when needed. GS; is generally more efficient, but for higher stochastic
dimension or polynomial order, it requires a large amount of memory. “Jacobi” refers to the
Jacobi mean solver, and “collocation” is the solution time using the Smolyak sparse grid col-
location method. The solution tolerance for all of the stochastic Galerkin solvers, as well as
the solver tolerance for the collocation method is le — 12. For the Gauss-Seidel and Jacobi
solvers, the inner solver tolerance is 3e — 13, and for the Gauss-Seidel preconditioner, the
inner solver tolerance is 0.1.

In the tables, DNC means “did not converge”, “Div.” means diverged, and “memory”
means system memory was exceeded. For the uniform random field with small variance
(o = 0.1), it can be observed from Tables 6.1 and 6.2 that the more intrusive Krylov-based
stochastic Galerkin solvers are more efficient than the less intrusive Gauss-Seidel and Jacobi
solvers, which are in turn generally more efficient than the non-intrusive stochastic collo-
cation method. Moreover the approximate Gauss-Seidel and Jacobi preconditioners are a
significant improvement over the traditional mean-based approach. However as the variance
of the random field is increased, we see from Table 6.3 the Gauss-Seidel and Jacobi solvers
suffer considerably, whereas the the Krylov-based approaches (excluding the Gauss-Seidel
preconditioner) still perform quite well. This is not unexpected, as the operator becomes
more indefinite as the variance increases. However for the log-normal random field, we see
from Tables 6.4 and 6.5 that the Krylov-based stochastic Galerkin approach is only more
efficient than the collocation approach for larger stochastic dimension or polynomial order
when using the approximate Gauss-Seidel or approximate Jacobi preconditioners. It is also
interesting to see that Gauss-Seidel solver, GS is faster than GMRES with mean-based pre-
conditioning in this case. For higher variance of the random field, we see from Table 6.6 the
Krylov iterative method with the approximate Jacobi preconditioner failed to converge and
the Jacobi solver diverged. This problem can be rectified by using the true diagonal matrix
Kkk = Z?ZO ciuK; from global stochastic stiffness matrix as the left-hand-side in the Jacobi
solver and preconditioner instead of the mean matrix Kj.

Figures 6.1(a) and 6.1(b) show a plot of relative residual error vs iteration count for
the stochastic Galerkin system with stochastic dimension 5 and polynomial order 5. It can
be observed that the Gauss-Seidel solver takes the least number of iterations where as the
Jacobi solver takes highest number of iterations for a given tolerance. However in terms of

R. Tipireddy, E.T. Phipps and R.G. Ghanem 87

TaBLE 6.1
Solution time (sec) vs stochastic dimension for uniform random field, PC order = 5 and 0=0.1

Stoch. Preconditioners for GMRES GS and Jacobi Solvers SprseGrid
dim MB AGS Al GS GS, GS, | Jacobi | collocation
020 | 0.12 | 0.18 | 0.25 1.23 1.21 222 0.52
070 | 039 | 0.54 | 077 | 3.84 | 3.87 7.46 3.18
1.78 1.01 1.38 | 2.02 | 9.56 | 9.73 18.60 10.24
434 | 2.31 3.05 | 459 | 2040 | 2090 | 41.10 26.96
10.24 | 541 | 7.10 | 9.81 | 46.10 | 46.30 | 87.50 64.09
19.50 | 10.24 | 12.96 | 19.64 | 81.20 | 80.40 | 160.00 134.45

| O\ | B WD

solution time, the matrix free Krylov solver with the approximate Gauss-Seidel or Jacobi
preconditioner is the most efficient.

TABLE 6.2
Solution time (sec) vs order of polynomial chaos when diffusion coefficient is uniform random field, Stoch.
dim=3, o = 0.1

PC | Preconditioners for GMRES | GS and Jacobi Solvers | SprseGrid
order | MB | AGS | Al GS GS, GS, | Jacobi | collocation
2 0.10 | 0.05 | 0.07 | 0.11 | 047 | 045 0.83 0.11
3 0.19 | 0.12 | 0.16 | 0.24 1.10 1.08 2.09 0.42
4 039 | 023 | 032 | 047 | 220 | 2.18 4.15 1.27
5 0.69 | 0.39 | 0.54 | 0.77 | 3.80 | 3.88 7.47 3.21
6 1.08 | 0.90 | 091 | 1.54 | 6.22 | 6.61 12.3 7.06
7 1.63 | 1.05 | 1.27 | 1.87 | 9.16 | 9.33 | 17.90 14.20
8 251 | 2.65 | 2.14 | 3.53 | 13.10 | 14.20 | 26.10 26.08
9 381 | 343 | 294 | 5.16 | 18.20 | 20.40 | 36.40 46.72
10 | 522 | 444 | 392 | 6.73 | 2440 | 27.30 | 47.30 78.87

TaBLE 6.3
Solution time (sec) vs standard deviation (o) when diffusion coefficient is uniform random field, Stoch dim = 3
and PC order = 5

Preconditioners for GMRES | GS and Jacobi Solvers | SprseGrid

o MB | AGS | Al GS GS, GS, | Jacobi | collocation
0.10 | 0.66 | 0.40 | 0.59 | 0.77 3.80 3.88 7.37 3.18
0.11 | 075 | 0.46 | 0.64 | 0.87 4.73 4.79 9.15 3.32
0.12 | 0.88 | 0.50 | 0.72 | 0.98 5.83 5.94 11.50 3.46
0.13 | 1.09 | 0.58 | 0.80 | 1.17 7.67 7.83 14.90 3.63
0.14 | 1.38 | 0.69 | 1.00 | 1.48 | 10.80 | 11.00 | 21.20 3.85
0.15 191 | 097 | 1.29 | 1.89 | 15.60 | 18.00 | 34.70 4.16

7. Conclusions. In this work, various preconditioners for Krylov-based methods and
solver methods based on Gauss-Seidel and Jacobi method are introduced. Results are com-
pared with GMRES with mean-based preconditioning and collocation. In the case of lin-
ear dependence on the random variables, we generally find the more intrusive Krylov-based
approaches to be more efficient than the non-intrusive collocation approach, with the less

88 A comparison of solution methods for stochastic partial differential equations

TaBLE 6.4
Solution time (sec) vs stochastic dimension when diffusion coefficient is log-normal random field, PC order =
5 and 0=0.1

Stoch. Preconditioners for GMRES GS and Jacobi Solvers SprseGrid
dim MB AGS Al GS GS, GS, Jacobi | collocation
2 0.26 | 0.23 | 0.23 0.41 0.59 0.78 1.61 0.57
3 1.40 | 1.15 1.06 2.13 2.16 3.57 5.26 3.25
4 7.10 | 545 | 479 10.17 7.14 1430 | 16.80 10.91
5 28.08 | 20.60 | 19.46 | 38.68 22.30 4790 | 49.70 27.60
6 93.20 | 66.05 | 59.84 | 132.30 | memory | 139.00 | 137.00 63.98

TABLE 6.5
Solution time (sec) vs order of polynomial chaos when diffusion coefficient is lognormal random field, Stoch.
dim=3, 0 = 0.1

PC Preconditioners for GMRES GS and Jacobi Solvers SprseGrid
order MB AGS Al GS GS, GS, Jacobi | collocation
2 0.06 0.05 | 0.07 0.11 0.21 0.21 0.45 0.11
3 0.16 0.13 | 0.15 0.25 0.51 0.50 1.11 0.42
4 0.47 0.40 | 0.37 0.77 1.04 1.23 247 1.29
5 1.39 1.15 1.06 2.12 2.15 3.53 5.23 3.28
6 4.01 3.05 2.74 5.50 4.39 10.60 11.50 7.39
7 8.69 6.23 5.50 11.18 8.03 | 2230 | 23.50 15.02
8 23.79 | 1540 | 13.88 | 30.47 | 17.30 | 63.50 | 54.10 28.40
9 54.36 | 3540 | 34.80 | 71.38 | 36.40 | 161.00 | 126.00 50.57
10 106.40 | 66.95 | 66.80 | 125.96 | 64.70 | 295.00 | 253.00 87.27

TABLE 6.6
Solution time (sec) vs standard deviation (o) when diffusion coefficient is log-normal random field, Stoch dim
=3 and PC order =5

Preconditioners for GMRES | GS and Jacobi Solvers | SprseGrid

o MB | AGS Al GS GS, GS, | Jacobi | collocation
0.10 | 1.51 | 1.23 | 1.14 | 2.08 | 2.11 3.56 5.21 3.25
0.15] 1.86 | 1.42 | 1.25 | 249 | 2.86 | 4.87 9.15 3.64
020 | 220 | 1.72 | 2.06 | 3.06 | 3.63 | 6.17 | 46.80 4.11
0.25 | 2.66 | 2.03 | DNC | 3.58 | 4.87 | 8.40 Div. 4.59
0.30 | 3.11 | 235 | DNC | 435 | 690 | 11.90 | Div. 5.13
0.35 | 3.65 | 2.87 | DNC | 5.17 | 11.20 | 19.30 | Div. 5.72
0.40 | 444 | 339 | DNC | 6.16 | 24.30 | 41.90 | Div. 6.53

intrusive Gauss-Seidel/Jacobi approaches in between. This demonstrates a trade-off in per-
formance versus intrusiveness when existing legacy simulation codes must be used. In the
case of nonlinear dependence on the random variables however, extrapolating beyond these
tables suggests the non-intrusive collocation approach is in fact the most efficient. This gen-
erally suggests that for linear problems (in the random variables and the solution), intrusive
stochastic Galerkin approaches would be preferred, but for nonlinear problems (in either the
random variables or the solution), non-intrusive approaches would be preferred. Regardless,
the use of approximate Gauss-Seidel or Jacobi preconditioners is a significant improvement
over traditional mean-based preconditioning. In the future, we want to compare the Kro-

R. Tipireddy, E.T. Phipps and R.G. Ghanem 89

=brivs misiia om
=brivs misiia om

(a) Uniform random field, o = 0.12 (b) Log-normal random field, o= = 0.2

Fig. 6.1. Relative error norm vs iteration count for various solvers and preconditioners, where M =5 and p = 5

necker product preconditioner proposed in [16] with the above methods. We would also like
to investigate block and recycled Krylov methods to improve the efficiency of the Jacobi and
Gauss-Seidel solvers.

[1]

[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
(1]
[12]
[13]

[14]
[15]

[16]

[17]

REFERENCES

B. M. Apawms, K. R. DaiLBey, M. S. ELbrep, D. M. Gay, L. P. SwiLer, W. J. BounHorr, J. P. Epbpy, K. HASKELL,
AND P. D. HougH, DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization,
Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis, Sandia National Laborato-
ries, tech. rep.sand2010-2183 ed., May 2010.

1. BaBUSKaA, F. NoBILE, AND R. TEMPONE, A stochastic collocation method for elliptic partial differential equa-
tions with random input data, SIAM J. Numer. Anal., 45 (2007), pp. 1005-1034.

I. BaBuska, R. TempoNE, AND G. E. Zouraris, Galerkin finite element approximations of stochastic elliptic
partial differential equations, STAM J. Numer. Math., 42 (2004), pp. 800-825.

M. EierMANN, O. G. ErnsT, aND E. ULLmann, Computationa aspects of the stochastic finite element method,
Computing and Visualization in Science, 10 (2007), pp. 3—-15.

R. GHANEM, Ingredients for a general purpose stochastic finite elements implementation, Computer Methods
in Applied Mechanics and Engineering, 168 (1999), pp. 19-34.

R. GHANEM AND P. SpaNos, Stochastic Finite Elements: A Spectral Approach, Springer-Verlag, 1991.

R. G. GHANEM AND A. D0o0sTaN, On the construction and analysis of stochastic models: characterization and
propagation of the errors associated with limited data, Journal of Computational Physics, 213 (2006),
pp. 63-81.

R. G. GHANEM AND R. M. KRUGER, Numerical solution of spectral stochastic finite element systems, Comput.
Methods Appl. Mech. Engrg., 129 (1996), pp. 289-303.

C. W. MILLER, R. S. TumiNaro, E. T. Pripps, anp H. C. Eman, Assessment of collocation and galerkin ap-
proaches to stochastic partial differential equations, in CSRI Summer Proceedings 2009.

F. NoBiLE, R. TEMPONE, AND C. G. WEBSTER, A sparse grid stochastic collocation method for partial differential
equations with random input data, STAM Journal of Numerical Analysis, 46 (2008), pp. 2309-2345.

M. F. PELLISSETTI AND R. G. GHANEM, [ferative solution of systems of linear equations arising in the context of
stochastic finite elements, Advances in Engineering Software, 31 (2000), pp. 607-616.

C. PoweLL aND H. ELmaN, Block-diagonal preconditioning for spectral stochastic finite element systems, IMA
Journal of Numerical Analysis, 29 (2009), pp. 350-375.

E. ROSSEEL AND S. VANDEWALLE, [terative solvers for the stochastic finite element method, SIAM J. Sci. Comput,
32 (2010), pp. 372-397.

Y. Saab, Iterative Methods for Sparse Linear Systems, SIAM, 1996.

S. SmoLvak, Quadrature and interpolation formulas for tensor products of certain classes of functions, Dokl.
Akad. Nauk SSSR, 148 (1963), pp. 1042-1043.

E. ULLMANN, A kronecker product preconditioner for stochastic galerkin finite element discretizations, SIAM
J. Sci. Comput., 32 (2010), pp. 923-946.

N. WEINER, The homogeneous chaos, American Journal of Mathematics, 60 (1963), pp. 897-936.

90 A comparison of solution methods for stochastic partial differential equations

[18] D.Xu anp J. HestHAVEN, High-order collocation methods for differential equations with random inputs, SIAM
Journal of Scientific Computing, 60 (2005), pp. 1118-1139.

CSRI Summer Proceedings 2010 91

UNCERTAINTY QUANTIFICATION OF THE SEMICONDUCTOR
DRIFT-DIFFUSION EQUATIONS

CHRISTOPHER W. MILLER*, RAYMOND S. TUMINARO', ERIC T. PHIPPS#, AND HOWARD C. ELMAN?®

Abstract. The movement of charge carriers in a semiconductor device is modeled by a set of coupled non-linear
partial differential equations known as the drift-diffusion equations. The physical parameters involved in defining
these equations are subject to large amounts of uncertainty. The aim of this paper is to examine the applicability
of uncertainty quantification techniques to this problem. We express the uncertainty regarding these parameters by
modeling them as random variables and apply anisotropic sparse grid collocation to the resulting set of stochastic
partial differential equations. We identify the most sensitive parameters using local sensitivity analysis, and use this
information to formulate a reduced problem. We apply Sobol’ sensitivity analysis to the solution of the reduced
model and analyze the probability distribution of the model outputs at various time steps. This preliminary work
reveals new approaches for quantifying uncertainty in semiconductor devices.

1. Introduction. Radiation interacts with semiconductor devices by knocking atoms
from the device’s silicon lattice. These defect species, which can consist of silicon or the
P-type or N-type dopants, can carry charge and propagate through the device. Examining the
behavior of semiconductor devices in radioactive environments is complicated by the cost and
lack of availability of experimental facilities. To alleviate this, Sandia National Laboratories
has invested in the use of computational modeling to examine the performance of semicon-
ductor devices in radioactive environments. In particular, the finite element code Charon was
developed to discretize and solve the semiconductor drift-diffusion equations that model the
movement of charge carriers inside semiconductor devices [5] [15].

A difficulty with this model is that the parameters that describe the interactions of the
defect species are often only known to a limited accuracy. Confidence in the model solutions
is then limited by lack of confidence in the accuracy of the parameter values. The lack of
knowledge represents an epistemic uncertainty which can be quantified by modeling the pa-
rameters as random variables. As a consequence of the Doob-Dynkin lemma, the solution of
the drift-diffusion equations can be represented as a random process of the uncertain param-
eters [4]. Several methods have been developed to approximate the statistics associated with
such a random solution process, including the Monte-Carlo method [9], and more recently,
the stochastic collocation methods [2],[10],[11],[16]. In this paper we apply the anisotropic
sparse grid collocation method because of its favorable convergence properties and minimal
dependence on the size of the parameter space [11]. The solution process arising from the
collocation method can be post processed to compute statistical quantities associated with the
solution process.

This work is viewed as a continuation of [12], which performed a transient sensitivity
analysis of the solution of the deterministic drift-diffusion equations with respect to the de-
fect reaction parameters. Here we seek to identify additional methods for quantifying the
uncertainty inherent in this problem. The structure of this paper is as follows. Section 2
describes the deterministic formulation of the semiconductor drift diffusion equations and
describes our extension of this problem from a deterministic setting to a non-deterministic
one. Section 3 describes the sparse grid stochastic collocation method used to perform the
uncertainty quantification calculations. Section 4 describes how the solution derived using

“The University of Maryland at College Park: Department of Applied Mathematics and Scientific Computation,
cmiller@math.umd.edu

Sandia National Laboratories, rstumin @sandia.gov

Sandia National Laboratories, etphipp@sandia.gov

$The University of Maryland at College Park: Department of Computer Science and Institute for Advance Com-
puter Studies, elman@cs.umd.edu

92 Semiconductor Uncertainty Quantification

(b)

Fic. 2.1. Scanning electron microscope of an NPN BJT (a) and diagram of the emitter, base, and collector
regions (b)[12].

the collocation method can be examined to explore interactions among parameters. Section
5 describes the application of these methods to a semiconductor device under the influence
of a radiation pulse. Finally, in Section 6 we draw some conclusions and propose additional
applications.

2. Non-deterministic Problem Formulation. The device considered in this paper is an
NPN bipolar junction transistor (BJT) subjected to a radiation pulse. The device is pictured
in Figure 2.1. In a BJT the silicon lattice has been modified by the introduction of dopants
to produce an excess of free electrons in the N-regions (N-doping), and to produce an excess
of holes (positive charge carriers) in the P-region (P-doping). The P-dopant in the device
considered here is boron, while the N-dopant is phosphorus. Radiation interacts with the
device by knocking an atom free from the lattice. This creates a free interstitial atom and
a vacancy referred to as a Frenkel pair. Both the free atom and vacancy can carry charge,
move through the device, and interact with other defect species. The diffusion, transport, and
generation of charge carriers are governed by the following set of coupled partial differential
equations

N
-V (2Vy) = (p—n+CZZ,Y,-] 2.1)

i=1
V. (=u,nVy + D, Vn) = % +R,

P
V- (uppVi + D,Vp) = a—’; +R,

V- (/inYiVlﬂ + DY‘VY,) = % + Ryl., = 1, N,

where i is the scalar electric potential, n, p, and Y; are the electron, hole, and i defect species
densities respectively. For x € {n, p,Y;}, D, and u, are mobility and diffusivity coefficients
for species x, Z; is the integer charge of the i defect species, A is the Debye length of the
device and C is the doping profile. The generation and recombination of species x is given
by the right hand side term R, [15]. The reactions we are concerned with are the so-called
carrier-defect reactions: reactions between a defect and a hole or electron. These reactions
have the form

th

X" — X" 4 em X" — X" ' + h* (Generation) (2.2)
X" 4 em - X" X" '+ h* - X™ (Recombination).

The forcing term associated with these reactions is modeled by

AE
Rymn1 = O'AX'"exp(k—T). (2.3)

C.W. Miller and R.S. Tuminaro and E.T. Phipps and H.C. Elman 93

Here X denotes the concentration of a certain defect species with superscripts denoting the in-
teger charge of the defect. A is a constant, o is the reaction cross section, AE is the activation
energy, k is Boltzmann’s constant and T is the lattice temperature. The parameters that we
investigate are the reaction cross-sections and the activation energies. A subscript on o and
AE is omitted to improve readability; however each reaction has a different value for each of
these parameters. The activation energy for a recombination reaction is known to be equal to
zero [12]. For our problem there are 84 carrier-defect reactions involving 35 defect species
and a total of 127 reaction parameters. Table 2.1 shows a small sample of the carrier-defect
reactions along with an estimate of one of the associated parameters.

Reaction Parameter Approximate Value

13 e +V >V o 3.0x10°T°

14 V- 5e +V" AE 0.09

40 e +BV*— BV’ o 3.0x 1071
TaBLE 2.1

A sample of the 127 carrier-defect reactions [12]

Discretization and numerical solution to the partial differential equations in (2.1) is ac-
complished using Sandia’s Charon software. Chemical kinetics computations are accom-
plished using CHEMKIN [6]. Charon uses a Galerkin finite element discretization consisting
of two-dimensional piecewise bilinear finite element functions defined on a mesh of quadrilat-
erals with streamline upwind Petrov-Galerkin stabilization. Further details of the discretiza-
tion procedure used can be found in [5]. In this study we perform the calculations on the
pseudo one-dimensional domain shown as the vertical white strip under the emitter in Figure
2.1. Two-dimensional effects do not arise for the device operating under the conditions con-
sidered in this paper.

As stated previously, the reaction parameters o and AE appearing in (2.2) are subject to
a large degree of uncertainty. Our aim here is to develop quantitative insight into the effects
of these reaction parameters, denoted generically here as {£;}. To accomplish this, we model
each of the 127 reaction parameters &; as a uniform random variable centered at y;; the es-
timated value from previous deterministic studies [12]. The probability distribution of each
random variable is then given by

1
pi€) = ml[m—.sy,-,y,-Jr.my 2.4

Although these intervals are large, they still may underestimate the uncertainty associated
with the parameters. We assume that the uncertainties with respect to each parameter are
independent and so we can define a joint probability distribution on the parameter space by

127 127

1
o) = 1—[pi&i) = 1_[mﬂwf—ﬁm,ymﬁm (2.5)
i=1 i=1

The problem is now to find random processes

Y(x,1,8), n(x,1,8), X, 1,&), Yi(x,1,8) (2.6)

that satisfy (2.1) almost surely. It should be noted that additional uncertainties are associated
with the doping profile and the diffusivity and mobility coefficients. These are not considered
in this paper

94 Semiconductor Uncertainty Quantification

The assumption of independence deserves some scrutiny since the parameters associ-
ated with all of the reactions involving a given defect species are almost certainly correlated.
However it is shown in [2] that the replacement of the true joint density function with the
product of the marginal density functions only affects the convergence of collocation meth-
ods up to a constant. This constant may be large however and further work is required to
better approximate the joint PDF appearing in (2.5).

3. The Stochastic Collocation Method. A methodology for computing the random
processes in (2.6) is the stochastic collocation method. The sparse grid collocation method
was first described in [16] and error analysis was performed in [2] and [10]. These meth-
ods are all suited to problems whose dependence on the random parameters is isotropic. We
choose to apply an anisotropic version of the sparse grid collocation method developed by
[11]. Other approaches for addressing anisotropic problems can be found in [7] and [8]. Here
we only present the derivation of the isotropic method described in [16].

In order to derive the stochastic collocation method, one begins by considering interpo-
lation operators defined for one-dimensional functions defined on a finite interval. Without
loss of generality, we can assume that the interval is [-1, 1]. Let f : [-1, 1] — R and define
the interpolation operator

U f€) =) FED@), (3.1)
k=1

where {£W} = 6, is a set of m distinct points and where [, is the Lagrange interpolating
polynomial of degree m — 1 defined by

L(ED) = 6y (3.2)

Evaluation of the interpolant requires the evaluation of the function f at the points contained
in 6,,. By construction we have that f(£®) = U™ f(£P) for all X in 6,,.

Now we consider interpolation in multiple dimensions. Let f : [-1,1]¥ — R. In order
to generalize the one-dimensional interpolation operators to multiple dimensions, an obvious
approach would be to take tensor products of one-dimensional interpolation operators U™
along each coordinate axis. Define the tensor product interpolant by

ﬂirm‘wf(«f) =UYU" QU™ @ -+ Q Ui f(&). 3.3)

The multi-index i € N** describes how many interpolation points are used along each axis.
The evaluation of ?liT ensor requires the evaluation of the function f on the grid

O =L 6, , (3.4)

with the cardinality of this grid given by

M
& = [[(3.5)
k=1

The relation (3.5) is referred to as the curse of dimensionality [16] since the cardinality of
the grid grows exponentially in the dimension M. Thus for problems involving a moderate
or large number of parameters, use of the tensor product formula (3.3) is computationally
infeasible.

Smolyak sparse grids provide a method of approximating multi-dimensional functions

C.W. Miller and R.S. Tuminaro and E.T. Phipps and H.C. Elman 95

that avoids the curse of dimensionality. Sparse grid interpolation was introduced in [13]. The
sparse grid interpolant is formed by taking a selective sum of tensor product rules appearing
in (3.3). Define the index set

M
Yq,Mz{ieNM,im:q—M+1sZ(ik—1)5q}. (3.6)
k=1
Then the sparse grid interpolation operator is given by
g M-—1
= —1)r+M-H (UM @ @U™N). 3.7
TGRSR RUEEIR AT (3.7)

€Y, n

Evaluation of this interpolation operator requires the evaluation of the function f on the sparse
grid

Hor =) On, X% 00,). (3.8)

i€y, m

In order to fully define the sparse grid interpolation operator it is necessary to specify the
points used in constructing the one-dimensional interpolation operators. It is advantageous if
the grids have the property that H, » C H,+1,m. One way to accomplish this is to construct
the one-dimensional operators using the Clenshaw-Curtis abscissas [16]. Let

. i— 1

f;:-cos(";f_l)), J=1m 3.9)
1 ifi=1,

’""‘{ 2741 i1 (3.10)

With this choice of points we obtain §; C 61 and hence H, y € Hys1m. In this case (3.7)
and (3.8) simplify to

M1
Aumf = (—1)q+M""(.)-('u"'fl ®- - @ U"n) (3.11)
amf i;q;M g+ Ml
and
Hopr =) Oy, XX O, (3.12)
i€Xym
M
where X,y = {i e N Z(ik -1 = q}.
k=1

It is known that if f is a M-variate polynomial of total degree ¢ — M + 1 then A,y f = f [3].
Thus one can expect that if f is sufficiently regular than the approximation A, f converges
quickly in the sparse grid level ¢. This statement is made precise in [10].

The solution obtained through collocation can be post-processed to compute various
other quantities of interest [16]. Moments of f can be approximated by

E(f™) = E(A mS™) (3.13)

where the quantity on the right of (3.13) can be computed exactly and efficiently using
Clenshaw-Curtis quadrature. One may also want to compute probability distributions as-
sociated with the solution. These can be approximated by sampling the collocation solution

96 Semiconductor Uncertainty Quantification

& i s i-:bo
P % &
2. . B &
. 55, ® ol
1 ¢ a R o2 Te - -0 Bg0R.0 .0
jo ¢ L 2 o k! : : i o “ dj‘ b :‘&3
J % Las o . e - .
Lo 3"% o ob m,% 3 ua Sf' "f-...p{g"- - X
R T oENagi e, ° .
ods © _ - @ ndge s L oo Q
L) 0 40 n:,d-"' - ‘ﬁ:,“ oy g Y -] ‘?;o
& 3 &] G
. ad Lo 0 " L e e a © ,‘%cgh
s o 2 & [« -‘JM B e, o
-08- dﬁ-r & o "o, 0.5+ LT o
6:“. oo - g a 4 a = = o’ £
1 @ i =] = %] & 1 B e u '\-& 28 :
2. 8 . & 6w X
e = - 2 |%‘\:\ pa L T LB
a] o -
"?\n‘: S LTy i - L s o T
0 & - o TR
- i % ol
05 e _a -ng ™

FiG. 3.1. Clenshaw-Curtis based sparse grids H(2,3) and H(3,3)

at a random set of points and then measuring the relative frequency of the desired event. As-
sume that we sample A,y (f) N times. Let A = {£®}Y | be the set of sample points and let
Aa,, f<c be the subset of points in A such that A,y f (€W) < ¢, then

|Aﬂq-M f<c |

Plf<cl= A

. (3.14)
The advantage of this approach to computing the CDF instead of direct sampling of the func-
tion f is that evaluation of A, »(f) can often require much less computational effort than
directly evaluating f. Our routines for performing the sparse grid collocation method and
post processing the collocation solution are provided by Sandia’s Dakota software [1].

4. Sobol’ Sensitivity Analysis. Given a function f : [-1,1]Y — R of M parameters
one may be interested in how perturbations of each parameter contribute to changes in the
function value. In many cases however the function value is not sensitive with respect to per-
turbations of a single parameter but rather is sensitive with respect to simultaneous changes
in multiple parameters. Sobol’ sensitivity analysis is one method for describing the sensitivity
of the function with respect to coupled subsets of parameters. The method proceeds by per-
forming a standard ANOVA decomposition of the function f and then computing the Sobol’
indices as a ratio of the partial variance to the total variance [14].

The ANOVA decomposition of f is as follows. Assuming that f is square integrable,
decompose f into the sum

M
F&O=Ffo+ Y D, fus G nrnél) @.1)

s=1 [1<..<l;

Jo= f f(&)dg
=11

fen= [o[la-n

k#l,

futrng= [5@ [e~ fo- fite - futee)

k#ly .1

C.W. Miller and R.S. Tuminaro and E.T. Phipps and H.C. Elman 97

Then define the partial and total variances as

Dis= [R dedsandD= [P, 42)
[-1,1¢ [~1,17%
Finally define the Sobol’ index and total Sobol’ index as
Dy, =
St = =52 ad TSi= 3 D Shd. (4.3)

s=1 [1<..<li<..<l;

The Sobol” index measures the dependence of the function on each subset of the M
parameters while the total Sobol’ index 7'S; measures the dependence of the function f on
the i"* parameter. There is a total of 2" terms appearing in (4.1), 2¥ — 1 Sobol’ indices, and
M total Sobol’ indices. The Sobol’ indices can be used to measure the strength of coupling
effects between specific subsets of parameters on the function f. The Sobol’ indices §; for
1 < i < M are referred to as the main effect of parameter i. The total Sobol’ index can be used
as a global sensitivity measure of f with respect to a given parameter. We define the ratio

TS -5,

s (4.4)

Ti
as the relative error between the i total Sobol” index and the main effect of parameter i for
1 <i < M. Obviously r; satisfies 0 < r; < 1. If r; is close to 1 then most of the sensitivity with
respect to parameter i is tied up in coupling effects. If r; is close to 0 then the i” parameter is
only weakly coupled to the rest of the parameters. This information can be used to examine
the strength of parameter coupling effects on the model solution.

5. Application to the semiconductor drift diffusion equations. In this section we ap-
ply the above techniques to the analysis of a radiation damaged BJT. A radiation pulse is
simulated by adding a transient source of electrons and holes [12]. The shape of this pulse
is shown in Figure 5.1. The radiation pulse begins at time # = 1 x 107> and ends at time
t=2x107"

E':.: ”:Iw T T T .-:.IE”:I :
||—Pulsea| ---Base Current

4f N =
&
- 2
PP mrm = LR em——— 40 5
0 - 3 r =1
o™ 10" w0 10 10

Tirme (s}

Fic. 5.1. Radiation pulse [12]

Our goal is to investigate the current /(¢, €) at the base contact as a function of time and

98 Semiconductor Uncertainty Quantification

the uncertain reaction parameters. In principle one could use the model for the reaction pa-
rameters described in (2.5) to perform a collocation study that would generate an approximate
response surface over the entire parameter space. However it is computationally intractable
to do this on the 127 parameter space that includes all of the reaction parameters. So first a
form of model reduction is necessary.

In order to reduce the number of parameters to be included in the collocation study we
first execute a “one-at-a-time” (OAT) study to estimate the sensitivity of the solution with
respect to each individual parameter. For this, we fix 126 of the 127 uncertain parameters
at their mean value and perform a one-dimensional collocation to approximate the function
I(uy, ..., &y -, 1) as a function of time and a single reaction parameter &. This approach
scales very well since it only requires the solution of a series of one dimensional problems.
From the collocation approximation of this function we can compute estimates of the sensi-
tivity of I with respect to a single parameter. We use two metrics to measure the sensitivity,
o, the standard deviation of the current with respect to the i parameter and ‘#j—;lgi:m, the
scaled sensitivity of parameter i evaluated at the mean parameter value. The evaluation of the
scaled sensitivity is also investigated in [12]. These two measures are plotted for each of the
127 parameters at a variety of times in Figure 5.2. The plots in Figure 5.2 are normalized
so that EZ o; = 1and) EZ % j—élgi:#, = 1. Thus each bar can be interpreted as the relative
importance of parameter i with respect to each sensitivity metric.

We make two observations. First the standard deviation and the scaled sensitivity gen-
erally show broad agreement in which parameters are considered important. However there
are a few instances where the two are noticeably different. The differences are attributable to
the fact that the standard deviation is an inherently global measure of sensitivity whereas the
point derivative is an inherently local measure. We believe that the standard deviation may
be a more reliable sensitivity metric because it takes into account the behavior of the current
over a range of parameter values rather than simply at a single point. Second, the current
only exhibits sensitivity with respect to a relatively small number of parameters. A response
surface constructed using only the 15 most sensitive parameters should be of similar accuracy
to the response surface constructed using the full 127 parameter space.

We use the 15 most sensitive reaction parameters to perform a multi-dimensional colloca-
tion study. We perform a level 6 collocation method on the 15 dimensional parameter space.
In order to simplify the problem further we use the scaled standard deviations of the current
in each of these parameters as weights for an anisotropic sparse grid collocation method, as in
[11]. This method requires the discretization and solution of (2.1) at 371 points in the reduced
parameter space. This computation was performed on Sandia’s Red Sky supercomputer and
took approximately 41 hours using 64 cores. The results of this multi-dimensional colloca-
tion study were post processed to examine the Sobol’ sensitivity indices and the probability
distributions of the current at various time steps.

Figure 5.3 shows the cumulative distribution function of the current at a series of time
steps. At time # = 1 x 107 the solution is nearly in a steady state defined by the initial bound-
ary value because the radiation pulse hasn’t yet generated many defects and as expected, the
CDF of the current is nearly a Heaviside function. Immediately after the pulse has ended at
t = 1 x 1073 the current exhibits a large degree of variability owing to the large number of
Frenkel pairs generated by the radiation pulse. The solution then quickly settles down into a
new steady state at time r = 1 x 1072, The current at this steady state displays a relatively
small amount of variation over the parameter space. The overall uncertainty in the device
current varies as a function of time. This indicates that the total number of collocation points
as well as the anisotropic weights should be allowed to vary as a function of time to optimally
capture the behavior of the solution. Such a technique would require more intrusive modifi-

C.W. Miller and R.S. Tuminaro and E.T. Phipps and H.C. Elman

t=1e—d

E Normalized o
HE Normalized Scaled Sensitivity

i .

I O | |]

f=1e-3

E Normalized o
HE Normalized Scaled Sensitivity

ol

I=1p-2

- B Normalized o
H Normalized Scaled Sensitivity

T . ll_llj _J,.‘l | ESSTR N | 1% Y)

Fic. 5.2. Sensitivity Metrics at t = 1 x 107 (top), t = 1 x 1073 (middle), and t = 1 x 1072 (bottom)

99

100 Semiconductor Uncertainty Quantification

cation of the existing code as the collocation method would need to be executed as part of the
time series integrator.

Approaimate COF of Curment

]

od

FiG. 5.3. CDF of Current at various time steps

Figure 5.4 shows the ratios r; = %S_S/ computed from the 15 parameter study. In per-
forming such a sensitivity analysis, it ma)/ be the case that parameter interactions account for
only a small portion of the sensitivity in the current. In this case we would expect r; to be
close to zero for all of the parameters. This would indicate that most of the information con-
tained in the response surface could be derived from the behavior of the current along each
parameter axis. Figure 5.4 indicates that this is not the case. The figure reports that many
of the parameters are coupled to produce changes in the current. Therefore we see that the
OAT study does not contain enough information to reconstruct the response surface since it
doesn’t contain information regarding what is occurring in the corner of the parameter space.
The fact that OAT studies do not explore the behavior of a function in the corners of the pa-
rameter domain is considered a major weakness. The data contained in the Sobol” indices
can be used to isolate correlated parameters that should not be considered separately in OAT

studies.

6. Conclusions. The goal of this paper was to determine what types of information
could be obtained from applying modern uncertainty quantification techniques to large scale
engineering problems. A great deal of information can be obtained from uncertainty quan-
tification techniques that approximate the response functions on the entire parameter space as
opposed to a single point. In particular, the standard deviation and Sobol’ sensitivity indices
provide insight to the global sensitivity of the response function with respect to the parame-
ters. Also, collocation methods can be used to obtain approximations of the density function
associated with the solution process which can be valuable as part of a reliability analysis. In
the future we believe that it may be possible to use the results of a Sobol’ sensitivity analysis
to uncover hidden parameters which may lead to further reduced models and additional in-
sights into the physics of the problem.

There are a number of additional areas which are natural extensions of this work. One
possibility is the implementation of a time adaptive sparse grid collocation method to effi-
ciently compute the response function at intermediate time steps. Another interesting possi-
bility is to use the reduced model within an inverse formulation to assess a tolerable range of
uncertainty within individual parameters. Understanding which of the problem’s uncertain-
ties are most important may help guide future experimentation. The possible dependence of
the uncertain quantities also warrants further study.

C.W. Miller and R.S. Tuminaro and E.T. Phipps and H.C. Elman 101

Scsind Diflerencs catwesn Sotal and tobal Soeal indas for pacsmaeties |

[T — —e e = — . 11 — e e = —

[
nan
| o4
an
S oo 5 am
Ten ; LT
= nin = II
aot l
oo |
b I S T] w U T4 boiosr- T T ¥ [T]]
Fale=3 Pl =1
Lo - . - ! 18
an | an
E s | E os
oa | o
oz I | [
M] TR | " i] i []] I]
Pl
omy :
a0 |
an |
= nao |
(31 |
oo
I
. 1|
beag i W] n 12 Tl
TS8-S e . .
Fie. 5.4. r; = =<~ computed for the 15 most sensitive parameters at various time steps.
v
REFERENCES

[1] B. A. amp W.J. Bounnorr, K. DaLBEY, J. EppY, M. ELDRED, D. GaY, K. HaskEeLL, P. HouGH, AND L. SWILER,
Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation,
uncertainty quantification, and sensitivity analysis: Version 5.0 users manual, Tech. Rep. SAND2010-
2183, Sandia National Laboratories, December 2009.

[2] 1. BaBuska, F. NoBiLE, AND R. TEMPONE, A stochastic collocation method for elliptic partial differential equa-
tions with random input data, SIAM Journal on Numerical Analysis, 45 (2007), pp. 1005-1034.

[3] J. Bick, F. NoBiLE, L. TAMELLINI, AND R. TEMPONE, Stochastic Galerkin and collocation methods for PDEs with
random coefficients: a numerical comparison, Tech. Rep. 09-33, Institute for Computational Engineering
and Sciences, University of Texas at Austin, 2009. To appear in Proceedings of ICOSAHOM’09, Lecture
Notes in Computational Science and Engineering, Springer-Verlag, New York