Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

1. REPORT DATE
 02 NOV 2011

2. REPORT TYPE

3. DATES COVERED
 00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
 Evaluation of Adhesive Bond Primers for Repair Bonding of Aluminum

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 Air Force Research Laboratory, AFRL/RXSAC, Wright Patterson AFB, OH, 45433

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
 7th Bi-Annual DOD JOCOTAS Meeting with Rigid & Soft Wall Shelter Industry & Indoor & Outdoor Exhibition, 1-3 Nov 2011, Panama City Beach, FL

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT
 unclassified
 b. ABSTRACT
 unclassified
 c. THIS PAGE
 unclassified

17. LIMITATION OF ABSTRACT
 Same as Report (SAR)

18. NUMBER OF PAGES
 48

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Overview

- Background
- Materials and Processes
- Tests and Test Methods
- Lap Shear and Peel Data
- Wedge Test Data
- Conclusions
- Future Work
Background

- Large Screening Effort to Evaluate Low-VOC Bond Primers
- Primary Focus is to Eliminate Chromated Bond Primers
- Working with Industry-Government Non-Cr Adhesive Bond Primer Team
 - Effort is part of the larger picture but also has USAF focus
- Desire Performance Equivalent to that Currently Obtained with Chromated Primers
 - Cytec’s BR 127 and BR 6747-1, primarily
- Bond Strength and Moisture Durability are Both Important
- Looking for Primer that Works Well with Multiple Adhesives on Adherends Prepared Using Grit-Blast/Sol-Gel (GBSG)
 - Currently, GBSG is used exclusively with Cytec’s BR 6747-1 primer
 - Cytec's FM 73 adhesive is not recommended for use with GBSG
 - 3M’s AF 163-2 adhesive tends to fail at its interface with BR 6747-1
Materials and Processes

• **Five Waterborne Adhesive Bond Primers**
 – Cytec’s BR 6747-1 (zero-VOC, chromated)
 – Cytec’s BR 6747-1NC (zero-VOC, nonchromated - no inhibitor)
 – Cytec’s BR 6700-1 (low-VOC, nonchromated corrosion inhibitor)
 – 3M’s EW 5000 (low-VOC, chromated)
 – 3M’s EW 5000 AS (low-VOC, nonchromated corrosion inhibitor)

• **Spray Applied Using Conventional Air Gun**
 – Dry film thicknesses: 0.0025 mm - 0.0063 mm (0.0001 - 0.00025 in);
 measured using Fischer Isoscope MP30E-S with ETA3.3H probe
 (directly on PAA adherends and on travelers for GBSG adherends)

• **Cured in an Air-circulating Oven at 121°C (250°F) for 60 Mins after Air Dry at Ambient Conditions for 30 Mins**
• **Seven Adhesives Evaluated with Each Primer**
 - Henkel’s Hysol EA 9696 and Hysol EA 9628
 - Cytec’s FM 73M, FM 209M, and FM 300-2M
 - 3M’s AF 163-2M and AF 500M

• **Mat Carrier**

• **290g/m² (0.06 psf) Areal Weight**

• **Cured per Manufacturers’ Recommendations Under Positive Pressure**
 - 121°C (250°F) for 60-90 Minutes
• 2024-T3 (bare) Aluminum Adherends

• Two Surface Preparations
 – Phosphoric Acid Anodize (PAA) per ASTM D 3933
 • First choice for aluminum prebond surface preparation
 • Used in USAF for rework and preparation of repair doublers
 – Grit-Blast/Sol-Gel (GBSG)
 • Al_2O_3 grit-blast followed by application of AC Tech AC-130 (Boegel-EPII) sol-gel solution; no rinse and ambient dried
 • Used in USAF for preparation of on-aircraft adherends
Tests and Test Methods

• **Tensile Lap Shear (ASTM D 1002)**
 - Ambient temperature at 22°C (72°F)
 - Hot/Wet at 82°C (180°F) after conditioning for 90 days at 60°C (140°F) and 95-100% relative humidity (RH)

• **Metal-to-Metal Climbing Drum Peel (ASTM D 1781)**
 - Ambient temperature at 22°C (72°F)

• **Wedge Test (ASTM D 3762)**
 - Conditioned at 60°C (140°F) and 95-100% RH for 28 days
 - Conditioned at 49°C (120°F) and 95-100% RH for 28 days*

• **Five Specimens per Test for Each Adhesive/Primer/Surface Preparation Combination**

* These data are not reported in the paper and will not be presented; will be in a comprehensive report
The Wedge Test

- Used Extensively by AFRL for Screening to Assess Bonded Joint Moisture Durability

- Considered by AFRL to be a Semiquantitative Test
 - Initial crack lengths provide important information (w.r.t. test severity)
 - Crack extensions can be useful, but are not the bottom line
 - Most consideration is given to failure modes after conditioning
 - Desire failure modes are 95% or greater cohesive within the adhesive

- Caveats
 - Useful for comparing surface preparations (including primers)
 - Many factors affect the test; must only vary the factor being evaluated
 - Several adhesive characteristics affect the test: modulus, bondline thickness, carrier, degree of cure, hot/wet properties
 - Test cannot be quantitatively correlated with in-service performance
EA 9696 Adhesive
22°C (72°F) Lap Shear

DoD Distribution Statement A: Approved for Public Release; Distribution is Unlimited.
EA 9696 Adhesive
82°C (180°F) Wet Lap Shear

Lap Shear Strength (MPa) vs. Lap Shear Strength (psi)

- BR 6747-1 (84% cohesive)
- BR 6747-1 NC (46% cohesive)
- BR 6700-1 (66% cohesive)
- EW 5000 (48% cohesive)
- EW 5000 AS (34% cohesive)

DoD Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

JMJ; AFRL/RX SAC
EA 9696 Adhesive
22°C (72°F) Climbing Drum Peel

DoD Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

JMJ; AFRL/RXSAC 11
EA 9628 Adhesive

22°C (72°F) Lap Shear

DoD Distribution Statement A: Approved for Public Release; Distribution is Unlimited.
EA 9628 Adhesive
82°C (180°F) Wet Lap Shear

![Graph showing Lap Shear Strength for different compositions and types of adhesives]
EA 9628 Adhesive
22°C (72°F) Climbing Drum Peel

DoD Distribution Statement A: Approved for Public Release; Distribution is Unlimited.

JMJ; AFRL/RXSAC 14
FM 73M Adhesive
22°C (72°F) Lap Shear

DoD Distribution Statement A: Approved for Public Release; Distribution is Unlimited.
FM 73M Adhesive
82°C (180°F) Wet Lap Shear

DoD Distribution Statement A: Approved for Public Release; Distribution is Unlimited.
FM 73M Adhesive
22°C (72°F) Climbing Drum Peel

FM 73M Tech Data Sheet

CDP Torque (N*m/m)

CDP Torque (in*lbs/in)

BR 6747-1
BR 6747-1NC
BR 6700-1
EW 5000
EW 5000 AS

DoD Distribution Statement A: Approved for Public Release; Distribution is Unlimited.
FM 209M Adhesive
22°C (72°F) Lap Shear

DoD Distribution Statement A: Approved for Public Release; Distribution is Unlimited.
FM 209M Adhesive

82°C (180°F) Wet Lap Shear

<table>
<thead>
<tr>
<th>Material</th>
<th>PAA Lap Shear Strength (MPa)</th>
<th>GBSG Lap Shear Strength (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR 6747-1</td>
<td>88% cohesive</td>
<td>3,000</td>
</tr>
<tr>
<td>BR 6747-1NC</td>
<td>93% cohesive</td>
<td>3,500</td>
</tr>
<tr>
<td>BR 6700-1</td>
<td>85% cohesive</td>
<td>4,000</td>
</tr>
<tr>
<td>EW 5000</td>
<td>68% cohesive</td>
<td>4,500</td>
</tr>
<tr>
<td>EW 5000 AS</td>
<td>76% cohesive</td>
<td>5,000</td>
</tr>
</tbody>
</table>

DoD Distribution Statement A: Approved for Public Release; Distribution is Unlimited.
FM 209M Adhesive
22°C (72°F) Climbing Drum Peel

DoD Distribution Statement A: Approved for Public Release; Distribution is Unlimited.
FM 300-2M Adhesive
22°C (72°F) Lap Shear

DoD Distribution Statement A: Approved for Public Release; Distribution is Unlimited.
FM 300-2M Adhesive
82°C (180°F) Wet Lap Shear

DoD Distribution Statement A: Approved for Public Release; Distribution is Unlimited.
FM 300-2M Adhesive
22°C (72°F) Climbing Drum Peel

DoD Distribution Statement A: Approved for Public Release; Distribution is Unlimited.
AF 163-2M Adhesive
22°C (72°F) Lap Shear

DoD Distribution Statement A: Approved for Public Release; Distribution is Unlimited.
AF 163-2M Adhesive
82°C (180°F) Wet Lap Shear

DoD Distribution Statement A: Approved for Public Release; Distribution is Unlimited.
AF 163-2M Adhesive
22°C (72°F) Climbing Drum Peel

AF 163-2M Tech Data Sheet

CDP Torque (N*m/m)

<table>
<thead>
<tr>
<th>Material</th>
<th>PAA</th>
<th>GBSG</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR 6747-1</td>
<td>350</td>
<td>350</td>
</tr>
<tr>
<td>BR 6747-1NC</td>
<td>350</td>
<td>350</td>
</tr>
<tr>
<td>BR 6700-1</td>
<td>350</td>
<td>350</td>
</tr>
<tr>
<td>EW 5000</td>
<td>350</td>
<td>350</td>
</tr>
<tr>
<td>EW 5000 AS</td>
<td>350</td>
<td>350</td>
</tr>
</tbody>
</table>

DoD Distribution Statement A: Approved for Public Release; Distribution is Unlimited.
AF 500M Adhesive
22°C (72°F) Lap Shear

AF 500M Tech Data Sheet

Lap Shear Strength (MPa)

<table>
<thead>
<tr>
<th>Material</th>
<th>Lap Shear Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR6747-1</td>
<td>35</td>
</tr>
<tr>
<td>BR6747-1NC</td>
<td>37</td>
</tr>
<tr>
<td>BR6700-1</td>
<td>40</td>
</tr>
<tr>
<td>EW5000</td>
<td>45</td>
</tr>
<tr>
<td>EW5000AS</td>
<td>50</td>
</tr>
</tbody>
</table>

Lap Shear Strength (psi)

PAA
GBSG

DoD Distribution Statement A: Approved for Public Release; Distribution is Unlimited.
AF 500M Adhesive
82°C (180°F) Wet Lap Shear

![Graph showing lap shear strength comparison for different materials.]

DoD Distribution Statement A: Approved for Public Release; Distribution is Unlimited.
AF 500M Adhesive
22°C (72°F) Climbing Drum Peel

AF 500M Tech Data Sheet

CDP Torque (N*m/m) vs. CDP Torque (in*lbs/in)

- BR 6747-1
- BR 6747-1 NC
- BR 6700-1
- EW 5000
- EW 5000 AS

PAA vs. GBSG
EA 9696 Adhesive with PAA
60°C (140°F) Wedge Test

DoD Distribution Statement A: Approved for Public Release; Distribution is Unlimited.
EA 9696 Adhesive with GBSG
60°C (140°F) Wedge Test

DoD Distribution Statement A: Approved for Public Release; Distribution is Unlimited.
EA 9628 Adhesive with PAA
60°C (140°F) Wedge Test

![Graph showing crack length over conditioning time for different adhesives.]

- BR 6747-1
- BR 6747-1NC
- BR 6700-1
- EW 5000
- EW 5000 AS

DoD Distribution Statement A: Approved for Public Release; Distribution is Unlimited.
EA 9628 Adhesive with GBSG
60°C (140°F) Wedge Test

DoD Distribution Statement A: Approved for Public Release; Distribution is Unlimited.
FM 73M Adhesive with GBSG

60°C (140°F) Wedge Test

<table>
<thead>
<tr>
<th></th>
<th>BR 6747-1</th>
<th>BR 6747-1NC</th>
<th>BR 6700-1 (4% coh)</th>
<th>EW 5000 (84% coh)</th>
<th>EW 5000 AS (64% coh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.50</td>
<td>1.45</td>
<td>1.35</td>
<td>1.35</td>
<td>1.35</td>
</tr>
<tr>
<td>7</td>
<td>1.65</td>
<td>1.55</td>
<td>1.40</td>
<td>1.40</td>
<td>1.40</td>
</tr>
<tr>
<td>14</td>
<td>1.75</td>
<td>1.65</td>
<td>1.55</td>
<td>1.50</td>
<td>1.50</td>
</tr>
<tr>
<td>21</td>
<td>1.80</td>
<td>1.70</td>
<td>1.60</td>
<td>1.55</td>
<td>1.55</td>
</tr>
<tr>
<td>28</td>
<td>1.85</td>
<td>1.75</td>
<td>1.65</td>
<td>1.60</td>
<td>1.60</td>
</tr>
</tbody>
</table>

Conditioning Time (Days)

DoD Distribution Statement A: Approved for Public Release; Distribution is Unlimited.
FM 209M Adhesive with GBSG
60°C (140°F) Wedge Test

Graph showing crack length (cm) and conditioning time (days) for different materials:
- BR 6747-1 (14% coh)
- BR 6747-1NC (50% coh)
- BR 6700-1 (0% coh)
- EW 5000 (0% coh)
- EW 5000 AS (0% coh)
FM 300-2M Adhesive with PAA
60°C (140°F) Wedge Test

<table>
<thead>
<tr>
<th></th>
<th>BR 6747-1</th>
<th>BR 6747-1NC</th>
<th>BR 6700-1</th>
<th>EW 5000</th>
<th>EW 5000 AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Days</td>
<td>4.60</td>
<td>4.55</td>
<td>4.50</td>
<td>4.45</td>
<td>4.35</td>
</tr>
<tr>
<td>7 Days</td>
<td>4.60</td>
<td>4.55</td>
<td>4.50</td>
<td>4.45</td>
<td>4.35</td>
</tr>
<tr>
<td>14 Days</td>
<td>4.60</td>
<td>4.55</td>
<td>4.50</td>
<td>4.45</td>
<td>4.35</td>
</tr>
<tr>
<td>21 Days</td>
<td>4.60</td>
<td>4.55</td>
<td>4.50</td>
<td>4.45</td>
<td>4.35</td>
</tr>
<tr>
<td>28 Days</td>
<td>4.60</td>
<td>4.55</td>
<td>4.50</td>
<td>4.45</td>
<td>4.35</td>
</tr>
</tbody>
</table>

Crack Length (cm) vs. Conditioning Time (Days)

DoD Distribution Statement A: Approved for Public Release; Distribution is Unlimited.
FM 300-2M Adhesive with GBSG
60°C (140°F) Wedge Test

DoD Distribution Statement A: Approved for Public Release; Distribution is Unlimited.
AF 163-2M Adhesive with PAA
60°C (140°F) Wedge Test

* Visually appeared to fail at the primer-adhesive interface, but a thin layer of AF 163-2M remains on the primer.
AF 163-2M Adhesive with GBSG
60°C (140°F) Wedge Test

* Visually appeared to fail at the primer-adhesive interface, but a thin layer of AF 163-2M remains on the primer
AF 500M Adhesive with PAA
60°C (140°F) Wedge Test

![Graph showing crack length over conditioning time](image)

- **BR 6747-1**
- **BR 6747-1NC**
- **BR 6700-1**
- **EW 5000**
- **EW 5000 AS**

Conditioning Time (Days)

Crack Length (cm)

Crack Length (in)
AF 500M Adhesive with GBSG
60°C (140°F) Wedge Test

Conditioning Time (Days)
Crack Length (cm)
Crack Length (in)

- BR 6747-1 (94% coh)
- BR 6747-1NC
- BR 6700-1 (14% coh)
- EW 5000 (42% coh)
- EW 5000 AS (32% coh)

DoD Distribution Statement A: Approved for Public Release; Distribution is Unlimited.
Typical Failure Modes Observed in 60°C (140°F) Wedge Tests

- Typical Primer-Aluminum Interfacial Failure with FM 209M Adhesive
- Typical AF 163-2M “100 Percent Cohesive Failure” Near Primer-Adhesive Interface
- Typical Good “100 Percent” Cohesive Failure
Summary of Failure Modes with GBSG in 60°C (140°F) Wedge Tests

DoD Distribution Statement A: Approved for Public Release; Distribution is Unlimited.
Conclusions

- Large Amount of Data Generated to Guide Future Efforts
- No Clear Path Forward for Non-Cr Primer Qualification
 - Based on initial screening with only 5 specimens per test
- PAA Test Results were Overall Superior to GBSG
 - PAA is the premier aluminum surface preparation
 - PAA can be used with more combinations of surface preps & primers
- Hot/Wet Lap Shear Results when Using GBSG Exhibit Poor Failure Modes
 - Routinely seen even with good wedge tests data for same combination
 - A bit concerning
- Wedge Test Results Must be Used with Caution
 - Screening w/ controlled variables; no quantitative correlation to service
Conclusions (cont.)

- BR 6747-1NC (No Corrosion Inhibitor) Yielded Amazingly Good Results
- BR 6700-1 Wedge Test Results with GBSG were Surprisingly Poor and Not Consistent with Previous AFRL (Good) Data
- FM 209M Wedge Test Data were Poor when with GBSG Prep
- FM 73M Generated Surprisingly Good Wedge Test Results with GBSG/BR 6747-1; Contradicts Previous USAF Data
- FM 300-2M Adhesive Generated Larger Initial Cracks in the Wedge Test and Tended to Produce Less Crack Growth
 - Wedge test interrogates interface less stringently using FM 300-2M
- AF 163-2M Adhesive Exhibits Failure Modes At or Near the Primer-Adhesive Interface with BR 6747-1 & Others
Future Efforts

• USAF Will Work with Industry-Government Non-Cr Adhesive Bond Primer Team to Further Evaluate Some of the Products Screened, as well as Promising New Candidates

• Another Industry-Government Team was Awarded a SERDP Project Aimed at Understanding the Requirements for Bond Primers and their Corrosion Inhibitors
 – Investigate failed bonds and relationship to primer
 – Evaluate various types/levels of corrosion inhibitor in bond primers
 – Develop a risk assessment tool for bonded joints
 – Investigate alternative accelerated aging protocols

• Much Work is Required to Implement any New Primer
 – Laboratory testing beyond screening
 – Generation of data based on field-level processing