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ABSTRACT 
This study presents a methodology for computing 

stochastic sensitivities with respect to the design variables, 
which are the mean values of the input correlated random 
variables.  Assuming that an accurate surrogate model is 
available, the proposed method calculates the component 
reliability, system reliability, or statistical moments and their 
sensitivities by applying Monte Carlo simulation (MCS) to the 
accurate surrogate model.  Since the surrogate model is used, 
the computational cost for the stochastic sensitivity analysis is 
negligible.  The copula is used to model the joint distribution 
of the correlated input random variables, and the score 
function is used to derive the stochastic sensitivities of 
reliability or statistical moments for the correlated random 
variables. An important merit of the proposed method is that it 
does not require the gradients of performance functions, which 
are known to be erroneous when obtained from the surrogate 
model, or the transformation from X-space to U-space for 
reliability analysis.  Since no transformation is required and 
the reliability or statistical moment is calculated in X-space, 
there is no approximation or restriction in calculating the 
sensitivities of the reliability or statistical moment. Numerical 
results indicate that the proposed method can estimate the 
sensitivities of the reliability or statistical moments very 
accurately, even when the input random variables are 
correlated. 
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1. INTRODUCTION 

Reliability-based design optimization (RBDO) and 
reliability-based robust design optimization (RBRDO) have 
been widely applied to various engineering applications such 
as stamping [1,2], vehicle design with durability [3,4], and 
noise, vibration, and harshness (NVH) analysis [5,6], where 
accurate sensitivities of performance functions are available. If 
accurate sensitivities are available in a complex physical 
system, then the most probable point (MPP)–based reliability 
analysis, which includes the First Order Reliability Method 
(FORM) [7-10], the Second Order Reliability Method 
(SORM) [11,12], and the MPP-based Dimension Reduction 
Method (DRM) [13-15], can be used for approximately 
assessing the reliability of the system, which is used as a 
probabilistic constraint in both RBDO and RBRDO. 
Furthermore, the first and second statistical moments of the 
performance function, which are used in the objective function 
of RBRDO, are approximated using the first-order Taylor 
series expansion [16-17] or the mean-based DRM [18-20]. 

However, for engineering applications where accurate 
sensitivities of performance functions are not available, such 
as drivetrain, crashworthiness, micro or nano mechanics, or 
fluid-structure interaction, the MPP-based reliability analysis, 
which uses the sensitivities of performance functions to find 
the MPP, cannot be directly used. Instead, surrogate models 



 
have been widely used to carry out design optimization for the 
engineering applications where sensitivities are unavailable 
[21-23]. Once an accurate surrogate model is available for the 
design optimization, the direct Monte Carlo simulation (MCS) 
[24] can be applied to the accurate surrogate model to estimate 
the reliability or statistical moments of the system with 
negligible computational burden. The reliability or statistical 
moment will be called the probabilistic response in this paper. 
To use the probabilistic response obtained using the MCS for 
the design optimization, sensitivities of the probabilistic 
response are still required, which can be obtained using the 
finite difference method (FDM) or using the sensitivities of 
the surrogate model. However, since the probabilistic response 
is obtained from the MCS, the FDM may require a significant 
number of samples to obtain accurate sensitivities due to the 
statistical noise of the MCS. On the other hand, even if the 
surrogate model is very accurate for the response value, the 
sensitivities obtained from the surrogate model are known to 
be inaccurate, and accordingly it is not a good idea to use them 
for the design optimization.  

The main objective of this paper is to propose a new 
sampling-based RBDO for correlated random inputs [25-27], 
which does not require obtaining the sensitivities of the 
performance functions and their sensitivities from the 
surrogate model. Instead, stochastic sensitivity analysis using 
the score function, which was proposed for the independent 
random variables [28] or correlated Gaussian random 
variables [29], is used to derive the sensitivities of the 
probabilistic response with correlated random variables. The 
proposed sensitivity analysis does not require the 
transformation from the original design space to the standard 
normal space, which means that there is no approximation or 
restriction in calculating the sensitivities of the probabilistic 
response. Since the generation of the accurate surrogate model 
is beyond the scope of this paper, it will not be explained here. 
For this, the dynamic Kriging (D-Kriging) method developed 
in Ref. 31 is used in this paper. Numerical examples 
demonstrate that the sensitivities developed in the paper agree 
very well with the sensitivities obtained from the FDM with 
250 million samples for the MCS. 

The paper is organized into four main parts. The first part, 
Section 2, explains how to mathematically express the 
component, the system probability of failure, and the 
statistical moments and their sensitivities. The second part, 
Section 3, shows how to derive the score function for 
statistically independent or correlated random variables. The 
third part, Section 4, shows the formulation of the sampling-
based RBDO and RBRDO. The last part, Section 5, 
demonstrates with numerical examples the accuracy of the 
proposed sensitivities compared with the FDM results. Finally, 
the proposed method is integrated with the D-Kriging method 
to carry out RBDO and compared with four other RBDO 
methods to validate and point out the merit of the proposed 
method. 
 
2. RELIABILITY, STATISTICAL MOMENTS AND 

SENSITIVITY 
2.1 Reliability and Statistical Moments 

A reliability analysis, for both the component and the 
system level, involves calculation of the probability of failure, 

denoted by PF, which is defined using a multi-dimensional 
integral  
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where ψ  is a vector of distribution parameters, which usually 

includes the mean (µ) and/or standard deviation (σ) of the 

random input  T

1, , NX XX  ,  P   represents a 

probability measure,
 F  is the failure set, ( ; )fX x ψ  is a joint 

probability density function (PDF) of X, and  E   represents 

the expectation operator. The failure set is defined as 

 : ( ) 0F iG  x x  for component reliability analysis of the 
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system reliability analysis of NC performance functions, 
respectively [29,30].
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F
I x  in Eq. (1) is called an indicator 

function and defined as 
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In this paper, since the mean of X,  T

1, , N μ  , is 

used as a design vector, the vector of distribution parameters 
ψ  is simply replaced with µ for the derivation of the 

sensitivity. 
In a fashion similar to Eq. (1), the qth statistical moment 

of a performance function H(x) is defined as 
 

( ) [ ( )] ( ) ( ; ) ,
N

q q
qm E H H f d   Xμ X x x μ x


 (3) 

 
and thus, Eqs. (1) and (3) can be written in a generalized form 
as 
 

( ) [ ( )] ( ) ( ; )
N
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                (4) 

 
which is called a probabilistic response [29]. In Eq. (4), ( )h μ  

and g(x) represent ( )FP μ  and ( )
F

I x , respectively, for 

reliability analysis, and ( )h μ  and g(x) represent ( )qm μ  and 

( )qH x , respectively, for statistical moment analysis. 

 
2.2 Stochastic Sensitivity Analysis 

The sensitivity of the probabilistic response ( )h μ  with 

respect to i  is considered in this section. For the derivation 

of the sensitivity, the following four assumptions, which are 
known as the regularity conditions, are required [28,29]. 

 
1. The joint PDF ( ; )fX x μ  is continuous. 

2. The mean , 1, , ,i i i N      where Mi is an open 

interval on  . 



 

3. The partial derivative 
( ; )

i

f





X x μ
 exists and is finite for all 

x and i . In addition, ( )h μ  is a differentiable function of 

µ. 
4. There exists a Lebesgue integrable dominating function 

r(x) such that  
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for all µ. 

With the four assumptions satisfied, taking the partial 
derivative of Eq. (4) with respect to i  yields 
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and the differential and integral operators can be interchanged 
due to Assumption 4 and the Lebesgue dominated 
convergence theorem [29,32], giving 
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since g(x) is not a function of i . The partial derivative of the 

log function of the joint PDF in Eq. (7) with respect to i  is 

known as the first-order score function for i  and is denoted 

as 
 

(1) ln ( ; )
( ; ) .

i

i

f
s 


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
X x μ

x μ                           (8) 

 
Therefore, it is required to know the first-order score 

function to derive the sensitivity of the probabilistic response, 
which is either the reliability or the statistical moments. The 
derivation of the first-order score function for independent and 
correlated random variables will be shown in the subsequent 
section. 

 
3. SENSITIVITY ANALYSIS BY SCORE FUNCTION 
3.1 For Independent Random Variables 

Consider a random input  T

1, , NX XX   whose 

components are statistically independent random variables. 
Then, the joint PDF of X is expressed as multiplication of its 
marginal PDFs as 

 

1
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N
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f f x 
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where ( ; )
iX i if x   is the marginal PDF corresponding to the ith 

random variable Xi. Therefore, for statistically independent 
random variables, the first-order score function for i  is 

expressed as 
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Since the marginal PDF and cumulative distribution 

function (CDF) are available analytically as listed in Table 1, 
where ( )   and ( )   are the standard normal CDF and PDF, 

respectively, given by   
 

21 1
( ) ( ) exp ,

22

u u
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the derivation of Eq. (10) is straightforward for normal, 
lognormal, and Gumbel distributions.  
 

Table 1. Marginal PDF, CDF, and Its Parameters 

 PDF, ( )Xf x  CDF, ( )XF x  Parameters 
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However, for the case of Weibull distribution, the 

derivation is not straightforward since two distribution 
parameters, k and ν, are coupled as shown in Table 1. The 
score function for Weibull distribution is written as 
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which requires the calculation of i

i

k



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 and i

i






 since ki and νi 

are functions of i . As shown in Table 1, both i
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require the evaluation of the gamma function   defined as 
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and inserting Eq. (13) into Eq. (12) yields the first-order score 
function for Weibull distribution. Table 2 summarizes the 

first-order score functions for four marginal PDFs. i
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 for lognormal distribution in Table 2 can be easily 
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 for Weibull distribution in Table 2 are 

shown in Eq. (13). 
 

Table 2. First-Order Score Function for i  for Independent 
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Finally, the uniform distribution, as shown in Table 1, is 

not continuous on  , which makes the joint PDF in Eq. (9) 
discontinuous. This discontinuity of the uniform distribution 
violates the first assumption explained in Section 2.2. Thus, 
the score function cannot be used if a random variable follows 
uniform distribution.  

Assuming Xi follows the uniform distribution and all the 
components of X are statistically independent random 
variables, then the sensitivity of the probabilistic response 
with respect to i  shown in Eq. (6) can be written as 
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where X  and μ  are vectors of the random variables and its 

means, respectively, without the ith component. Since two 
integral limits, a and b, are functions of the differential 
variable µi, the differential and integral operators cannot be 
interchanged directly. Instead, the Leibniz integral rule [33] 
gives a formula for differentiation of a definite integral whose 
limits are functions of the differential variable, which is given 
by 
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Applying the Leibniz integral rule to Eq. (14) yields 
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which is the sensitivity of the probabilistic response with 
respect to µi when Xi follows uniform distribution. 

 
3.2 For Correlated Input Random Variables 

Consider a bivariate correlated random input 

 T
,i jX XX . Then, the joint PDF of X is expressed as 

[26,27] 
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where C is a copula function, ( ; )

iX i iu F x 
 
and 

( ; )
jX j jv F x 

 
are CDFs for Xi and Xj, respectively, and θ is 

the correlation coefficient. Table 3 lists commonly used 
copula functions [26,27].  
 

Table 3. Commonly Used Copula Functions 
Copula 
Type 

Copula Function,  ,C u v   

Clayton   1/
1u v

      

AMH   1 1 1

uv
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The partial derivative of the copula function with respect 

to the marginal CDFs u and v is called the copula density 
function and denoted as 
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and displayed in Table 4. As shown in Table 4, the joint PDF 
for independent random variables explained in Eq. (9) is a 
special case of Eq. (17) where the independent copula function 
is used.  
 

Table 4. Copula Density Functions 
Copula Type Copula Density Functions, ( , ; )c u v   
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Accordingly, using Eq. (17), the first-order score 

functions in Eq. (8) for a correlated bivariate input are 
expressed as 
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The derivation of the first term of the right-hand side of 

Eq. (19) is straightforward using Table 4 and listed in Table 5, 
and the second term of the right-hand side of Eq. (19) is 
identical to Eq. (10), so it can be obtained from Table 2. One 
can see from Table 5 that Eq. (19) is identical to Eq. (10) if the 
independent copula is used. In Table 5, the partial derivative 

of the marginal CDF with respect to µi, 
i

u





 is easily obtained 

from Table 1 and is shown in Table 6.  
 
Table 5. Log-derivative of Copula Density Function 
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Table 6. Partial Derivatives of Marginal Distribution with 

respect to µi 

Marginal 
Distribution

Partial Derivatives of Marginal Distribution,
i

u



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In a similar way to that explained in Section 3.1, consider 

a bivariate correlated random input  T
,i jX XX

 
where Xi is 

assumed to follow the uniform distribution. Then, the 
sensitivity of the probabilistic response with respect to i  for 

the bivariate correlated random input can be written as  
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Applying the Leibniz integral rule to Eq. (20) yields 
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and Eq. (21) is identical with Eq. (16) if the independent 
copula is used since ( , ; ) 1c u v   . 

 
4. For Both Independent and Correlated Input 

Random Variables 

Consider a random input  T

1, , NX XX 
 
where M 

pairs of bivariate correlated random variables exist. Then, the 
joint PDF of X is expressed as 
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from Eqs. (9) and (17). Taking the partial derivative on both 
sides of Eq. (22) yields the first-order score functions for a 
general random input X as 
 

(1) ln ( ; )
( ; )

ln ( ; )ln ( , ; )
.

i

i

i

X i ij j

i i

f
s

f xc u v

 


 







 
 

X x μ
x μ

 (23) 

 
Thus, if Xi is a correlated random variable, Eq. (23) is 

identical to Eq. (19), and if Xi is statistically independent, Eq. 
(23) is identical to Eq. (10). Similarly, if Xi follows the 
uniform distribution, Eq. (21) can be used to calculate the 
sensitivity of the probabilistic response with a general random 
input X. 

 
5. FORMULATION OF SAMPLING-BASED RBDO 

The mathematical formulation of a general RBDO 
problem is expressed as 
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where T{ }id d μ(X)  is the design vector, which is the 

mean value of the N-dimensional random vector 
T

1 2={ ,  , ,  }NX X XX  ; Tar

iFP  is the target probability of failure 

for the ith constraint; and NC, ndv, and nrv are the number of 
probabilistic constraints, design variables, and random 
variables, respectively.  The mathematical formulation of a 
general RBRDO is given by   
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where H  and 2

H  are the mean value and variance of the 

performance function H(X), respectively. 
To carry out RBDO and RBRDO using Eqs. (24) and 

(25), respectively, it is required to know the function value 
and its sensitivities at a given design. However, in most 
engineering applications, it is very difficult, if not impossible, 
to obtain accurate sensitivities. For engineering applications 
where accurate sensitivities are not available, surrogate 
models have been widely used to carry out design 
optimization. Once an accurate surrogate model is available 
for the design optimizations, the MCS can be applied to 
estimate the reliability or statistical moments of the system 
with negligible computational burden.  

Denote the surrogate models for constraint function Gi(X) 

and performance function H(X) as ˆ ( )iG X  and ˆ ( )H X , 

respectively. Then, by applying the MCS to the surrogate 

model ˆ ( )iG X , the probabilistic constraints in Eqs. (24) and 

(25) can be approximated as 
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where K is the MCS sample size, ( )kx  is the kth realization of 

X, and the failure set ˆ
F  for the surrogate model is defined as 

 ˆˆ : ( ) 0F iG  x x . Sensitivity of the probabilistic constraint 

in Eqs. (24) and (25) is obtained using the score function 
explained in Section 3 as 
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where (1) ( )( ; )

i

ks x μ  is obtained using Eq. (23). 

In a similar manner, the statistical moments in Eq. (25) 
can be approximated as 
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respectively, and their sensitivities are  
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and 
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respectively. 

As shown in Eqs. (27), (29), and (30), the sensitivity 
calculation using the score function and MCS does not require 
the sensitivity of the surrogate models, which is known to be 
inaccurate even if the surrogate model accurately 
approximates the function values. Furthermore, the 
computation of the sensitivity using the score function does 
not include any approximation except the statistical noise due 
to the MCS, which can be avoided using a sufficiently large 
MCS sample size. In addition, this sensitivity analysis does 
not require the transformation from the original design space 
to the standard normal space, which usually makes the 
performance function become highly nonlinear, especially 
when the random input follows non-Gaussian marginal 
distribution and is correlated. Therefore, the sensitivity 
analysis using the score function and MCS will be very 
accurate and computationally efficient for engineering 
applications with correlated random input once accurate 
surrogate models are available; this will be verified through 
numerical examples in the subsequent section. 

 
6. NUMERICAL EXAMPLES 

Numerical studies are carried out in this section to verify 
the stochastic sensitivities derived in Section 3 using the score 
function. For the benchmark sensitivity to test the accuracy of 
the proposed method, the FDM using the MCS with 250 



 
million samples is used. The stochastic sensitivities of the 
component probability of failure and statistical moments are 
compared with the FDM results in Section 5.1 and Section 5.2, 
respectively. Section 5.3 illustrates how the proposed 
sensitivity combined with an accurate surrogate model can be 
used to solve an RBDO problem.  
 
6.1 Sensitivities of Component Probability of Failure 

Consider a 2-D highly nonlinear polynomial function, 
which was studied in Ref. 15,  
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. As shown in Table 7, 

X1 and X2 follow Weibull and normal distributions, 
respectively. The Weibull distribution with the scale 
parameter of 4 and shape parameter of 15 has a mean of 
3.8627 and a standard deviation of 0.3159. Two random 
variables X1 and X2 are assumed to be correlated with each 
copula shown in Table 3. Except for the independent copula 
case where the correlation coefficient is always zero, the 
correlation of coefficient of τ=0.3 is used. For the sensitivity 
calculation of the component probability of failure using the 
score function, the sample size for the MCS is 1 million, 
whereas the sensitivity calculation using the FDM employs 
250 million samples for the MCS. This is because the FDM 
uses the difference of two probabilities of failure obtained 
from the MCS, which could include relatively large statistical 
noise if a small number of samples are used. 
 

Table 7. Properties of Random Variables 
Random  
Variables  

Distribution  Distribution Parameters 

X1 Weibull ν=4 k=15 
X2 Normal µ=2.5 σ=0.3 

 
Tables 8 and 9 show the comparison of sensitivities with 

respect to the mean of the non-normal random variable X1 and 
the normal random variable X2, respectively. Both tables 
illustrate that the sensitivities of the probability of failure 
obtained using the score function in Eq. (27) and MCS with 1 
million samples agree very well with the sensitivities obtained 
using the FDM and MCS with 250 million samples. As 
mentioned previously, this good agreement is very obvious 
since the sensitivity derivation explained in Section 3 does not 
include any approximation except the statistical noise due to 
the MCS. Hence, regardless of the marginal distribution and 
copula types of random variables, the stochastic sensitivity 
using the score function is very accurate, and it is also 
computationally efficient since the MCS uses a relatively 
small sample size compared with the sensitivity analysis using 
the FDM, and no finite difference perturbation size is 
involved.  
 

Table 8. Sensitivity of Probability of Failure w.r.t 1  

Copula 
Sensitivity 

Score 
Function 

FDM with  
perturbation size 0.1% 

Clayton 9.7944 9.7446 
AMH 9.7148 9.7354 
Frank 8.9506 8.9208 
FGM 9.7167 9.7421 

Gaussian 7.4054 7.4158 
Independent 9.4483 9.4296 

   
  

Table 9. Sensitivity of Probability of Failure w.r.t 2  

Copula 
Sensitivity 

Score 
Function 

FDM with 
 perturbation size 0.1% 

Clayton 0.6485 0.6513 
AMH 0.6701 0.6651 
Frank 0.8149 0.8321 
FGM 0.9318 0.9394 

Gaussian 0.8347 0.8165 
Independent 0.0897 0.0884 

     
To verify whether the proposed stochastic sensitivity 

analysis works for high-dimensional problems, consider a 4-D 
polynomial function 
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The properties of the random variables in Eq. (32) are 

shown in Table 10. For this problem, two random variables X1 
and X2 are assumed to be correlated with each copula shown 
in Table 3, and two random variables X3 and X4 are assumed 
to be statistically independent. The relatively large correlation 
coefficient (τ=0.7) for X1 and X2 is used except for the 
independent copula. However, since the AMH copula cannot 
deal with a correlation coefficient larger than 1/3 [27], the 
AMH copula is excluded in this example. 
     

Table 10. Properties of Random Variables 
Random  
Variables  

Distribution  Mean 
Standard 
Deviation 

X1 Normal 5.0 0.3 
X2 Normal 6.0 0.3 
X3 Normal 7.0 0.3 
X4 Normal 4.0 0.3 
 

Table 11 compares two sensitivities of the probability of 
failure with respect to 1 . As in the previous example, two 

sensitivities agree very well with each other. Accordingly, it 
can be said that the proposed stochastic sensitivity analysis for 
the probability of failure is very accurate, regardless of the 
type of performance functions and copulas. 
 

Table 11. Sensitivity of Probability of Failure w.r.t 1  

Copula 
Sensitivity 

Score 
Function 

FDM with  
perturbation size 0.1% 

Clayton -0.5719 -0.5643 
Frank -0.4925 -0.4862 



 
FGM -0.6605 -0.6712 

Gaussian -0.6005 -0.5964 
Independent -1.5890 -1.5824 

   
6.2 Sensitivities of Statistical Moments 

Consider the same 2-D highly nonlinear polynomial 
function shown in Eq. (31) for the sensitivity comparison of 
statistical moments. X1 and X2 follow Weibull and normal 
distributions, respectively, with the same distribution 
parameters as shown in Table 7. The sensitivities of the first 
two statistical moments, mean and variance, of the 
performance function in Eq. (31) are obtained using Eqs. (29) 
and (30), respectively. Again, 1 million MCS samples are used 
for the sensitivity calculation using Eqs. (29) and (30), that is, 
K=1,000,000. For the sensitivity of the statistical moment 
using the FDM, the statistical moment is obtained first using 
the MCS with 250 million samples. Then, by perturbing the 
mean of X1 by 0.1%, the perturbed statistical moment is 
obtained, and the sensitivity is obtained using the difference 
between two statistical moments. So, for a problem with two 
random variables as in Eq. (31), the sensitivity analysis using 
the FDM requires three MCSs with 250 million samples. The 
computational time for the sensitivity analysis using the FDM 
is 750 times that of the proposed sensitivity analysis, and this 
difference will increase as the number of random variables 
increases.  

Table 12 compares two sensitivities of statistical moments 
with respect to 1 . Regardless of the copula type used, 

sensitivities of two statistical moments obtained using the 
score function and FDM agree very well with each other. 

 
Table 12. Sensitivity of Statistical Moments with respect to 1  

Copula 

Mean Variance 

Score 
Function 

FDM with  
perturbation 

size 0.1% 

Score 
Function 

FDM with  
perturbation 
size 0.1% 

Clayton 11.8981 11.6201 -140.2574 -136.1142 
Frank 11.8093 11.8681 -109.1958 -107.4361 
FGM 11.2145 11.1848 -105.3351 -104.3938 

Gaussian 11.8488 11.9547 -122.4572 -124.6348 
Independent 11.2221 11.2120 -71.5755 -71.1807 

   
6.3 Sampling-Based RBDO using Proposed 

Stochastic Sensitivity 
To see how the proposed sensitivity analysis works for an 

RBDO problem, consider a 2-D mathematical RBDO 
problem, which is formulated to 
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where three constraints are given by 
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, which are drawn in 

Figure 1. The properties of two random variables are shown in 
Table 13, and they are assumed to be correlated with the 
Clayton copula (τ=0.5). As shown in Eq. (33), the target 
probability of failure ( Tar

FP ) is 2.275% for all constraints. 

 
Table 13. Properties of Random Variables 

Random  
Variables 

Distribution  dL dO dU 
Standard 
Deviation 

X1 Normal 0.0 5.0 10.0 0.3 
X2 Normal 0.0 5.0 10.0 0.3 

 
 

 
Figure 1. Shape of Constraint and Cost Functions 

 
To apply the proposed sensitivity analysis to an RBDO 

problem, accurate surrogate models need to be utilized. For 
that purpose, the D-Kriging method with sequential sampling 
proposed by Zhao et al. [31] is used because, in terms of 
accuracy, the D-Kriging method outperforms existing methods 
such as the polynomial response surface method, the radial 
basis function (RBF) method, the support vector regression 
(SVR) method, and the universal Kriging method. Assuming 
the constraint functions in Eq. (34) are not given analytically, 
which is usually described as the black-box constraint, the 
surrogate models for the constraint functions are first 
generated using the D-Kriging method. Then, using the 
generated surrogate models, the probabilities of failure for 
three constraints and their sensitivities are obtained using the 
MCS with 1 million samples.  



 
Table 14 compares the numerical results of five different 

RBDO methods. The first three results are obtained from the 
so-called MPP-based RBDO, which requires the sensitivity of 
the constraint functions for the MPP search and design 
optimization. This MPP-based RBDO includes the FORM, the 
DRM with three quadrature points, which is denoted as DRM3 
in Table 14, and the DRM with five quadrature points, which 
is denoted as DRM5. The last two results are obtained from 
the sampling-based RBDO, which uses the MCS for the 
estimation of the probability of failure and its sensitivity. The 
sampling-based RBDO using the D-Kriging method is the 
proposed method, and for the comparison of the accuracy of 
the proposed method, the result of the sampling-based RBDO 
using the true functions given in Eq. (34) is also shown in the 
table. 

 
Table 14. Comparison of Various RBDOs ( 2.275%Tar

FP  ) 

Methods Cost 
Optimum 
Design 

MCS Function 
Call 

1FP ,% 
2FP ,%

MPP-
Based 
RBDO 

FORM -1.8742 5.0026, 1.6165 2.3022 1.2835 52+52 
DRM3 -1.8794 5.0315, 1.6050 2.2912 1.7496 128+106
DRM5 -1.8821 5.0454, 1.5988 2.2621 2.0183 146+102

Sampling
-Based 
RBDO 

D-Kriging -1.8864 5.0595, 1.5893 2.2841 2.3056 57 
True 

Function 
-1.8853 5.0541, 1.5918 2.2912 2.2791 N.A. 

 
From the table, it can be seen that the probability of 

failure of the second constraint (1.2835%) at the optimum 
design obtained using the FORM is not close to the target 
probability of failure (2.275%). This is because the second 
constraint is highly nonlinear as shown in Figure 1 and the 
FORM cannot accurately estimate the probability of failure of 
highly nonlinear functions. To improve the accuracy of the 
probability of failure at the optimum design, the MPP-based 
DRM with three or five quadrature points can be used; Table 
14 shows that the MPP-based DRM indeed improves the 
accuracy of the probability of failure at the optimum design. 
However, to obtain a more accurate optimum design, more 
quadrature points are required, such as the DRM7, etc. The 
FORM uses 52 function evaluations and 52 sensitivity 
calculations, whereas the MPP-based DRM with five 
quadrature points uses 146 function evaluations and 102 
sensitivity calculations to obtain the optimum design, and the 
number of function evaluations for the MPP-based DRM will 
be increased as the number of quadrature points increases. 

On the other hand, the sampling-based RBDO, which uses 
the D-Kriging method and the proposed stochastic sensitivity 
analysis, shows very accurate optimum design; yet it requires 
only 57 samples for the accurate optimum design. Without the 
sensitivity of the performance functions, the sampling-based 
RBDO can obtain a very accurate optimum design and the 
optimum design is very close to the optimum design obtained 
using the true functions. This means that the D-Kriging 
method generates very accurate surrogate models for the true 
functions. From this example, it can be said that once accurate 
surrogate models are available, the sampling-based RBDO 
using the proposed sensitivity analysis yields very accurate 
optimum designs with good efficiency.  

More detailed discussion on the sampling-based RBDO, 
which includes higher dimensional engineering applications 

such as M1A1 Abrams tank roadarm [15], needs to be carried 
out and is ongoing. 

 
7. CONCLUSIONS 

The stochastic sensitivity analysis of the probabilistic 
constraints and statistical moments with respect to mean 
values of correlated random variables using the score function 
and MCS is carried out in this study. Since it does not require 
the sensitivity of performance functions or even the sensitivity 
of surrogate models, the proposed sensitivity analysis yields 
very accurate sensitivity estimation regardless of the marginal 
and copula types of the random input once accurate surrogate 
models are available. Furthermore, the proposed method uses 
only one MCS at a given design to obtain the probability of 
failure and its sensitivity or statistical moments and their 
sensitivities simultaneously, whereas the FDM uses N+1 MCS 
to obtain the sensitivities of the probabilistic response, where 
N is the number of random variables. Thus, the proposed 
sensitivity analysis using the score function is far more 
efficient than the FDM. In addition, the proposed sensitivity 
analysis is more accurate than the FDM when the same MCS 
sample size is used. Hence, the proposed stochastic sensitivity 
analysis combined with accurate surrogate models, which are 
obtained in this paper using the D-Kriging method, is 
recommended for RBDO of engineering applications where 
accurate sensitivities of performance functions are not 
available. Numerical examples show the accuracy of the 
sensitivity results and demonstrate that sampling-based RBDO 
using the proposed sensitivity analysis and accurate surrogate 
models by the D-Kriging method yields a very accurate 
optimum design with good efficiency.    
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