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ABSTRACT 
In this study, an efficient classification methodology is 

developed for reliability analysis while maintaining the 
accuracy level similar to or better than existing response 
surface methods. The sampling-based reliability analysis 
requires only the classification information – a success or a 
failure – but the response surface methods provide real 
function values as their output, which requires more 
computational effort. The problem is even more challenging to 
deal with high-dimensional problems due to the curse of 
dimensionality. In the newly proposed virtual support vector 
machine (VSVM), virtual samples are generated near the limit 
state function by using linear or Kriging-based 
approximations. The exact function values are used for 
approximations of virtual samples to improve accuracy of the 
resulting VSVM decision function. By introducing the virtual 
samples, VSVM can overcome the deficiency in existing 
classification methods where only classified function values 
are used as their input. The universal Kriging method is used 
to obtain virtual samples to improve the accuracy of the 
decision function for highly nonlinear problems. A sequential 
sampling strategy that chooses a new sample near the true 
limit state function is integrated with VSVM to maximize the 
accuracy. Examples show the proposed adaptive VSVM yields 
better efficiency in terms of the modeling time and the number 
of required samples while maintaining similar level or better 
accuracy especially for high-dimensional problems. 

 
KEYWORDS 

Surrogate Model, Support Vector Machine (SVM), 
Sequential Sampling, Virtual Samples, Virtual Support Vector 
Machine (VSVM), High-dimensional Problem 

 
1. INTRODUCTION 

Accurate reliability analysis is of great importance for 
solving engineering problems. Poor reliability analysis results 
can lead to unreliable or overly conservative designs. 
Currently, the most probable point (MPP) based methods are 
used to obtain reliability analysis results in many engineering 
problems where sensitivity information is used [1-3]. 
However, the sensitivity is often not available or difficult to 
obtain accurately in complex multi-physics or 
multidisciplinary simulation-based engineering design 
applications.  

Without the sensitivity, an alternative to the MPP-based 
method is to directly perform the probability integration 
numerically by carrying out computer simulations at the 
Monte Carlo simulation (MCS) sampling points [4]. However, 
this method requires a large number of response function 
evaluations and can be impractical in terms of computational 
cost.  

Therefore, surrogate-based methods are used to decrease 
the cost while requiring no sensitivity analysis. The main 
advantage of the surrogate-based method is that a limited 
number of function evaluations are required to construct 
surrogate models. Many different surrogates such as the 
polynomial response surface (PRS), radial basis function 
(RBF), multivariate adaptive regression spline (MARS), 
support vector regression (SVR), moving least squares (MLS) 
and Kriging have been developed and applied to engineering 
problems [5-12]. These surrogates provide approximations of 
otherwise expensive computer simulations. Once an accurate 
surrogate model is generated, the direct MCS can be applied to 
the surrogate model to estimate the reliability with affordable 
computational cost. This method is called the sampling-based 
reliability analysis. The sampling-based method requires the 
decision function to determine if a prediction at a testing point 



is a success or a failure. That is, only the decision between a 
success and a failure is used instead of the function value. In 
this paper, the decision function is used to express an 
approximated limit state. However, surrogate-based 
approaches usually try to obtain accurate response function 
values over the given domain. Therefore, the surrogate-based 
methods require many samples in unnecessary regions to 
reach the target accuracy (i.e., Mean Squared Error or R2), and 
thus they actually solve more complicated problems and 
become inefficient [13].  The computational burden becomes 
heavier in high-dimensional space due to the curse of 
dimensionality [14-16]. 

On the other hand, the support vector machine (SVM), 
which is a classification method, only constructs an explicit 
decision function [14-20]. The SVM with a sequential 
sampling strategy which is called the explicit design space 
decomposition (EDSD) is tested and applied to discontinuous 
problems successfully [21, 22]. Even though EDSD can be 
also applied to continuous problems, it often converges very 
slowly, and thus requires a large number of samples. One of 
the main reasons for the inefficiency of EDSD for continuous 
problems is that it only uses the classification response 
function values rather than the function values to construct the 
decision function.  

In this paper, a virtual SVM (VSVM) is proposed to 
improve the efficiency of SVM while maintaining the good 
features of SVM by using the available true response function 
values. Unlike EDSD, VSVM is developed mainly for 
continuous problems. The VSVM does not depend on the 
availability of accurate gradient information and only 
constructs the decision function rather than the surrogate 
model over the given domain. A proposed adaptive sampling 
method provides new samples in the vicinity of the limit state, 
which makes the method even more efficient. The VSVM 
decision function is used to evaluate the probability of failure 
at a given design. 

Basic concepts and important features of SVM are 
presented in Section 2. In Section 3, the virtual sample 
generation method and the adaptive sampling strategy are 
explained. Stopping criteria are defined to stop the updating 
process as the decision function converges. In Section 4, 
recently developed EDSD and dynamic Kriging method are 
compared with the proposed VSVM to demonstrate the 
efficiency of VSVM while maintaining the accuracy. An error 
measure is also defined to compare the accuracy of the result. 
The conclusion is followed in Section 5. 

 
2. SUPPORT VECTOR MACHINE  

An SVM is a machine learning technique used for the 
classification of data in pattern recognition [14-22]. It has the 
ability to explicitly construct a multidimensional and complex 
decision function that optimally separates multiple classes of 
data. Even though SVM is able to deal with multi-class cases, 
only two classes – success or failure – are used in reliability 
analyses, and thus only a two-class classification problem will 
be considered in this paper. Good features for the high-
dimensional problem make SVM an appropriate method for 
the formulation of the explicit limit state function. In this 
section, a brief overview of SVM is presented, including basic 
ideas and some important features.  

 
2.1 Linear SVM 

For the given multidimensional problem, N samples are 
distributed within the local or global window. Each sample xi 
is associated with one of two classes characterized by a value 
yi=±1, which represents a success ( 1 ) or a failure ( 1 ). The 
SVM algorithm constructs the decision function that optimally 
separates two classes of samples. The corresponding explicit 
boundary function is expressed as 
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where b is the bias, αi are Lagrange multipliers obtained from 
the quadratic programming optimization problem used to 
construct SVM, x is an arbitrary point to be predicted, and K is 
the kernel of SVM. The classification of any arbitrary point x 
is given by the sign of s in Eq. (1). The optimization process is 
used to solve for the optimal SVM decision function with a 
maximal margin. Figure 1 shows a linear SVM result and the 
notion of margin can be easily noticed. In this case, the margin 
is the distance between two parallel hyperplanes given by s(x) 
= ±1 in the design space. These hyperplanes are called support 
hyperplanes and pass through one or several samples, which 
are called support vectors. The SVM optimization process also 
does not allow any samples to exist within the margin space. 

 
Figure 1. Linear decision function for two-dimensional 

problem 
 

The Lagrange multipliers associated with the support 
vectors are positive while the other Lagrange multipliers equal 
zero. It means that the explicit SVM decision function uses 
only support vectors in its formulation, and thus SVM 
constructed only with support vectors is identical to the one 
obtained with all samples. Typically, the number of support 
vectors is much smaller than the number of samples N.  

 
2.2 Nonlinear SVM and Kernel Functions 

To construct nonlinear decision functions, kernels are 
introduced in SVM. In the formulation of the SVM decision 
function, it is assumed that there exists always a higher 
dimensional space where the transformed data can be linearly 
separated. The transformation from the original design space 
to the higher dimensional space is based on the kernel function 
K in SVM. The kernel K in SVM equation can have different 
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forms such as polynomial, Gaussian, Sigmoid, etc. A Gaussian 
kernel is used in this paper and is given as [15, 18, 19]: 
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where σ is the parameter of the Gaussian kernel. Figure 2 is an 
example of nonlinear SVM decision function with the 
Gaussian kernel for a two-dimensional problem. Even though 
the boundary is always linear in the transformed higher 
dimensional space, the boundary is nonlinear in the original 
design space. SVM and Kernel Methods Matlab toolbox [23] is 
used for the formulation of SVM. 

 
Figure 2. Nonlinear decision function for two-

dimensional problem 
 
The SVM can deal with high-dimensional problems and 

can separate two classes of data with the maximal margin. The 
SVM decision function has an explicit form, and thus 
predictions based on SVM are faster than those based on 
implicit surrogate methods such as Kriging. The prediction 
speed is important for sampling-based reliability analyses, 
since a very large number of MCS samples are required in 
evaluating the probability of failure. 

The EDSD, which is an SVM with a sequential sampling 
strategy, yields good performance for discontinuous limit state 
functions. However, EDSD is slow in convergence and 
requires many samples for continuous problems, since EDSD 
does not use function values. This can be improved by 
inserting virtual samples generated based on available function 
values. 
 
3. VIRTUAL SUPPORT VECTOR MACHINE 

 
3.1 Virtual Sample Generation and VSVM 

For the construction of SVM, initial samples, which 
include both success and failure samples, should be given. 
Initial samples are generated by Latinized Centroidal Voronoi 
Tessellation (LCVT), since it shows very good uniformity and 
randomness [21, 27]. 

The classification methods such as SVM only deal with 
classification of responses, i.e., successes ( 1 ) or failures ( 1
). The SVM decision function is located in the middle of 
opposite signed samples, regardless of the function values of 

the given samples as shown in Fig. 3 (a). However, in reality, 
samples with small absolute function values are more likely to 
be located closer to the limit state function than those with 
large absolute function values. 
      

 

(a) SVM decision function 

 

(b) VSVM decision function with virtual samples 
 

Figure 3. SVM decision function and VSVM decision 
function with virtual samples – red solid line 

 
The basic idea of VSVM is to increase the probability of 

locating the decision function close to the limit state function, 
by inserting two opposite signed virtual samples between the 
given two samples. These virtual samples play two major roles 
in VSVM. One is to make the predictions more accurate and 
the other is to locate new sequential samples near the limit 
state function, which will be presented in Section 3.2. In Fig. 3 
(b), the VSVM decision function is shifted towards the sample 
with a small absolute function value by inserting two virtual 
samples. The virtual samples with opposite signs should be 
near the limit state function and be equally distanced from the 
limit state function to obtain the best SVM decision function.  

In this paper, two types of samples are used. The first 
types are real samples, which include initial samples and 
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sequential samples. Sequential samples are inserted when the 
VSVM model is not accurate enough. These real samples 
require function evaluations. The second types are virtual 
samples which are generated to improve accuracy of the 
resulting VSVM decision function. Such virtual samples do 
not require function evaluations and only have virtual signs.  

 
3.1.1 Informative Sample Set and Valid Distance 

Virtual samples are generated from approximations using 
any pair of samples. However, it is very much desirable to use 
two opposite class samples. If both samples have the same 
sign, then finding the decision function is an extrapolation 
problem of which a solution is often inaccurate and is not 
located between two given samples. If two existing samples 
have opposite signs (+1 and 1 ), then the decision function 
should exist between the two samples for a continuous 
problem. Any pair of different class samples can be used in 
theory, but if the distance between two given samples is large 
or both samples are far from the limit state function, then the 
accuracy of positioning the zero point between two samples 
cannot be expected. Thus, one of two points should be close to 
the limit state function and both should be close to each other 
to make approximations more accurate and useful. Therefore, 
an informative sample set from which virtual samples are 
generated is defined first. Support vectors are located near the 
limit state function, and thus they are included in the 
informative set. Original SVM is constructed first based on 
existing samples to identify support vectors. It is highly 
probable that some samples with small absolute values are 
also located close to the limit state function, even though they 
may not be support vectors. All the samples that have absolute 
response values that are smaller than the maximum absolute 
responses of the support vectors are chosen as members of the 
informative set. This can be expressed as 
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where xi is the ith sample, x* are support vectors, y is the 
function value at the given position, N is the number of 
samples and { ( *)}y x is a set of absolute response function 

values at support vectors. 
From the previously chosen informative samples, the 

closest opposite signed samples are paired to generate virtual 
samples between each pair. However, there exist some pairs 
that can generate important virtual samples, even though they 
are not the closest opposite signed samples to each other. To 
solve this problem, a valid distance concept is introduced. 
Pairs can generate virtual samples if the distance between 
them is shorter than the valid distance. If the valid distance is 
too large, then there is a risk of including many unnecessary 
virtual samples and producing poor approximations. If the 
valid distance is too short, it may not include more useful 
information. Figure 4 shows the influence of the valid distance 
concept in a two-dimensional example. By inserting an 
additional pair of virtual samples between two existing virtual 
sample pairs, the accuracy is improved in the area near the 
new virtual sample pair. 

The distances between pairs of informative samples and 
the closest opposite signed samples can be obtained. The 
maximum distance between above pairs is defined as the valid 
distance in this paper. 

 
(a) The closest samples only (without the valid distance 

concept) 
 

 

(b) With the valid distance concept 
 

Figure 4. VSVM decision functions with/without the valid 
distance concept 

 
3.1.2 Approximations for Zero Positions 

Two additional steps are needed for the generation of the 
virtual samples after the informative sample set and the valid 
distance are defined. Firstly, since the true limit state function 
is not known in general, a zero position is approximated from 
two different class samples by using approximation methods 
such as linear approximation, Kriging or MLS. A zero position 
means a point where the approximation value is zero among 
all the points on the line between two opposite signed samples. 
Linear approximation simply assumes that the function value 
between two given samples is linear and tries to find the zero 
point. Linear approximation is very fast and easy to apply but 
can be inaccurate for highly nonlinear functions.  

Since new samples are located near the true limit state 
function by the sequential sampling method, the Kriging or 
MLS methods, which are accurate near given samples, are 
appropriate to obtain better approximations. In this paper, the 
universal Kriging method is used to approximate the zero 
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point between two opposite signed samples and 
SURROGATES toolbox [24] is used for the construction of 
the universal Kriging model. The optimization problem for 
finding the zero position between two samples is expressed as 
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where xi and xj are original samples with opposite signs, x is a 
point on the straight line connecting xi and xj and Â(x) is an 
approximated value at x obtained by the universal Kriging 
method. 

When new sequential sample is inserted, the universal 
Kriging model is constructed based on the new sample set. In 
the Kriging model, the correlation function R(θ, xi, xj) should 
be estimated from the sample data, where xi and xj are given 
samples and θ is the process parameter. The influence of the 
parameter θ on the performance is significant, and thus the 
determination of the parameter is important. To find the 
optimum θ, different methods such as Hookes&Jeeves (H-J), 
Lavenberg-Marquardt (L-M), genetic algorithm (GA) and 
PatternSearch (PS) methods [24, 25] have been applied. 
Among them, the PS method is most accurate but it requires 
more computational effort than other methods. However, with 
VSVM, less number of iterations can be used to achieve a 
similar level of accuracy with more accurate Kriging models 
by locating new samples correctly. Therefore, time and 
resources can be saved by using the PS method.  

To make the estimation process more efficient, the history 
of parameter changes was investigated to find that new 
optimum θ is close to the previous optimum θ with one less 
sample in general. If the current SVM model is similar to the 
previous SVM then both optimum Kriging parameters are also 
close to each other. Therefore, the previous optimum Kriging 
parameter θ value is used as the initial value for the PS 
method. By implementing this efficiency strategy, the elapsed 
time to find the optimum θ is reduced by 90% per iteration in 
average. 

It requires fair amount of computational time to solve Eq. 
(4) accurately. However, if the zero position is within the 
virtual margin explained in Section 3.1.3, then the resulting 
SVM decision function is similar to the decision function with 
exact zero position. Also Kriging approximations take large 
amount of time if approximations are calculated one by one 
due to its implicit formulation. Therefore, the line connecting 
two opposite signed samples xi and xj is divided into 100 
elements, their Kriging approximations are evaluated at once 
and the position with the minimum absolute function value is 
chosen. 100 elements are used in this paper because the virtual 
margin is 0.02 and the mean distance between existing sample 
pairs is 1.2 in the normalized variable space. By introducing 
the new method, the elapsed time for generating virtual 
samples is reduced from 39.94 sec. to 2.01 sec. per iteration 
for the twelve-dimensional problem.  

 
3.1.3 Generation of Virtual Samples from Zero 
Positions 

Secondly, two opposite signed virtual samples are 
generated near the zero point. One is located in the direction 
of the success sample and the other is in the direction of the 

failure sample. These are virtual samples and the one shifted 
towards the success sample will be assigned as a success and 
the other one will be assigned as a failure virtually. Both 
virtual samples should be between the given two opposite 
signed samples and on the line that connects these points. 
Then, a new SVM decision function based on the original and 
virtual samples will be located between the virtual sample 
pairs, because the virtual samples in the pair have different 
signs and are close to each other. If approximations for zero 
points are accurate, then both virtual samples and a new 
decision function will be near the limit state function. 

One important question is how closely a pair of virtual 
samples should be located. If the distance between a pair of 
virtual samples is too long, then these virtual samples will not 
be chosen as support vectors and they become meaningless. 
To make the virtual samples useful, the distance should be 
short enough so that the virtual samples are chosen as support 
vectors. However, due to the error of the sampling-based 
probability of failure evaluation [1], the virtual margin, the 
distance between a pair of virtual samples should not be 
extremely small. Therefore, a decision about the size of the 
virtual margin should be based on the target error level. 

If many virtual samples are clustered together within a 
small region, the additional information from most closely 
located virtual samples is negligible and the computational 
time increases unnecessarily. In each virtual sample choice 
process, both the amount of additional information and the 
computational cost should be considered. The first pair of 
virtual samples are generated between a sample with the 
smallest absolute function value and its closest opposite 
signed sample, since they provide the most accurate 
approximations.  

After the first pair is chosen, the valid distance is defined 
based on SVM with initial sample set, and virtual sample 
candidates are generated from two opposite samples within the 
valid distance. The candidate pair that have the longest 
distance from both real and virtual samples are chosen as the 
next virtual samples to prevent clustered virtual samples 
within a small region. To avoid clustered virtual samples, the 
number of virtual samples is limited by a predefined number. 
Otherwise, the process will end up generating unnecessarily 
many virtual samples. 

Once all virtual samples are generated, new VSVM can 
be constructed by using both existing samples and virtual 
samples. 

 
3.2 Adaptive Strategy with Sampling and Stopping 
Criteria 
3.2.1 Adaptive Sequential Sampling 

The surrogate-based approaches construct a model that is 
accurate over the given domain, and thus samples tend to 
spread out within the given domain to satisfy the target 
accuracy. However, since only an accurate decision function is 
required for the sampling-based methods, samples near the 
limit state function are more informative than samples far 
away from the limit state function. Such efficiency cannot be 
achieved by using a uniform sampling strategy, and thus a 
sequential sampling method is crucial for better efficiency and 
accuracy.  

In this paper, a new sample is selected such that it is 
located within the margin (|s(x)|<1), which is narrow since 
each pair of virtual samples are closely located. In addition, a 



new sample should have the maximum distance from the 
closest existing sample to maximize the additional information 
by the new sample. This strategy is similar to the sequential 
sampling method by Basudhar and Missoum [21] but the 
computational burden can be reduced by using the within-the-
margin constraint (|s(x)|<1) rather than the on-the-decision-
function constraint (s(x)=0) which is more difficult to satisfy. 
A less strict constraint can be used with VSVM since new 
samples do not need to be on the limit state function by 
introducing virtual samples. In other words, if new samples 
are located near the limit state function, accurate virtual 
samples close to the limit state function can be obtained. The 
optimization problem is defined as 
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where xnearest is the existing sample closest to the new sample 
x. Since xnearest changes as the position of new sample 
candidate x moves, Eq. (5) is a moving target problem. In Fig. 
5, new sample is inserted into a region near the limit state 
function and where there is no existing sample nearby. The 
VSVM decision function is improved drastically near the 
sequential sample. 

 

(a) The VSVM decision function and a sequential 
sample 

 

(b) The VSVM decision function with a new sample 
 

Figure 5. Changes of the VSVM decision function in the 
normalized design space 

 
As explained in the previous paragraph, the accurate 

solution for Eq. (5) is not necessary. Therefore, gradient-based 
optimization methods such as trust-region-reflective algorithm 
[28, 29], active-set algorithm [30, 31] or interior-point 
algorithm [32, 33] can be used instead of the PS method since 
they are faster than PS without sacrificing the accuracy much. 
 
3.2.2 Stopping Criteria 

Stopping criteria are required to determine when the 
decision function is converged. Since the true limit state 
function is not known, the criterion is based on the variations 
of the approximated decision function. A set of Nstop testing 
points is generated using input distributions because the MCS 
samples are also generated in the same way for the sampling-
based reliability analysis. In this paper, ten thousand testing 
samples were used for all examples. The fraction of testing 
points that show different signs from the previous surrogate is 
calculated as [21] 
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where k is the current iteration number, ∆௞ is the fraction of 
testing points for which the sign of the SVM evaluation 
changes between k-1th and kth iterations. Ik(xi) in Eq. (6) is an 
indicator function defined as 
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where ݏ௞ିଵሺܠ୧ሻ and ݏ௞ሺܠ୧ሻ represent the SVM value at ܠ୧ at k-
1th and kth iterations, respectively. Changes in the SVM 
decision function fluctuate and usually decrease as the number 
of iterations increases as is shown in Fig. 6.  
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Figure 6. Changes of ∆௞ and fitted exponential curve  
 

In order to implement more stable stopping criteria, the 
fraction of testing points changing signs between successive 
iterations is fitted by an exponential curve as [21] 
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where ∆෠௞ represents the fitted values of ∆௞ and A and B are the 
parameters of the exponential curve. The value of ∆෠௞ and the 
slope of the curve are calculated whenever each new sample is 
added. If ∆௞  is large while ∆෠௞  is small, it means that a big 
change occurred in the model at the kth iteration, which ∆෠௞ did 
not catch. If ∆௞ is small while ∆෠௞ is large, the situation is that 
the new sample is inserted into a region where zero-position 
approximations are already accurate, so there is a small 
change between recent two models but it may not be 
converged yet. Therefore, both ∆௞	and ∆෠௞ should be kept small 
for more robust results. The slope of the curve is also kept 
close to zero for stable results. 

To stop the updating process, the maximum of  ∆௞ and ∆෠௞ 
should be less than a small positive number ε1. 
Simultaneously, the absolute value of the slope of the curve at 
convergence should be lower than ε2. Thus, the stopping 
criteria can be defined as 
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ε1 and ε2 are determined so that the target classification error  
level can be achieved. The target classification error is 2.0% in 
this paper. For more accurate limit state function, smaller 
values can be applied. Generally, ε2 should be smaller than ε1 
for more stable convergence. 

The overall procedure of VSVM with a sequential 
sampling strategy is shown as Fig. 7. 

 

 
 

Figure 7. Flowchart of VSVM with a sequential sampling 
strategy 

 

4. COMPARISON STUDY BETWEEN VSVM AND 
OTHER SURROGATES 
 

4.1 Comparison Procedure 
 The two most recent surrogate modeling methods with 

sequential sampling schemes were selected to be compared 
with the proposed VSVM. One is the explicit design space 
decomposition (EDSD) method with an improved adaptive 
sampling scheme that uses SVM [21, 22]. The improved 
adaptive sampling method has two ways to choose a new 
sample: (1) to select the sample that has the largest distance to 
the closest existing samples while maintaining s(x)=0, and (2) 
to choose the support vector x* that is farthest from the 
existing samples of the opposite class and to select the sample 
that is farthest from x* while maintaining the opposite sign of 
y* and on the hypersphere of radius R centered around x*. y* 
is the function value at x* and R is chosen as half the distance 
from x* to the closest opposite signed sample. For a fair 
comparison for both EDSD and VSVM, the same parameters 
for SVM are used. Therefore, the differences between them 
are the sequential sampling strategy and the use of virtual 
samples. 

The other surrogate modeling method is the dynamic 
Kriging (DKG) with a sequential sampling method [12]. Zhao 
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et.al., showed that DKG is one of the most accurate response 
surface methods when the same number of samples is used. 
DKG was compared with polynomial response surface, radial 
basis function, support vector regression, and universal 
Kriging. Therefore, dynamic Kriging is chosen to compare the 
accuracy of VSVM with one of best response surface 
methods. The basic form of the dynamic Kriging prediction is 
expressed as 

 
 1
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where R is the symmetric correlation matrix, r0 is the 
correlation vector between the prediction location x and all N 
samples xi, i=1,⋯,N, Y is the response vector, F is a design 
matrix of basis functions and λ is a regression coefficient 
vector. In the dynamic Kriging method, F is not fixed, but the 
best one is chosen by the genetic algorithm (GA). The 
sequential sampling method chooses a new sample where the 
prediction variance is largest. 

Three test examples are used to show the performance of 
the adaptive sampling-based VSVM. One example is a low-
dimensional problem and the other two are high-dimensional 
problems. SVM can be applied to both global and local 
windows. However, global window usually requires 
unnecessarily many samples to achieve the target accuracy in 
reliability analyses. Therefore, SVM is applied to local 
windows of the original input domain and the original 
functions are shifted appropriately to include both signed 
samples so that the local windows include the true limit state 
functions. In Section 4.2, 4.3 and 4.4, local windows are 
defined as hyper-cubes based on lower and upper bounds 
respectively. 

For the Gaussian kernel in Eq. (2), parameter σ should be 
provided. Decision of optimum σ is an ongoing research 
subject. In this paper, fixed σ values, which are small enough 
to maintain zero training error, are used. Training error is 
defined as the classification error with respect to existing 
samples and not testing samples.  

Since the SVM is a classification method and only takes 
care of the decision function, the mean squared error (MSE) 
and R2, which are widely used in the surrogate-based methods, 
cannot be used for comparison. Therefore, the accuracy of the 
SVM decision function should be judged by its closeness to 
the true limit state function. In real situations, the limit state 
function is often unavailable and so is the error measure. 
However, the error measure can be obtained for academic 
analytical test functions. One million testing points (Ntest) are 
generated based on input distributions because the MCS 
samples are also generated in the same way for the sampling-
based reliability analysis. These testing points are used to 
calculate the classification error, which is the fraction of 
misclassified testing points over total number of testing points. 
A test point for which the sign of SVM does not match the 
sign provided by the true limit state function is considered as 
misclassification [21]. Therefore, the classification error c is  
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where xtest represents a test sample. I(xtest) in Eq. (11) is an 
indicator function and defined as 
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where ytest represents the corresponding classification value 
(±1) at xtest, s(xtest) is the SVM approximation at xtest. 

Our purpose is to evaluate the probability of failure 
accurately. The relationship between the probability of failure 
measurement error and the classification error is 
approximately proportional. Therefore, accurate probability of 
failure can be obtained by keeping the classification error 
small. Also, the classification error represents the accuracy of 
the obtained limit state function, so the classification error is 
used as the error measure for comparison in this paper. 

 
4.2 2-D Example 

The analytic function is a 4th order polynomial function, 
which is expressed as 
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The number of initial samples is 10 for all 20 tests and 
each test starts with different initial profiles. Parameters σ, ε1, 
and ε2 are 3, 0.8, and 0.3, respectively, for both EDSD and 
VSVM. To compare the performances with respect to the 
same number of additional samples, VSVM is performed first 
and DKG and EDSD are performed later using the same 
number of samples as VSVM. Each process is forced to stop 
when it reaches the same number of samples. Each method has 
its own sequential sampling strategy, and thus all final profiles 
are different except the 10 initial samples. According to Table 
1, which provides averaged values of 20 test cases, EDSD is 
the fastest, but the classification error is not accurate at all. 
This clearly shows that EDSD converges slowly due to 
incapability of using exact response function values. The 
VSVM uses about the same amount of time as DKG and 
results in a better classification error. 

 
Table 1. Average classification error and elapsed time over 20 

tests  

 DKG EDSD VSVM 
Classification 

error (%) 
2.5739 15.3364 0.3428 

Elapsed time 
(sec) 

35.3 3.2 33.1 

 
4.3 9-D Example 

The nine-dimensional extended Rosenbrock function is 
used for the test, which is expressed as 
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The initial sample size is 20, and 20 different initial 
sample profiles are used. For both EDSD and VSVM, σ, ε1, 
and ε2 are 5, 0.5, and 0.03, respectively. The same number of 
additional samples is used in the same way as previous two-
dimensional problem. In Table 2, which provides averaged 
values of 20 test cases, EDSD is still the fastest, but the 
classification error is not accurate. VSVM uses about half 
amount of time as DKG and results in better classification 
error. Therefore, VSVM is efficient and accurate for nine-
dimensional problem. 

 
Table 2. Average classification error and elapsed time over 20 

tests 

 DKG EDSD VSVM 
Classification 

error (%) 
2.3096 6.7944 1.7816 

Elapsed time 
(sec) 

196 60 103 

 
4.4 12-D Example 

For a twelve-dimensional example, the Dixon-Price 
function, which is expressed as 
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is used. The initial sample size is 35 for 20 tests. Parameters σ, 
ε1, and ε2 are 15, 0.25, and 0.015, respectively. The same 
number of additional samples is used for all three methods. In 
Table 3, which provides averaged values of 20 test cases, 
EDSD is the fastest, but the classification error is not accurate. 
VSVM uses less time than DKG but results in a better 
classification error. 
 

Table 3. Average classification errors and elapsed time over 
20 tests  

 DKG EDSD VSVM 
Classification 

error (%) 
2.0176 8.8797 1.6722 

Elapsed time 
(sec) 

289 64 169 

 
For other way of comparison, EDSD is performed using 

the same stopping criteria as VSVM so that EDSD can use 
more samples to construct the decision function. According to 
Table 4, the average number of additional samples of EDSD is 
77.9, which is far more than 33.3 of VSVM. EDSD also uses 
slightly less time than VSVM, and the classification error is 
still quite large. Clearly, VSVM is more accurate and efficient 
than EDSD. 
 
Table 4. Average number of additional samples, classification 
error, and elapsed time with the same stopping criteria over 20 

tests 

 EDSD VSVM 
Number of additional 

samples 
77.9 33.3 

Classification error (%) 6.9029 1.6722 

Elapsed time (sec) 149 169 

  
Since DKG and VSVM use different stopping criteria, a 

smaller stopping criterion is used for DKG to achieve a 
classification error similar to that of VSVM. In Table 5, DKG 
can achieve a classification error level similar to that of 
VSVM after it uses about 6 more samples. Furthermore, the 
elapsed time of DKG is larger than that of VSVM. 
 
Table 5. Average number of additional samples, classification 

error, and elapsed time of DKG and VSVM when similar 
classification error was achieved (20 tests) 

 DKG VSVM 
Number of additional 

samples 
39.4 33.3 

Classification error (%) 1.7381 1.6722 

Elapsed time (sec) 341 169 
 

VSVM is more efficient than DKG in terms of elapsed 
time for modeling while maintaining better accuracy level, 
especially in high-dimensional space. EDSD converges very 
slowly and is inefficient in terms of the number of additional 
samples. This is more problematic when the computer 
simulations at each sample point are very expensive. 

For future, efficiency strategies can be modified further to 
make VSVM faster while maintaining the accuracy. This 
adaptive VSVM also will be applied to sampling-based 
reliability-based design optimization (RBDO). 
 
5. CONCLUSION 

A sequential sampling-based virtual support vector 
machine method is proposed to efficiently construct the 
accurate decision function for the reliability analysis, 
especially in high-dimensional space. Virtual samples are 
generated from real samples and their response function 
values to improve the accuracy of the SVM decision function, 
and the sequential sampling method is also used to increase 
the efficiency of the algorithm by inserting new samples near 
the true limit state function.  

The proposed method is compared with different 
surrogate modeling methods such as EDSD and DKG with 
their own sequential sampling strategies. DKG can construct 
accurate surrogates with relatively small number of samples 
but it is inefficient since the dynamic basis selection process 
requires significant computational effort [12]. For a low-
dimensional problem, both VSVM and DKG are accurate and 
require similar modeling time. However, VSVM becomes 
more efficient than DKG and EDSD while maintaining the 
required accuracy for high-dimensional problems. Therefore, 
both VSVM and DKG are recommended to be applied to low-
dimensional problems, and adaptive VSVM is recommended 
for high-dimensional problems. EDSD requires a large 
number of samples in all cases, since it does not use function 
values. 
 
6. ACKNOWLEDGEMENT 

Research is jointly supported by the ARO Project 
W911NF-09-1-0250 and the Automotive Research Center, 



which is sponsored by the U.S. Army TARDEC.  These 
supports are greatly appreciated. 

 
7. REFERENCES 

 
[1] Haldar, A., and Mahadevan, S., "Probability, Reliability 
and Statistical Methods in Engineering Design," John Wiley 
& Sons, New York, 2000. 
 
[2] Tu, J., Choi, K.K., and Park, Y.H., "A New Study on 
Reliability-Based Design Optimization," Journal of 
Mechanical Design, Vol.121, No.4, pp.557-564, 1999. 
 
[3] Youn, B.D., Choi, K.K., and Du, L., "Enriched 
Performance Measure Approach for Reliability-Based Design 
Optimization," AIAA Journal, Vol.43, No.4, pp.874-884, 2005. 
 
[4] Rubinstein, R.Y., "Simulation and the Monte Carlo 
method," Wiley, New York, 1981. 
 
[5] Cressie, N.A.C., "Statistics for Spatial Data," John Wiley 
& Sons, New York, 1991. 
 
[6] Barton, R.R., "Metamodeling: a State of the Art Review," 
WSC '94: Proceedings of the 26th Conference on Winter 
Simulation, Anonymous Society for Computer Simulation 
International, San Diego, CA, USA, pp.237-244, 1994. 
 
 
[7] Jin, R., Chen, W., and Simpson, T., "Comparative Studies 
of Metamodelling Techniques Under Multiple Modelling 
Criteria," Structural and Multidisciplinary Optimization, 
Vol.23, No.1, pp.1-13, 2001. 
 
[8] Simpson, T., Poplinski, J., and Koch, P., "Metamodels for 
Computer-Based Engineering Design: Survey and 
Recommendations," Engineering with Computers, Vol.17, 
No.2, pp.129-150, 2001. 
 
[9] Wang, G.G., and Shan, S., "Review of Metamodeling 
Techniques in Support of Engineering Design Optimization," 
Journal of Mechanical Design, Vol.129, No.4, pp.11, 2007. 
 
[10] Forrester, A., Sobester, A., and Keane, A., "Engineering 
Design via Surrogate Modelling, A Practical Guide," John 
Wiley & Sons, United Kingdom, 2008. 
 
[11] Forrester, A., and Keane, A., "Recent Advances in 
Surrogate-Based Optimization," Progress in Aerospace 
Sciences, Vol.45, No.1-3, pp.50-79, 2009. 
 
[12] Zhao, L., Choi, K.K., and Lee, I., "A  Metamodel Method 
Using Dynamic Kriging and Sequential Sampling," The 13th 
AIAA/ISSMO Multidisciplinary Analysis and Optimization 
Conference, Fort Worth, TX, Sept.13-15, 2010. 
 
[13] Hurtado, J.E., and Alvarez, D.A., "Classification 
Approach for Reliability Analysis with Stochastic Finite-
Element Modeling," Journal of Structural Engineering, 
Vol.129, No.8, pp.1141-1149, 2003. 
 

[14] Vapnik, V.N., "Statistical Learning Theory," Wiley, New 
York, 1998. 
 
[15] Cherkassky, V., and Mulier, F., “Learning from data : 
Concepts, Theory, and Methods,” John Wiley & Sons, New 
York, 1998. 
 
[16] Burges, C.J.C., "A Tutorial on Support Vector Machines 
for Pattern Recognition," Data Mining and Knowledge 
Discovery, Vol.2, No.2, pp.121-167, 1998. 
 
[17] Schölkopf, B., "Advances in Kernel Methods Support 
Vector Learning," MIT Press, Cambridge, Mass., 1999. 
 
[18] Vapnik, V.N., "The Nature of Statistical Learning 
Theory," Springer, New York, 2000. 
 
[19] Kecman, V., "Learning and Soft Computing: Support 
Vector Machines, Neural Networks, and Fuzzy Logic Models," 
MIT Press, Cambridge, Mass., 2001. 
 
[20] Schölkopf, B., and Smola, A.J., "Learning with Kernels : 
Support Vector Machines, Regularization, Optimization, and 
Beyond," MIT Press, Cambridge, Mass., 2002. 
 
[21] Basudhar, A., and Missoum, S., "Adaptive Explicit 
Decision Functions for Probabilistic Design and Optimization 
using Support Vector Machines," Computers & Structures, 
Vol.86, No.19-20, pp.1904-1917, 2008. 
 
[22] Basudhar, A., and Missoum, S., "An Improved Adaptive 
Sampling Scheme for the Construction of Explicit 
Boundaries," Structural and Multidisciplinary Optimization, 
Vol.42, No.4, pp.517-529, 2010. 
 
[23] Canu, S., Grandvalet, Y., and Guigue, V., "SVM and 
Kernel Methods Matlab Toolbox," http://asi.insa-
rouen.fr/enseignants/~arakotom/toolbox/index.html, 2005. 

 
[24] Viana, F.A.C., "SURROGATES Toolbox User's Guide," 
http://sites.google.com/site/fchegury/surrogatestoolbox, 2010. 

 
[25] Martin, J. D., "Computational Improvements to 
Estimating Kriging Metamodel Parameters," Journal of 
Mechanical Design,  Vol.131, No.8, 2009. 
 
[26] Lewis, R. M., and Torczon, V., "Pattern Search 
Algorithms for Bound Constrained Minimization," SIAM 
Journal on Optimization, Vol.9, No.4, pp.1082-1099, 1999. 
 
[27] Saka, Y., Gunzburger, M., and Burkardt, J., "Latinized, 
Improved LHS, and CVT Point Sets in Hypercubes," 
International Journal of Numerical Analysis and Modeling, 
Vol.4, No.3-4, pp.729-743, 2007. 
 
[28] Coleman, T.F., and Li, Y., "An Interior, Trust Region 
Approach for Nonlinear Minimization Subject to Bounds," 
SIAM Journal on Optimization, Vol.6, pp.418-445, 1996. 
 
[29] Coleman, T.F., and Li, Y., "On the Convergence of 
Reflective Newton Methods for Large-Scale Nonlinear 



Minimization Subject to Bounds," Mathematical 
Programming, Vol.67, No.2, pp.189-224, 1994. 
 
[30] Powell, M.J.D., "A Fast Algorithm for Nonlinearly 
Constrained Optimization Calculations," Numerical Analysis, 
ed. G.A. Watson, Lecture Notes in Mathematics, Springer 
Verlag, Vol.630, 1978. 
 
[31] Powell, M.J.D., "The Convergence of Variable Metric 
Methods for Nonlinearly Constrained Optimization 
Calculations," Nonlinear Programming 3 (Mangasarian, O.L., 
Meyer, R.R., and Robinson, S.M., eds.), Academic Press, 
1978. 
 
[32] Byrd, R.H., Gilbert, J.C., and Nocedal, J., "A Trust 
Region Method Based on Interior Point Techniques for 
Nonlinear Programming," Mathematical Programming, 
Vol.89, No.1, pp.149-185, 2000. 
 
[33] Waltz, R.A., Morales, J.L., Nocedal, J., and Orban, D., 
"An interior algorithm for nonlinear optimization that 
combines line search and trust region steps," Mathematical 
Programming, Vol.107, No.3, pp.391-408, 2006. 


