An Auditable Performance Based Software Acquisition Process

On-Time Quality

Systems & Software Technology Conference 2010
Salt Lake City, Utah April 28th 2010

7962 Old Georgetown Road, Suite B, Bethesda MD 20814
865-458-6685 – Fax:865-458-9139 – info@stewart-priven.com
www.stewart-priven.com
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>APR 2010</td>
<td></td>
<td>00-00-2010 to 00-00-2010</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>An Auditable Performance Based Software Acquisition Process</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5a. CONTRACT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5b. GRANT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5d. PROJECT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5e. TASK NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stewart-Priven Group, LLC, 7962 Old Georgetown Road, Suite B, Bethesda, MD, 20814</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presented at the 22nd Systems and Software Technology Conference (SSTC), 26-29 April 2010, Salt Lake City, UT. Sponsored in part by the USAF. U.S. Government or Federal Rights License</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT unclassified</td>
</tr>
<tr>
<td>b. ABSTRACT unclassified</td>
</tr>
<tr>
<td>c. THIS PAGE unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. LIMITATION OF ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same as Report (SAR)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. NUMBER OF PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Stewart-Priven Overview

30+ years software development Industry experience (each)
- Commercial, Executive Management Focus
- Government, Program Management & Technical Focus

Managed IBM team that developed Inspections

Both taught Inspections for Michael Fagan 1998 – 2005
- 250 classes, 5,000 inspection practitioners, 50 company locations

Stewart-Priven Group - publications, presentations (www.stewart-priven.com)
- CrossTalk Journal, Jan. 2008 – ‘How to Avoid SW Inspection Failure’ (10 Pitfalls)
- Plenary speakers at 2009 Systems & Software Technology Conference
- Project Mgt. Institute/Military Health Systems Oct. 2009 ‘SW Inspection Success’
- 2010 article ‘An Auditable Performance Based SW Acquisition Process’
Agenda

• Government Software Acquisition Problems

• A Solution*

*2010 article www.stewart-priven.com
Errors, Vulnerabilities, Missed schedules, Reduced content

Focus of general session opening at last year’s SSTC on April 20th 2009

Lieutenant General L. William Shelton; U.S. Air Force
 - Chief of Warfighting Integration and Chief Information Officer
 - Assistant Vice Chief of Staff and Director Air Force Staff Headquarters

“CMMI Level 5 projects also experiencing these problems”

Later in the conference:

Karl Rogers – SSTC host and Director of 309th Software Maintenance Group

Bruce Weimer - Army Software Engineering Center, SSTC April 22, 2009
 • ‘Software Quality Assurance, Early and Continuous throughout the Life Cycle’
 • ‘Justifiable evidence and high confidence that your system performs as expected, when expected, is safe, and is secure’

also addressed these problems
“acquisition officials continue to accept software riddled with errors and other security vulnerabilities”

“Software vulnerabilities, malicious code, and software that doesn’t function as promised pose a substantial risk to the Nation’s software-intensive critical infrastructure that provide essential information and services to citizens”

* DoD – U.S. Department of Defense

* DHS – U. S. Department of Homeland Security
Defect (error) Insertion

- Supplier focus on code-oriented defect removal approaches is **not sufficient** – e.g., Code Analyzers, Auto-Testing, Traditional Testing

Defect Insertion Occurrence

- Requirements: 18.5%
- Design: 27.5%
- Requirements: 54.0%

*Bender 2004 – Requirements 56%, Design 27% (83%)
TRW Requirements 52%, Design 28% (80%)
Defect Removal Consequences

Without planned early defect removal (typical)
- Schedule erodes
- Quality declines
- Cost escalates
- Code analyzers not effective for Req & Des

With planned early defect removal (e.g., effective Inspections)
- Defect leaks contained
- Quality is high
- Rework cost minimized
- Schedule contained
CMM / CMMI / ISO 9x / etc.

- Predictors of Success
- Reflect what **should** be done during development,
- Don’t examine outputs of development efforts
- Necessary, but not sufficient proof of:
 - What **will** be done
 - What **has been done correctly**

- “Process Assessments by themselves do not examine the outputs of any development effort and are therefore silent with respect to the quality attributes of any particular product.”
- “A positive Process Assessment finding lowers the risk that an organization will produce a low quality product but the [actual] quality of the product itself **must be assessed using other methods.**”
SOLUTION to Acquiring Software On-Time with Higher Quality

- Performance Based Software Acquisition – discussed since 1991

- Modified concept needed: Based upon existing Standards

- Concept Overview:
 1. Candidate suppliers identify specific capabilities during RFP bid process
 - Acquirer (e.g., Govt.) Go/No-go
 2. Supplier capabilities then verified by Acquirer’s Expert as part of bid process
 - Acquirer Go/No-go
 3. Supplier must demonstrate capability to produce ongoing, actionable and auditable justifiable evidence throughout contract performance
 - Acquirer Go/No-go before contract award
 4. Post-award performance monitoring, throughout development

What makes this concept feasible today?
Recently Available Technologies Enabling Auditable Performance Based Software Acquisition

• ‘IEEE Std. 1028™-2008 for Inspections’ (section 6)
 – Released August 2008
 – Significant upgrade from previous 1997 version
 – Clarifications, Completeness, Inspection Roots

• Computerized tools for Inspection Planning, Performing, and Result Tracking and Measurement
 – Topic of last years SSTC Plenary presentation on April 22nd 2009
 • www.stewart-priven.com/publications.htm
 – Compliant with ‘IEEE 1028™-2008 for Inspections’
 – Provide rigor to Inspection Process for:
 • Correct & Complete Execution
 • Consistency between Inspection teams, organizations, projects, locations
 • Repeatable Performance
 • Auditable and actionable results, management reports
 – Net project saving estimate provided before project commitment
 – ROI and savings estimates for individual Inspections of Requirements and Design, as well as Code

• Both technologies target pre-code high defect insertion points
 – Contract, Requirements, Architecture, Interfaces, Design
Inspections - Peer Reviews

• Over time, each term has become ambiguous
• Many times the two terms are used interchangeably

Stewart-Priven believe:
• Inspections are a rigorous form of Peer Reviews
• Peer Reviews are not necessarily Inspections
 – Peer Reviews may or may not be Inspections

• Key characteristics of effective Inspections:
 1. Defined by ‘IEEE Std. 1028™-2008 for Inspections’ (section 6)
 • Incorporate rigorous ‘data-based’ analysis (initially done by IBM in mid-70s)
 • Limits apply to material size, team size, material rates, Insp. Mtg. length
 2. Objective is ‘removal’ of major defects
 • not just finding defects, or removal of minor defects
 3. Paraphrasing by Reader’s role, on all ‘prepared’ target material
 4. Real-time team synergism
 • Additional defects: +28% text; +55% code (Michael Fagan, sd&m Conference 2001)
 5. Computerized Inspection tools (for correct, consistent, repeatable execution)
 6. Upper management has implementation responsibilities (e.g., for pitfall avoidance)
Inspection Process Flow

Inspection Objective: Find and Fix Product Defects

1. **Planning (Step 1)**
2. **Overview (Step 2)**
3. **Preparation (Step 3)**
4. **Inspection Meeting (Step 4)**
5. **Analysis (Step 5)**
6. **Rework (Step 6)**
7. **Follow-Up (Step 7)**

Consistent with IEEE Standard 1028™-2008 for Inspections
(IEEE - Institute of Electrical and Electronics Engineers, Inc.)
‘IEEE Std. 1028™-2008 for Inspections’ (section 6)

Improved Inspection Process Definition 1997-2008

- Shall: 114
- May: 26
- Should: 25

‘Shall’ (required) ‘May’ (alternative to Shall) ‘Should’ (recommended)
2008 Inspection Standard ‘Process Actions’

Inspection Objective: Find and Fix Product Defects

14 (pre-Inspection)

PLanning (Step 1) → OVerview (Step 2)

PReparation (Step 3) → Inspection Meeting (Step 4)

ANalysis (Step 5) → ReWork (Step 6)

Follow-Up (Step 7) • Verified Product Fixes

165 ‘actions’ applicable to Inspection Process

16 actions with multiple Inspection steps

Consistent with IEEE Standard 1028™-2008 for Inspections (IEEE - Institute of Electrical and Electronics Engineers, Inc.)
2008 Inspection Standard ‘Role Actions’

Inspection Objective: Find and Fix Product Defects

14 (pre-Inspection)

- **Planning (Step 1)**: 44 actions
- **Overview (Step 2)**: 5 actions
- **Preparation (Step 3)**: 10 actions

(127) actions

- **All Inspectors (16)**
 - Reader (4)
 - Author (11)
 - Leader (92) / Recorder (4)

13 (post-Inspection)

- **Inspection Meeting (Step 4)**: 31 actions
- **Analysis (Step 5)**: 21 actions
- **ReWork (Step 6)**: 3 actions
- **Follow-Up (Step 7)**: 8 actions

165 actions applicable to Inspection Process

- 127 actions applicable to Inspection team
- 31 actions applicable to Management’s role
- 7 actions applicable to Champion’s role

16 actions with multiple Inspection steps

An Auditable Performance Based Software Acquisition Process

Consistent with IEEE Standard 1028™-2008 for Inspections

(IEEE - Institute of Electrical and Electronics Engineers, Inc.)
Ensuring Supplier Compliance to Inspections

Inspection Compliance Matrix

Concept:

1. Candidate suppliers identify specific capabilities during RFP bid process
 • Acquirer (e.g., Govt.) Go/No-go

2. Supplier capabilities then verified by Acquirer’s Expert as part of bid process
 • Acquirer Go/No-go

3. Supplier must demonstrate capability to produce ongoing, actionable and auditable justifiable evidence throughout contract performance
 • Acquirer Go/No-go before contract award

4. Post-award performance monitoring, throughout development
Inspection Compliance Matrix – part 1 of 4
Parsing the Inspection Standard

<table>
<thead>
<tr>
<th>line #</th>
<th>3/30/10</th>
<th>Para</th>
<th>Step</th>
<th>role</th>
<th>IEEE Std. 1028<sup>TM</sup>-2008 for Inspections (Actions)</th>
<th>Action Type</th>
<th>ShL</th>
<th>May</th>
<th>ShD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TOTALS ></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>6.8</td>
<td></td>
<td></td>
<td></td>
<td>DATA COLLECTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>6.8</td>
<td>7</td>
<td>M</td>
<td></td>
<td>Inspections shall<sup>54a</sup> provide data for the analysis of the quality of the software product</td>
<td>54a</td>
<td>114</td>
<td>26</td>
<td>25</td>
</tr>
<tr>
<td>166</td>
<td>6.8</td>
<td>7</td>
<td>M</td>
<td></td>
<td>Inspections shall<sup>54b</sup> provide data for the effectiveness of the acquisition, supply, development, operation and maintenance processes</td>
<td>54b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>167</td>
<td>6.8</td>
<td>5</td>
<td>M</td>
<td></td>
<td>Inspections shall<sup>54c</sup> provide data for the effectiveness and the efficiency of the inspection itself</td>
<td>54c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>168</td>
<td>6.8</td>
<td>8</td>
<td>M</td>
<td></td>
<td>data from the author and inspectors shall<sup>55</sup> NOT be used to evaluate the performance of individuals</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>169</td>
<td>6.8</td>
<td>4</td>
<td>L</td>
<td></td>
<td>anomalies identified at an inspection meeting shall<sup>56</sup> be classified in accordance with 6.8.1, 6.8.2, and 6.8.3 [anomaly classification, categories and ranking]</td>
<td>56</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>6.8</td>
<td>4</td>
<td>L</td>
<td></td>
<td>Inspection data shall<sup>57a</sup> contain the identification of the software product</td>
<td>57a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>171</td>
<td>6.8</td>
<td>4</td>
<td>D</td>
<td></td>
<td>Inspection data shall<sup>57b</sup> contain the date and time of the inspection</td>
<td>57b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>172</td>
<td>6.8</td>
<td>4</td>
<td>L</td>
<td></td>
<td>Inspection data shall<sup>57c</sup> contain the inspection team</td>
<td>57c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>6.8</td>
<td>4</td>
<td>L</td>
<td></td>
<td>Inspection data shall<sup>57d</sup> contain the preparation and inspection times</td>
<td>57d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>174</td>
<td>6.8</td>
<td>5</td>
<td>L</td>
<td></td>
<td>Inspection data shall<sup>57e</sup> contain the volume [size] of the materials inspected</td>
<td>57e</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>6.8</td>
<td>5</td>
<td>L</td>
<td></td>
<td>Inspection data shall<sup>57f</sup> contain the disposition of the inspected software product</td>
<td>57f</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>6.8</td>
<td>8</td>
<td>M</td>
<td></td>
<td>Capture of inspection data shall<sup>58</sup> be used to optimize local guidance for inspections</td>
<td>58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>6.8</td>
<td>8</td>
<td>M</td>
<td></td>
<td>Management of inspection data requires a capability to enter, store, access, update, summarize, and report classified anomalies</td>
<td>94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>6.8</td>
<td>8</td>
<td>M</td>
<td></td>
<td>Frequency and types of inspection analysis reports, and their distribution, are left to local standards and</td>
<td>95</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Section 6.8 (Data Collection) of Standard

- **Parsing each shall, may, should**
- **Assigning ID # to each shall, may, should**
- **Decomposing multi-part actions**
- **Identifying Inspection Role**
- **Identifying Inspection Step #**
- **Identifying where ‘Action’ additions needed (ID# = 9x; e.g., 94, 95)**
Inspection Compliance Matrix – part 2 of 4

Recommended Implementation

<table>
<thead>
<tr>
<th>line #</th>
<th>3/30/10</th>
<th>Para</th>
<th>step</th>
<th>IEEE Std. 1028™-2008 for Inspections (Actions)</th>
<th>Action Type</th>
<th>Action Change</th>
<th>Rec. Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ShL May ShD</td>
<td></td>
<td>Training Tools Process other</td>
</tr>
<tr>
<td>1</td>
<td>TOTALS ></td>
<td></td>
<td></td>
<td></td>
<td>165</td>
<td>37</td>
<td>139</td>
</tr>
</tbody>
</table>

6.8 DATA COLLECTION

164 6.8

DATA COLLECTION

- Inspections shall provide data for the analysis of the quality of the software product.
- Inspections shall provide data for the effectiveness of the acquisition, supply, development, operation and maintenance processes.
- Inspections shall provide data for the effectiveness and the efficiency of the inspection itself.
- Data from the author and inspectors shall NOT be used to evaluate the performance of individuals.
- Anomalies identified at an inspection meeting shall be classified in accordance with 6.8.1, 6.8.2, and 6.8.3 (anomaly classification, categories and ranking).
- Inspection data shall contain the identification of the software product.
- Inspection data shall contain the date and time of the inspection.
- Inspection data shall contain the inspection team.
- Inspection data shall contain the preparation and inspection times.
- Inspection data shall contain the volume [size] of the materials inspected.
- Inspection data shall contain the disposition of the inspected software product.
- Capture of inspection data shall be used to optimize local guidance for inspections.
- Management of inspection data requires a capability to enter, store, access, update, summarize, and report classified anomalies.
- Frequency and types of inspection analysis reports, and their distribution, are left to local standards and

Enhancements

- Most are text clarifications

Additions

- Add a shall
- Add a should
Inspection Compliance Matrix – part 3 of 4

Supplier provided Implementation

<table>
<thead>
<tr>
<th>Line</th>
<th>#</th>
<th>Para</th>
<th>Action Type</th>
<th>Action Change</th>
<th>Rec. Implementation</th>
<th>Supplier Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>164</td>
<td>6.8</td>
<td>7 M</td>
<td>Inspections shall 54a provide data for the analysis of the quality of the software product</td>
<td>54a</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>166</td>
<td>6.8</td>
<td>7 M</td>
<td>Inspections shall 54b provide data for the effectiveness of the acquisition, supply, development, operation and maintenance processes</td>
<td>54b</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>167</td>
<td>6.8</td>
<td>5 M</td>
<td>Inspections shall 54c provide data for the effectiveness and the efficiency of the inspection itself</td>
<td>54c</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>168</td>
<td>6.8</td>
<td>8 M</td>
<td>Data from the author and inspectors shall 55 NOT be used to evaluate the performance of individuals</td>
<td>55</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>169</td>
<td>6.8</td>
<td>4 L</td>
<td>Anomalies identified at an inspection meeting shall 56 be classified in accordance with 6.8.1, 6.8.2, and 6.8.3 (anomaly classification, categories and ranking)</td>
<td>56</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>170</td>
<td>6.8</td>
<td>4 L</td>
<td>Inspection data shall 57a contain the identification of the software product</td>
<td>57a</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>171</td>
<td>6.8</td>
<td>4 D</td>
<td>Inspection data shall 57b contain the date and time of the inspection</td>
<td>57b</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>172</td>
<td>6.8</td>
<td>4 L</td>
<td>Inspection data shall 57c contain the inspection team</td>
<td>57c</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>173</td>
<td>6.8</td>
<td>4 L</td>
<td>Inspection data shall 57d contain the preparation and inspection times</td>
<td>57d</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>174</td>
<td>6.8</td>
<td>5 L</td>
<td>Inspection data shall 57e contain the volume [size] of the materials inspected</td>
<td>57e</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>175</td>
<td>6.8</td>
<td>5 L</td>
<td>Inspection data shall 57f contain the disposition of the inspected software product</td>
<td>57f</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>176</td>
<td>6.8</td>
<td>8 M</td>
<td>Capture of inspection data shall 58 be used to optimize local guidance for inspections.</td>
<td>58</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>177</td>
<td>6.8</td>
<td>8 M</td>
<td>Management of inspection data requires a capability to enter, store, access, update, summarize, and report classified anomalies</td>
<td>94</td>
<td>add a shall</td>
<td>x</td>
</tr>
<tr>
<td>178</td>
<td>6.8</td>
<td>8 M</td>
<td>Frequency and types of inspection analysis reports, and their distribution, are left to local standards and</td>
<td>95</td>
<td>add a should</td>
<td>x</td>
</tr>
</tbody>
</table>
Inspection Compliance Matrix – part 4 of 4

Action Cross-Reference

<table>
<thead>
<tr>
<th>line</th>
<th>Para</th>
<th>Action Type</th>
<th>Action Change</th>
<th>Rec. Implementation</th>
<th>Supplier Implementation</th>
<th>Action X-REF and Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>TOTALS ></td>
<td>165</td>
<td>114 26 25</td>
<td>37 139 82 138 0</td>
<td>0 0 0 0 0 0</td>
</tr>
<tr>
<td>164</td>
<td>6.8</td>
<td>DATA COLLECTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>6.8</td>
<td>M</td>
<td>Inspections shall 54a provide data for the analysis of the quality of the software product</td>
<td>54a</td>
<td>x x x</td>
<td>ref Mandatory 2</td>
</tr>
<tr>
<td>166</td>
<td>6.8</td>
<td>M</td>
<td>Inspections shall 54b provide data for the effectiveness of the acquisition, supply, development, operation and maintenance processes</td>
<td>54b</td>
<td>x x x</td>
<td>ref Mandatory 2</td>
</tr>
<tr>
<td>167</td>
<td>6.8</td>
<td>M</td>
<td>Inspections shall 54c provide data for the effectiveness and the efficiency of the inspection itself</td>
<td>54c</td>
<td>x x x</td>
<td>ref May 1</td>
</tr>
<tr>
<td>168</td>
<td>6.8</td>
<td>M</td>
<td>data from the author and inspectors shall 55 NOT be used to evaluate the performance of individuals</td>
<td>55</td>
<td>x x</td>
<td></td>
</tr>
<tr>
<td>169</td>
<td>6.8</td>
<td>L</td>
<td>anomalies identified at an inspection meeting shall 56 be classified in accordance with 6.8.1, 6.8.2, and 6.8.3 [anomaly classification, categories and ranking]</td>
<td>56</td>
<td>x x</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>6.8</td>
<td>L</td>
<td>Inspection data shall 57a contain the identification of the software product</td>
<td>57a</td>
<td>x x x</td>
<td>ref shall 53d</td>
</tr>
<tr>
<td>171</td>
<td>6.8</td>
<td>D</td>
<td>Inspection data shall 57b contain the date and time of the inspection</td>
<td>57b</td>
<td>x x x</td>
<td></td>
</tr>
<tr>
<td>172</td>
<td>6.8</td>
<td>L</td>
<td>Inspection data shall 57c contain the inspection team</td>
<td>57c</td>
<td>x x x</td>
<td>ref shall 53b</td>
</tr>
<tr>
<td>173</td>
<td>6.8</td>
<td>L</td>
<td>Inspection data shall 57d contain the preparation and inspection times</td>
<td>57d</td>
<td>x x x</td>
<td>ref shall 53c</td>
</tr>
<tr>
<td>174</td>
<td>6.8</td>
<td>L</td>
<td>Inspection data shall 57e contain the volume [size] of the materials inspected</td>
<td>57e</td>
<td>x x x</td>
<td>ref shall 53e</td>
</tr>
<tr>
<td>175</td>
<td>6.8</td>
<td>L</td>
<td>Inspection data shall 57f contain the disposition of the inspected software product</td>
<td>57f</td>
<td>x x x</td>
<td>ref shall 53i</td>
</tr>
<tr>
<td>176</td>
<td>6.8</td>
<td>M</td>
<td>Capture of inspection data shall 58 be used to optimize local guidance for inspections.</td>
<td>58</td>
<td>x x</td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>6.8</td>
<td>M</td>
<td>Management of inspection data requires a capability to enter, store, access, update, summarize, and report classified anomalies</td>
<td>94</td>
<td>x</td>
<td>add a shall</td>
</tr>
<tr>
<td>178</td>
<td>6.8</td>
<td>M</td>
<td>Frequency and types of inspection analysis reports, and their distribution, are left to local standards and</td>
<td>95</td>
<td>x</td>
<td>add a should</td>
</tr>
</tbody>
</table>
3-Stage / 8-Step Auditable Performance Based SW Acquisition Process

Initial Capability Assessment (Stage 1)

1. **Require** IEEE Std. 1028™-2008 (sec.6) Inspection compliance during Acquisition proposal bid response

2. Provide Inspection Compliance Matrix to supplier bidders

3. Perform gap analysis and map project’s Inspection (or Peer-Review) capabilities to Compliance Matrix

4. Evaluate mapping and Recommend Go/No-Go

Process Assessment (Stage 2)

5. Evaluation of Supplier Inspection Process for:
 - Educated Management
 - Ensure all inspection pitfalls\(^1\) mitigated
 - Trained Inspectors
 - Computerized Inspection Tools\(^2\)
 - Go/No-Go Recommendation

Execution Assessment (Stage 3)

6. IEEE Std. 1028™-2008 Compliant Inspection process execution

7. Auditable & Actionable performance-based Results captured by Inspection-Tool reports

8. Go - execution confirmed
 - contract awarded - performance

- Monitor Inspection tool reports for process conformance and action completion throughout Development
- Provide periodic assessment recommendations to Acquirer

Disciplined Development Process (Inspection Std.)

Legend:
- Acquirer
- Supplier
- Acquirer’s 3rd party expert

Meaningful Metrics (Inspection Tools)

Capability Mapped - Process Verified - Execution Confirmed

<table>
<thead>
<tr>
<th>Line #</th>
<th>Para</th>
<th>ShL</th>
<th>ShD</th>
<th>Role</th>
<th>IEEE Std. 1028™-2008 for Inspections (Actions)</th>
<th>Action Type</th>
<th>Action Change</th>
<th>Rec. Implementation</th>
<th>Supplier Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>[Action Clarification Text in brackets]</td>
<td></td>
<td></td>
<td>Training</td>
<td>Tools</td>
</tr>
<tr>
<td>1</td>
<td>TOTALS ></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Process</td>
<td>other</td>
</tr>
<tr>
<td></td>
<td>165</td>
<td>114</td>
<td>26</td>
<td>25</td>
<td>37</td>
<td>139</td>
<td>82</td>
<td>138</td>
<td>0</td>
</tr>
</tbody>
</table>

DATA COLLECTION

165 6.8 7 M Inspections shall54a provide data for the analysis of the quality of the software product

54a

-

166 6.8 7 M Inspections shall54b provide data for the effectiveness of the acquisition, supply, development, operation and maintenance processes

54b

-

167 6.8 5 M Inspections shall54c provide data for the effectiveness and the efficiency of the inspection itself

54c

-

168 6.8 8 M_data from the author and inspectors shall55 NOT be used to evaluate the performance of individuals

55

-

169 6.8 4 L anomalies identified at an inspection meeting shall56 be classified in accordance with 6.8.1, 6.8.2, and 6.8.3 [anomaly classification, categories and ranking]

56

-

170 6.8 4 L Inspection data shall57a contain the identification of the software product

57a

-

171 6.8 4 D Inspection data shall57b contain the date and time of the inspection

57b

-

172 6.8 4 L Inspection data shall57c contain the inspection team

57c

-

173 6.8 4 L Inspection data shall57d contain the preparation and inspection times

57d

-

174 6.8 5 L Inspection data shall57e contain the volume [size] of the materials inspected

57e

-

175 6.8 5 L Inspection data shall57f contain the disposition of the inspected software product

57f

-

176 6.8 8 M Capture of inspection data shall58 be used to optimize local guidance for inspections.

58

-

177 6.8 8 M Management of inspection data requires a capability to enter, store, access, update, summarize, and report classified anomalies

add a shall

-

178 6.8 8 M Frequency and types of inspection analysis reports, and their distribution, are left to local standards and

add a should

-
Computerized Inspection Tools

- Correct & Complete Inspection Execution
- Repeatable Results for Labor Savings & High Quality Products
- Consistency across Inspection Teams, Groups & Locations
- Measurement and Comparison of actual defect removal by Inspection and Testing vs. Quality Plan objectives
- Facilitates Management Buy-in
 - Inspection Tools for Project Planning and Savings Estimation
 - Pre-Commitment
 - Support ‘What-If’ Project scenarios
Inspection Tool Use

Inspection Objective: Find and Fix Product Defects

Inspection Planning Tool-Set

- **Planning** (Step 1)
- **Overview** (Step 2)
- **Preparation** (Step 3)
- **Inspection Meeting** (Step 4)
- **Analysis** (Step 5)
- **ReWork** (Step 6)
- **Follow-Up** (Step 7)

Auditable & Actionable performance based results

- Verified Product Fixes
- Product Configuration Control
- Final Report for Management Review and Action
- Database Update & Archive

Inspection Tracking & Measurement Tool-Set

Consistent with IEEE Standard 1028-2008 for Inspections
(IEEE - Institute of Electrical and Electronics Engineers, Inc.)

An Auditable Performance Based Software Acquisition Process
Portability of 8-Step Auditable Acquisition Process

• Could be applied to other Standards or Process
 • Standard/Process Expert
 • Compliance Matrix Development
• Matrix Compliance provides;
 • Supplier Execution Rigor
 • Auditable Performance Based Results from Supplier
 • e.g., tool generated
• Inspections can be used to examine other Standards and Processes
Achieve Auditable Performance Based Acquisition **Now**

Use 8-step process *first* with the 2008 Inspection Standard:

- Addresses current Schedule and Quality problems
- Addresses up-front defect insertion points (e.g., Reqts, Design)
- Allows moving to true Auditable Performance Based Acquisition **TODAY**!

Auditable Performance Based Acquisition can now be consistent across all DoD Programs!
Stewart-Priven Group - Contact Information

Address
Stewart-Priven Group, LLC
7962 Old Georgetown Road, Suite B
Bethesda MD 20814 USA

Phone
865-458-6685

Fax
865-458-9139

Email
info@stewart-priven.com

Web Site
www.stewart-priven.com
What is the Industry View of Inspections

• ‘The data in support of the quality, cost and schedule impact of inspections is overwhelming. They are an indispensable part of engineering high-quality software.’ Steve McConnell - “IEEE Software Jan/Feb 2000, Best Influences on Software Engineering over past 50 years”

• ‘Inspections are surely a key topic, and with the right instrumentation and training they are one of the most powerful techniques for defect detection. They are both effective and efficient, especially for up-front activities. In addition to large-scale applications, we are applying them to smaller applications and incremental development.’ Chris Ebert - “IEEE Software Jan/Feb 2000, Best Influences on Software Engineering over past 50 years”

• ‘Inspection repeatedly has been demonstrated to yield up to a 10 to 1 return on investment. . . .depressingly few practitioners know about the 30 year old technique of software inspection. Even fewer routinely perform effective inspections or other types of peer reviews.’ “Karl Wiegers - “The More Things Change, Better Software, Oct. 2006”

• ‘The software community has used Inspections for almost twenty eight years. During this timeframe Inspections have consistently added value for many software organizations. Yet for others, Inspections never succeeded as well as expected, primarily because these organizations did not learn how to make Inspection both effective and low cost.’ Ron Radice - “High Quality Low Cost Software Inspections, 2002 Paradoxicon Publishing”

• 'Formal inspections can raise the [defect] removal efficiency to over 95%. But part of the problem here is that not a lot of companies know how to use these things.' Capers Jones, Chief Scientist, SPR – "Computer Aid Inc. July 2005"

• ‘I continue to be amazed at the number of software development organizations that do not use this powerful method [inspections] to improve quality and productivity.’ Ed Weller - “Jan. 2002, Calculating the Economics of Inspections”
About Stewart-Priven

- Roger Stewart is co-founder and Managing Director of the Stewart-Priven Group. He is an experienced Lead Systems Engineer and Program Manager in both government and commercial system development – including Systems Engineering, Software Development, System Integration, System Testing, and Process Improvement.

- Previously, Stewart taught the Fagan Defect-Free Process for Michael Fagan Associates (8 years) after spending 31 years with IBM’s Federal Systems Division, (now part of Lockheed-Martin) managing and developing systems for the FAA Air Traffic Control, Air Force Satellite Command & Control, NASA On-Board Space Shuttle, NAVY Light Airborne Multi-Purpose System (LAMPS Helicopter); and in Commercial Banking, Telecommunication and Networking systems.

- Roger has a BS in Mathematics from Cortland University.

- Lew Priven is co-founder and Managing Director of the Stewart-Priven Group. He is an experienced executive with management and technical background in system and software development, software quality training, management development training and human resource management.

- Previously, Priven managed the IBM team that developed the inspection process, taught the Fagan Defect-Free Process for Michael Fagan Associates (8 years), and was Vice-President of Engineering & Application Development at General Electric Information Services, Vice President of Application Development for IBM’s Application Systems Division, Director of Operations & Development for the IBM Information Network, Vice President of Information Technology & Human Resources for Satellite Business Systems.

- Lew has a BS in Electrical Engineering from Tufts University and an MS in Management from Rensselaer Polytechnic Institute.
Acronyms

- number
APV – approval
CMM – Capability Maturity Model
CMMI – Capability Maturity Model Integration
Con - confirmed
Des - Design
DHS – Department Homeland Security
DoD – Department of Defense
e.g. – for example
Govt. – Government
IBM – International Business Machines
IEEE – Institute of Electrical & Electronic Engineers, Inc.
Insp. - Inspection
ISO – International Organization for Standardization
Mgt – Management
Mtg - Meeting
Para – paragraph
Rec - Recommended
Req – Requirements
RFP – Request for Proposal
ROI – Return on Investment
ShD – should
ShL – shall
SSTC – Systems & Software Technology Conference
Std. – Standard
SW – Software
SwA – Software Assurance
TRW – defense contractor acquired by Northrop Grumman in 2002
ut – unit test
Ver - Verified
vs. - versus
X-Ref – Cross Reference