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Photonic crystals on the wing

Introduction

In the last three years, two research groups, from the universities in Groningen, the
Netherlands, and Exeter, UK, working on the natural photonics of animals, have been
able to join forces thanks to the EOARD/AFOSR grant. The aim of the research
project has been (and is) the elucidation of the optical mechanisms involved in animal
coloration. Indeed, color is one of the important aspects that characterizes an animal.
As will be outlined below, during the past research period of three years, the
collaborating teams have made considerable strides in advancing the field. Worldwide
a rapidly increasing research activity can be observed in the area of animal coloration
and the subsequent biomimetic applications of the discovered photonic design
principles. We have now achieved a stage where we can well delineate the optical
methods that animals use in making themselves colorful, or reversely, which tools
they use for optimal camouflage. The near future will see further detailing of our
present basic knowledge, and we expect that the focus will gradually shift to
sophisticated technical applications and instruments.

Inevitably, animal bodies can only be visible when they emit light, either
actively, as occurs by bioluminescence, or passively, by reflecting incident light. The
latter occurs when materials exhibit a refractive index contrast, that is, when there are
interfaces between media with different refractive indices. An important property of a
reflecting surface is that the reflected light becomes distinctly polarized when the
angle of light incidence increases. In other words, reflecting surfaces act as polarizer
reflectors. Strong polarization dependence of the reflectance also occurs when the
reflecting medium consists of intricate, periodic structures with periodicities on the
order of the light wavelength. These structures, multilayers and photonic crystals, are
often applied in coloring animal bodies. Polarization by animal surfaces and body
structures has been a recurrent theme in our research.

The principles of animal coloration will be succinctly presented here. The
principles will be illustrated with examples taken from insects (butterflies, beetles and

weevils) as well as from birds. First, various cases of physical (or structural)
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coloration will be considered and subsequently chemical (or pigmentary) coloration
will be treated. Finally, a few cases where we discovered intricate combinations of
structural and pigmentary colorations will be put in the limelight. An extensive

scientific review article on these themes is envisaged.

Fig. 1. Polarization of light reflected at the wing undersides of an intact Graphium sarpedon butterfly.
a Diagram of the setup used to photograph the butterfly. The angle of light incidence as well as
reflection was 0 = 58°, and the plane of incidence was the sagittal symmetry plane of the butterfly’s
body. A linear polarization filter was put in front of the camera. b TE-light reflection. ¢ TM-light
reflection. Bar: 1 cm; from [48].

Thin films and multilayers
Distinct colors can be created with two interfaces a short distance apart, thus forming
a thin film. Thin films are extensively encountered in butterfly wings and scales, as
well as in bird feathers. The thickness of the thin film can rapidly vary, creating a
broad-band, silvery reflection in some butterflies [19]; in others almost ideal thin
films are created, as in the glass scales of the swordtail butterfly Graphium sarpedon
[48], which act as polarizer reflectors (Fig. 1).

Coloration by thin film interference is well recognized in the feathers of birds.
The main shaft of a bird feather is the rachis, which has serial paired branches, the
barbs. The barbs possess further branches, the barbules, which are sectioned into

segments. They have a thin envelope, the cortex, which acts as a thin film interference
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reflector. Although the reflectance of a thin film is low, the neck feathers of for
instance pigeons are conspicuously colored green and purple. Randomly arranged,
heavily absorbing melanin-pigment granules inside the ovoid-shaped barbule
segments create a black background against which the thin-film reflections stand out.
Generally, not only barbule segments but also the barbs of bird feathers have a thin-
film cortex, but the thickness is usually rather variable and of the order of several pum,
so that on average a quite flat reflectance spectrum results. Nevertheless, the cortex
layer bounding the bird feathers plays a considerable role in the feather reflectance
properties, especially at larger angles of light incidence; an aspect that has been

generally overlooked by birders [47].

Fig. 2. Imaging scatterometry, which shows how a single barbule reflects light from a point source. The
barbule acts as three separate colored mirrors, each reflecting light in a different direction. (a) A 200
pm diameter spot is illuminated with a narrow beam of white light; scale bar 100 um. (b) Diagram of
how light rays with angles of incidence 5° (yellow) or 70° (green) reflect from a plane surface with the
same angle (indicated by the yellow and green arrows); the red circles indicate inclination angles of 5°,
30° 60° and 90°. (¢) The angular distribution of the scattered light by the barbule with about normal
illumination. The red circles indicate inclination angles of 5°, 30°, 60° and 90°. The central black spot
(approximating the circle with polar angle 5°) is due to the axial hole in the ellipsoidal mirror of the
scatterometer. (d) The angular distribution of the scattered light from the barbule with illumination
from an inclination angle of ~20°. (¢) Diagram explaining that the central yellow spot in (c¢) emerges
from the melanin multilayers inside the barbule segments, acting as an interference reflector. The blue
spots represent light beams reflected by the segment’s cortex acting as an angled thin film reflector. (f)
A similar diagram explaining how a shift in the direction of illumination results in the color changes of
the reflected beams in (d), as expected for multilayer and thin film reflectors; from [40].
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The thin film principle is applied in the breast feathers of the bird of paradise
Lawes’ Parotia in a very sophisticated way (Fig. 2). Here the barbule segments have a
boomerang-shaped cross section. The segment cortex thickness is = 0.35 um, causing
a bluish reflection. The inner space of the barbules is filled with melanin pigment
concentrated in rodlets that are neatly arranged in layers. The layers together create a
strongly golden-yellow reflecting multilayer, which furthermore serves as a black
background for the blue-reflecting thin-film cortex. The thin-film cortex and the
interior multilayer together create very colorful feathers [40].

Multilayers creating bright iridescent green and purplish colors are realized in
the elytra of Chrysochroa (jewel) beetles. The multilayers are extremely effective
polarizer reflectors [37]. Perforated multilayers are present in the wing scales of
lycaenid butterflies [21]. The amplitude and directionality of the reflections depend on
the degree of the perforations. Multilayers are also realized in the ridges of the scales
on the brightly blue wings of Morpho butterflies [17] and in the UV- or blue-
reflecting wings of pierid butterflies [5,10,43,44]. The scale ridges are slender
structures, however, so that diffraction plays an important role. Incident light is
therefore reflected by Morpho scales into more or less smoothed diffraction patterns.
These patterns could be well studied by a specially developed imaging scatterometer
[17]. This instrument has demonstrated to be an immensely powerful tool for studying

animal photonics; notably for the study of the optical properties of 3D structures [38].

Fig. 3. The Diamond Weevil, Entimus imperialis, and its scale organization. A The intact animal with
the black elytra studded with numerous yellow-green pits (bar: 1 cm). B A single pit as seen in an epi-
illumination polarization microscope with polarizer and analyzer parallel (bar: 0.5 mm). C A single
scale with a few differently colored domains (bar: 50 um). D A domain border showing the difference
in lamellar arrangements (bar: 5 pm); from [49].
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Gyroids and diamond-type photonic crystals

Some lycaenid and papilionid butterflies have scales with extremely involved
structures, namely gyroids. We have characterized in detail the reflection properties of
these intriguing structures [6, 31]. Surprisingly, the scales, which are from a physics
point of view built in an extremely sophisticated fashion, function for effectively
camouflaging their owners against green foliage.

We have discovered diamond-type photonic crystals in the scales of the
Diamond Weevil, Entimus imperialis (Fig. 3). The scales have large uniform domains
allowing detailed characterization of the photonic properties. The recently completed
analysis represents the most advanced study of a biological photonic crystal to date
[49]. A surprising twist to this story is that, although the scales reflect light very
effectively as well as directionally, the overall result for the weevil is that the scales

together create a green color, closely matching foliage coloration.

Quasi-ordered photonic crystals
The weevil Eupholus magnificus (Fig. 4) has scales with ordered and quasi-ordered
domains [42]. The difference in visual appearance is that ordered photonic crystals

reflect light directionally, whilst reflections from quasi-ordered domains are diffuse.

Fig. 4. The weevil Eupholus magnificus. (a) The elytra are marked by yellow and blue bands, with a
diameter of a few mm, due to differently colored scales. The colored stripes alternate with dark bands
where there are no scales present on the weevil’s elytra: bar 4 mm. (b) Epi-illumination of the scales in
the yellow elytral bands shows highly domained scales: bar 50 um. (c) The scales in the blue bands are
more or less homogenous in coloration: bar 50 um; from [42].
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Many birds employ quasi-ordered structures to create colored barbs (Fig. 5).
We have studied the barbs of the Common Kingfisher, and found that the barbs are
distinctly iridescent. With random, natural illumination the iridescence becomes

negligible [47].

Fig. 5. Variations in the structural coloration of the barbs of the Common Kingfisher, Alcedo atthis. (A)
Back feather barbs with mainly similar bluish color cells. Occasionally an aberrant cell with a different
color (here pinkish) occurs. The vacuoles are distinguishable as dark areas with a central bright spot
(arrowheads). Bar: 50 pm. (B) Reflectance spectra measured from small areas (~5x5 pmz) of a blue and
the pink area of the barbs of (A). (C) Barbs of a head feather with blue-green cells in the central feather
area (left), but towards the tip the colour changes towards brown-red. Bar: 100 um. (D) Reflectance
spectra from the central and tip area of the barbs of (C); from [47].

Random scattering and pigments
Randomly organized structures will scatter incident light diffusely. Certain white
beetles appear to have scales with very efficiently arranged random structures causing
intense white, diffuse coloration. The discovered organization principles have
important technical ramifications, for instance for the paper industry [1,24,30].
Scattering structures that contain pigments become colored, due to spectrally
selective absorption. Pigmentary coloration is widespread in the animal kingdom,
especially in butterflies and birds [2,3,7,9,34,46,47]. Papilionid butterflies of the
nireus group (Fig. 6) appear to employ pigments in combination with regularly

organized structures to tune the spectral reflections [2,3,4,20,34,45,46].
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Fig. 6. Near-field (a, ¢) and superimposed far-field scatterograms (b, d) for the underside (a, b) and
upperside (c, d) of a single scale of P. epiphorbas. A scale area with ~40 pm diameter (dashed circle)
was illuminated with a narrow-aperture (5°) white beam. The scale was rotated in three steps of 15°
(from normal (0°), to 15°, 30° and 45°; numbered O, 1, 2, 3, respectively), causing a change of 30° in
the direction of the reflected light beam (from normal (0°), to 30°, 60°, and 90°); the arrows indicate the
15° step. The red circles indicate angular directions with respect to the axis of 5° 30° 60°, and 90°
(scale bar in a and c¢: 50 pm); from [46].

Vision

Animal colorations are presumably tuned to the spectral properties of animal visual
systems. A number of visual studies have been performed in parallel with the
coloration studies [4,5,8,12,22,33,39,41]. Our work on butterflies indicates that
related species can apply quite different optical methods, that is, use different
pigments and/or photonic crystals, for achieving similar coloration results, which
conforms with the general view that the spectral properties of the visual systems of

related species are similar.

Highlights and discoveries made during the grant period
e We have characterized several photonic structures present in butterflies,

beetles and birds.
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We elucidated the unique properties of various photonic crystals: gyroids, fcc-
and diamond-type, and quasi-ordered.

We characterized the scattering structures creating extreme whiteness.

We discovered that the unique, boomerang shape of Parotia breast feather
barbule segments enables the creation of very rapidly changing color effects.
We found that thin film and multilayers of butterflies and beetles act as
polarizer reflectors, which enable a secret signalling channel for conspecifics,
invisible for predatory birds.

We developed, thanks to the support by the EOARD/AFOSR grant, a novel
imaging scatterometer (Fig. 7), which allowed the unprecedented
characterization of the reflection properties of butterfly and beetle scales, as
well as those of bird feathers and beetle elytra. Its successful use in the
Groningen laboratory motivated the duplication of the instrument and its
installation in Exeter. The instrument will also prove its value for the study of

biomimetic applications.

Fig. 7. Simplified diagram of the imaging scatterometer. The object is positioned in F, the first focal
point of ellipsoidal mirror M, and a light beam is directed from a certain angle to the object. The object
is observed and imaged, via a small axial hole in mirror M, by lens L; and camera C,;. Light reflected
from the object is focused by the ellipsoidal mirror at its second focal point, F,, which coincides with
the front focal point of lens L,, so that the distribution of the scattered light at infinity is projected in
the back focal plane of the lens, I. This plane is imaged by lens L; at camera C,; from [17].

We have presented our work at numerous meetings and in research institutes,
e.g. of the American Physical Society (Portland, March 2010), the
International meeting of Natural photonics (Shanghai, June 2011), SOAR
(State of the Art Review) meetings in Southampton (September 2009, June
2011), Eglin AFB and Wright-Patterson AFB (March 2010). A large
delegation of the two collaborating teams will participate in the Geometry of

Interfaces meeting in Primosten (Croatia; October 2011).
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The above summary of the research outcomes is far from exhaustive. The publications
listed below [put in the text numbered between brackets] will serve to provide detailed

information for the interested reader.

Groningen/Exeter 3 August 2011

D.G. Stavenga

Computational Physics

Zernike Institute for Advanced Materials
University of Groningen

The Netherlands, EU

P. Vukusic

School of Physics
University of Exeter
UK

For pdf requests of the papers:
D.G.Stavenga@rug.nl
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