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AFIT/GE/ENG/12-43 

Abstract 

Air Force Research Lab Air Vehicles directorate performs research on hypersonic 

vehicles.  To verify materials or designs of hypersonic vehicles, they have a need to 

measure strain at temperatures exceeding 700 C.  Strain sensors have the ability to 

measure strain.  Strain is the deformation of materials due to internal stresses in a 

material.  Internal stresses occur when a material is subjected to a force.  Traditional 

strain sensors use Piezoresistive effects to measure strain, which is temperature 

dependent and making them unusable at high temperatures.  This paper discusses a novel 

strain sensing device, sensing capacitance instead of piezoresistance.  The strain sensor is 

modeled mathematically and simulated using Coventorware©.  The results are presented 

here, along with recommendations for future work. 
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SILICON CARBIDE CAPACITIVE HIGH TEMPURATURE MEMS STRAIN 

TRANSDUCER 

 

I. Introduction 

Air Force Research Laboratory Air Vehicles Directorate, AFRL/RB, performs 

research in future generation aerospace vehicles.  They are at the forefront of hypersonic 

aerodynamic vehicles.  Part of the interest in hypersonic flight is the desire to intercept 

missiles, deploy strike weapons that can go long ranges at high speeds, and an interest in 

space transport access system [21:5915-5924].  When designing hypersonic vehicles, 

material strength calculations require accurate material properties.  This requires 

experimental analysis of materials based properties which use Hooke’s Law of the 

relationship between material stress and deformation of that material [8:52].  

Deformation occurs throughout the material, including at its surface.  Measuring 

deformation at the surface is typically done using a strain sensor.  AFRL/RB has the need 

to measure this deformation at high temperatures, often exceeding 700°C for hypersonic 

vehicle applications [11]. 

1.1 Motivation 

1.1.1 Air Force Research Laboratory Organizational Requirements 

Part of Air Force Research Laboratory Air Vehicles Directorate mission: 

• Plans, directs, manages, and performs basic research, conducts exploratory 

and advanced research and development programs in air vehicle structures 

[20].  
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• Identifies and validates extreme environment, and integrated structural 

concepts for performance enhancements to aerospace vehicles [20]. 

• Development in combined environment structures technologies to improve 

performance of fixed-wing aerospace vehicles [20]. 

• Develop experimental tools for combined environment experimental 

verification and validation of advanced structural concepts [20]. 

• Provide experimental instrumentation required to support aerospace 

vehicle components subjected to extreme mechanical and thermal 

environments [20]. 

Part of the AFRL/RB research portfolio, is structural design and analysis of 

hypersonic vehicles.  Hypersonic speeds refer to speeds greater than Mach 5.  Hypersonic 

vehicles are categorized as; ballistic missiles, re-entry vehicles, space access vehicles, 

interceptor missiles, hypersonic cruise missiles, and single use and reusable aircraft 

[21:5915-5924].  Validation of aerospace vehicle components in extreme mechanical and 

thermal environments is required when designing hypersonic vehicles.  This is achieved 

by determining stress in the materials when subjected to a load.  This stress is measured 

in deformation at the surface of the materials, known as strain [14:42-89]. 

1.1.2 Problem Statement and Research Objectives 

Measuring strain is difficult in high temperature environments, over 700°F.  

Current commercial strain sensors do not work within the extreme temperature 

environments, as explained within this paper [11].  The objective of this research is listed 

in the following questions: 

Why do commercial strain sensors not work in high temperature environment? 
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How do I design a high temperature strain sensor? 

How do I prove the sensor works without manufacturing it? 

Within this document a high temperature strain sensor is designed, modeled and 

simulated using finite element simulation software.  Also stress, strain, stress strain 

relationship is given as a background.  Also discussed are measurements using traditional 

strain sensors, and why they do not work in extreme temperatures.  An alternative design 

for measuring strain using a double ended tuning fork is discussed. Also discussed is 

manufacturing processes for making silicon MEMS devices and silicon carbide MEMS 

devices.  Modeling and simulation of a new high temperature capacitive strain sensor 

made with silicon carbide is done, the device is modeled mathematically and drawn using 

layout software L-Edit and tested with a finite element simulator known as 

Coventorware©. 

1.1.3 Thesis Organization 

The thesis is broken down into five chapters, Chapter one is the introduction, 

chapter 2 is background information, chapter 3 approach, chapter 4 is results, and chapter 

5 is the conclusions and future work. 

Chapter 1 discusses motivation in making a high temperature strain gage.  It also 

gives the problem statement, and the thesis organization.  Chapter 2 discusses the 

background information required in understanding stress, strain, stress strain relationship; 

low temperature strain measurements; the double ended tuning fork resonator; and silicon 

and silicon carbide manufacturing for MEMS.  Chapter 3 discusses the new sensor 

design, fabrication, mathematical model, and Coventorware© simulations.  Chapter 4 

presents the results to the mathematical model and Coventorware© simulations.  Chapter 
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5 discuses conclusions derived from the modeling and future work to realize a high 

temperature strain sensor.  Included in the appendix is Matlab© code, L-Edit©, 

Coventorware© processes followed by a bibliography of references. 
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II. Background 

When a material, such as a metal, is subjected to a mechanical force, or 

mechanical load, stress is present.  To determine stress within a material, strain in 

measured.  Strain is the surface effect of stress within a body subjected to a force.  Strain 

is measured using a strain sensor [14:42-89], a device which is mounted or manufactured 

on the straining surface that translates strain into an electrical signal.  The Air Force 

Research Laboratory’s Air Vehicles Directorate has a requirement to measure strain at 

high temperatures, greater than 700°F [20;11].  Most commercially available strain 

transducers can withstand relatively benign temperature environments or less than 700°F 

[7:184-197].  Higher temperature strain transducers are available, but with concerns in 

reliability, temperature ranges, and accuracy these developmental gages are unused [11]. 

Chapter II emphasizes background information in stress, strain, stress strain 

relationship, measurements using strain sensors, low temperature strain sensors, and the 

double ended tuning fork.  Chapter II also discusses about silicon and silicon carbide as a 

material for using in MEMS.  It also discusses manufacturing techniques of silicon and 

silicon carbide MEMS. 

2.1 Stress and Strain 

Stress is the measure of forces internal to a body and strain is the measure of 

deformation of the displacement between particles [15:3-41].  Stress and strain are related 

through material properties, known as Young’ Modulus.  This section discusses stress, 

strain, and the stress-strain relationship. 



6 

2.1.1 Stress 

When a body is acted on by either internal or external force, or system of forces, it 

is subjected to stress.  It is generally thought of as the forces are transmitted from one 

particle to another [14:42-89].  These forces get distributed either on the surface or 

internally through the body.  Stress is the way the forces magnitude is distributed within a 

material.  The materials ability to withstand the forces is known as its resistance to stress.  

Also, stress can be thought of as the effect of forces on part or the entire surface of a body 

[14:42-89].  For the purpose of this paper stress will be understood as force per unit area. 

Figure 1 a) shows a body acted upon by multiple forces, P1, P2, P3, and P4.  A 

plain through the body is depicted as AB, Figure 1 b).  One element of these forces is 

represented by an incremental force, ∆P, acting on an incremental area, ∆A.  We can now 

define stress at a single point, equation (1). 

 

Figure 1  A body with external forces.  (Reproduced without permission from [14:14].). 

a) a body acted upon by multiple forces, b) one element force per element area, c) normal and 

shear forces. 
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 𝑆𝑡𝑟𝑒𝑠𝑠 = lim
∆𝐴→0

�
∆𝑃
∆𝐴�

 (1)  

∆P at angle θ from the surface as shown in Figure 1 c), which is not necessarily 

normal to the surface, Line N, which is normal to surface, and Line S, lies on the surface, 

from Figure 1 c), breaks ∆P into ∆PN, total normal force, and ∆PS, total shear force. 

Stress can now be broken down into normal stress (σ), in the normal direction N, and 

shear stress (τ), along surface N.  Normal stress will be in tension, or tensile stress, 

increasing (positive) stress, if the material separates on opposing sides of the section.  

Normal stress will be in compression, compressive stress, or decreasing (negative) stress, 

if the material tends to push together on opposing sides.  Shear stress has the material on 

one side of the section to move by the material on the other side of the section [14:42-89]. 

Uniformly distributed stress occurs when each force acting on an area gets 

distributed uniformly over the area.  Each element of the area is subjected to an equal 

loading value.  Stress at each element will be at the same magnitude which is defined as 

the average stress value [14:42-89].  This is determined by dividing the total force by the 

total area.  Uniformly distributed stress is defined by equation (2).  The assumption is that 

stress is uniformly distributed within a body. 

 𝑆𝑡𝑟𝑒𝑠𝑠 (𝑎𝑣𝑒𝑟𝑎𝑔𝑒) =
𝑇𝑜𝑡𝑎𝑙 𝐹𝑜𝑟𝑐𝑒
𝐸𝑛𝑡𝑖𝑟𝑒 𝐴𝑟𝑒𝑎

=
𝑃
𝐴

 (2)  

2.1.2 Strain 

Where stress exists in a material there is some type of deformation of that material.  

This is known as strain and represented by ε [14:42-89].  Like stress, there are two types 

of strain, linear strain and shear strain [14:42-89].  Linear strain can obtain two notable 

states, in tension or compression [14:42-89].  Linear strain will be in tension, tensile 
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strain, or increasing (positive) strain, if the material lengthens in a straight line [14:42-

89].  Linear strain will be in compression, compressive strain, or decreasing (negative) 

strain, if the material shortens in a straight line [14:42-89]. 

If a bar of some length L is loaded longitudinally.  Assume the bar elongates 

uniformly, and the cross sectional area is originally shaped as a plane and perpendicular 

to the loading axis and remains so throughout the elongation process.  This bar is 

represented in Figure 2. Unit strain of elongated bar is given by equation (3), which 

represents average strain.  L is the original length of the bar, and δ is the total elongation 

of the bar [14:42-89]. 

 𝑆𝑡𝑟𝑎𝑖𝑛 = 𝜀 =
𝛿
𝐿

 (3)  

 

Figure 2 Bar subjected to Elongation 

Since strain in equation (3) is average strain, and the bar represented in Figure 2 

assumes a constant cross section bar, equation (3) cannot be used if the bar’s cross 

sectional area is not constant or of the load is not uniformly distributed.  Then strain per 

unit determined by differential elongation or dδ of a cross sectional length dL.  Unit strain 

at a point on the bar in Figure 2 is expressed as equation (4) [14:42-89]. 

 𝜀 =
𝑑𝛿
𝑑𝐿

 (4)  

L δ
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2.1.3 Stress and Strain 

Stress and strain are depended upon each other, and related through material 

properties.  Robert Hooke stated this relationship is accomplished by a constant of 

proportionality known as the modulus of elasticity, E [14:42-89].  For the bar subjected to 

elongation is shown as equation (5).  The variable σl is known as the longitudinal stress, 

elongation direction.  The variable εl is known as the longitudinal strain. 

 𝜎𝑙 = 𝐸𝜀𝑙 (5)  

2.2 Strain Measurements 

When materials are mechanically validated, a force is introduced into it and the 

resultant stress in the material can be measured and reveals important characteristics, 

such as Young’s Modulus, about the material.  Measuring stress directly is not easily 

done.  However stress can be determined by measuring strain on the surface and through 

material properties stress is derived, using equation (5).  Strain measurements are 

performed by devices called strain transducers, or more commonly strain gages.  This 

section goes over the strain measurement, foil strain gages, and high temperature strain 

measurements. 

2.2.1 Strain Measurements 

Let’s assume a conductor is unrestrained laterally and is strained in its axial 

direction, its length will change and its cross section will also change, this effect is 

known as the Poisson Effect [14:42-89], this is shown in Figure 3.  If the strain increases 

the length of the conductor its cross sectional area will decrease, and vice versa if strain 

decreases the length its cross sectional area will increase.  Also resistivity of the 

conductor material will change because of the arrangement of the atoms inside, but the 



10 

volume does not change.  Resistivity, equation (6), shows that these three elements, 

change in length (L), cross sectional area (A), and resistivity (ρ), will change the overall 

resistance (R) in the conductor [15:3-41]. 

 𝑅 = 𝜌
𝐿
𝐴

 (6)  

 

Figure 3 Strained Conductor (Shown in Tension) 

2.2.2 Foil Strain Gages 

The more conventional strain transducer, known as a strain gage, uses an insulating 

flexible backing that supports a metallic foil element.  The flexible backing is adhered to 

the straining surface, such as a metallic beam put under stress.  The object becomes 

deformed when the backing flexes and the foil becomes deformed, and changes its 

electrical resistance.  This change in resistance is measured and strain can be calculated 

using the gage’s gauge factor, GF.  Equation (7) depicts the relationship of resistance to 

strain and gage factor.  Where ΔR = Change in resistance due to strain, RG = undeformed 

resistance, GF = gauge factor defined by the manufacturer, and ε is strain.  Which strain 
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is simply defined, in equation (8), as a change in bar length (∆l) over the original length 

(L) 

 𝐺𝐹 =
�∆𝑅 𝑅𝐺� �

𝜀
 (7)  

 
𝜀 =

∆𝑙
𝐿

 
(8)  

Figure 4 depicts an example of the strain gage in various states.  Figure 4 a) is 

unstrained state, which depicts the foil as a “strain sensitive pattern”.  The white box in 

the figure is the device’s flexible backing, and the gray is the strained surface.  Figure 4 

b) depicts the object strained in tension or increase in resistance (∆R) thus greater strain.  

Figure 4 c) depicts the object strained in compression or a decrease resistance (∆R) thus 

less strain. 

 

Figure 4 Strain gage in 3 states, a) depicts the unstrained state, b) depicts strain in the tension 

state, and c) depicts strain in the compression state 
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2.2.3 High Temperature Strain Measurements 

The insulating flexible backing typically cannot withstand the extreme 

environments.  This makes these types of sensors not usable in high temperatures.  If a 

flexible backing is invented which can be used in extreme temperatures, there is still an 

issue with the metallic foil’s resistivity changing as a function of temperature.  Thus, 

strain gages that utilize piezoresistive elements undesirable at high temperature [8:52]. 

2.2.4 Applications of Strain Sensors 

There are different applications of strain sensors.  One application of strain 

sensors is the investigation of tension or compression strain caused by tension or 

compression mechanical forces, known as mechanical loads.  Compression occurs when 

a material is loaded from one end toward the material.  Tension occurs when a material is 

loaded from one end away from the material.  Figure 5 a) depicts an unloaded bar.  

Figure 5 b) depicts a bar loaded in compression. Figure 5c depicts a bar loaded in tension 

[8:52].  Strain sensors are used to how well materials deal with these loads in 

compression and tension. 

 

Figure 5 Material Subjected to Loads. a) Unloaded, b) Compression Loaded, c) Tension Loaded 
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Another application of strain sensors is the measurement of bending moments.  A 

bending moment occurs when load is applied transaxially on something like a beam, 

where strain on top of the beam is greater than strain on the bottom of the beam, and vice 

versa [8:52].  Figure 6 depicts a bar subjected to a moment arm. 

 

Figure 6 Bar Subjected to a Moment Arm 

Many variations of tension, compression, and moment arm loading exist 

providing endless possibilities of configurations.  Strain sensors can be made into force 

sensors, using these configurations [1].  Sensors can be made into health monitoring 

devices for load reaction structures and equipment put under load. 

High temperature strain sensors have these same applications although at 

temperatures exceeding 700°C.  High temperature environments requiring strain sensing 

include oil and gas equipment, nuclear and power station equipment [6], and aerospace 

hypersonic vehicles [21:5915-5924]. 

Hypersonic vehicles experience temperatures in excess of 500°C on inlet ramp 

surfaces at Mach 5 [21:5915-5924].  On that same surface, temperatures exceed 700°C at 

Mach 6.  Another point on the hypersonic engine is the stagnation wall of leading edge, 

which experiences 700°C at Mach 5 [21:5915-5924].  Many points on the hypersonic 

vehicle could use a high temperate strain sensor to measure the effects of load introduced 

to them.  During the design and verification process, conditions must be duplicated at 
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which the intended material would be subjected to in actual flight conditions.  Depicting 

the reason why a high temperature strain sensor is required for hypersonic vehicles and 

why AFRL/RB needs them. 

2.3 The Double Ended Tuning Fork 

To alleviate high temperature effects on strain measurements an alternate approach 

could be taken.  Double Ended Tuning Fork resonant sensors are already in use for high 

precision strain measurements [22:841-845].  This MEMS device can be made from 

Silicon Carbide for high temperature strain sensor applications like the one shown in 

reference [1] which was found to work at temperatures around 300°C with resolution 

found to be 0.11 micrometers.  The double ended tuning fork could also be made from 

silicon and coated in silicon carbide to bring the operating temperature up to 500°C with 

resolution of 0.2 micrometers at 10kz to 20kz as shown in reference [2:643-646].  This 

section discusses the double ended tuning fork’s operation, strain sensing using the 

double ended tuning fork. 

2.3.1 Concept of operation 

The double ended tuning fork is modeled as a spring mass damping resonator 

system.  The concept is drawn in Figure 7.  A shuttle mass is suspended over a substrate, 

and is attached at each end to anchors.  The anchors are attached to the substrate.  

Attached to the shuttle mass are interdigitated fingers.  Built next to the interdigitated 

fingers are other interlaced interdigitated fingers which are attached to the substrate via 

anchors [22:841-845].  The shuttle mass is allowed to move toward, and subsequently 

away from, the interlaced interdigitated fingers [22:841-845]. 
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Figure 7 The Double Ended Tuning Fork (DETF) 

2.3.2 Sensing Strain Using the Double Ended Tuning Fork (DETF) 

To make a double ended tuning fork strain sensor, the same techniques are used for 

making a traditional double ended tuning fork resonator.  A double ended tuning fork is 

produced on top of a flexible backing of a minimum thickness, so strain is transmitted 

through to the sensor.  Figure 8 depicts such a sensor. 

 

Figure 8 Double Ended Tuning Fork (DETF) Strain Sensor with Flexible Backing Substrate 



16 

The double ended tuning fork construction is summarized in Figure 7.  The double 

ended tuning fork strain sensor works when stress occurs from the sensed surface to the 

surface of the substrate, directly below the double ended tuning fork MEMS structure.  

When it is strained the distance between the interdigitated fingers anchor and the spring 

support anchor gets larger, as shown in Figure 9.  The anchors are mechanically attached 

to the substrate.  The entire body of the movable double ended tuning fork, shuttle mass, 

spring supports, interdigitated fingers, and anchor are all a part of the shuttle assembly.  

The anchor and interdigitated fingers on each side of the shuttle mass are to separate 

fixed components.  The shuttle mass assembly can move axially, to and away from the 

interdigitated anchor fingers. 

 

Figure 9 Strained Double Ended Tuning Fork 

Figure 8 is the device in an unstrained state.  Figure 9 shows an axially strained in 

the positive direction, or positive strain, +ε.  Conversely Figure 10 shows a double ended 

tuning fork strain sensor in compression, or negative strain, -ε. 
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Figure 10 Axially Strained Double Ended Tuning Fork in Compression 

Strain is the change in length, ∆L, over the original length, L, equation (9), the 

device measures strain by the change in distance between the anchors changes the gap 

between the shuttle’s interdigitated fingers and the anchors interdigitated fingers.  The 

interdigitated finger set can be modeled as a parallel plate capacitor.  Figure 11 shows the 

unstrained interdigitated finger parallel plate capacitor.  Figure 12 shows the strained 

interdigitated finger parallel plate capacitor.  This is discussed later. 

 𝑆𝑡𝑟𝑎𝑖𝑛 = 𝜀 =
∆𝐿
𝐿

 
(9)  
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Figure 11 Unstrained Interdigitated Capacitive Fingers 

 

Figure 12 Strained Interdigitated Capacitors Fingers 

2.3.3 Oscillation of Double Ended Tuning Fork Strain Sensor 

The sensor is driven by a frequency at which the shuttle mass oscillates.  That 

frequency is dependent on capacitance.  When strain is applied to the substrate, the 
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interdigitated fingers separate and the oscillation frequency changes [22:841-845].  The 

frequency is adjusted again until oscillation is again achieved. 

Capacitance in the double ended tuning fork strain sensor can be measured using 

equation (10).  CDETFSS is capacitance in the double ended tuning fork.  Frequency output 

is f0, and resistance of the double ended tuning fork system is RS [22:841-845]. 

 𝑄
2
𝐶𝐷𝐸𝑇𝐹𝑆𝑆 =

1
4𝜋𝑓𝑜𝑅𝑆

 
(10)  

RS is the impedance of the measurement hardware.  The variable fo is the oscillation 

frequency.  As reported in [22:841-845] there is a risk of loss in detection of capacitance 

in the double ended tuning fork strain sensor, CDETFSS, due to parasitic capacitance, CP, in 

the connection to the sensing system.  CDETFSS could be much smaller than the parasitic 

capacitance, causing the loss in detection.  Reduction in this parasitic capacitance could 

be difficult [22:841-845]. 

2.4 Capacitance 

When a potential is applied between two conductors electric field is created.  When 

the two conductors are separated and an electric field is produced between them a 

capacitance is present.  This section goes over how capacitance is formed between two 

conductors separated by a distance which has a potential between them. 

2.4.1 Capacitance and Electrostatic Field 

As stated, the double ended tuning fork’s interdigitated fingers can be modeled as a 

parallel plate capacitor.  The parallel plate capacitor has a mathematical model of 

equation (11), and shown in Figure 13.  In the model CPARALLEL is parallel plate 

capacitance; A is the plate’s area, length, L, multiplied by width, w.  The distance 
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between the plates is shown as d, also ε, εr and ε0 are permittivity, relative permittivity or 

permittivity relative to vacuum, and permittivity of free space, or vacuum permittivity, 

respectively.  Permittivity is the ability a material has to store energy when voltage 

applied across the material.  A parallel plate capacitor is shown in Figure 13.  Relative 

permittivity for our device will be that of open air, or εr = 1.0. 

 𝐶𝑃𝐴𝑅𝐴𝐿𝐸𝐿 =
𝜀𝐴
𝑑

=
𝜀𝑟𝜀𝑜𝐿𝑊

𝑑
 

(11)  

 

Figure 13 Parallel Plate Capacitor Simple Model 

Consider the parallel plates in Figure 13 made of perfectly conducting plates.  

When a potential, V, is applied across the plates, an electric field, E, is created [16:127-

134].  The potential lines occur from the high plate potential to the low plate potential, 

shown in Figure 14 [16:127-134].  The equation for parallel plate capacitance, equation 

(11), can be rewritten with respect to charge QF, Equation (12).  The relationship of 

charge, QF, to surface, S, and electric flux density, D, is derived from Guass Law and 

written in equation (13).  Voltage from the source is obtained by integrating the electric 

field, E, between two points, P1 and P2, on the surface of the conductors and is depicted 

in equation (14). 
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 𝐶 =
𝑄𝐹
𝑉

 
(12)  

 

 
𝑄𝐹 = � 𝐷 ∘ 𝑑𝑠

𝑆
 

(13)  

 

 
𝑉 = −� 𝐸 ∘ 𝑑𝑙

𝑃2

𝑃1
 

(14)  

 

Figure 14 Electric Field Lines for a Parallel Plate Capacitor 

If we combine equations (12), (13), and (14), and substituting flux density with the 

relationship D=εE, we get equation (15) [16:127-134].  This shows that capacitance is 

dependent on electric fields and geometry [16:127-134]. 

 
𝐶 =

∮ 𝐷 ∘ 𝑑𝑠𝑆

−∫ 𝐸 ∘ 𝑑𝑙𝑃2
𝑃1

= −𝜀
∮ 𝐸 ∘ 𝑑𝑠𝑆

−∫ 𝐸 ∘ 𝑑𝑙𝑃2
𝑃1

 
(15)  

In the thesis found in reference [18:12,14,26], he modeled the double ended tuning 

fork in a three dimensional finite element from the top down.  The tool depicted the 

electric field lines as shown in Figure 15 [18:12,14,26].  Figure 16 depicts the electric 

field lines, solid lines, from the end view [18:12,14,26].  The dashed lines are electric 

potential gradient lines.  There were no mathematical functions for these field lines 

presenting in reference [18:12,14,26]. 
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Figure 15 Top Down View of Interdigitated Fingers Electric Field Lines (Reproduced from 

Reference [18:12,14,26] without permission) 

 

Figure 16 End View of Interdigitated Fingers Electric Field Lines (Reproduced from Reference 

[18:12,14,26] without permission) 

2.5 Silicon as a Mechanical Structure 

Silicon is the most dominant material used MEMS devices today.  This section goes 

through the material properties of silicon as used in MEMS devices. 

2.5.1 Material Properties 

Silicon is a dominate element used in the manufacturing of MEMS devices.  Here 

are a few of these reasons.  First, silicon is a cheap and well characterized material which 

is readily available, which comes from the integrated circuit industry’s years of 

development and research.  Second, a large number and variety of processing techniques 

and processes matured and are available to manufacture devices with little to no 
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adaptation for MEMS.  Third, the possibility of integrating devices with control and 

signal processing integrated circuits, additionally the mechanical, electrical, and physical 

properties is has give it an advantage in MEMS devices [15:3-41]. 

Silicon has other advantages.  Thermal oxides can be grown or deposited easily and 

at relatively low temperatures, between 200 and 1150°C [23:2-9], and growth rates are 

dependent on temperature.  Thermal oxides give the added advantage of a sacrificial layer 

that can be removed, or dissolved, with hydrofluoric acid (HF).  HF is highly selective 

between Si and SiO2.  Mechanical layers are made from Si within SiO2, SiO2 is dissolved 

and a clean mechanical layer remains with unaltered properties. 

One of the advantages silicon has in producing MEMS devices is the opportunity to 

use dopants to change some properties of silicon allowing for more flexibility in 

manufacturing and operation.  For instance if silicon is doped with group three elements, 

which is missing the fourth electron in the valance band creating a hole, this causes the 

resistivity to decrease.  Subsequently if silicon is doped with group five elements, extra 

electron in the valance band or donor electron allowing a free electron in the doped 

material, the material becomes more electrically conductive.  These properties can be 

exploited to change how the device responds to signals applied to it. 

Silicon can be broken down by two types, Single-Crystalline Silicon and 

Polysilicon [23:2-9].  Silicon has a diamond structure, which is a relatively brittle 

material to work with.  Single-Crystalline silicon, or crystalline silicon, can be grown and 

subsequently made into pure crystalline wafers with low defects.  These wafers can easily 

have large surface areas, larger than 8 inches in this manner [23:2-9].  Crystalline silicon 

serves key functions in MEMS processes.  It is the most versatile material for bulk 
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micromachining, well characterized etchants and masking materials are available.  It is 

used as a mechanical platform, on which devices are surface micromachined, or grown 

on the surface and shaped into devices using many techniques.  Crystalline silicon is the 

primary material integrated circuits are manufactured on.  Some selected properties of 

crystalline silicon are shown in Table 1. 

Table 1  Selected Properties of Crystalline Silicon from [23:2-9] 

Property (unit) Unit Value
Yield Strength (109 Nm-2) 7
Knoop Hardness kgmm-2 850
Young's Modulus (100) Orientation GPA 160
Poisson's Ratio (100) Orientation gcm-3 0.28
Density cm-3 2.33
Lattice Constant Å 5.435
Thermal Expansion Coefficient 10-6K-1 2.6
Thermal Conductivity Wm-1K-1 157
Specific Heat Jg-1K-1 0.7
Melting Point °C 1410
Energy Gap eV 1.12
Dielectric Constant 11.9
Dielectric Strength 107V-1s-1 3
Electron Mobility cm2V-1s-1 1450
Hole Mobility cm2V-1s-1 505  

Polysilicon, Poly-Si, is combined with silicon dioxide, SiO2, and silicon nitride, 

Si3N4 to form a powerhouse of fabrication possibilities.  Poly-Si is the most commonly 

used material for surface micromachined MEMS, and is used as the primary structural 

material [23:2-9].  Si3N4 is used for electrical isolation with crystalline silicon wafer.  

Many processes are commercially available. 
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2.6 Silicon Carbide as a Mechanical Structure 

Silicon Carbide, SiC, is material that has possibilities to be used in harsh 

environments, which includes temperature, chemical resistance, and radiological 

resistance to name a few [13:1594-1609].  This section goes through the material 

properties of silicon carbide as used in MEMS devices. 

2.6.1 Material Properties 

SiC is a one-dimensional polymorphism called polytypism and exists in more than 

250 structural polytypes [4:5-12].  There are only three crystalline structures; cubic, 

hexagonal, and rhombohedral.  All of the polytypes have identical planar arrangement of 

silicon and carbon atoms.  The differences in the polytypes are in the way the planar 

arrangements are stacked.  The order of stacking determines the types of close packed 

structures and their properties.  When the layers are stacked a certain way they are 

depicted with the conventional nomenclature with a number of SiC double layers with the 

appending letter, C for cubic, H for hexagonal, R, for rhombohedral.  For example 3C-

SiC has cubic lattice with three layers.  Each polytype exhibits different properties, for 

example 3C-SiC, three cubic layers of SiC, has a bandgap of 2.2eV and 4H-SiC, four 

hexagonal layers, has a bandgap of 3.4eV [4:5-12].  A summary of selected polytypes is 

given in Table 2. 
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Table 2  Material Properties of 3C-SiC and 6H-SiC from source [4:5-12] Young’s Modulus from 

source [13:1594-1609]. 

Property (unit) Unit 3C-SiC 6H-SiC
Yield Strength (109 Nm-2)
Knoop Hardness kgmm-2 3300 2917
Young's Modulus Gpa 448 448
Density gcm-3 3.21 3.21
Lattice Constant

Å
4.359 a0: 3.08

c0: 15.12

Thermal Expansion Coefficient 10-6K-1 2.9 4.2
Thermal Conductivity Wcm-1K-1 4.9 4.9
Sublimes at °C T>3100 T>3100
Energy Gap eV 2.2 2.99
Dielectric Constant 9.7 10
Electron Mobility cm2V-1s-1 1000 400
Hole Mobility cm2V-1s-1 40 50  

2.7 Silicon Carbide Manufacturing Techniques 

Silicon Carbide, SiC, is more difficult to fabricate with [13:1594-1609].  This 

section goes fabrication processes of silicon carbide when fabricating MEMS devices. 

2.7.1 Bulk Micromachining 

Bulk micromachining is the selective removal of regions of material from its 

substrate as shown in Figure 17 and Figure 18.  Simple regions can be etched away or the 

entire wafer can be dissolved away.  Bulk micromachining is useful for relativity large 

sculpturing of the surface or backside of wafers. 

There are two types of wet bulk etching, isotropic and anisotropic.  Isotropic 

etching dissolves or etches in all directions of a material, shown in Figure 17.  It will also 

undercut or etch below the mask area.  Agitation causes more rounded features.  

Anisotropic etches only along a crystalline plane at well defined angles shown in Figure 
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18.  For example, the etching solution for an anisotropic etch is potassium hydroxide 

(KOH) water and alcohol, which etches the <100> and <110> planes of silicon at high a 

much higher rate than the <111> plane, <100>, <110>, & <111>.  An important thing to 

know is that plane <100> intersects plane <111> at an angle of 54.74 degrees, as shown 

in Figure 18 [10:129-138].  Dry etching is similar to wet etching but uses plasma instead 

of a liquid etchant.  Conventional bulk micromachining designed for silicon can also be 

used on silicon carbide, single crystalline, poly, and amorphous.  A process of bulk 

micromachining 3C-SiC used inductively coupled plasma etch using SF6 and O2 gas 

mixture.  This plasma etch process etched isotropically [4:5-12].  Another etch process, 

as described in [1], using HBr and Cl2 in a dual plasma source etch chamber which 

produces high density plasmas. 

 

Figure 17 Bulk Micromachining Using Isotropic Wet Etch 
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Figure 18 Bulk Micromachining Using Anisotropic Wet Etch 

2.7.2 Surface Micromachining 

Surface micromachining builds up structures on the surface of parent wafers by 

using lithography processes, deposition, and shaping the deposited materials.  Commonly 

using silicon, silicon dioxide, polysilicon, or phosphosilicate glass (PSG, is grown or 

deposited on a silicon parent wafer, it is patterned using a mask layer such as a polyimide 

and wet or dry etched [10:271-273]. 

Polycrystalline silicon Carbide, Poly-SiC, is an attractive mechanical layer that can 

be deposited onto suitable sacrificial layers, such as SiO2.  Poly-SiC can be deposited 

using plasma-enhanced chemical vapor deposition, (PE) CVD.  Depending on the 

temperature, ranging from 200 to 1000°C, the deposited SiC could be amorphous, low 

temperature, or polycrystalline, high temperature.   Poly-SiC can be used as a mechanical 

layer to perform a mechanical task [13:1594-1609]. Figure 19 shows a Poly-SiC 

mechanical layer, in the form of a cantilever, possibility grown using PECVD. 
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Figure 19 Poly-SiC Cantilever on a sutible substrate 

Oxidation is the process of adding oxygen to Si or SiC to grow an oxide layer.  The 

oxide layer can be used as a sacrificial layer to construct a mechanical device, such as the 

cantilever in Figure 19, or a dielectric in an electrical device.  A thick layer, greater than 

1µm, of oxide can be grown on silicon by exposing it to oxygen at temperatures greater 

than 1000°C.  Hydrogen is added to enhance the oxidation rate.  The process for silicon 

occurs when silicon is subjected to high temperatures, above 1000°C [13:1594-1609], 

and the oxide is grown when Si reacts with O2 to form SiO2 and CO.  The process is 

similar to Si with SiC, SiC reacts with O2 to form SiO2 and CO, but the oxide grown on 

SiC is slower because SiC is less likely to dissociate and react with oxygen, than 

something like silicon.  To form the same 1µm oxide is much longer for SiC than Si.  

Larger oxide layers, such as 3µm or larger, could take subsequent oxide growth processes 

[13:1594-1609]. 

Metals on devices are used as metal contacts, ohmic contacts, and Schottky 

contacts, all useful in MEMS and Microelectronics.  High temperature metals with high 

melting points such as Nickel (Ni) or Tungsten (W) deposited on SiC, are generally used 

on devices intended for high temperature applications.  Although the best and most 

widely used ohmic contact on SiC is Aluminum (Al).  Aluminum is easily deposited 

using traditional Si processes, sputtering or evaporation.  Al melts at 600°C, so for high 
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temperature applications, greater than 700°C, Al is not suitable.  Other metals such as Ni, 

W, and Mo make ohmic contacts on 3C-SiC [13:1594-1609].  Sputtering occurs when 

energetic ions are bombarded with a target made of the required deposited material.  

Atoms at the surface are knocked loose and transported to the surface.  Evaporation 

occurs when metals are heated until the point of vaporization.  Evaporated metals form a 

thin film covering the entire wafer [10:279]. 

To fabricate MEMS devices using SiC, selective etching is required to pattern the 

SiC films.  Traditional Si devices are patterned by dry plasma or wet chemical etching.  

To wet etch poly silicon carbide thin films utilizes submersing the wafer in a chemical 

bath of a fluorinated compound, Such as CF3, CHF3, NF3, or SF6  [10; 271-273;13:1594-

1609].  A wet etch process can also remove oxide, such as HF [10; 271-273;13:1594-

1609]. Dry etching utilizes a plasma to remove atoms from the thin film, such as a RIE.  

Plasma is created by applying a radio frequency electromagnetic field to the wafer.  The 

oscillating electric field ionizes the O2 molecules by stripping electrons [10:271-279;11]. 

Doping is the process of creating a positively or negatively charged material to 

create a PN junction or transistor.  Ion implantation deposits dopants by directly 

bombarding the Poly-SiC or Poly-Si with high energy ions of the dopant.  Ion 

implantation has destructive effects.  Usually following the ion implantation is an 

annealing step, high temperature treatment, which repairs the damaged lattice and 

activates the dopants.  In-Situ doping is performed by the introduction of the dopants to 

the Poly-SiC or Poly-Si at the same time polycrystalline layer is deposited, usually by a 

chemical vapor deposition process (CVD).  SiC is chemically inert, only ion implantation 

and in situ doping is possible.  In-situ doping is preferred due to the simplified process, 
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compared to ion implantation, and excessive damage of the material is minimized and is 

easily incorporated into LPCVD processes. 
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III. Methodology 

An examination of the resonant strain sensor yields some problems, mostly the 

dependence on tuning to the resonant frequency to determine the strain.  Also 

conventional piezoresizitive sensor is dependent on temperature dependent resistance.  

To fulfill the requirement of the design of a high temperature strain sensor this chapter 

describes a new sensor designed to work the high temperature environment.  To fulfill the 

requirement to prove the sensor works without manufacturing it, mathematical equations 

are derived and are plotted, also layout drawings are developed, which are simulated 

using Coventorware©. 

3.1 Silicon Carbide Process 

As stated silicon carbide is a material that is more impervious to high temperatures.  

At the time of this paper there is no commercially available silicon carbide process, 

which makes developing one important.  This section discusses the general process to 

manufacture silicon carbide MEMS devices, of which are used in the Coventorware© 

simulations.  It is a simplified process, details to the process including the process 

followers are not included, because no sensor is to be manufactured in this research 

endeavor. 

The overall process of making the sensor begins with a handle silicon wafer.  An 

oxide is grown, with a poly-SiC “flexible backing” layer grown on top.  This makes a 

SiCOI or silicon carbide on insulator wafer.  A nitride passivation layer is added for 

signal isolation.  N-type doped poly-SiC traces are formed, for signal egress.  A second 

sacrificial oxide layer is grown within the poly-SiC, and it is patterned to form the 

anchors.  The poly-SiC mechanical layer is added and patterned to form the interdigitated 
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finger.  After the device is created, the mechanical layer is released along with the 

sacrificial oxide between the carrier wafer and the “flexible backing” poly-SiC, and is 

complete.  The completed process is depicted as a side profile in Figure 20.  This process 

is explained in greater detail below. 

 

Figure 20 Silicon Carbide Process to Make the Strain Sensor 

3.1.1 Silicon Carrier Wafer 

An off the shelf wafer is selected as a carrier wafer.  The carrier wafer allows a 

stable surface to build upon in subsequent manufacturing techniques.  The size chosen is 

a 3-inch, 330mm, in diameter off the shelf wafer from Silicon Inc. [17]. 

3.1.2 First Sacrificial Oxide Growth onto Wafer  

The first sacrificial oxide layer is added, the layer is called SAC1.  This layer is 

added to allow a way to remove the sensor from the carrier wafer when processing is 

done.  Thermal oxide is grown over the entire wafer to 2µm using a wet thermal oxide 

process [9:43-44]. 

3.1.3 Poly-SiC Sensor device Substrate formation 

A poly silicon carbide sensor device substrate layer is deposited onto the sacrificial 

oxide layer.  Nitrogen doped Poly-SiC film is deposited by Low Pressure Chemical 
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Vapor Deposition reactor, LPCVD.  The LPCVD reactor deposits Poly-SiC at 900°C 

using SiH2Cl2, 100% solution, and C2H2, 5% solution with H2 gas.  SiH2Cl2 provides the 

silicon, C2H2 provides the carbon, and the dopant is provided by NH3.  This process is 

sourced from [1].  The poly-SiC layer is grown to 16µm. 

3.1.4 Passivation Layer Formation 

To isolate the signal lines from the device substrate, a silicon nitride layer is 

deposited.  Silicon nitride is deposited onto the poly-SiC substrate layer using a LPCVD 

process described in [12;89,160-162] at 750°C to a thickness of 0.2µm.  The device’s 

substrate is patterned using photoresist, which the sensor’s pattern substrate and poured 

onto the edge of the oxide around the parameter, and submerge the wafer in Buffered 

Hydrofluoric Acid, which etches 0.5 nanometers a minute [12;89,160-162]. 

3.1.5 Device Substrate Patterning 

The substrate pattern is etched into the poly-SiC layer using a dual plasma source 

etch chamber, capable of high density plasmas, similar to the one in [1].  The etchant is a 

vapor mixture of HBr and Cl2.  According to [1] the etch rate for this process is 2500 

angstroms per min, giving us an hour and 4 minutes.  The selectivity of SiC to SiO2 is 5:1 

according to [1]. 

3.1.6 Signal Line Layer Formation and Patterning 

Signal egress from the mechanical layers to the signal pads is done using another 

nitrogen doped poly-SiC layer.  This layer is deposited, using the previous technique 

described in section 3.1.3, to a thickness of 0.2µm.  The pattern is etched into the signal 

layer using the previous technique described in section 3.1.5. 
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3.1.7 Second Sacrificial Oxide Growth and Patterning  

To form the mechanical layer oxide which is grown to 2µm, called SAC2, using the 

previously used process described in 3.1.2.  It is patterned using photoresist and etched 

using an isotropic wet etch of Buffered Hydrofluoric Acid, etching at about 100nm a 

minute [12;89,160-162]. 

3.1.8 Mechanical Layer Formation and Patterning 

The mechanical layer is grown using the technique described in 3.1.3 to 2µm.  This 

layer is patterned and etched using the process described in 3.1.5. 

3.1.9 Release Sacrificial Oxides 

To make the device usable, it needs to be released from its carrier wafer and the 

formed sensor needs to be released from the confines of the grown oxide.  The device and 

wafer is submerged in Buffered Hydrofluoric Acid.  The completed substrate wafer is 

discarded and the final sensor device is complete.  The final device side profile is 

depicted in Figure 21. 

 

Figure 21 Released Silicon Carbide Strain Sensor 

3.2 Silicon Carbide Double Ended Tuning Fork resonant Strain Transducer 

The double ended tuning fork could be made into a high temperature strain sensor.  

This device is favorable because it uses capacitance instead of resistance.  It can be 

fabricated with a silicon carbide process making resistant to extreme environments.  This 
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section discusses using silicon carbide as a material to fabricate the double ended tuning 

fork strain sensor. 

3.2.1 Silicon carbide as a material for the Double Ended tuning fork (DETF). 

Double ended tuning forks (DETF) are also known as Resonant Sensors [22:841-

845].  They can be applied to measuring strain.  Silicon double ended tuning fork strain 

sensors have very high resolution or it can resolve about 0.11 micrometers [1;22:841-

845].  Silicon based devices are not suited for high temperatures, because the silicon 

material properties degrade at temperatures greater than 500°C [1].  Electrical properties 

of silicon cannot operate extendedly above 150°C [2:643-646].  Using silicon Carbide to 

produce a double ended tuning fork strain device is a possible option.  It is also possible 

to manufacture the sensor directly onto the surface of the strained material. 

The Silicon carbide resonant strain sensor operates just like the resonant strain 

sensor described in Section 2.3.  Although one built from silicon carbide allows for many 

advantages to include: increased temperature operation, high radiation exposure, 

corrosive media, and large impact survivability [1]. 

3.3 Silicon Carbide Capacitive Strain Sensor 

Resonant strain sensors have the ability to measure strain greater than 0.11µm [1], 

but lack the ability to measure larger surface areas, which makes it not usable for 

hypersonic vehicles which require large surface area strain measurements [11].  A newly 

developed strain sensor is designed and tested, which takes the interdigitated finger 

concept and the capacitive effects are measured. 

3.3.1 New Capacitive Strain Sensor 

A new sensor design which can allow an increase in capacitance across the device 
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is designed.  Also the device should be scalable to allow larger measuring areas 

depending on stresses expected in the measuring material and configuration.  First start 

with the double ended tuning fork and modify it by increasing the number of 

interdigitated fingers and eliminating the moving shuttle.  When the movable shuttle is 

eliminated the device’s requirement to tune to the proper frequency would be eliminated, 

allowing for a passive measuring of capacitance.  By keeping the interdigitated fingers 

the simple capacitance model of a parallel plate makes it reasonably simple device in 

operation, this is why it is chosen.  Figure 22 show the modified version of the strain 

sensor.  To increase capacitance or the measuring surface or geometry, simply increase 

the quantity of interdigitated finger sets, or increase the quantity of the axial finger sets, 

this is shown in Figure 22.  Each axial finger set is connected to subsequent axial finger 

sets.  Each interdigitated finger sets is fixed to the surface of the substrate at the anchor 

end.  The fabricating surface, also considered the flexible backing material, must be 

minimized to allow the transmission of the measuring surface’s strain to the device.  This 

type of design has not found to been used in the manner, making it a unique sensor at 

which the strain sensing area can be increased based on requirements that fit the situation. 
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Figure 22 Modified Silicon Carbide Capacitance Strain Sensor 

3.4 Mathematical Model Testing 

To model the system mathematically gives an opportunity to prove the sensor’s 

ability as a capacitive strain sensor.  This section goes through the development of 

mathematical formulas used to verify operation of each model including, interdigitated 

finger set, midsize model, and the proposed full size model for use during future testing. 

3.4.1 Capacitance model of interdigitated finger 

To mathematically model the capacitance between the interdigitated fingers the 

device must be broken up into smaller bits.  A close up of the interdigitated fingers, 
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shown in Figure 23, depicts regions of interest.  These regions are; purple, yellow, red, 

green, and orange. 

 

Figure 23 Interdigitated Fingers with Broken Down Regions of Capacitance 

Variable breakdown is shown in Figure 24 and Figure 25.  LS, is the axial strain 

length, which has a breakdown found in equation (16).  LT is the length of one 

interdigitated finger.  WT is the width of the interdigitated finger.  T is the thickness of 

the silicon carbide mechanical layer. 

 𝐿𝑆 = 𝐿0 + ∆𝐿 (16)  

 

Figure 24 Interdigitated Variables 
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Figure 25 Isometric View of the Interdigitated Finger's Variables 

Capacitance in the yellow region is found using equation (17).  Capacitance in the 

green region is found using equation (18).  The red, purple and orange regions are 

difficult to mathematically model.  They however are considered of negligible 

capacitance, due to fringe effects, depicted in Figure 15.  This is mostly because the 

contact size of one end of the parallel plate capacitor is infinitesimally small when 

compared to the other side.  These regions are not mathematically modeled here. 

 
𝐶𝑌𝐸𝐿𝐿𝑂𝑊 =

𝜀𝐿𝑊
𝑑

=
𝜀𝑟𝜀𝑜[𝐿𝑇 − (𝐿0 − ∆𝐿)](𝑇)

𝐿𝐺
 

(17)  

 
𝐶𝐺𝑅𝐸𝐸𝑁 =

𝜀𝐿𝑊
𝑑

=
𝜀𝑟𝜀𝑜(𝑊𝑇)(𝑇)

(𝐿0 − ∆𝐿)  
(18)  

Variables and material properties used for the theoretical device to be tested are 

summarized in Table 3.  These parameters are selected based on manufacturability at the 

Air Force Institute of Technology’s clean room fabrication limitations, based on silicon 

not silicon carbide.  Also thickness limitations of silicon carbide layers are based on 

fabrication processes discusses in 2.7 Silicon Carbide Manufacturing Techniques and 

references [24:1109-1114;23:2-9].  Also sacrificial layers are determined based on 

fabrication processes and etch rates based on references [9:43-44;11].  The number of 
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axial finger sets and interdigitated finger sets are determined by the straining surfaces 

measuring requirements. 

Table 3 Silicon Carbide Capacitive Strain Variable Quantities and Material Properties 

Discription Varible Value Unit
Axial strain length LS 150 µm

Length of one inter-digitated finger LT 150 µm

Length of gap between inter-digitated fingers LG 3 µm

Width of the inter-digitated finger WT 3 µm
thickness of the silicon carbide mechanical layer T 2 µm
Original Length of Axial Strain Gap LO 10 µm

Axial strain length delta ∆L variable µm
Axial finger set quantitiy NAFS variable n/a
Inter-digitated finger set quantity
(in one Axial Finger Set) NIDFS variable n/a

Carrier Substrate Thickness TC 300 µm

SiO2 Sacrifitial Layer 1 TSAC1 3 µm

SiC Substrate Flexiable Backing TSiCB 16 µm

SiN Passivation Layer Thickness TSiN 0.2 µm

SiC Signal Trace Layer TSiCS 0.2 µm

SiO2 Sacrifitial Layer 2 TSAC2 2 µm

SiC Mechanical Layer TSiCM 2 µm

Silicon Carbide Capacitive Strain Attributes

 

3.4.2 Capacitance as it Relates to Strain and Force 

Using Equations (17) and (18) we can figure out the total capacitance due to overall 

or average strain over the entire sensor. Equation (19) and (20) shows the interdigitated 

finger set total capacitance.  Equation (21) shows the total capacitance for the entire 

sensor, which includes NAFS, number of Axial Finger Sets, and NIDFS, number of 

interdigitated finger sets. 

 𝐶𝐹𝑖𝑛𝑔𝑒𝑟𝑠𝑒𝑡 = 𝐶𝑌𝑒𝑙𝑙𝑜𝑤 + 𝐶𝐺𝑟𝑒𝑒𝑛 (19)  
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𝐶𝐹𝑖𝑛𝑔𝑒𝑟𝑠𝑒𝑡 =

𝜀𝑟𝜀𝑜[𝐿𝑇 − (𝐿0 − ∆𝐿)](𝑇)
𝐿𝐺

+
𝜀𝑟𝜀𝑜(𝑊𝑇)(𝑇)

(𝐿0 − ∆𝐿)  
(20)  

 

 𝐶𝑆𝑡𝑟𝑎𝑖𝑛𝑠𝑒𝑛𝑠𝑜𝑟 = 𝑁𝐴𝐹𝑆 ∗ �𝑁𝐼𝐷𝐹𝑆 ∗ 𝐶𝐹𝑖𝑛𝑔𝑒𝑟𝑠𝑒𝑡 + 𝐶𝐺𝑟𝑒𝑒𝑛� (21)  

As shown, the capacitance is dependent on ∆L, or change in length, which comes 

from strain, ε.  Equation (22) shows the form of strain, from Section 2.2.2, L is the 

overall strain sensor length.  Overall sensing part, not including anchors and non sensing 

features, original strain sensor length can be found by adding the number of axial finger 

sets over the length of the sensor, as shown in equation (23). 

 𝜀 =
∆𝐿
𝐿

 
(22)  

 

 𝐿 = 𝑁𝐴𝐹𝑆(𝐿𝑇 + 𝐿0) (23)  

To get strain, a relationship needs to be developed between strain, stress, and 

change in length.  Using equations (5), for force on an area produces stress, (2), strain at a 

given stress, and (22), strain as it relates to change in length, creates, equation (24).  

Equation (24) shows the relationship between force, stress, and strain.  Area refers to the 

loaded surface or width of the device times the thickness of the substrate (T), σ refers to 

stress per unit area, ε refers to strain, and E refers to Young’s Modulus. 

 𝐹 = 𝐴𝑟𝑒𝑎 ∗ 𝜎 = 𝐴𝑟𝑒𝑎 ∗ 𝜀 ∗ 𝐸 (24)  

Load is applied to the interdigitated finger set model as a distributed load 

throughout the surface of between the ends of the substrate.  One end of the substrate is 

“fixed”, load reaction (fixed) end, and the other the load is introduced in the substrate 
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Load Introduced End, which is depicted in Figure 26.  This allows equation (24) to be 

rewritten as equation (25), force uniformly distributed over the loaded surface area. 

 𝐹
𝐴𝑟𝑒𝑎

= 𝜎 = 𝜀 ∗ 𝐸 =
∆𝐿

𝐿0 + 𝐿𝑇
∗ 𝐸 

(25)  

 

Figure 26 Loading Scheme of Strain Sensor 

Equations (19), (20), (21), (22), and (23) are adjusted for the exact geometry of the 

interdigitated finger sets and rewritten as equations (26), (27), and (28).  Equation (26) is 

defined as the change in length, or displacement. 

 
∆𝐿 = (𝐿0 + 𝐿𝑇) ∗

𝐹
𝐴𝑟𝑒𝑎�
𝐸

 
(26)  

Equation (27) is the capacitance of the finger set model. 

 
𝐶𝐹𝑖𝑛𝑔𝑒𝑟𝑠𝑒𝑡 =

𝜀𝑟𝜀𝑜[𝐿𝑇 − (𝐿0 − ∆𝐿)](𝑇)
𝐿𝐺

+
𝜀𝑟𝜀𝑜(𝑊𝑇)(𝑇)

(𝐿0 − ∆𝐿)  
(27)  

3.4.3 Interdigitated Finger Set Sensing Element Mathematical Model 

To determine if a sensor can be fabricated using the interdigitaged finger set sensing 

elements.  The interdigitated fingers need to be mathematically modeled.  The L-Edit© 

layout has been drawn of the interdigitated finger sets and is shown in shown in Figure 

27. 
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Figure 27 L-Edit© Drawn Interdigitated Finger Layout 

Using Equation (27) and Equation (18), Equation (28) is developed for the 

interdigitated finger set layout. 

 
𝐶𝑆𝑡𝑟𝑎𝑖𝑛𝑠𝑒𝑛𝑠𝑜𝑟 = 𝐶𝐹𝑖𝑛𝑔𝑒𝑟𝑠𝑒𝑡 +

𝜀𝑟𝜀𝑜(𝑊𝑇)(𝑇)
(𝐿0 − ∆𝐿)  

(28)  

3.4.4 Intermediate “Midsized” Model Sensing Element Mathematical Model 

To prove that the model can be expanded using increasing amounts axial finger sets 

and interdigitated fingers, a mathematical model is developed for the midsized.  The 

midsized design has 3 axial finger sets, and 28 interdigitated finger sets.  Figure 28 

depicts the L-Edit© layouts.  

 

Figure 28 Mid Sized L-Edit© Layout 

As stated before, the load is applied to the model as a distributed load to the surface 

of each end of the substrate.  Equation (25), force over the loaded area, can also be used 

for the midsized model.  Equation (26), delta L, is also used for the midsized model.  

Equation (27), finger set capacitance is also used for the midsized model.  The only 
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difference from the interdigitated finger set model is how the sensor capacitance is 

determined.  Equation (29) shows that the strain sensor capacitance, which includes the 

number of interdigitated finger sets, NIDFS = 28, and the number of axial finger sets, NAFS 

= 3. 

 
𝐶𝑆𝑡𝑟𝑎𝑖𝑛𝑠𝑒𝑛𝑠𝑜𝑟 = 𝑁𝐴𝐹𝑆 �𝑁𝐼𝐷𝐹𝑆 ∗ 𝐶𝐹𝑖𝑛𝑔𝑒𝑟𝑠𝑒𝑡 +

𝜀𝑟𝜀𝑜(𝑊𝑇)(𝑇)
(𝐿0 − ∆𝐿) � 

(29)  

3.4.5 New Capacitive Model Sensing Element Mathematical Model 

The midsized can be expanded to allow large sensing elements for various layouts.  

The number of axial finger sets and interdigitated finger sets can be increased, using 

equation (29). 

3.5 Finite Element Modeling Testing 

The new capacitive strain sensor design has been selected using the variables in 

Table 3.  Using these values, an L-Edit© layout was developed and tested using material 

properties from [4:5-12].  A schematic is developed and drawn in L-Edit©, and then the 

device is modeled and simulated using Coventorware©.  Basics of finite element 

simulation are discussed and a Mesh study is performed on the interdigitated finger set 

model. 

3.5.1 Finite Element Simulation Basics 

Finite element simulation software uses numerical solutions of simplified equations 

to find approximate solutions of partial differential and integral equations.  To explain 

this, a simple explanation is given.  Given a volume of electromechanical elements, from 

a device is broken into smaller volumes of electromechanical elements.  The small 

volume electromechanical elements interact with its neighboring elements.  This allows 
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the approximation or average physical approximation of the whole element, instead of 

breaking down each interaction with neighboring atoms.  The larger the element is, the 

fewer amount of equations need to be processed for the complete volume.  If the volume 

is too large, the equations become too simple and accuracy is affected.  To give a simple 

example, assume a body is affected by a system of forces, shown in Figure 29.  If that 

body is broken up into smaller elements, forces between each element contributes force 

lines on each free body diagram, shown Rudimentary in Figure 29.  More free body 

diagram of force equations are created and how those forces act on the internal of the 

body can be determine.  If the elements are shrank down enough the distribution of stress 

within the object can be realized. 

 

Figure 29 A Rudimentary Example of a Finite Element Analysis Tool 

3.5.2 Mesh Study 

The small electromechanical elements of the model have to be chosen with three 

parameters in mind. The first parameter is geometry.  There are several options for 

element shapes.  Chosen for the interdigitated finger set is the “Manhattan Bricks” 
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element shapes.  The “Manhattan Bricks” shape is rectangular, and gives three degrees of 

freedom, or three variations of element sizes.  The second parameter is size, or x, y, and z 

of the individual Manhattan brick elements.  The Coventorware© tutorial software gives 

suggestions on how the element sizes should be varied.  First size the initial block size 

such that it maximizes the element size to the structure tested, x. Second divide those 

numbers by two for the next varied size, x/2.  Third divide the original numbers by four, 

x/4.  The third parameter which could be varied is time.  Element size and shape effect 

time.  With a fixed geometry, size can be varied, if the size of the element is shrank the 

accuracy of the analysis is increased, but the time to execute the analysis also increases.  

Figure 30 shows the varied element sizes and their execution time performed on the 

interdigitated finger set.  As the size is decreased, the time to execute is longer, but the 

accuracy is greater.  The interdigitated finger set with “Manhattan Bricks” Element 

shapes and with element size of x=3, y=3, and z=3 is shown in Figure 32, called a 

meshed model or model mesh or simply mesh.  The ideal size of the mesh can be as large 

as 6 micrometers, any smaller will only allow incremental accuracy improvements with 

an increased in time.  Table 4 depicts the mesh size and execution time.  From this table 

the element size of 3 micrometers allows for an increase in accuracy with a small 

increase in execution time. 
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Figure 30 Resultant Capacitance as Mesh Element size is Varied 

Table 4 Mesh Element Size and Execution Times 

Element (X,Y,Z) Time to Execute
0.333 43
0.375 28

0.42 23
0.5 18
0.6 9

0.75 9
1 6

1.5 5
3 5
5 2
6 2

10 2
12 2
15 2
18 2
21 2
24 2  
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3.5.3 Coventorware© Finite Element Modeling and simulation of the Interdigitated 

Finger Set 

To determine if a sensor can be fabricated using the interdigitated finger set sensing 

elements.  The interdigitated fingers need to be simulated using a finite element software.  

Using these values, an L-Edit© layout was developed and tested using material properties 

from [4:5-12], and is simulated using Coventorware©.  L-Edit© is custom built MEMS 

software program developed by Tanner EDA© to layout, or draw, MEMS devices [19].  

Coventorware© is a custom built MEMS software written by Coventor© for multiphysics 

finite element modeling and simulation [5].  Its importing process is depicted in 

Appendix B using material properties from [4:5-12]. 

The layout is then opened in the mesh generator part of Coventorware©. When it is 

opened in the mesh generator software, a three dimensional model is created, shown in 

Figure 31.  The dark green is the nitride layer, the red is the silicon carbide mechanical 

layer, and the light green is the silicon carbide substrate.  The trace layer has been taken 

out for simplicity, and the oxide has been removed to simulate the release of the process.  

The meshed model created using a mesh size of x=3, y=3, and z=3 on the interdigitated 

fingers, the substrate’s mesh size is x=3, y=3, and z=10 is depicted in Figure 32.  The 

mesh size of the substrate is larger in the z direction because the strain occurs only in the 

x direction and not in the z direction, so there is no need to measure in the z direction. 
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Figure 31 Three Dimensional Model of the Interdigitated Finger Set 

 

Figure 32 Meshed Three Dimensional Model 

3.5.1 Coventorware© Finite Element Modeling and simulation of the Intermediate 

“Midsized” Model 

The layouts are imported into Coventorware© in the same manner as the 

interdigitated finger set layouts, shown in Figure 33.  The three dimensional models are 

created in the same manner as the interdigitated finger set, depicted in Figure 34.  Since 

the mid model is similar to the interdigitated finger set, the meshed model created using a 

mesh size of x=3, y=3, and z=3 on the interdigitated fingers, the substrate’s mesh size is 

x=3, y=3, and z=10 is depicted in Figure 35. 
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Figure 33 Coventorware© Layout Editor drawing of the Mid Layout 

 

Figure 34 Three Dimensional Coventorware© model of the Mid Layout 

 

Figure 35 Coventorware© Meshed Model of the Mid Model 
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IV. Results 

This chapter discusses the results of the prescribed testing set forth in Chapter III.  

Specifically, the interdigitated finger set and midsized model.  Each model’s 

mathematical formulas, developed in Section 3.4, are put into Matlab© and plots are 

produced.  Also the Coventorware© models, developed in Section 3.5, are processed and 

data along with some three dimensional results are produced. 

4.1 Interdigitated Finger Set Model Results 

The interdigitated finger set mathematical models are plotted and checked using 

Matlab©.  The three dimensional model of the interdigitated finger set is tested using 

Coventorware© mesh model analyzer.  The results are presented in this section. 

4.1.1 Mathematical Model Simulations 

Equation (28) depicts capacitance as length increases.  Length increases as force is 

applied as a uniformly applied force as depicted in equation (25).  The results of this 

length due to force applied is depicted in Figure 36.  Load ranging from 0 to 

2125µN/µm2 makes change in length vary from 0 to 0.7 micrometers.  This force was 

chosen to get a displacement of 0.7 micrometers to depict the operation of the sensor.  

This displacement depicts the sensor in use as a strain sensor due to strain at the surface 

of the straining substrate. 

As the length changes due to force, as shown in Figure 36, a change in capacitance 

occurs, as shown in Figure 37.  Load ranging from 0 to 2125µN/µm2 makes capacitance 

vary from 5.549e-4 picofarads to 5.605e-4 picofarads.  This shows that as the substrate is 

loaded capacitance increases. 
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Figure 36 Force versus Displacement for the IDFT Model 

 

Figure 37 Capacitance Mathematical Plot Results for the IDFT 
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4.1.2 Coventorware© Simulations 

The three dimensional model developed in section 3.5.3 is put through the mesh 

model analyzer software, but to perform a mesh analyzer some constraint boundary 

conditions need to be put together.  The interdigitated finger set is comprised of 2 

contacts, attached to the substrate via anchors.  The first contact, or low voltage contact, 

is named “Negative Finger”.  The second contact, or high voltage, is named “Positive 

Finger”.  These names are shown on the double ended tuning fork in Figure 38. 

 

Figure 38 Load Introduction Scheme for the Interdigitated Finger Set 

A voltage is applied in Coventorware© between the positive and negative fingers to 

allow a charge to build up.  Figure 39 depicts charge building up on the interdigitated 

finger walls at no load, signified as yellow and red.  This shows that the unloaded finger 

set builds a charge. Equation (30) shows the formula for charge, q, as voltage multiplied 

by capacitance.  This depicts the charge distribution on the surface of the unloaded sensor 

interdigitated fingers surfaces. 

 𝑞 = 𝑉 ∗ 𝐶 (30)  
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Figure 39 Charge Buildup on the interdigitated finger walls 

To make Coventorware© think the contact anchors, shown in Figure 38 the color 

red, are attached to the substrate, shown as the color cyan, the linkage boundary 

conditions tool is used.  The negative finger anchor bottom is “Tied Link” to the ground 

top, which means the two surfaces are “fused” during all simulations, at the position put 

forth in the L-Edit© layout.  The positive finger anchor bottom is “Tied Link” to the 

ground top at its position put forth in the L-Edit© layout. 

To apply a load to the interdigitated finger set one end must be fixed and the load is 

applied to the other end.  To do this the faces at which the load is applied and the fixed 

end have to be named.  The fixed end is called the “Load Reaction End”, because it 

“reacts” against a stationary position.  The end that the load is applied to is called the 

“Load Introduction End”.  Figure 38 also depicts how the load is applied and fixed end. 

Three forces are simulated in Coventorware© for the interdigitated finger sets, 

0µN/µm2, 531µN/µm2, and 1062µN/µm2. 
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Figure 40 depicts the results of the distributed load across the load introduction end 

at 531µN/µm2.  It shows that from the reaction to the load introduction ends there is a 

change in length of 0.22µm. 

 

Figure 40  Coventorware© Displacment Results at 531µN/µm2 

Figure 41 depicts the results of the distributed load across the load introduction end 

at 1061µN/µm2.  It shows that from the reaction to the load introduction ends there is a 

change in length of 0.43µm. 
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Figure 41 Coventorware© Displacement Results at 1062µN/µm2 

When the interdigitated finger set model is subjected to load, and stress exists 

within the material.  Figure 42 shows the stress distribution within the interdigitated 

fingers.  The load introduction end is stationary as a part of the testing so stress is 

concentrated here.  The substrate shows a uniform stress density of about 460 MPa.  

Stress concentrates at the negative and positive anchors of about 800 MPa.  It also shows 

that there is no stress within fingers. 
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Figure 42 Coventorware© Stress Results on the Load Reaction End and the Negative Anchor at 

531µN/µm2 

4.1.1 Summary of the Interdigitated Finger set Model 

The results of change of length from Coventorware© and the mathematical models 

are summarized in Table 5.  As shown the mathematical results are very close to the 

Coventorware© results.  Displacement from mathematical model is a little different than 

the displacement within the substrate.  The displacement measurement in Coventorware 

is measured from the load reaction end to the load introduction end.  The displacement 

estimate in the mathematical model is measured from negative anchor face to positive 

anchor face. 
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Table 5 Summary of Displacement for Interdigitated Finger Set Tests from the Mathematical and 

Coventorware© Models 

Load
Mathmatical 

Results
Coventorware© 

Results
µN/µm µm µm

No Load 0 0
531 0.1534 0.22

1062 0.3067 0.43

delta L Summary

 

The results of change of capacitance from Coventorware© and the mathematical 

models are summarized in Table 6.  As shown the mathematical model is an order of 

magnitude off from the Coventorware© model.  Coventorware© electrostatic models are 

more strengient then the models developed in section 3.4.  The model takes into count the 

capacitance developed from the surface of the substrate to the fingers.  It also figures in 

the capacitance within the finger structure and parasitic capacitance from the mounting 

elements within the anchors to the surface of the substrate.  If the results are normalized, 

or divided by the no load magnitude, we can see that the delta capacitance is fairly close.  

The difference in the normalized capacitances could be due to the slight difference in 

how the delta L is realized. 

Table 6  Summary of Capacitance for the Interdigitated Finger Set Tests from the Mathematical 

and Coventorware© Models 

Load Mathmatical Mathmatical Coventorware© Coventorware©

µN/µm pF Normalized pF Normalized
No Load 5.55E-04 0.0000 2.43878E-03 0.0000

531 5.56E-04 0.0023 2.44330E-03 0.0019
1062 5.58E-04 0.0049 2.44786E-03 0.0037

Capacitance Summary
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The results show that the interdigitated finger set is a good parallel plate capacitor 

design for measuring strain using the capacitive effect, even though the magnitudes are 

fairly small, on the order of 1e-3pF,    The simple mathematical models developed in 

section 3.4 are a close representation of the general operation and will allow a reasonable 

relationship to what Coventorware© depicts.  It allows a normalized increase of 

capacitance during the increase of strain due to a uniformly distributed load.  This model 

is a good model to use.  Because of symmetry the interdigitated finger set results can be 

multiplied by the quantity of interdigitated finger sets and by the axial finger sets of a 

given design, to give results of that design. 

4.2 Midsized Model Results 

The midsized mathematical models are plotted and checked using Matlab©.  The 

three dimensional model of the midsize model is tested using Coventorware© mesh 

model analyzer.  The results are presented here. 

4.2.1 Mathematical Model Simulations 

Equation (29) depicts capacitance as length increases.  Length increases as force is 

applied as a uniformly applied force as depicted in equation (25).  The results of this 

length due to force applied is depicted in Figure 43.  Load ranging from 0 to 

2125µN/µm2 makes change in length vary from 0 to 1.0µm.  Load ranging from 0 to 

2125µN/µm2 makes capacitance vary from 6.988e-2 pF to 7.043e-4 pF, as shown in 

Figure 44. 



61 

 

Figure 43 Force versus Displacement for the Midsize Model 

 

Figure 44 Capacitance Mathematical Plot Results for the Midsized Sensor 
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4.2.2 Coventorware© Simulations 

The three dimensional model is put through the mesh model analyzer software, but 

to perform a mesh analyzer some constraint boundary conditions need to be put together.  

The midsized model is comprised of 4 contacts, attached to the substrate via anchors.  

The first contact is named “Anchor 1”.  The second contact is named “Anchor 2”.  The 

third contact is named “Anchor 3”.  The fourth contact is named “Anchor 4”.  These 

names are shown on the double ended tuning fork in Figure 45. 

 

Figure 45 Load Introduction Scheme for the Midsize Sensor 

A voltage is applied in Coventorware© between the anchors to allow a charge to 

build up.  1vDC is applied to anchor 2 and anchor 4, and 0 vDC voltage is applied to 

anchor 1 and anchor 3.  As stated before, this DC voltage differential will create a charge 

between anchor 1 and 2, anchor 2 and 3, and anchor 3 and 4 thus creating a capacitance 

between those anchors. 

To make Coventorware© think the contact anchors, shown in Figure 45 the color 

red, are attached to the substrate, shown as the color cyan, the linkage boundary 

conditions tool is used, each of the anchor bottoms are a “Tied Link” to the ground top, 
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which means the surfaces are “fused” during all simulations, at the position put forth in 

the L-Edit© layout. 

To apply a load to the midsized sensor one end must be fixed and the load is applied 

to the other end.  To do this the faces at which the load is applied and the fixed end have 

to be named.  The fixed end is called the “Load Reaction End”, because it “reacts” 

against a stationary position.  The end that the load is applied to is called the “Load 

Introduction End”.  Figure 45 also depicts how the load is applied and fixed end. 

Three forces are simulated in Coventorware© for the interdigitated finger sets, zero 

micronewtons per square micrometer and 1061µN/µm2. Figure 46 depicts the results of 

the distributed load across the load introduction end at 531µN/µm2.  It shows that from 

the reaction to the load introduction ends there is a change in length of 1.8µm. 

 

Figure 46 Coventorware© Displacement Results at 1061 Micronewtons per Square Micrometers 

for the Midsize Sensor 
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4.2.1 Summary of the Midsized Sensor Model 

The results of change of length from Coventorware© and the mathematical models 

are summarized in Table 7.  As shown the mathematical results are a bit off of the 

Coventorware© results.  The displacement measurement in Coventorware is measured 

from the load reaction end to the load introduction end.  The displacement estimate in the 

mathematical model is measured from negative anchor face to positive anchor face which 

if measured from the L-Edit© drawing is about 65µm different.  The substrate is still 

displaced throughout the whole surface.  The mathematical model does not account for 

this, because its only concern is sensing element, or the area under the interdigitated 

fingers. 

Table 7 Summary of Displacement for the Midsized Design Tests from the Mathematical and 

Coventorware© Models 

Load Mathmatical Coventorware©

µN/µm µm µm
No Load 0 0

1061 0.5 1.8

Displacement Summary

 

The results of change of capacitance from Coventorware© and the mathematical 

models are summarized in Table 8, which shows the mathematical model is off from the 

Coventorware© model.  If the results are normalized, or divided by the no load 

magnitude, we can see that the delta capacitance is fairly close.  The Coventorware© 

model takes into count the capacitance developed from the surface of the substrate to the 

fingers.  It also figures in the capacitance within the finger structure and parasitic 

capacitance from the mounting elements within the anchors to the surface of the 

substrate.  Reference [18], depicts interactions from other interdigitated fingers within an 
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axial finger set, shown in Figure 16.  The interactions in electric fields occur from the 

positive potential to negative potential fingers and from the positive potential fingers to 

the substrate.  Figure 47 also depicts interactions of electric fields between finger 1, 

positive potential fingers, to fingers 2 and 4 (shown as a “…” to indicate this model can 

be expanded to include many more fingers), negative potential fingers.  Also the same 

can be said from finger 5, positive, to fingers 4 and 2, negative.  As shown in equation 

(15) electric field is related to charge and capacitance. 

Table 8 Summary of Capacitance for the Midsized Design Tests from the Mathematical and 

Coventorware© Models 

Load Mathmatical Mathmatical Coventorware© Coventorware© 
µN/µm pF Normalized pF Normalized

No Load 6.988E-02 0.000000 0.2068364 0.00000
531 7.02E-02 0.00386 0.2080181 0.00571

Capacitance Summary

 

 

Figure 47 Electric Field Relationship Between Interdigitated Fingers 
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If the results are normalized, or divided by the no load magnitude, we can see that 

the delta capacitance is fairly close.  The difference in the normalized capacitances could 

be due to the slight difference in how the delta L is realized.   

The simple mathematical models developed in section 3.4 are a close 

representation of the general operation and will allow a reasonable relationship to what 

Coventorware© depicts.  The midsized model is significantly larger than the 

interdigitated finger sets.  This is shown in the substantial increase in magnitude of 

capacitance on the order of one pF.  This proves that if the amount of interdigitated finger 

sets is increased capacitance is increased. 
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V. Conclusions and Recommendations 

The Air Force Research Laboratory Air Vehicles Directorate, AFRL/RB, 

performs research in future generation aerospace vehicles are at the forefront of 

hypersonic aerodynamic vehicles [21:5915-5924].  When designing hypersonic vehicles, 

material strength calculations require accurate material properties.  This requires 

experimental analysis of materials based properties which use Hooke’s Law of the 

relationship between material stress and deformation of that material [8:52].  

Deformation occurs throughout the material, including at its surface.  Measuring 

deformation at the surface is typically done using a strain sensor.  AFRL/RB has the need 

to measure this deformation at high temperatures, often exceeding 700°C for hypersonic 

vehicle applications [11]. 

5.1 Problem statement and Research Objectives 

Measuring strain is difficult in high temperature environments, over 700°F, 

commercial strain sensors were shown to not work within the extreme temperature 

environments.  The objective of this research listed in the following questions has been 

met: 

Why do commercial strain sensors not work in high temperature environment? 

How do I design a scalable high temperature strain sensor? 

How do I prove the sensor works without manufacturing it? 

Within this document a high temperature strain sensor was designed, modeled and 

simulated using finite element simulation software.  Also stress, strain, stress strain 

relationship was given as a background.  Also discussed were measurements using 

traditional strain sensors, and why they did not work in extreme temperatures.  An 
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alternative design for measuring strain using a double ended tuning fork was discussed. 

Also discussed is manufacturing processes for making silicon MEMS devices and silicon 

carbide MEMS devices.  A novel strain sensor was designed, and modeled 

mathematically.  This design is a viable solution testing of strain measurements on high 

temperature hypersonic components, for which the Air Force Research Lab’s Air 

Vehicles Directorate has research programs. 

5.2 Conclusions 

The development of the new capacitive strain sensor in this paper has been done.  

The design started through the understanding of how stress, strain, and stress strain 

relationship.  This gives a relationship of force to stress, and from stress to strain or the 

deformation of a material, shown in section 2.1.  The deformation of material can be 

related to resistance with the change in displacement, ∆L, shown in section 2.2.  Foil 

strain gages were discussed in section 2.2.2 which allows the relationship of gage factor 

to strain, and the change of resistance.  Foil gages were not found to be reliable at high 

temperatures, as shown in section 2.2.3.  One type of alternate strain sensor, the double 

ended tuning fork resonant strain sensor was shown in section 2.3 to have the ability to 

measure strain, and due to electric field, capacitance is generated as shown in section 2.4.  

Making a doubled ended tuning fork resonant strain sensor can only be done using 

MEMS based processes shown in sections 2.5, 2.6, and 2.7. 

The double ended tuning fork resonant strain sensor could have been a candidate 

for a high temperature strain sensor, using silicon carbide as discussed in 2.6 and 3.2.  

The double ended tuning fork sensor was found to not fulfill the requirements of a scale 

able high temperature strain sensor, as discussed in section 3.2 and 3.3.  A new strain 
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sensor was designed in section 3.3.  This design allowed for a scale able design using the 

interdigitated fingers that were taken from the double ended tuning fork design, and 

removing the shuttle mass.  The new capacitive strain sensor allows for scalability by 

adding the ability increase the quantity of interdigitated fingers sets and to the number of 

axial finger sets, the multiplication of interdigitated finger sets that are multiplied in a 

transaxial direction.  This allows for the sensing element, the interdigitated fingers 

modeled as a parallel plate capacitor, to be multiplied to fit the sensing length and width 

requirements of the user. 

To answer one of the research objectives, testing the sensor which cannot be 

manufactured with this research, a mathematical model is created, and Coventorware© 

simulations are performed.  A simple version of the new capacitive strain sensor, the 

interdigitated finger set model was mathematically modeled in section 3.4.1.  

Capacitiance as a relation to the change in length, ∆L, was developed in section 3.4.1.  

The relationship from change in length, ∆L, strain, stress, to force were derived in section 

3.4.2 giving a complete model for the interdigitated finger set in section 3.4.3.  It shown 

in section 4.1.1 that as force increased, capacitance increased, proving that this model 

does work as a strain sensor.  This modeled was expanded to the midsized model 

depicted in section 3.4.4, to prove the scalability of the interdigitated finger set new 

capacitive strain sensor shown in section 3.4.5.  It shown in section 4.2.1 that the increase 

in interdigitated finger sets and axial finger sets increased the capacitance and the sensing 

region. 

Mathematical modeling shows a lot, but another way this paper proves the new 

capacitive strain sensor is a viable model for use as a strain sensor was done using a finite 
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element software package known as Coventorware©, discussed in section 3.5.  Using the 

silicon carbide fabrication process developed in section 3.1, and the mesh study analysis 

in section 3.5.2 Coventorware© can be used to simulate the interdigitated finger set and 

the midsize model to compare it to the mathematical model developed.  The interdigitated 

finger set model was simulated in Coventorware© in section 3.5.3.  It showed in section 

4.1.2 how charge is distributed in within, and around the model.  It shows the distribution 

of stress and strain throughout the model.  It also shows that the sensor increase 

capacitance as strain, stress, or force increases, in section 4.1.2.  The mathematical results 

and Coventorware© results are compared in section 4.1.1.  This shows that the 

methodical results and Coventorware© results increase proportionally as strain is applied.  

The capacitance magnitude between the mathematical model and the Coventorware© 

simulation were different, which is attributed to Coventorware including in its modeling 

techniques, electric field which are difficult of mathematically modeling using geometry.  

This was also the case with the midsize model, shown in section 4.2.2 and 4.2.1.  The 

Coventorware© simulation shown as load, stress, or strain, increases capacitance 

increases, and when compared to the mathematical approach capacitance increases 

proportionally with force applied.  Again Coventorware© allows a better model then the 

mathematical one derived here, attributed to its fully modeling electric fields. 

It has been shown that the interdigitated finger approach satisfied the design 

requirements of a capacitive strain sensor that is scalable.  It can be deployed using poly 

silicon carbide processes allowing it to be used in high temperature environments for 

strain sensing. 
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5.3 Recommendation for future work 

To realize this design some steps needs to be take to use this sensor as a strain 

sensor.  Full scale testing in a realistic environment needs to be performed.  It needs to be 

characterized using strain as a variable. Techniques for attaching the strain sensor onto its 

intended sensing surface needs to be explored.  Signal conditioning needs to be realized.  

How does size affect the design?  Polysilicon is not an ideal use for temperature related 

designs, how can it be made using crystalline silicon carbide.  How does stress at the 

interface points from the fingers to the signal lines and to the substrate effect operation, 

will it break. 

The design should be fabricated in order to allow a proof of concept in real life 

conditions.  Upon fabrication the device needs to be tested using temperatures greater 

than 700°C.  There are many ways, using IR heaters, industrial ovens, or quartz lamp 

heaters.  While the device is heated, it needs to be put under a load, verifying the strain 

sensing functionality. 

The affect of size effect operations of the strain sensor needs to be explored. 

A sensitivity analysis needs to be performed to determine if the sensor is capable of 

measuring a sensible resolution. 

Characterizing the device can be realized by subjecting the device to various loads 

and temperatures.  This would show a full functionality of the device at changing 

temperatures. 

Signal conditioning is the process of converting one signal into a signal that 

computers can measure.  Since the strain sensor operates on the capacitive effect it is a 

little difficult to measure using traditional methods. One option could be using the 
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Wheatstone bridge method.  Although this method is commonly used for resistive 

bridges, it can be adapted to inductive or capacitive bridges.   

The more difficult task that lies ahead is attachment of the sensor to the sensed 

surface.  Traditional strain sensors are attached using adhesives, and polymers.  Either a 

high temperature adhesive technique needs to be explored or the strain sensor needs to be 

manufactured directly onto the sensing surface.  The substrate could be the sensing 

surface instead of the flexible backing that is proposed here. 

To see if polysilicon carbide is an ideal material in the sensor’s mechanical layer, 

temperature should be varied as geometry and residual stress are checked.  During the 

mechanical layers fabrication process, at which polysilicon carbide is created, the 

orientation of the crystalline is of varying orientations within the structure, thus causing 

internal stresses that may cause variations in the new capacitive strain sensor.  To 

alleviate this problem all together, crystalline silicon carbide could be explored. 

When process followers are created to evaporate polysilicon carbide material 

properties need to be explored.  With polysilicon carbide evaporating on polysilicon 

carbide stress will be concentrated at that interface when the substrate is strained.  How 

much stress will be allowed before the device will “pop off”? 
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Appendix A: Matlab Code 

Appendix A shows the Matlab© code used to determine the results of the 

mathematical formulas. 

A-1: Matlab Code from the Interdigitated Finger Set Layout Formulas 

%Weisenberger Thesis Mathematical Modeling IDTF 
 
clear 
clear home 
clc 
%Variables 
%Fixed 
LT=97*10^-6;     %Length of Interdigitated Fingers (meters) 
LG=3*10^-6;     %Gap Distance between interdigitated fingers (meters) 
WT=3*10^-6;     %Width of Interdigitated Fingers (meters) 
T=2*10^-6;      %Thickness of Silicon Carbide Mechanical Layer (meters) 
L0=6*10^-6;     %original length of axial length of finger gap (meters) 
ER=1.0;     %Relative Permittivity of Air (unit less) 
EF=8.85419e-12;    %Permittivity of Free Space (Farads/meter) 
TSiCB=16*10^-6;   %Thickness of Flexible Backing SiC (meters) 
LA=15*10^-6;  %Length of the anchor (meters) 
LFace=18*10^-6;  %Length of applied load face (meters) 
NAFS=1;   %Axial Finger Sets quantity (unit less) 
NIDFS=1;  %interdigitated finger set quantity (unit less) Use odd 
number to make symmetric 
YMSiC=340*10^3;  %Young’s Modulus of Silicon Carbide (micronewtons per 
square micrometer) 
FA=1062;  %Applied Pressure (Micronewtons per square micrometer) 
Force=0:FA/2:FA; %Force Applied (Micronewtons per square micrometer) 
  
%Equations 
    strain=Force/YMSiC  %strain 
    eps=strain;  %conversion to micro strain 
    DelL=eps*(LT+L0)     %Delta L relationship with strain 
    CY=(ER*EF*(LT-(L0+DelL))*(T))/LG   %Yellow Region Capacitance 
    CG=(ER*EF*(WT)*(T))*((L0+DelL).^-1)      %Green Region Capacitance 
    CF=CY+2*CG       %Finger Set capacitance 
    CS=NAFS*(NIDFS*CF) %Total Strain Sensor Capacitance 
    eps2=DelL/(LT+L0) %Verification of Strain 
  
%Plot Mechanism 
plot(eps,CS)    %Plot total strain sensor as a function of strain 
title('Farads vs. Strain for Interdigitated Finger Set') 
xlabel('Strain') 
ylabel('Farads') 
 

A-2: Matlab Code from the Mid Layout Formulas 
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%Weisenberger Thesis Mathematical Modeling Mid Model 
  
clear 
clear home 
clc 
%Variables 
%Fixed 
LT=150*10^-6;     %Length of Interdigitated Fingers (meters) 
LG=3*10^-6;     %Gap Distance between interdigitated fingers (meters) 
WT=3*10^-6;     %Width of Interdigitated Fingers (meters) 
T=2*10^-6;      %Thickness of Silicon Carbide Mechanical Layer (meters) 
L0=10*10^-6;     %original length of axial length of finger gap 
(meters) 
ER=1.0;     %Relative Permittivity of Air (unit less) 
EF=8.85419e-12;    %Permittivity of Free Space (Farads/meter) 
NAFS=3;   %Axial Finger Sets quantity (unit less) 
NIDFS=28;  %interdigitated finger set quantity (unit less) 
YMSiC=340*10^3;  %Young’s Modulus of Silicon Carbide (micronewtons per 
square ) 
TSiCB=16*10^-6;   %Thickness of Flexible Backing SiC (meters) 
LA=15*10^-6;  %Length of the anchor (meters) 
LFace=178*10^-6;  %Length of applied load face (meters) 
FA=2125;  %Applied Force (micronewtons per square micrometers) 
Force=0:FA/2:FA; %Force Applied (micronewtons per square micrometers) 
  
%Equations 
    strain=Force/YMSiC;  %non micro strain 
    eps=strain;  %conversion to micro strain 
    DelL=eps*(LT+L0)     %Delta L relationship with strain 
    CY=(ER*EF*(LT-(L0+DelL))*(T))/LG   %Yellow Region Capacitance 
    CG=(ER*EF*(WT)*(T))*((L0+DelL).^-1)      %Green Region Capacitance 
    CF=CY+CG       %Finger Set to region relationship 
    CS=NAFS*(NIDFS*CF+CG) %Total Strain Sensor Capacitance 
  
%Plot Mechanism 
plot(eps,CS)    %Plot total strain sensor as a function of strain 
title('Farads vs. Strain for the Mid Model') 
xlabel('Strain') 
ylabel('Farads') 
 

A-3: Matlab Code from the Final Sensor Layout Formulas 

%Weisenberger Thesis Mathematical Modeling Final Design 
  
clear 
clear home 
clc 
%Variables 
%Fixed 
LT=150*10^-6;     %Length of Interdigitated Fingers (meters) 
LG=3*10^-6;     %Gap Distance between interdigitated fingers (meters) 
WT=3*10^-6;     %Width of Interdigitated Fingers (meters) 
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T=2*10^-6;      %Thickness of Silicon Carbide Mechanical Layer (meters) 
L0=10*10^-6;     %original length of axial length of finger gap 
(meters) 
ER=1.0;     %Relative Permittivity of Air (unit less) 
EF=8.85419e-12;    %Permittivity of Free Space (Farads/meter) 
NAFS=10;   %Axial Finger Sets quantity (unit less) 
NIDFS=56;  %interdigitated finger set quantity (unit less) Use odd 
number to make symmetric 
YMSiC=340*10^3;  %Young’s Modulus of Silicon Carbide (micronewtons per 
square ) 
TSiCB=16*10^-6;   %Thickness of Flexible Backing SiC (meters) 
LA=15*10^-6;  %Length of the anchor (meters) 
LFace=178*10^-6;  %Length of applied load face (meters) 
FA=1062;  %Applied Force (micronewtons per square micrometers) 
Force=0:FA/2:FA; %Force Applied (micronewtons per square micrometers) 
  
%Equations 
    strain=Force/YMSiC;  %non micro strain 
    eps=strain;  %conversion to micro strain 
    DelL=eps*(LT+L0)     %Delta L relationship with strain 
    CY=(ER*EF*(LT-(L0+DelL))*(T))/LG   %Yellow Region Capacitance 
    CG=(ER*EF*(WT)*(T))*((L0+DelL).^-1)      %Green Region Capacitance 
    CF=CY+CG       %Finger Set to region relationship 
    CS=NAFS*(NIDFS*CF+CG) %Total Strain Sensor Capacitance 
  
%Plot Mechanism 
plot(eps,CS)    %Plot total strain sensor as a function of strain 
title('Farads vs. Strain for the Mid Model') 
xlabel('Strain') 
ylabel('Farads') 
  



76 

Appendix B: Coventorware© Tools and Processes 

Appendix B shows tools and processes used in this research for Coventorware©.  

L-Edit© is custom built MEMS software program developed by Tanner EDA© to layout, 

or draw, MEMS devices [19].  Coventorware© is a custom built MEMS software written 

by Coventor© for multiphysics finite element modeling and simulation [5]. 

B-1: Importing L-Edit© files into Coventorware© 

Before the schematic can be simulated, the layout needs to be exported from L-

Edit©, file type *.tdb or Tanner database file, to a file that can be imported into 

Coventorware©, *.gds file or graphic database system (GDS).  After the file has been 

exported to a GDS file it cannot be imported until the manufacturing process is set into 

the process editor database of the Coventorware© project file.  That process entered into 

the editor is shown in Error! Reference source not found.. 

Using the process database in Figure 48, the L-Edit© layers need to be associated 

with the Coventorware© layers within the layout editor.  The Coventorware© layers are 

named the same as the “Mask Names” from the process editor, for example the “Mech” 

mask name, for mechanical layer, is also the “Mech” layer.  To export the L-Edit© layout 

file to GDS file format, the L-Edit© layers need to be associated to a GDSII layer. GDSII 

layer numbers are chosen for each of the L-Edit© layers, layer numbers are chosen at 

random.  Those GDS layers are linked to the Coventorware© layers using the 

Coventorware© “layer browser”.  A screenshot of the “layer browser” is show in Figure 

49. 
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Figure 48 Coventorware© Process Editor Database 

 

Figure 49 Coventorware© Layer Browser for the Interdigitated Finger Layout 

After the GDS file has been imported into Coventorware© it needs to be checked to 

verify the file imported fine.  Figure 50 shows the layout editor as the imported layout 

file is verified. 

 

Figure 50 Coventorware© Layout Editor with the Interdigitated Finger Set. 

The layout is then opened in the mesh generator part of Coventorware©. When it is 

opened in the mesh generator software, a three dimensional model is created.  
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